Merge tag 'nfs-for-4.7-1' of git://git.linux-nfs.org/projects/anna/linux-nfs
[deliverable/linux.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, see
32 * <http://www.gnu.org/licenses/>.
33 *
34 * Please send any bug reports or fixes you make to the
35 * email address(es):
36 * lksctp developers <linux-sctp@vger.kernel.org>
37 *
38 * Written or modified by:
39 * La Monte H.P. Yarroll <piggy@acm.org>
40 * Narasimha Budihal <narsi@refcode.org>
41 * Karl Knutson <karl@athena.chicago.il.us>
42 * Jon Grimm <jgrimm@us.ibm.com>
43 * Xingang Guo <xingang.guo@intel.com>
44 * Daisy Chang <daisyc@us.ibm.com>
45 * Sridhar Samudrala <samudrala@us.ibm.com>
46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
47 * Ardelle Fan <ardelle.fan@intel.com>
48 * Ryan Layer <rmlayer@us.ibm.com>
49 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
50 * Kevin Gao <kevin.gao@intel.com>
51 */
52
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/ip.h>
61 #include <linux/capability.h>
62 #include <linux/fcntl.h>
63 #include <linux/poll.h>
64 #include <linux/init.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 #include <linux/compat.h>
68
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 #include <net/busy_poll.h>
75
76 #include <linux/socket.h> /* for sa_family_t */
77 #include <linux/export.h>
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81
82 /* Forward declarations for internal helper functions. */
83 static int sctp_writeable(struct sock *sk);
84 static void sctp_wfree(struct sk_buff *skb);
85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 size_t msg_len);
87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89 static int sctp_wait_for_accept(struct sock *sk, long timeo);
90 static void sctp_wait_for_close(struct sock *sk, long timeo);
91 static void sctp_destruct_sock(struct sock *sk);
92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 union sctp_addr *addr, int len);
94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf(struct sctp_association *asoc,
99 struct sctp_chunk *chunk);
100 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101 static int sctp_autobind(struct sock *sk);
102 static void sctp_sock_migrate(struct sock *, struct sock *,
103 struct sctp_association *, sctp_socket_type_t);
104
105 static int sctp_memory_pressure;
106 static atomic_long_t sctp_memory_allocated;
107 struct percpu_counter sctp_sockets_allocated;
108
109 static void sctp_enter_memory_pressure(struct sock *sk)
110 {
111 sctp_memory_pressure = 1;
112 }
113
114
115 /* Get the sndbuf space available at the time on the association. */
116 static inline int sctp_wspace(struct sctp_association *asoc)
117 {
118 int amt;
119
120 if (asoc->ep->sndbuf_policy)
121 amt = asoc->sndbuf_used;
122 else
123 amt = sk_wmem_alloc_get(asoc->base.sk);
124
125 if (amt >= asoc->base.sk->sk_sndbuf) {
126 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
127 amt = 0;
128 else {
129 amt = sk_stream_wspace(asoc->base.sk);
130 if (amt < 0)
131 amt = 0;
132 }
133 } else {
134 amt = asoc->base.sk->sk_sndbuf - amt;
135 }
136 return amt;
137 }
138
139 /* Increment the used sndbuf space count of the corresponding association by
140 * the size of the outgoing data chunk.
141 * Also, set the skb destructor for sndbuf accounting later.
142 *
143 * Since it is always 1-1 between chunk and skb, and also a new skb is always
144 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
145 * destructor in the data chunk skb for the purpose of the sndbuf space
146 * tracking.
147 */
148 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
149 {
150 struct sctp_association *asoc = chunk->asoc;
151 struct sock *sk = asoc->base.sk;
152
153 /* The sndbuf space is tracked per association. */
154 sctp_association_hold(asoc);
155
156 skb_set_owner_w(chunk->skb, sk);
157
158 chunk->skb->destructor = sctp_wfree;
159 /* Save the chunk pointer in skb for sctp_wfree to use later. */
160 skb_shinfo(chunk->skb)->destructor_arg = chunk;
161
162 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
163 sizeof(struct sk_buff) +
164 sizeof(struct sctp_chunk);
165
166 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
167 sk->sk_wmem_queued += chunk->skb->truesize;
168 sk_mem_charge(sk, chunk->skb->truesize);
169 }
170
171 /* Verify that this is a valid address. */
172 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
173 int len)
174 {
175 struct sctp_af *af;
176
177 /* Verify basic sockaddr. */
178 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
179 if (!af)
180 return -EINVAL;
181
182 /* Is this a valid SCTP address? */
183 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
184 return -EINVAL;
185
186 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
187 return -EINVAL;
188
189 return 0;
190 }
191
192 /* Look up the association by its id. If this is not a UDP-style
193 * socket, the ID field is always ignored.
194 */
195 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
196 {
197 struct sctp_association *asoc = NULL;
198
199 /* If this is not a UDP-style socket, assoc id should be ignored. */
200 if (!sctp_style(sk, UDP)) {
201 /* Return NULL if the socket state is not ESTABLISHED. It
202 * could be a TCP-style listening socket or a socket which
203 * hasn't yet called connect() to establish an association.
204 */
205 if (!sctp_sstate(sk, ESTABLISHED))
206 return NULL;
207
208 /* Get the first and the only association from the list. */
209 if (!list_empty(&sctp_sk(sk)->ep->asocs))
210 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
211 struct sctp_association, asocs);
212 return asoc;
213 }
214
215 /* Otherwise this is a UDP-style socket. */
216 if (!id || (id == (sctp_assoc_t)-1))
217 return NULL;
218
219 spin_lock_bh(&sctp_assocs_id_lock);
220 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
221 spin_unlock_bh(&sctp_assocs_id_lock);
222
223 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
224 return NULL;
225
226 return asoc;
227 }
228
229 /* Look up the transport from an address and an assoc id. If both address and
230 * id are specified, the associations matching the address and the id should be
231 * the same.
232 */
233 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
234 struct sockaddr_storage *addr,
235 sctp_assoc_t id)
236 {
237 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
238 struct sctp_transport *transport;
239 union sctp_addr *laddr = (union sctp_addr *)addr;
240
241 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
242 laddr,
243 &transport);
244
245 if (!addr_asoc)
246 return NULL;
247
248 id_asoc = sctp_id2assoc(sk, id);
249 if (id_asoc && (id_asoc != addr_asoc))
250 return NULL;
251
252 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
253 (union sctp_addr *)addr);
254
255 return transport;
256 }
257
258 /* API 3.1.2 bind() - UDP Style Syntax
259 * The syntax of bind() is,
260 *
261 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
262 *
263 * sd - the socket descriptor returned by socket().
264 * addr - the address structure (struct sockaddr_in or struct
265 * sockaddr_in6 [RFC 2553]),
266 * addr_len - the size of the address structure.
267 */
268 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
269 {
270 int retval = 0;
271
272 lock_sock(sk);
273
274 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
275 addr, addr_len);
276
277 /* Disallow binding twice. */
278 if (!sctp_sk(sk)->ep->base.bind_addr.port)
279 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
280 addr_len);
281 else
282 retval = -EINVAL;
283
284 release_sock(sk);
285
286 return retval;
287 }
288
289 static long sctp_get_port_local(struct sock *, union sctp_addr *);
290
291 /* Verify this is a valid sockaddr. */
292 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
293 union sctp_addr *addr, int len)
294 {
295 struct sctp_af *af;
296
297 /* Check minimum size. */
298 if (len < sizeof (struct sockaddr))
299 return NULL;
300
301 /* V4 mapped address are really of AF_INET family */
302 if (addr->sa.sa_family == AF_INET6 &&
303 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
304 if (!opt->pf->af_supported(AF_INET, opt))
305 return NULL;
306 } else {
307 /* Does this PF support this AF? */
308 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
309 return NULL;
310 }
311
312 /* If we get this far, af is valid. */
313 af = sctp_get_af_specific(addr->sa.sa_family);
314
315 if (len < af->sockaddr_len)
316 return NULL;
317
318 return af;
319 }
320
321 /* Bind a local address either to an endpoint or to an association. */
322 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
323 {
324 struct net *net = sock_net(sk);
325 struct sctp_sock *sp = sctp_sk(sk);
326 struct sctp_endpoint *ep = sp->ep;
327 struct sctp_bind_addr *bp = &ep->base.bind_addr;
328 struct sctp_af *af;
329 unsigned short snum;
330 int ret = 0;
331
332 /* Common sockaddr verification. */
333 af = sctp_sockaddr_af(sp, addr, len);
334 if (!af) {
335 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
336 __func__, sk, addr, len);
337 return -EINVAL;
338 }
339
340 snum = ntohs(addr->v4.sin_port);
341
342 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
343 __func__, sk, &addr->sa, bp->port, snum, len);
344
345 /* PF specific bind() address verification. */
346 if (!sp->pf->bind_verify(sp, addr))
347 return -EADDRNOTAVAIL;
348
349 /* We must either be unbound, or bind to the same port.
350 * It's OK to allow 0 ports if we are already bound.
351 * We'll just inhert an already bound port in this case
352 */
353 if (bp->port) {
354 if (!snum)
355 snum = bp->port;
356 else if (snum != bp->port) {
357 pr_debug("%s: new port %d doesn't match existing port "
358 "%d\n", __func__, snum, bp->port);
359 return -EINVAL;
360 }
361 }
362
363 if (snum && snum < PROT_SOCK &&
364 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
365 return -EACCES;
366
367 /* See if the address matches any of the addresses we may have
368 * already bound before checking against other endpoints.
369 */
370 if (sctp_bind_addr_match(bp, addr, sp))
371 return -EINVAL;
372
373 /* Make sure we are allowed to bind here.
374 * The function sctp_get_port_local() does duplicate address
375 * detection.
376 */
377 addr->v4.sin_port = htons(snum);
378 if ((ret = sctp_get_port_local(sk, addr))) {
379 return -EADDRINUSE;
380 }
381
382 /* Refresh ephemeral port. */
383 if (!bp->port)
384 bp->port = inet_sk(sk)->inet_num;
385
386 /* Add the address to the bind address list.
387 * Use GFP_ATOMIC since BHs will be disabled.
388 */
389 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
390 SCTP_ADDR_SRC, GFP_ATOMIC);
391
392 /* Copy back into socket for getsockname() use. */
393 if (!ret) {
394 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
395 sp->pf->to_sk_saddr(addr, sk);
396 }
397
398 return ret;
399 }
400
401 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
402 *
403 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
404 * at any one time. If a sender, after sending an ASCONF chunk, decides
405 * it needs to transfer another ASCONF Chunk, it MUST wait until the
406 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
407 * subsequent ASCONF. Note this restriction binds each side, so at any
408 * time two ASCONF may be in-transit on any given association (one sent
409 * from each endpoint).
410 */
411 static int sctp_send_asconf(struct sctp_association *asoc,
412 struct sctp_chunk *chunk)
413 {
414 struct net *net = sock_net(asoc->base.sk);
415 int retval = 0;
416
417 /* If there is an outstanding ASCONF chunk, queue it for later
418 * transmission.
419 */
420 if (asoc->addip_last_asconf) {
421 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
422 goto out;
423 }
424
425 /* Hold the chunk until an ASCONF_ACK is received. */
426 sctp_chunk_hold(chunk);
427 retval = sctp_primitive_ASCONF(net, asoc, chunk);
428 if (retval)
429 sctp_chunk_free(chunk);
430 else
431 asoc->addip_last_asconf = chunk;
432
433 out:
434 return retval;
435 }
436
437 /* Add a list of addresses as bind addresses to local endpoint or
438 * association.
439 *
440 * Basically run through each address specified in the addrs/addrcnt
441 * array/length pair, determine if it is IPv6 or IPv4 and call
442 * sctp_do_bind() on it.
443 *
444 * If any of them fails, then the operation will be reversed and the
445 * ones that were added will be removed.
446 *
447 * Only sctp_setsockopt_bindx() is supposed to call this function.
448 */
449 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
450 {
451 int cnt;
452 int retval = 0;
453 void *addr_buf;
454 struct sockaddr *sa_addr;
455 struct sctp_af *af;
456
457 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
458 addrs, addrcnt);
459
460 addr_buf = addrs;
461 for (cnt = 0; cnt < addrcnt; cnt++) {
462 /* The list may contain either IPv4 or IPv6 address;
463 * determine the address length for walking thru the list.
464 */
465 sa_addr = addr_buf;
466 af = sctp_get_af_specific(sa_addr->sa_family);
467 if (!af) {
468 retval = -EINVAL;
469 goto err_bindx_add;
470 }
471
472 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
473 af->sockaddr_len);
474
475 addr_buf += af->sockaddr_len;
476
477 err_bindx_add:
478 if (retval < 0) {
479 /* Failed. Cleanup the ones that have been added */
480 if (cnt > 0)
481 sctp_bindx_rem(sk, addrs, cnt);
482 return retval;
483 }
484 }
485
486 return retval;
487 }
488
489 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
490 * associations that are part of the endpoint indicating that a list of local
491 * addresses are added to the endpoint.
492 *
493 * If any of the addresses is already in the bind address list of the
494 * association, we do not send the chunk for that association. But it will not
495 * affect other associations.
496 *
497 * Only sctp_setsockopt_bindx() is supposed to call this function.
498 */
499 static int sctp_send_asconf_add_ip(struct sock *sk,
500 struct sockaddr *addrs,
501 int addrcnt)
502 {
503 struct net *net = sock_net(sk);
504 struct sctp_sock *sp;
505 struct sctp_endpoint *ep;
506 struct sctp_association *asoc;
507 struct sctp_bind_addr *bp;
508 struct sctp_chunk *chunk;
509 struct sctp_sockaddr_entry *laddr;
510 union sctp_addr *addr;
511 union sctp_addr saveaddr;
512 void *addr_buf;
513 struct sctp_af *af;
514 struct list_head *p;
515 int i;
516 int retval = 0;
517
518 if (!net->sctp.addip_enable)
519 return retval;
520
521 sp = sctp_sk(sk);
522 ep = sp->ep;
523
524 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
525 __func__, sk, addrs, addrcnt);
526
527 list_for_each_entry(asoc, &ep->asocs, asocs) {
528 if (!asoc->peer.asconf_capable)
529 continue;
530
531 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
532 continue;
533
534 if (!sctp_state(asoc, ESTABLISHED))
535 continue;
536
537 /* Check if any address in the packed array of addresses is
538 * in the bind address list of the association. If so,
539 * do not send the asconf chunk to its peer, but continue with
540 * other associations.
541 */
542 addr_buf = addrs;
543 for (i = 0; i < addrcnt; i++) {
544 addr = addr_buf;
545 af = sctp_get_af_specific(addr->v4.sin_family);
546 if (!af) {
547 retval = -EINVAL;
548 goto out;
549 }
550
551 if (sctp_assoc_lookup_laddr(asoc, addr))
552 break;
553
554 addr_buf += af->sockaddr_len;
555 }
556 if (i < addrcnt)
557 continue;
558
559 /* Use the first valid address in bind addr list of
560 * association as Address Parameter of ASCONF CHUNK.
561 */
562 bp = &asoc->base.bind_addr;
563 p = bp->address_list.next;
564 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
565 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
566 addrcnt, SCTP_PARAM_ADD_IP);
567 if (!chunk) {
568 retval = -ENOMEM;
569 goto out;
570 }
571
572 /* Add the new addresses to the bind address list with
573 * use_as_src set to 0.
574 */
575 addr_buf = addrs;
576 for (i = 0; i < addrcnt; i++) {
577 addr = addr_buf;
578 af = sctp_get_af_specific(addr->v4.sin_family);
579 memcpy(&saveaddr, addr, af->sockaddr_len);
580 retval = sctp_add_bind_addr(bp, &saveaddr,
581 sizeof(saveaddr),
582 SCTP_ADDR_NEW, GFP_ATOMIC);
583 addr_buf += af->sockaddr_len;
584 }
585 if (asoc->src_out_of_asoc_ok) {
586 struct sctp_transport *trans;
587
588 list_for_each_entry(trans,
589 &asoc->peer.transport_addr_list, transports) {
590 /* Clear the source and route cache */
591 dst_release(trans->dst);
592 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
593 2*asoc->pathmtu, 4380));
594 trans->ssthresh = asoc->peer.i.a_rwnd;
595 trans->rto = asoc->rto_initial;
596 sctp_max_rto(asoc, trans);
597 trans->rtt = trans->srtt = trans->rttvar = 0;
598 sctp_transport_route(trans, NULL,
599 sctp_sk(asoc->base.sk));
600 }
601 }
602 retval = sctp_send_asconf(asoc, chunk);
603 }
604
605 out:
606 return retval;
607 }
608
609 /* Remove a list of addresses from bind addresses list. Do not remove the
610 * last address.
611 *
612 * Basically run through each address specified in the addrs/addrcnt
613 * array/length pair, determine if it is IPv6 or IPv4 and call
614 * sctp_del_bind() on it.
615 *
616 * If any of them fails, then the operation will be reversed and the
617 * ones that were removed will be added back.
618 *
619 * At least one address has to be left; if only one address is
620 * available, the operation will return -EBUSY.
621 *
622 * Only sctp_setsockopt_bindx() is supposed to call this function.
623 */
624 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
625 {
626 struct sctp_sock *sp = sctp_sk(sk);
627 struct sctp_endpoint *ep = sp->ep;
628 int cnt;
629 struct sctp_bind_addr *bp = &ep->base.bind_addr;
630 int retval = 0;
631 void *addr_buf;
632 union sctp_addr *sa_addr;
633 struct sctp_af *af;
634
635 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
636 __func__, sk, addrs, addrcnt);
637
638 addr_buf = addrs;
639 for (cnt = 0; cnt < addrcnt; cnt++) {
640 /* If the bind address list is empty or if there is only one
641 * bind address, there is nothing more to be removed (we need
642 * at least one address here).
643 */
644 if (list_empty(&bp->address_list) ||
645 (sctp_list_single_entry(&bp->address_list))) {
646 retval = -EBUSY;
647 goto err_bindx_rem;
648 }
649
650 sa_addr = addr_buf;
651 af = sctp_get_af_specific(sa_addr->sa.sa_family);
652 if (!af) {
653 retval = -EINVAL;
654 goto err_bindx_rem;
655 }
656
657 if (!af->addr_valid(sa_addr, sp, NULL)) {
658 retval = -EADDRNOTAVAIL;
659 goto err_bindx_rem;
660 }
661
662 if (sa_addr->v4.sin_port &&
663 sa_addr->v4.sin_port != htons(bp->port)) {
664 retval = -EINVAL;
665 goto err_bindx_rem;
666 }
667
668 if (!sa_addr->v4.sin_port)
669 sa_addr->v4.sin_port = htons(bp->port);
670
671 /* FIXME - There is probably a need to check if sk->sk_saddr and
672 * sk->sk_rcv_addr are currently set to one of the addresses to
673 * be removed. This is something which needs to be looked into
674 * when we are fixing the outstanding issues with multi-homing
675 * socket routing and failover schemes. Refer to comments in
676 * sctp_do_bind(). -daisy
677 */
678 retval = sctp_del_bind_addr(bp, sa_addr);
679
680 addr_buf += af->sockaddr_len;
681 err_bindx_rem:
682 if (retval < 0) {
683 /* Failed. Add the ones that has been removed back */
684 if (cnt > 0)
685 sctp_bindx_add(sk, addrs, cnt);
686 return retval;
687 }
688 }
689
690 return retval;
691 }
692
693 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
694 * the associations that are part of the endpoint indicating that a list of
695 * local addresses are removed from the endpoint.
696 *
697 * If any of the addresses is already in the bind address list of the
698 * association, we do not send the chunk for that association. But it will not
699 * affect other associations.
700 *
701 * Only sctp_setsockopt_bindx() is supposed to call this function.
702 */
703 static int sctp_send_asconf_del_ip(struct sock *sk,
704 struct sockaddr *addrs,
705 int addrcnt)
706 {
707 struct net *net = sock_net(sk);
708 struct sctp_sock *sp;
709 struct sctp_endpoint *ep;
710 struct sctp_association *asoc;
711 struct sctp_transport *transport;
712 struct sctp_bind_addr *bp;
713 struct sctp_chunk *chunk;
714 union sctp_addr *laddr;
715 void *addr_buf;
716 struct sctp_af *af;
717 struct sctp_sockaddr_entry *saddr;
718 int i;
719 int retval = 0;
720 int stored = 0;
721
722 chunk = NULL;
723 if (!net->sctp.addip_enable)
724 return retval;
725
726 sp = sctp_sk(sk);
727 ep = sp->ep;
728
729 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
730 __func__, sk, addrs, addrcnt);
731
732 list_for_each_entry(asoc, &ep->asocs, asocs) {
733
734 if (!asoc->peer.asconf_capable)
735 continue;
736
737 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
738 continue;
739
740 if (!sctp_state(asoc, ESTABLISHED))
741 continue;
742
743 /* Check if any address in the packed array of addresses is
744 * not present in the bind address list of the association.
745 * If so, do not send the asconf chunk to its peer, but
746 * continue with other associations.
747 */
748 addr_buf = addrs;
749 for (i = 0; i < addrcnt; i++) {
750 laddr = addr_buf;
751 af = sctp_get_af_specific(laddr->v4.sin_family);
752 if (!af) {
753 retval = -EINVAL;
754 goto out;
755 }
756
757 if (!sctp_assoc_lookup_laddr(asoc, laddr))
758 break;
759
760 addr_buf += af->sockaddr_len;
761 }
762 if (i < addrcnt)
763 continue;
764
765 /* Find one address in the association's bind address list
766 * that is not in the packed array of addresses. This is to
767 * make sure that we do not delete all the addresses in the
768 * association.
769 */
770 bp = &asoc->base.bind_addr;
771 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
772 addrcnt, sp);
773 if ((laddr == NULL) && (addrcnt == 1)) {
774 if (asoc->asconf_addr_del_pending)
775 continue;
776 asoc->asconf_addr_del_pending =
777 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
778 if (asoc->asconf_addr_del_pending == NULL) {
779 retval = -ENOMEM;
780 goto out;
781 }
782 asoc->asconf_addr_del_pending->sa.sa_family =
783 addrs->sa_family;
784 asoc->asconf_addr_del_pending->v4.sin_port =
785 htons(bp->port);
786 if (addrs->sa_family == AF_INET) {
787 struct sockaddr_in *sin;
788
789 sin = (struct sockaddr_in *)addrs;
790 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
791 } else if (addrs->sa_family == AF_INET6) {
792 struct sockaddr_in6 *sin6;
793
794 sin6 = (struct sockaddr_in6 *)addrs;
795 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
796 }
797
798 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
799 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
800 asoc->asconf_addr_del_pending);
801
802 asoc->src_out_of_asoc_ok = 1;
803 stored = 1;
804 goto skip_mkasconf;
805 }
806
807 if (laddr == NULL)
808 return -EINVAL;
809
810 /* We do not need RCU protection throughout this loop
811 * because this is done under a socket lock from the
812 * setsockopt call.
813 */
814 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
815 SCTP_PARAM_DEL_IP);
816 if (!chunk) {
817 retval = -ENOMEM;
818 goto out;
819 }
820
821 skip_mkasconf:
822 /* Reset use_as_src flag for the addresses in the bind address
823 * list that are to be deleted.
824 */
825 addr_buf = addrs;
826 for (i = 0; i < addrcnt; i++) {
827 laddr = addr_buf;
828 af = sctp_get_af_specific(laddr->v4.sin_family);
829 list_for_each_entry(saddr, &bp->address_list, list) {
830 if (sctp_cmp_addr_exact(&saddr->a, laddr))
831 saddr->state = SCTP_ADDR_DEL;
832 }
833 addr_buf += af->sockaddr_len;
834 }
835
836 /* Update the route and saddr entries for all the transports
837 * as some of the addresses in the bind address list are
838 * about to be deleted and cannot be used as source addresses.
839 */
840 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
841 transports) {
842 dst_release(transport->dst);
843 sctp_transport_route(transport, NULL,
844 sctp_sk(asoc->base.sk));
845 }
846
847 if (stored)
848 /* We don't need to transmit ASCONF */
849 continue;
850 retval = sctp_send_asconf(asoc, chunk);
851 }
852 out:
853 return retval;
854 }
855
856 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
857 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
858 {
859 struct sock *sk = sctp_opt2sk(sp);
860 union sctp_addr *addr;
861 struct sctp_af *af;
862
863 /* It is safe to write port space in caller. */
864 addr = &addrw->a;
865 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
866 af = sctp_get_af_specific(addr->sa.sa_family);
867 if (!af)
868 return -EINVAL;
869 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
870 return -EINVAL;
871
872 if (addrw->state == SCTP_ADDR_NEW)
873 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
874 else
875 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
876 }
877
878 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
879 *
880 * API 8.1
881 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
882 * int flags);
883 *
884 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
885 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
886 * or IPv6 addresses.
887 *
888 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
889 * Section 3.1.2 for this usage.
890 *
891 * addrs is a pointer to an array of one or more socket addresses. Each
892 * address is contained in its appropriate structure (i.e. struct
893 * sockaddr_in or struct sockaddr_in6) the family of the address type
894 * must be used to distinguish the address length (note that this
895 * representation is termed a "packed array" of addresses). The caller
896 * specifies the number of addresses in the array with addrcnt.
897 *
898 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
899 * -1, and sets errno to the appropriate error code.
900 *
901 * For SCTP, the port given in each socket address must be the same, or
902 * sctp_bindx() will fail, setting errno to EINVAL.
903 *
904 * The flags parameter is formed from the bitwise OR of zero or more of
905 * the following currently defined flags:
906 *
907 * SCTP_BINDX_ADD_ADDR
908 *
909 * SCTP_BINDX_REM_ADDR
910 *
911 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
912 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
913 * addresses from the association. The two flags are mutually exclusive;
914 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
915 * not remove all addresses from an association; sctp_bindx() will
916 * reject such an attempt with EINVAL.
917 *
918 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
919 * additional addresses with an endpoint after calling bind(). Or use
920 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
921 * socket is associated with so that no new association accepted will be
922 * associated with those addresses. If the endpoint supports dynamic
923 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
924 * endpoint to send the appropriate message to the peer to change the
925 * peers address lists.
926 *
927 * Adding and removing addresses from a connected association is
928 * optional functionality. Implementations that do not support this
929 * functionality should return EOPNOTSUPP.
930 *
931 * Basically do nothing but copying the addresses from user to kernel
932 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
933 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
934 * from userspace.
935 *
936 * We don't use copy_from_user() for optimization: we first do the
937 * sanity checks (buffer size -fast- and access check-healthy
938 * pointer); if all of those succeed, then we can alloc the memory
939 * (expensive operation) needed to copy the data to kernel. Then we do
940 * the copying without checking the user space area
941 * (__copy_from_user()).
942 *
943 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
944 * it.
945 *
946 * sk The sk of the socket
947 * addrs The pointer to the addresses in user land
948 * addrssize Size of the addrs buffer
949 * op Operation to perform (add or remove, see the flags of
950 * sctp_bindx)
951 *
952 * Returns 0 if ok, <0 errno code on error.
953 */
954 static int sctp_setsockopt_bindx(struct sock *sk,
955 struct sockaddr __user *addrs,
956 int addrs_size, int op)
957 {
958 struct sockaddr *kaddrs;
959 int err;
960 int addrcnt = 0;
961 int walk_size = 0;
962 struct sockaddr *sa_addr;
963 void *addr_buf;
964 struct sctp_af *af;
965
966 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
967 __func__, sk, addrs, addrs_size, op);
968
969 if (unlikely(addrs_size <= 0))
970 return -EINVAL;
971
972 /* Check the user passed a healthy pointer. */
973 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
974 return -EFAULT;
975
976 /* Alloc space for the address array in kernel memory. */
977 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN);
978 if (unlikely(!kaddrs))
979 return -ENOMEM;
980
981 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
982 kfree(kaddrs);
983 return -EFAULT;
984 }
985
986 /* Walk through the addrs buffer and count the number of addresses. */
987 addr_buf = kaddrs;
988 while (walk_size < addrs_size) {
989 if (walk_size + sizeof(sa_family_t) > addrs_size) {
990 kfree(kaddrs);
991 return -EINVAL;
992 }
993
994 sa_addr = addr_buf;
995 af = sctp_get_af_specific(sa_addr->sa_family);
996
997 /* If the address family is not supported or if this address
998 * causes the address buffer to overflow return EINVAL.
999 */
1000 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1001 kfree(kaddrs);
1002 return -EINVAL;
1003 }
1004 addrcnt++;
1005 addr_buf += af->sockaddr_len;
1006 walk_size += af->sockaddr_len;
1007 }
1008
1009 /* Do the work. */
1010 switch (op) {
1011 case SCTP_BINDX_ADD_ADDR:
1012 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1013 if (err)
1014 goto out;
1015 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1016 break;
1017
1018 case SCTP_BINDX_REM_ADDR:
1019 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1020 if (err)
1021 goto out;
1022 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1023 break;
1024
1025 default:
1026 err = -EINVAL;
1027 break;
1028 }
1029
1030 out:
1031 kfree(kaddrs);
1032
1033 return err;
1034 }
1035
1036 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1037 *
1038 * Common routine for handling connect() and sctp_connectx().
1039 * Connect will come in with just a single address.
1040 */
1041 static int __sctp_connect(struct sock *sk,
1042 struct sockaddr *kaddrs,
1043 int addrs_size,
1044 sctp_assoc_t *assoc_id)
1045 {
1046 struct net *net = sock_net(sk);
1047 struct sctp_sock *sp;
1048 struct sctp_endpoint *ep;
1049 struct sctp_association *asoc = NULL;
1050 struct sctp_association *asoc2;
1051 struct sctp_transport *transport;
1052 union sctp_addr to;
1053 sctp_scope_t scope;
1054 long timeo;
1055 int err = 0;
1056 int addrcnt = 0;
1057 int walk_size = 0;
1058 union sctp_addr *sa_addr = NULL;
1059 void *addr_buf;
1060 unsigned short port;
1061 unsigned int f_flags = 0;
1062
1063 sp = sctp_sk(sk);
1064 ep = sp->ep;
1065
1066 /* connect() cannot be done on a socket that is already in ESTABLISHED
1067 * state - UDP-style peeled off socket or a TCP-style socket that
1068 * is already connected.
1069 * It cannot be done even on a TCP-style listening socket.
1070 */
1071 if (sctp_sstate(sk, ESTABLISHED) ||
1072 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1073 err = -EISCONN;
1074 goto out_free;
1075 }
1076
1077 /* Walk through the addrs buffer and count the number of addresses. */
1078 addr_buf = kaddrs;
1079 while (walk_size < addrs_size) {
1080 struct sctp_af *af;
1081
1082 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1083 err = -EINVAL;
1084 goto out_free;
1085 }
1086
1087 sa_addr = addr_buf;
1088 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1089
1090 /* If the address family is not supported or if this address
1091 * causes the address buffer to overflow return EINVAL.
1092 */
1093 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1094 err = -EINVAL;
1095 goto out_free;
1096 }
1097
1098 port = ntohs(sa_addr->v4.sin_port);
1099
1100 /* Save current address so we can work with it */
1101 memcpy(&to, sa_addr, af->sockaddr_len);
1102
1103 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1104 if (err)
1105 goto out_free;
1106
1107 /* Make sure the destination port is correctly set
1108 * in all addresses.
1109 */
1110 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1111 err = -EINVAL;
1112 goto out_free;
1113 }
1114
1115 /* Check if there already is a matching association on the
1116 * endpoint (other than the one created here).
1117 */
1118 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1119 if (asoc2 && asoc2 != asoc) {
1120 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1121 err = -EISCONN;
1122 else
1123 err = -EALREADY;
1124 goto out_free;
1125 }
1126
1127 /* If we could not find a matching association on the endpoint,
1128 * make sure that there is no peeled-off association matching
1129 * the peer address even on another socket.
1130 */
1131 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1132 err = -EADDRNOTAVAIL;
1133 goto out_free;
1134 }
1135
1136 if (!asoc) {
1137 /* If a bind() or sctp_bindx() is not called prior to
1138 * an sctp_connectx() call, the system picks an
1139 * ephemeral port and will choose an address set
1140 * equivalent to binding with a wildcard address.
1141 */
1142 if (!ep->base.bind_addr.port) {
1143 if (sctp_autobind(sk)) {
1144 err = -EAGAIN;
1145 goto out_free;
1146 }
1147 } else {
1148 /*
1149 * If an unprivileged user inherits a 1-many
1150 * style socket with open associations on a
1151 * privileged port, it MAY be permitted to
1152 * accept new associations, but it SHOULD NOT
1153 * be permitted to open new associations.
1154 */
1155 if (ep->base.bind_addr.port < PROT_SOCK &&
1156 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1157 err = -EACCES;
1158 goto out_free;
1159 }
1160 }
1161
1162 scope = sctp_scope(&to);
1163 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1164 if (!asoc) {
1165 err = -ENOMEM;
1166 goto out_free;
1167 }
1168
1169 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1170 GFP_KERNEL);
1171 if (err < 0) {
1172 goto out_free;
1173 }
1174
1175 }
1176
1177 /* Prime the peer's transport structures. */
1178 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1179 SCTP_UNKNOWN);
1180 if (!transport) {
1181 err = -ENOMEM;
1182 goto out_free;
1183 }
1184
1185 addrcnt++;
1186 addr_buf += af->sockaddr_len;
1187 walk_size += af->sockaddr_len;
1188 }
1189
1190 /* In case the user of sctp_connectx() wants an association
1191 * id back, assign one now.
1192 */
1193 if (assoc_id) {
1194 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1195 if (err < 0)
1196 goto out_free;
1197 }
1198
1199 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1200 if (err < 0) {
1201 goto out_free;
1202 }
1203
1204 /* Initialize sk's dport and daddr for getpeername() */
1205 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1206 sp->pf->to_sk_daddr(sa_addr, sk);
1207 sk->sk_err = 0;
1208
1209 /* in-kernel sockets don't generally have a file allocated to them
1210 * if all they do is call sock_create_kern().
1211 */
1212 if (sk->sk_socket->file)
1213 f_flags = sk->sk_socket->file->f_flags;
1214
1215 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1216
1217 err = sctp_wait_for_connect(asoc, &timeo);
1218 if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1219 *assoc_id = asoc->assoc_id;
1220
1221 /* Don't free association on exit. */
1222 asoc = NULL;
1223
1224 out_free:
1225 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1226 __func__, asoc, kaddrs, err);
1227
1228 if (asoc) {
1229 /* sctp_primitive_ASSOCIATE may have added this association
1230 * To the hash table, try to unhash it, just in case, its a noop
1231 * if it wasn't hashed so we're safe
1232 */
1233 sctp_association_free(asoc);
1234 }
1235 return err;
1236 }
1237
1238 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1239 *
1240 * API 8.9
1241 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1242 * sctp_assoc_t *asoc);
1243 *
1244 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1245 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1246 * or IPv6 addresses.
1247 *
1248 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1249 * Section 3.1.2 for this usage.
1250 *
1251 * addrs is a pointer to an array of one or more socket addresses. Each
1252 * address is contained in its appropriate structure (i.e. struct
1253 * sockaddr_in or struct sockaddr_in6) the family of the address type
1254 * must be used to distengish the address length (note that this
1255 * representation is termed a "packed array" of addresses). The caller
1256 * specifies the number of addresses in the array with addrcnt.
1257 *
1258 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1259 * the association id of the new association. On failure, sctp_connectx()
1260 * returns -1, and sets errno to the appropriate error code. The assoc_id
1261 * is not touched by the kernel.
1262 *
1263 * For SCTP, the port given in each socket address must be the same, or
1264 * sctp_connectx() will fail, setting errno to EINVAL.
1265 *
1266 * An application can use sctp_connectx to initiate an association with
1267 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1268 * allows a caller to specify multiple addresses at which a peer can be
1269 * reached. The way the SCTP stack uses the list of addresses to set up
1270 * the association is implementation dependent. This function only
1271 * specifies that the stack will try to make use of all the addresses in
1272 * the list when needed.
1273 *
1274 * Note that the list of addresses passed in is only used for setting up
1275 * the association. It does not necessarily equal the set of addresses
1276 * the peer uses for the resulting association. If the caller wants to
1277 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1278 * retrieve them after the association has been set up.
1279 *
1280 * Basically do nothing but copying the addresses from user to kernel
1281 * land and invoking either sctp_connectx(). This is used for tunneling
1282 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1283 *
1284 * We don't use copy_from_user() for optimization: we first do the
1285 * sanity checks (buffer size -fast- and access check-healthy
1286 * pointer); if all of those succeed, then we can alloc the memory
1287 * (expensive operation) needed to copy the data to kernel. Then we do
1288 * the copying without checking the user space area
1289 * (__copy_from_user()).
1290 *
1291 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1292 * it.
1293 *
1294 * sk The sk of the socket
1295 * addrs The pointer to the addresses in user land
1296 * addrssize Size of the addrs buffer
1297 *
1298 * Returns >=0 if ok, <0 errno code on error.
1299 */
1300 static int __sctp_setsockopt_connectx(struct sock *sk,
1301 struct sockaddr __user *addrs,
1302 int addrs_size,
1303 sctp_assoc_t *assoc_id)
1304 {
1305 struct sockaddr *kaddrs;
1306 gfp_t gfp = GFP_KERNEL;
1307 int err = 0;
1308
1309 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1310 __func__, sk, addrs, addrs_size);
1311
1312 if (unlikely(addrs_size <= 0))
1313 return -EINVAL;
1314
1315 /* Check the user passed a healthy pointer. */
1316 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1317 return -EFAULT;
1318
1319 /* Alloc space for the address array in kernel memory. */
1320 if (sk->sk_socket->file)
1321 gfp = GFP_USER | __GFP_NOWARN;
1322 kaddrs = kmalloc(addrs_size, gfp);
1323 if (unlikely(!kaddrs))
1324 return -ENOMEM;
1325
1326 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1327 err = -EFAULT;
1328 } else {
1329 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1330 }
1331
1332 kfree(kaddrs);
1333
1334 return err;
1335 }
1336
1337 /*
1338 * This is an older interface. It's kept for backward compatibility
1339 * to the option that doesn't provide association id.
1340 */
1341 static int sctp_setsockopt_connectx_old(struct sock *sk,
1342 struct sockaddr __user *addrs,
1343 int addrs_size)
1344 {
1345 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1346 }
1347
1348 /*
1349 * New interface for the API. The since the API is done with a socket
1350 * option, to make it simple we feed back the association id is as a return
1351 * indication to the call. Error is always negative and association id is
1352 * always positive.
1353 */
1354 static int sctp_setsockopt_connectx(struct sock *sk,
1355 struct sockaddr __user *addrs,
1356 int addrs_size)
1357 {
1358 sctp_assoc_t assoc_id = 0;
1359 int err = 0;
1360
1361 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1362
1363 if (err)
1364 return err;
1365 else
1366 return assoc_id;
1367 }
1368
1369 /*
1370 * New (hopefully final) interface for the API.
1371 * We use the sctp_getaddrs_old structure so that use-space library
1372 * can avoid any unnecessary allocations. The only different part
1373 * is that we store the actual length of the address buffer into the
1374 * addrs_num structure member. That way we can re-use the existing
1375 * code.
1376 */
1377 #ifdef CONFIG_COMPAT
1378 struct compat_sctp_getaddrs_old {
1379 sctp_assoc_t assoc_id;
1380 s32 addr_num;
1381 compat_uptr_t addrs; /* struct sockaddr * */
1382 };
1383 #endif
1384
1385 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1386 char __user *optval,
1387 int __user *optlen)
1388 {
1389 struct sctp_getaddrs_old param;
1390 sctp_assoc_t assoc_id = 0;
1391 int err = 0;
1392
1393 #ifdef CONFIG_COMPAT
1394 if (in_compat_syscall()) {
1395 struct compat_sctp_getaddrs_old param32;
1396
1397 if (len < sizeof(param32))
1398 return -EINVAL;
1399 if (copy_from_user(&param32, optval, sizeof(param32)))
1400 return -EFAULT;
1401
1402 param.assoc_id = param32.assoc_id;
1403 param.addr_num = param32.addr_num;
1404 param.addrs = compat_ptr(param32.addrs);
1405 } else
1406 #endif
1407 {
1408 if (len < sizeof(param))
1409 return -EINVAL;
1410 if (copy_from_user(&param, optval, sizeof(param)))
1411 return -EFAULT;
1412 }
1413
1414 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1415 param.addrs, param.addr_num,
1416 &assoc_id);
1417 if (err == 0 || err == -EINPROGRESS) {
1418 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1419 return -EFAULT;
1420 if (put_user(sizeof(assoc_id), optlen))
1421 return -EFAULT;
1422 }
1423
1424 return err;
1425 }
1426
1427 /* API 3.1.4 close() - UDP Style Syntax
1428 * Applications use close() to perform graceful shutdown (as described in
1429 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1430 * by a UDP-style socket.
1431 *
1432 * The syntax is
1433 *
1434 * ret = close(int sd);
1435 *
1436 * sd - the socket descriptor of the associations to be closed.
1437 *
1438 * To gracefully shutdown a specific association represented by the
1439 * UDP-style socket, an application should use the sendmsg() call,
1440 * passing no user data, but including the appropriate flag in the
1441 * ancillary data (see Section xxxx).
1442 *
1443 * If sd in the close() call is a branched-off socket representing only
1444 * one association, the shutdown is performed on that association only.
1445 *
1446 * 4.1.6 close() - TCP Style Syntax
1447 *
1448 * Applications use close() to gracefully close down an association.
1449 *
1450 * The syntax is:
1451 *
1452 * int close(int sd);
1453 *
1454 * sd - the socket descriptor of the association to be closed.
1455 *
1456 * After an application calls close() on a socket descriptor, no further
1457 * socket operations will succeed on that descriptor.
1458 *
1459 * API 7.1.4 SO_LINGER
1460 *
1461 * An application using the TCP-style socket can use this option to
1462 * perform the SCTP ABORT primitive. The linger option structure is:
1463 *
1464 * struct linger {
1465 * int l_onoff; // option on/off
1466 * int l_linger; // linger time
1467 * };
1468 *
1469 * To enable the option, set l_onoff to 1. If the l_linger value is set
1470 * to 0, calling close() is the same as the ABORT primitive. If the
1471 * value is set to a negative value, the setsockopt() call will return
1472 * an error. If the value is set to a positive value linger_time, the
1473 * close() can be blocked for at most linger_time ms. If the graceful
1474 * shutdown phase does not finish during this period, close() will
1475 * return but the graceful shutdown phase continues in the system.
1476 */
1477 static void sctp_close(struct sock *sk, long timeout)
1478 {
1479 struct net *net = sock_net(sk);
1480 struct sctp_endpoint *ep;
1481 struct sctp_association *asoc;
1482 struct list_head *pos, *temp;
1483 unsigned int data_was_unread;
1484
1485 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1486
1487 lock_sock(sk);
1488 sk->sk_shutdown = SHUTDOWN_MASK;
1489 sk->sk_state = SCTP_SS_CLOSING;
1490
1491 ep = sctp_sk(sk)->ep;
1492
1493 /* Clean up any skbs sitting on the receive queue. */
1494 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1495 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1496
1497 /* Walk all associations on an endpoint. */
1498 list_for_each_safe(pos, temp, &ep->asocs) {
1499 asoc = list_entry(pos, struct sctp_association, asocs);
1500
1501 if (sctp_style(sk, TCP)) {
1502 /* A closed association can still be in the list if
1503 * it belongs to a TCP-style listening socket that is
1504 * not yet accepted. If so, free it. If not, send an
1505 * ABORT or SHUTDOWN based on the linger options.
1506 */
1507 if (sctp_state(asoc, CLOSED)) {
1508 sctp_association_free(asoc);
1509 continue;
1510 }
1511 }
1512
1513 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1514 !skb_queue_empty(&asoc->ulpq.reasm) ||
1515 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1516 struct sctp_chunk *chunk;
1517
1518 chunk = sctp_make_abort_user(asoc, NULL, 0);
1519 sctp_primitive_ABORT(net, asoc, chunk);
1520 } else
1521 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1522 }
1523
1524 /* On a TCP-style socket, block for at most linger_time if set. */
1525 if (sctp_style(sk, TCP) && timeout)
1526 sctp_wait_for_close(sk, timeout);
1527
1528 /* This will run the backlog queue. */
1529 release_sock(sk);
1530
1531 /* Supposedly, no process has access to the socket, but
1532 * the net layers still may.
1533 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1534 * held and that should be grabbed before socket lock.
1535 */
1536 spin_lock_bh(&net->sctp.addr_wq_lock);
1537 bh_lock_sock(sk);
1538
1539 /* Hold the sock, since sk_common_release() will put sock_put()
1540 * and we have just a little more cleanup.
1541 */
1542 sock_hold(sk);
1543 sk_common_release(sk);
1544
1545 bh_unlock_sock(sk);
1546 spin_unlock_bh(&net->sctp.addr_wq_lock);
1547
1548 sock_put(sk);
1549
1550 SCTP_DBG_OBJCNT_DEC(sock);
1551 }
1552
1553 /* Handle EPIPE error. */
1554 static int sctp_error(struct sock *sk, int flags, int err)
1555 {
1556 if (err == -EPIPE)
1557 err = sock_error(sk) ? : -EPIPE;
1558 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1559 send_sig(SIGPIPE, current, 0);
1560 return err;
1561 }
1562
1563 /* API 3.1.3 sendmsg() - UDP Style Syntax
1564 *
1565 * An application uses sendmsg() and recvmsg() calls to transmit data to
1566 * and receive data from its peer.
1567 *
1568 * ssize_t sendmsg(int socket, const struct msghdr *message,
1569 * int flags);
1570 *
1571 * socket - the socket descriptor of the endpoint.
1572 * message - pointer to the msghdr structure which contains a single
1573 * user message and possibly some ancillary data.
1574 *
1575 * See Section 5 for complete description of the data
1576 * structures.
1577 *
1578 * flags - flags sent or received with the user message, see Section
1579 * 5 for complete description of the flags.
1580 *
1581 * Note: This function could use a rewrite especially when explicit
1582 * connect support comes in.
1583 */
1584 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1585
1586 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1587
1588 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1589 {
1590 struct net *net = sock_net(sk);
1591 struct sctp_sock *sp;
1592 struct sctp_endpoint *ep;
1593 struct sctp_association *new_asoc = NULL, *asoc = NULL;
1594 struct sctp_transport *transport, *chunk_tp;
1595 struct sctp_chunk *chunk;
1596 union sctp_addr to;
1597 struct sockaddr *msg_name = NULL;
1598 struct sctp_sndrcvinfo default_sinfo;
1599 struct sctp_sndrcvinfo *sinfo;
1600 struct sctp_initmsg *sinit;
1601 sctp_assoc_t associd = 0;
1602 sctp_cmsgs_t cmsgs = { NULL };
1603 sctp_scope_t scope;
1604 bool fill_sinfo_ttl = false, wait_connect = false;
1605 struct sctp_datamsg *datamsg;
1606 int msg_flags = msg->msg_flags;
1607 __u16 sinfo_flags = 0;
1608 long timeo;
1609 int err;
1610
1611 err = 0;
1612 sp = sctp_sk(sk);
1613 ep = sp->ep;
1614
1615 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1616 msg, msg_len, ep);
1617
1618 /* We cannot send a message over a TCP-style listening socket. */
1619 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1620 err = -EPIPE;
1621 goto out_nounlock;
1622 }
1623
1624 /* Parse out the SCTP CMSGs. */
1625 err = sctp_msghdr_parse(msg, &cmsgs);
1626 if (err) {
1627 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1628 goto out_nounlock;
1629 }
1630
1631 /* Fetch the destination address for this packet. This
1632 * address only selects the association--it is not necessarily
1633 * the address we will send to.
1634 * For a peeled-off socket, msg_name is ignored.
1635 */
1636 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1637 int msg_namelen = msg->msg_namelen;
1638
1639 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1640 msg_namelen);
1641 if (err)
1642 return err;
1643
1644 if (msg_namelen > sizeof(to))
1645 msg_namelen = sizeof(to);
1646 memcpy(&to, msg->msg_name, msg_namelen);
1647 msg_name = msg->msg_name;
1648 }
1649
1650 sinit = cmsgs.init;
1651 if (cmsgs.sinfo != NULL) {
1652 memset(&default_sinfo, 0, sizeof(default_sinfo));
1653 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1654 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1655 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1656 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1657 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1658
1659 sinfo = &default_sinfo;
1660 fill_sinfo_ttl = true;
1661 } else {
1662 sinfo = cmsgs.srinfo;
1663 }
1664 /* Did the user specify SNDINFO/SNDRCVINFO? */
1665 if (sinfo) {
1666 sinfo_flags = sinfo->sinfo_flags;
1667 associd = sinfo->sinfo_assoc_id;
1668 }
1669
1670 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1671 msg_len, sinfo_flags);
1672
1673 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1674 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1675 err = -EINVAL;
1676 goto out_nounlock;
1677 }
1678
1679 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1680 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1681 * If SCTP_ABORT is set, the message length could be non zero with
1682 * the msg_iov set to the user abort reason.
1683 */
1684 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1685 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1686 err = -EINVAL;
1687 goto out_nounlock;
1688 }
1689
1690 /* If SCTP_ADDR_OVER is set, there must be an address
1691 * specified in msg_name.
1692 */
1693 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1694 err = -EINVAL;
1695 goto out_nounlock;
1696 }
1697
1698 transport = NULL;
1699
1700 pr_debug("%s: about to look up association\n", __func__);
1701
1702 lock_sock(sk);
1703
1704 /* If a msg_name has been specified, assume this is to be used. */
1705 if (msg_name) {
1706 /* Look for a matching association on the endpoint. */
1707 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1708 if (!asoc) {
1709 /* If we could not find a matching association on the
1710 * endpoint, make sure that it is not a TCP-style
1711 * socket that already has an association or there is
1712 * no peeled-off association on another socket.
1713 */
1714 if ((sctp_style(sk, TCP) &&
1715 sctp_sstate(sk, ESTABLISHED)) ||
1716 sctp_endpoint_is_peeled_off(ep, &to)) {
1717 err = -EADDRNOTAVAIL;
1718 goto out_unlock;
1719 }
1720 }
1721 } else {
1722 asoc = sctp_id2assoc(sk, associd);
1723 if (!asoc) {
1724 err = -EPIPE;
1725 goto out_unlock;
1726 }
1727 }
1728
1729 if (asoc) {
1730 pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1731
1732 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1733 * socket that has an association in CLOSED state. This can
1734 * happen when an accepted socket has an association that is
1735 * already CLOSED.
1736 */
1737 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1738 err = -EPIPE;
1739 goto out_unlock;
1740 }
1741
1742 if (sinfo_flags & SCTP_EOF) {
1743 pr_debug("%s: shutting down association:%p\n",
1744 __func__, asoc);
1745
1746 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1747 err = 0;
1748 goto out_unlock;
1749 }
1750 if (sinfo_flags & SCTP_ABORT) {
1751
1752 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1753 if (!chunk) {
1754 err = -ENOMEM;
1755 goto out_unlock;
1756 }
1757
1758 pr_debug("%s: aborting association:%p\n",
1759 __func__, asoc);
1760
1761 sctp_primitive_ABORT(net, asoc, chunk);
1762 err = 0;
1763 goto out_unlock;
1764 }
1765 }
1766
1767 /* Do we need to create the association? */
1768 if (!asoc) {
1769 pr_debug("%s: there is no association yet\n", __func__);
1770
1771 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1772 err = -EINVAL;
1773 goto out_unlock;
1774 }
1775
1776 /* Check for invalid stream against the stream counts,
1777 * either the default or the user specified stream counts.
1778 */
1779 if (sinfo) {
1780 if (!sinit || !sinit->sinit_num_ostreams) {
1781 /* Check against the defaults. */
1782 if (sinfo->sinfo_stream >=
1783 sp->initmsg.sinit_num_ostreams) {
1784 err = -EINVAL;
1785 goto out_unlock;
1786 }
1787 } else {
1788 /* Check against the requested. */
1789 if (sinfo->sinfo_stream >=
1790 sinit->sinit_num_ostreams) {
1791 err = -EINVAL;
1792 goto out_unlock;
1793 }
1794 }
1795 }
1796
1797 /*
1798 * API 3.1.2 bind() - UDP Style Syntax
1799 * If a bind() or sctp_bindx() is not called prior to a
1800 * sendmsg() call that initiates a new association, the
1801 * system picks an ephemeral port and will choose an address
1802 * set equivalent to binding with a wildcard address.
1803 */
1804 if (!ep->base.bind_addr.port) {
1805 if (sctp_autobind(sk)) {
1806 err = -EAGAIN;
1807 goto out_unlock;
1808 }
1809 } else {
1810 /*
1811 * If an unprivileged user inherits a one-to-many
1812 * style socket with open associations on a privileged
1813 * port, it MAY be permitted to accept new associations,
1814 * but it SHOULD NOT be permitted to open new
1815 * associations.
1816 */
1817 if (ep->base.bind_addr.port < PROT_SOCK &&
1818 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1819 err = -EACCES;
1820 goto out_unlock;
1821 }
1822 }
1823
1824 scope = sctp_scope(&to);
1825 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1826 if (!new_asoc) {
1827 err = -ENOMEM;
1828 goto out_unlock;
1829 }
1830 asoc = new_asoc;
1831 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1832 if (err < 0) {
1833 err = -ENOMEM;
1834 goto out_free;
1835 }
1836
1837 /* If the SCTP_INIT ancillary data is specified, set all
1838 * the association init values accordingly.
1839 */
1840 if (sinit) {
1841 if (sinit->sinit_num_ostreams) {
1842 asoc->c.sinit_num_ostreams =
1843 sinit->sinit_num_ostreams;
1844 }
1845 if (sinit->sinit_max_instreams) {
1846 asoc->c.sinit_max_instreams =
1847 sinit->sinit_max_instreams;
1848 }
1849 if (sinit->sinit_max_attempts) {
1850 asoc->max_init_attempts
1851 = sinit->sinit_max_attempts;
1852 }
1853 if (sinit->sinit_max_init_timeo) {
1854 asoc->max_init_timeo =
1855 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1856 }
1857 }
1858
1859 /* Prime the peer's transport structures. */
1860 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1861 if (!transport) {
1862 err = -ENOMEM;
1863 goto out_free;
1864 }
1865 }
1866
1867 /* ASSERT: we have a valid association at this point. */
1868 pr_debug("%s: we have a valid association\n", __func__);
1869
1870 if (!sinfo) {
1871 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1872 * one with some defaults.
1873 */
1874 memset(&default_sinfo, 0, sizeof(default_sinfo));
1875 default_sinfo.sinfo_stream = asoc->default_stream;
1876 default_sinfo.sinfo_flags = asoc->default_flags;
1877 default_sinfo.sinfo_ppid = asoc->default_ppid;
1878 default_sinfo.sinfo_context = asoc->default_context;
1879 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1880 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1881
1882 sinfo = &default_sinfo;
1883 } else if (fill_sinfo_ttl) {
1884 /* In case SNDINFO was specified, we still need to fill
1885 * it with a default ttl from the assoc here.
1886 */
1887 sinfo->sinfo_timetolive = asoc->default_timetolive;
1888 }
1889
1890 /* API 7.1.7, the sndbuf size per association bounds the
1891 * maximum size of data that can be sent in a single send call.
1892 */
1893 if (msg_len > sk->sk_sndbuf) {
1894 err = -EMSGSIZE;
1895 goto out_free;
1896 }
1897
1898 if (asoc->pmtu_pending)
1899 sctp_assoc_pending_pmtu(sk, asoc);
1900
1901 /* If fragmentation is disabled and the message length exceeds the
1902 * association fragmentation point, return EMSGSIZE. The I-D
1903 * does not specify what this error is, but this looks like
1904 * a great fit.
1905 */
1906 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1907 err = -EMSGSIZE;
1908 goto out_free;
1909 }
1910
1911 /* Check for invalid stream. */
1912 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1913 err = -EINVAL;
1914 goto out_free;
1915 }
1916
1917 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1918 if (!sctp_wspace(asoc)) {
1919 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1920 if (err)
1921 goto out_free;
1922 }
1923
1924 /* If an address is passed with the sendto/sendmsg call, it is used
1925 * to override the primary destination address in the TCP model, or
1926 * when SCTP_ADDR_OVER flag is set in the UDP model.
1927 */
1928 if ((sctp_style(sk, TCP) && msg_name) ||
1929 (sinfo_flags & SCTP_ADDR_OVER)) {
1930 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1931 if (!chunk_tp) {
1932 err = -EINVAL;
1933 goto out_free;
1934 }
1935 } else
1936 chunk_tp = NULL;
1937
1938 /* Auto-connect, if we aren't connected already. */
1939 if (sctp_state(asoc, CLOSED)) {
1940 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1941 if (err < 0)
1942 goto out_free;
1943
1944 wait_connect = true;
1945 pr_debug("%s: we associated primitively\n", __func__);
1946 }
1947
1948 /* Break the message into multiple chunks of maximum size. */
1949 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1950 if (IS_ERR(datamsg)) {
1951 err = PTR_ERR(datamsg);
1952 goto out_free;
1953 }
1954
1955 /* Now send the (possibly) fragmented message. */
1956 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1957 /* Do accounting for the write space. */
1958 sctp_set_owner_w(chunk);
1959
1960 chunk->transport = chunk_tp;
1961 }
1962
1963 /* Send it to the lower layers. Note: all chunks
1964 * must either fail or succeed. The lower layer
1965 * works that way today. Keep it that way or this
1966 * breaks.
1967 */
1968 err = sctp_primitive_SEND(net, asoc, datamsg);
1969 sctp_datamsg_put(datamsg);
1970 /* Did the lower layer accept the chunk? */
1971 if (err)
1972 goto out_free;
1973
1974 pr_debug("%s: we sent primitively\n", __func__);
1975
1976 err = msg_len;
1977
1978 if (unlikely(wait_connect)) {
1979 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
1980 sctp_wait_for_connect(asoc, &timeo);
1981 }
1982
1983 /* If we are already past ASSOCIATE, the lower
1984 * layers are responsible for association cleanup.
1985 */
1986 goto out_unlock;
1987
1988 out_free:
1989 if (new_asoc)
1990 sctp_association_free(asoc);
1991 out_unlock:
1992 release_sock(sk);
1993
1994 out_nounlock:
1995 return sctp_error(sk, msg_flags, err);
1996
1997 #if 0
1998 do_sock_err:
1999 if (msg_len)
2000 err = msg_len;
2001 else
2002 err = sock_error(sk);
2003 goto out;
2004
2005 do_interrupted:
2006 if (msg_len)
2007 err = msg_len;
2008 goto out;
2009 #endif /* 0 */
2010 }
2011
2012 /* This is an extended version of skb_pull() that removes the data from the
2013 * start of a skb even when data is spread across the list of skb's in the
2014 * frag_list. len specifies the total amount of data that needs to be removed.
2015 * when 'len' bytes could be removed from the skb, it returns 0.
2016 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2017 * could not be removed.
2018 */
2019 static int sctp_skb_pull(struct sk_buff *skb, int len)
2020 {
2021 struct sk_buff *list;
2022 int skb_len = skb_headlen(skb);
2023 int rlen;
2024
2025 if (len <= skb_len) {
2026 __skb_pull(skb, len);
2027 return 0;
2028 }
2029 len -= skb_len;
2030 __skb_pull(skb, skb_len);
2031
2032 skb_walk_frags(skb, list) {
2033 rlen = sctp_skb_pull(list, len);
2034 skb->len -= (len-rlen);
2035 skb->data_len -= (len-rlen);
2036
2037 if (!rlen)
2038 return 0;
2039
2040 len = rlen;
2041 }
2042
2043 return len;
2044 }
2045
2046 /* API 3.1.3 recvmsg() - UDP Style Syntax
2047 *
2048 * ssize_t recvmsg(int socket, struct msghdr *message,
2049 * int flags);
2050 *
2051 * socket - the socket descriptor of the endpoint.
2052 * message - pointer to the msghdr structure which contains a single
2053 * user message and possibly some ancillary data.
2054 *
2055 * See Section 5 for complete description of the data
2056 * structures.
2057 *
2058 * flags - flags sent or received with the user message, see Section
2059 * 5 for complete description of the flags.
2060 */
2061 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2062 int noblock, int flags, int *addr_len)
2063 {
2064 struct sctp_ulpevent *event = NULL;
2065 struct sctp_sock *sp = sctp_sk(sk);
2066 struct sk_buff *skb;
2067 int copied;
2068 int err = 0;
2069 int skb_len;
2070
2071 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2072 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2073 addr_len);
2074
2075 lock_sock(sk);
2076
2077 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2078 err = -ENOTCONN;
2079 goto out;
2080 }
2081
2082 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2083 if (!skb)
2084 goto out;
2085
2086 /* Get the total length of the skb including any skb's in the
2087 * frag_list.
2088 */
2089 skb_len = skb->len;
2090
2091 copied = skb_len;
2092 if (copied > len)
2093 copied = len;
2094
2095 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2096
2097 event = sctp_skb2event(skb);
2098
2099 if (err)
2100 goto out_free;
2101
2102 sock_recv_ts_and_drops(msg, sk, skb);
2103 if (sctp_ulpevent_is_notification(event)) {
2104 msg->msg_flags |= MSG_NOTIFICATION;
2105 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2106 } else {
2107 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2108 }
2109
2110 /* Check if we allow SCTP_NXTINFO. */
2111 if (sp->recvnxtinfo)
2112 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2113 /* Check if we allow SCTP_RCVINFO. */
2114 if (sp->recvrcvinfo)
2115 sctp_ulpevent_read_rcvinfo(event, msg);
2116 /* Check if we allow SCTP_SNDRCVINFO. */
2117 if (sp->subscribe.sctp_data_io_event)
2118 sctp_ulpevent_read_sndrcvinfo(event, msg);
2119
2120 err = copied;
2121
2122 /* If skb's length exceeds the user's buffer, update the skb and
2123 * push it back to the receive_queue so that the next call to
2124 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2125 */
2126 if (skb_len > copied) {
2127 msg->msg_flags &= ~MSG_EOR;
2128 if (flags & MSG_PEEK)
2129 goto out_free;
2130 sctp_skb_pull(skb, copied);
2131 skb_queue_head(&sk->sk_receive_queue, skb);
2132
2133 /* When only partial message is copied to the user, increase
2134 * rwnd by that amount. If all the data in the skb is read,
2135 * rwnd is updated when the event is freed.
2136 */
2137 if (!sctp_ulpevent_is_notification(event))
2138 sctp_assoc_rwnd_increase(event->asoc, copied);
2139 goto out;
2140 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2141 (event->msg_flags & MSG_EOR))
2142 msg->msg_flags |= MSG_EOR;
2143 else
2144 msg->msg_flags &= ~MSG_EOR;
2145
2146 out_free:
2147 if (flags & MSG_PEEK) {
2148 /* Release the skb reference acquired after peeking the skb in
2149 * sctp_skb_recv_datagram().
2150 */
2151 kfree_skb(skb);
2152 } else {
2153 /* Free the event which includes releasing the reference to
2154 * the owner of the skb, freeing the skb and updating the
2155 * rwnd.
2156 */
2157 sctp_ulpevent_free(event);
2158 }
2159 out:
2160 release_sock(sk);
2161 return err;
2162 }
2163
2164 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2165 *
2166 * This option is a on/off flag. If enabled no SCTP message
2167 * fragmentation will be performed. Instead if a message being sent
2168 * exceeds the current PMTU size, the message will NOT be sent and
2169 * instead a error will be indicated to the user.
2170 */
2171 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2172 char __user *optval,
2173 unsigned int optlen)
2174 {
2175 int val;
2176
2177 if (optlen < sizeof(int))
2178 return -EINVAL;
2179
2180 if (get_user(val, (int __user *)optval))
2181 return -EFAULT;
2182
2183 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2184
2185 return 0;
2186 }
2187
2188 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2189 unsigned int optlen)
2190 {
2191 struct sctp_association *asoc;
2192 struct sctp_ulpevent *event;
2193
2194 if (optlen > sizeof(struct sctp_event_subscribe))
2195 return -EINVAL;
2196 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2197 return -EFAULT;
2198
2199 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2200 * if there is no data to be sent or retransmit, the stack will
2201 * immediately send up this notification.
2202 */
2203 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2204 &sctp_sk(sk)->subscribe)) {
2205 asoc = sctp_id2assoc(sk, 0);
2206
2207 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2208 event = sctp_ulpevent_make_sender_dry_event(asoc,
2209 GFP_ATOMIC);
2210 if (!event)
2211 return -ENOMEM;
2212
2213 sctp_ulpq_tail_event(&asoc->ulpq, event);
2214 }
2215 }
2216
2217 return 0;
2218 }
2219
2220 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2221 *
2222 * This socket option is applicable to the UDP-style socket only. When
2223 * set it will cause associations that are idle for more than the
2224 * specified number of seconds to automatically close. An association
2225 * being idle is defined an association that has NOT sent or received
2226 * user data. The special value of '0' indicates that no automatic
2227 * close of any associations should be performed. The option expects an
2228 * integer defining the number of seconds of idle time before an
2229 * association is closed.
2230 */
2231 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2232 unsigned int optlen)
2233 {
2234 struct sctp_sock *sp = sctp_sk(sk);
2235 struct net *net = sock_net(sk);
2236
2237 /* Applicable to UDP-style socket only */
2238 if (sctp_style(sk, TCP))
2239 return -EOPNOTSUPP;
2240 if (optlen != sizeof(int))
2241 return -EINVAL;
2242 if (copy_from_user(&sp->autoclose, optval, optlen))
2243 return -EFAULT;
2244
2245 if (sp->autoclose > net->sctp.max_autoclose)
2246 sp->autoclose = net->sctp.max_autoclose;
2247
2248 return 0;
2249 }
2250
2251 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2252 *
2253 * Applications can enable or disable heartbeats for any peer address of
2254 * an association, modify an address's heartbeat interval, force a
2255 * heartbeat to be sent immediately, and adjust the address's maximum
2256 * number of retransmissions sent before an address is considered
2257 * unreachable. The following structure is used to access and modify an
2258 * address's parameters:
2259 *
2260 * struct sctp_paddrparams {
2261 * sctp_assoc_t spp_assoc_id;
2262 * struct sockaddr_storage spp_address;
2263 * uint32_t spp_hbinterval;
2264 * uint16_t spp_pathmaxrxt;
2265 * uint32_t spp_pathmtu;
2266 * uint32_t spp_sackdelay;
2267 * uint32_t spp_flags;
2268 * };
2269 *
2270 * spp_assoc_id - (one-to-many style socket) This is filled in the
2271 * application, and identifies the association for
2272 * this query.
2273 * spp_address - This specifies which address is of interest.
2274 * spp_hbinterval - This contains the value of the heartbeat interval,
2275 * in milliseconds. If a value of zero
2276 * is present in this field then no changes are to
2277 * be made to this parameter.
2278 * spp_pathmaxrxt - This contains the maximum number of
2279 * retransmissions before this address shall be
2280 * considered unreachable. If a value of zero
2281 * is present in this field then no changes are to
2282 * be made to this parameter.
2283 * spp_pathmtu - When Path MTU discovery is disabled the value
2284 * specified here will be the "fixed" path mtu.
2285 * Note that if the spp_address field is empty
2286 * then all associations on this address will
2287 * have this fixed path mtu set upon them.
2288 *
2289 * spp_sackdelay - When delayed sack is enabled, this value specifies
2290 * the number of milliseconds that sacks will be delayed
2291 * for. This value will apply to all addresses of an
2292 * association if the spp_address field is empty. Note
2293 * also, that if delayed sack is enabled and this
2294 * value is set to 0, no change is made to the last
2295 * recorded delayed sack timer value.
2296 *
2297 * spp_flags - These flags are used to control various features
2298 * on an association. The flag field may contain
2299 * zero or more of the following options.
2300 *
2301 * SPP_HB_ENABLE - Enable heartbeats on the
2302 * specified address. Note that if the address
2303 * field is empty all addresses for the association
2304 * have heartbeats enabled upon them.
2305 *
2306 * SPP_HB_DISABLE - Disable heartbeats on the
2307 * speicifed address. Note that if the address
2308 * field is empty all addresses for the association
2309 * will have their heartbeats disabled. Note also
2310 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2311 * mutually exclusive, only one of these two should
2312 * be specified. Enabling both fields will have
2313 * undetermined results.
2314 *
2315 * SPP_HB_DEMAND - Request a user initiated heartbeat
2316 * to be made immediately.
2317 *
2318 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2319 * heartbeat delayis to be set to the value of 0
2320 * milliseconds.
2321 *
2322 * SPP_PMTUD_ENABLE - This field will enable PMTU
2323 * discovery upon the specified address. Note that
2324 * if the address feild is empty then all addresses
2325 * on the association are effected.
2326 *
2327 * SPP_PMTUD_DISABLE - This field will disable PMTU
2328 * discovery upon the specified address. Note that
2329 * if the address feild is empty then all addresses
2330 * on the association are effected. Not also that
2331 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2332 * exclusive. Enabling both will have undetermined
2333 * results.
2334 *
2335 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2336 * on delayed sack. The time specified in spp_sackdelay
2337 * is used to specify the sack delay for this address. Note
2338 * that if spp_address is empty then all addresses will
2339 * enable delayed sack and take on the sack delay
2340 * value specified in spp_sackdelay.
2341 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2342 * off delayed sack. If the spp_address field is blank then
2343 * delayed sack is disabled for the entire association. Note
2344 * also that this field is mutually exclusive to
2345 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2346 * results.
2347 */
2348 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2349 struct sctp_transport *trans,
2350 struct sctp_association *asoc,
2351 struct sctp_sock *sp,
2352 int hb_change,
2353 int pmtud_change,
2354 int sackdelay_change)
2355 {
2356 int error;
2357
2358 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2359 struct net *net = sock_net(trans->asoc->base.sk);
2360
2361 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2362 if (error)
2363 return error;
2364 }
2365
2366 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2367 * this field is ignored. Note also that a value of zero indicates
2368 * the current setting should be left unchanged.
2369 */
2370 if (params->spp_flags & SPP_HB_ENABLE) {
2371
2372 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2373 * set. This lets us use 0 value when this flag
2374 * is set.
2375 */
2376 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2377 params->spp_hbinterval = 0;
2378
2379 if (params->spp_hbinterval ||
2380 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2381 if (trans) {
2382 trans->hbinterval =
2383 msecs_to_jiffies(params->spp_hbinterval);
2384 } else if (asoc) {
2385 asoc->hbinterval =
2386 msecs_to_jiffies(params->spp_hbinterval);
2387 } else {
2388 sp->hbinterval = params->spp_hbinterval;
2389 }
2390 }
2391 }
2392
2393 if (hb_change) {
2394 if (trans) {
2395 trans->param_flags =
2396 (trans->param_flags & ~SPP_HB) | hb_change;
2397 } else if (asoc) {
2398 asoc->param_flags =
2399 (asoc->param_flags & ~SPP_HB) | hb_change;
2400 } else {
2401 sp->param_flags =
2402 (sp->param_flags & ~SPP_HB) | hb_change;
2403 }
2404 }
2405
2406 /* When Path MTU discovery is disabled the value specified here will
2407 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2408 * include the flag SPP_PMTUD_DISABLE for this field to have any
2409 * effect).
2410 */
2411 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2412 if (trans) {
2413 trans->pathmtu = params->spp_pathmtu;
2414 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2415 } else if (asoc) {
2416 asoc->pathmtu = params->spp_pathmtu;
2417 sctp_frag_point(asoc, params->spp_pathmtu);
2418 } else {
2419 sp->pathmtu = params->spp_pathmtu;
2420 }
2421 }
2422
2423 if (pmtud_change) {
2424 if (trans) {
2425 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2426 (params->spp_flags & SPP_PMTUD_ENABLE);
2427 trans->param_flags =
2428 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2429 if (update) {
2430 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2431 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2432 }
2433 } else if (asoc) {
2434 asoc->param_flags =
2435 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2436 } else {
2437 sp->param_flags =
2438 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2439 }
2440 }
2441
2442 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2443 * value of this field is ignored. Note also that a value of zero
2444 * indicates the current setting should be left unchanged.
2445 */
2446 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2447 if (trans) {
2448 trans->sackdelay =
2449 msecs_to_jiffies(params->spp_sackdelay);
2450 } else if (asoc) {
2451 asoc->sackdelay =
2452 msecs_to_jiffies(params->spp_sackdelay);
2453 } else {
2454 sp->sackdelay = params->spp_sackdelay;
2455 }
2456 }
2457
2458 if (sackdelay_change) {
2459 if (trans) {
2460 trans->param_flags =
2461 (trans->param_flags & ~SPP_SACKDELAY) |
2462 sackdelay_change;
2463 } else if (asoc) {
2464 asoc->param_flags =
2465 (asoc->param_flags & ~SPP_SACKDELAY) |
2466 sackdelay_change;
2467 } else {
2468 sp->param_flags =
2469 (sp->param_flags & ~SPP_SACKDELAY) |
2470 sackdelay_change;
2471 }
2472 }
2473
2474 /* Note that a value of zero indicates the current setting should be
2475 left unchanged.
2476 */
2477 if (params->spp_pathmaxrxt) {
2478 if (trans) {
2479 trans->pathmaxrxt = params->spp_pathmaxrxt;
2480 } else if (asoc) {
2481 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2482 } else {
2483 sp->pathmaxrxt = params->spp_pathmaxrxt;
2484 }
2485 }
2486
2487 return 0;
2488 }
2489
2490 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2491 char __user *optval,
2492 unsigned int optlen)
2493 {
2494 struct sctp_paddrparams params;
2495 struct sctp_transport *trans = NULL;
2496 struct sctp_association *asoc = NULL;
2497 struct sctp_sock *sp = sctp_sk(sk);
2498 int error;
2499 int hb_change, pmtud_change, sackdelay_change;
2500
2501 if (optlen != sizeof(struct sctp_paddrparams))
2502 return -EINVAL;
2503
2504 if (copy_from_user(&params, optval, optlen))
2505 return -EFAULT;
2506
2507 /* Validate flags and value parameters. */
2508 hb_change = params.spp_flags & SPP_HB;
2509 pmtud_change = params.spp_flags & SPP_PMTUD;
2510 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2511
2512 if (hb_change == SPP_HB ||
2513 pmtud_change == SPP_PMTUD ||
2514 sackdelay_change == SPP_SACKDELAY ||
2515 params.spp_sackdelay > 500 ||
2516 (params.spp_pathmtu &&
2517 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2518 return -EINVAL;
2519
2520 /* If an address other than INADDR_ANY is specified, and
2521 * no transport is found, then the request is invalid.
2522 */
2523 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2524 trans = sctp_addr_id2transport(sk, &params.spp_address,
2525 params.spp_assoc_id);
2526 if (!trans)
2527 return -EINVAL;
2528 }
2529
2530 /* Get association, if assoc_id != 0 and the socket is a one
2531 * to many style socket, and an association was not found, then
2532 * the id was invalid.
2533 */
2534 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2535 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2536 return -EINVAL;
2537
2538 /* Heartbeat demand can only be sent on a transport or
2539 * association, but not a socket.
2540 */
2541 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2542 return -EINVAL;
2543
2544 /* Process parameters. */
2545 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2546 hb_change, pmtud_change,
2547 sackdelay_change);
2548
2549 if (error)
2550 return error;
2551
2552 /* If changes are for association, also apply parameters to each
2553 * transport.
2554 */
2555 if (!trans && asoc) {
2556 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2557 transports) {
2558 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2559 hb_change, pmtud_change,
2560 sackdelay_change);
2561 }
2562 }
2563
2564 return 0;
2565 }
2566
2567 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2568 {
2569 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2570 }
2571
2572 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2573 {
2574 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2575 }
2576
2577 /*
2578 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2579 *
2580 * This option will effect the way delayed acks are performed. This
2581 * option allows you to get or set the delayed ack time, in
2582 * milliseconds. It also allows changing the delayed ack frequency.
2583 * Changing the frequency to 1 disables the delayed sack algorithm. If
2584 * the assoc_id is 0, then this sets or gets the endpoints default
2585 * values. If the assoc_id field is non-zero, then the set or get
2586 * effects the specified association for the one to many model (the
2587 * assoc_id field is ignored by the one to one model). Note that if
2588 * sack_delay or sack_freq are 0 when setting this option, then the
2589 * current values will remain unchanged.
2590 *
2591 * struct sctp_sack_info {
2592 * sctp_assoc_t sack_assoc_id;
2593 * uint32_t sack_delay;
2594 * uint32_t sack_freq;
2595 * };
2596 *
2597 * sack_assoc_id - This parameter, indicates which association the user
2598 * is performing an action upon. Note that if this field's value is
2599 * zero then the endpoints default value is changed (effecting future
2600 * associations only).
2601 *
2602 * sack_delay - This parameter contains the number of milliseconds that
2603 * the user is requesting the delayed ACK timer be set to. Note that
2604 * this value is defined in the standard to be between 200 and 500
2605 * milliseconds.
2606 *
2607 * sack_freq - This parameter contains the number of packets that must
2608 * be received before a sack is sent without waiting for the delay
2609 * timer to expire. The default value for this is 2, setting this
2610 * value to 1 will disable the delayed sack algorithm.
2611 */
2612
2613 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2614 char __user *optval, unsigned int optlen)
2615 {
2616 struct sctp_sack_info params;
2617 struct sctp_transport *trans = NULL;
2618 struct sctp_association *asoc = NULL;
2619 struct sctp_sock *sp = sctp_sk(sk);
2620
2621 if (optlen == sizeof(struct sctp_sack_info)) {
2622 if (copy_from_user(&params, optval, optlen))
2623 return -EFAULT;
2624
2625 if (params.sack_delay == 0 && params.sack_freq == 0)
2626 return 0;
2627 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2628 pr_warn_ratelimited(DEPRECATED
2629 "%s (pid %d) "
2630 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2631 "Use struct sctp_sack_info instead\n",
2632 current->comm, task_pid_nr(current));
2633 if (copy_from_user(&params, optval, optlen))
2634 return -EFAULT;
2635
2636 if (params.sack_delay == 0)
2637 params.sack_freq = 1;
2638 else
2639 params.sack_freq = 0;
2640 } else
2641 return -EINVAL;
2642
2643 /* Validate value parameter. */
2644 if (params.sack_delay > 500)
2645 return -EINVAL;
2646
2647 /* Get association, if sack_assoc_id != 0 and the socket is a one
2648 * to many style socket, and an association was not found, then
2649 * the id was invalid.
2650 */
2651 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2652 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2653 return -EINVAL;
2654
2655 if (params.sack_delay) {
2656 if (asoc) {
2657 asoc->sackdelay =
2658 msecs_to_jiffies(params.sack_delay);
2659 asoc->param_flags =
2660 sctp_spp_sackdelay_enable(asoc->param_flags);
2661 } else {
2662 sp->sackdelay = params.sack_delay;
2663 sp->param_flags =
2664 sctp_spp_sackdelay_enable(sp->param_flags);
2665 }
2666 }
2667
2668 if (params.sack_freq == 1) {
2669 if (asoc) {
2670 asoc->param_flags =
2671 sctp_spp_sackdelay_disable(asoc->param_flags);
2672 } else {
2673 sp->param_flags =
2674 sctp_spp_sackdelay_disable(sp->param_flags);
2675 }
2676 } else if (params.sack_freq > 1) {
2677 if (asoc) {
2678 asoc->sackfreq = params.sack_freq;
2679 asoc->param_flags =
2680 sctp_spp_sackdelay_enable(asoc->param_flags);
2681 } else {
2682 sp->sackfreq = params.sack_freq;
2683 sp->param_flags =
2684 sctp_spp_sackdelay_enable(sp->param_flags);
2685 }
2686 }
2687
2688 /* If change is for association, also apply to each transport. */
2689 if (asoc) {
2690 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2691 transports) {
2692 if (params.sack_delay) {
2693 trans->sackdelay =
2694 msecs_to_jiffies(params.sack_delay);
2695 trans->param_flags =
2696 sctp_spp_sackdelay_enable(trans->param_flags);
2697 }
2698 if (params.sack_freq == 1) {
2699 trans->param_flags =
2700 sctp_spp_sackdelay_disable(trans->param_flags);
2701 } else if (params.sack_freq > 1) {
2702 trans->sackfreq = params.sack_freq;
2703 trans->param_flags =
2704 sctp_spp_sackdelay_enable(trans->param_flags);
2705 }
2706 }
2707 }
2708
2709 return 0;
2710 }
2711
2712 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2713 *
2714 * Applications can specify protocol parameters for the default association
2715 * initialization. The option name argument to setsockopt() and getsockopt()
2716 * is SCTP_INITMSG.
2717 *
2718 * Setting initialization parameters is effective only on an unconnected
2719 * socket (for UDP-style sockets only future associations are effected
2720 * by the change). With TCP-style sockets, this option is inherited by
2721 * sockets derived from a listener socket.
2722 */
2723 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2724 {
2725 struct sctp_initmsg sinit;
2726 struct sctp_sock *sp = sctp_sk(sk);
2727
2728 if (optlen != sizeof(struct sctp_initmsg))
2729 return -EINVAL;
2730 if (copy_from_user(&sinit, optval, optlen))
2731 return -EFAULT;
2732
2733 if (sinit.sinit_num_ostreams)
2734 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2735 if (sinit.sinit_max_instreams)
2736 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2737 if (sinit.sinit_max_attempts)
2738 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2739 if (sinit.sinit_max_init_timeo)
2740 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2741
2742 return 0;
2743 }
2744
2745 /*
2746 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2747 *
2748 * Applications that wish to use the sendto() system call may wish to
2749 * specify a default set of parameters that would normally be supplied
2750 * through the inclusion of ancillary data. This socket option allows
2751 * such an application to set the default sctp_sndrcvinfo structure.
2752 * The application that wishes to use this socket option simply passes
2753 * in to this call the sctp_sndrcvinfo structure defined in Section
2754 * 5.2.2) The input parameters accepted by this call include
2755 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2756 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2757 * to this call if the caller is using the UDP model.
2758 */
2759 static int sctp_setsockopt_default_send_param(struct sock *sk,
2760 char __user *optval,
2761 unsigned int optlen)
2762 {
2763 struct sctp_sock *sp = sctp_sk(sk);
2764 struct sctp_association *asoc;
2765 struct sctp_sndrcvinfo info;
2766
2767 if (optlen != sizeof(info))
2768 return -EINVAL;
2769 if (copy_from_user(&info, optval, optlen))
2770 return -EFAULT;
2771 if (info.sinfo_flags &
2772 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2773 SCTP_ABORT | SCTP_EOF))
2774 return -EINVAL;
2775
2776 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2777 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2778 return -EINVAL;
2779 if (asoc) {
2780 asoc->default_stream = info.sinfo_stream;
2781 asoc->default_flags = info.sinfo_flags;
2782 asoc->default_ppid = info.sinfo_ppid;
2783 asoc->default_context = info.sinfo_context;
2784 asoc->default_timetolive = info.sinfo_timetolive;
2785 } else {
2786 sp->default_stream = info.sinfo_stream;
2787 sp->default_flags = info.sinfo_flags;
2788 sp->default_ppid = info.sinfo_ppid;
2789 sp->default_context = info.sinfo_context;
2790 sp->default_timetolive = info.sinfo_timetolive;
2791 }
2792
2793 return 0;
2794 }
2795
2796 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2797 * (SCTP_DEFAULT_SNDINFO)
2798 */
2799 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2800 char __user *optval,
2801 unsigned int optlen)
2802 {
2803 struct sctp_sock *sp = sctp_sk(sk);
2804 struct sctp_association *asoc;
2805 struct sctp_sndinfo info;
2806
2807 if (optlen != sizeof(info))
2808 return -EINVAL;
2809 if (copy_from_user(&info, optval, optlen))
2810 return -EFAULT;
2811 if (info.snd_flags &
2812 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2813 SCTP_ABORT | SCTP_EOF))
2814 return -EINVAL;
2815
2816 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2817 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2818 return -EINVAL;
2819 if (asoc) {
2820 asoc->default_stream = info.snd_sid;
2821 asoc->default_flags = info.snd_flags;
2822 asoc->default_ppid = info.snd_ppid;
2823 asoc->default_context = info.snd_context;
2824 } else {
2825 sp->default_stream = info.snd_sid;
2826 sp->default_flags = info.snd_flags;
2827 sp->default_ppid = info.snd_ppid;
2828 sp->default_context = info.snd_context;
2829 }
2830
2831 return 0;
2832 }
2833
2834 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2835 *
2836 * Requests that the local SCTP stack use the enclosed peer address as
2837 * the association primary. The enclosed address must be one of the
2838 * association peer's addresses.
2839 */
2840 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2841 unsigned int optlen)
2842 {
2843 struct sctp_prim prim;
2844 struct sctp_transport *trans;
2845
2846 if (optlen != sizeof(struct sctp_prim))
2847 return -EINVAL;
2848
2849 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2850 return -EFAULT;
2851
2852 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2853 if (!trans)
2854 return -EINVAL;
2855
2856 sctp_assoc_set_primary(trans->asoc, trans);
2857
2858 return 0;
2859 }
2860
2861 /*
2862 * 7.1.5 SCTP_NODELAY
2863 *
2864 * Turn on/off any Nagle-like algorithm. This means that packets are
2865 * generally sent as soon as possible and no unnecessary delays are
2866 * introduced, at the cost of more packets in the network. Expects an
2867 * integer boolean flag.
2868 */
2869 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2870 unsigned int optlen)
2871 {
2872 int val;
2873
2874 if (optlen < sizeof(int))
2875 return -EINVAL;
2876 if (get_user(val, (int __user *)optval))
2877 return -EFAULT;
2878
2879 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2880 return 0;
2881 }
2882
2883 /*
2884 *
2885 * 7.1.1 SCTP_RTOINFO
2886 *
2887 * The protocol parameters used to initialize and bound retransmission
2888 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2889 * and modify these parameters.
2890 * All parameters are time values, in milliseconds. A value of 0, when
2891 * modifying the parameters, indicates that the current value should not
2892 * be changed.
2893 *
2894 */
2895 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2896 {
2897 struct sctp_rtoinfo rtoinfo;
2898 struct sctp_association *asoc;
2899 unsigned long rto_min, rto_max;
2900 struct sctp_sock *sp = sctp_sk(sk);
2901
2902 if (optlen != sizeof (struct sctp_rtoinfo))
2903 return -EINVAL;
2904
2905 if (copy_from_user(&rtoinfo, optval, optlen))
2906 return -EFAULT;
2907
2908 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2909
2910 /* Set the values to the specific association */
2911 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2912 return -EINVAL;
2913
2914 rto_max = rtoinfo.srto_max;
2915 rto_min = rtoinfo.srto_min;
2916
2917 if (rto_max)
2918 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2919 else
2920 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2921
2922 if (rto_min)
2923 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2924 else
2925 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2926
2927 if (rto_min > rto_max)
2928 return -EINVAL;
2929
2930 if (asoc) {
2931 if (rtoinfo.srto_initial != 0)
2932 asoc->rto_initial =
2933 msecs_to_jiffies(rtoinfo.srto_initial);
2934 asoc->rto_max = rto_max;
2935 asoc->rto_min = rto_min;
2936 } else {
2937 /* If there is no association or the association-id = 0
2938 * set the values to the endpoint.
2939 */
2940 if (rtoinfo.srto_initial != 0)
2941 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2942 sp->rtoinfo.srto_max = rto_max;
2943 sp->rtoinfo.srto_min = rto_min;
2944 }
2945
2946 return 0;
2947 }
2948
2949 /*
2950 *
2951 * 7.1.2 SCTP_ASSOCINFO
2952 *
2953 * This option is used to tune the maximum retransmission attempts
2954 * of the association.
2955 * Returns an error if the new association retransmission value is
2956 * greater than the sum of the retransmission value of the peer.
2957 * See [SCTP] for more information.
2958 *
2959 */
2960 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2961 {
2962
2963 struct sctp_assocparams assocparams;
2964 struct sctp_association *asoc;
2965
2966 if (optlen != sizeof(struct sctp_assocparams))
2967 return -EINVAL;
2968 if (copy_from_user(&assocparams, optval, optlen))
2969 return -EFAULT;
2970
2971 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2972
2973 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2974 return -EINVAL;
2975
2976 /* Set the values to the specific association */
2977 if (asoc) {
2978 if (assocparams.sasoc_asocmaxrxt != 0) {
2979 __u32 path_sum = 0;
2980 int paths = 0;
2981 struct sctp_transport *peer_addr;
2982
2983 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2984 transports) {
2985 path_sum += peer_addr->pathmaxrxt;
2986 paths++;
2987 }
2988
2989 /* Only validate asocmaxrxt if we have more than
2990 * one path/transport. We do this because path
2991 * retransmissions are only counted when we have more
2992 * then one path.
2993 */
2994 if (paths > 1 &&
2995 assocparams.sasoc_asocmaxrxt > path_sum)
2996 return -EINVAL;
2997
2998 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2999 }
3000
3001 if (assocparams.sasoc_cookie_life != 0)
3002 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3003 } else {
3004 /* Set the values to the endpoint */
3005 struct sctp_sock *sp = sctp_sk(sk);
3006
3007 if (assocparams.sasoc_asocmaxrxt != 0)
3008 sp->assocparams.sasoc_asocmaxrxt =
3009 assocparams.sasoc_asocmaxrxt;
3010 if (assocparams.sasoc_cookie_life != 0)
3011 sp->assocparams.sasoc_cookie_life =
3012 assocparams.sasoc_cookie_life;
3013 }
3014 return 0;
3015 }
3016
3017 /*
3018 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3019 *
3020 * This socket option is a boolean flag which turns on or off mapped V4
3021 * addresses. If this option is turned on and the socket is type
3022 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3023 * If this option is turned off, then no mapping will be done of V4
3024 * addresses and a user will receive both PF_INET6 and PF_INET type
3025 * addresses on the socket.
3026 */
3027 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3028 {
3029 int val;
3030 struct sctp_sock *sp = sctp_sk(sk);
3031
3032 if (optlen < sizeof(int))
3033 return -EINVAL;
3034 if (get_user(val, (int __user *)optval))
3035 return -EFAULT;
3036 if (val)
3037 sp->v4mapped = 1;
3038 else
3039 sp->v4mapped = 0;
3040
3041 return 0;
3042 }
3043
3044 /*
3045 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3046 * This option will get or set the maximum size to put in any outgoing
3047 * SCTP DATA chunk. If a message is larger than this size it will be
3048 * fragmented by SCTP into the specified size. Note that the underlying
3049 * SCTP implementation may fragment into smaller sized chunks when the
3050 * PMTU of the underlying association is smaller than the value set by
3051 * the user. The default value for this option is '0' which indicates
3052 * the user is NOT limiting fragmentation and only the PMTU will effect
3053 * SCTP's choice of DATA chunk size. Note also that values set larger
3054 * than the maximum size of an IP datagram will effectively let SCTP
3055 * control fragmentation (i.e. the same as setting this option to 0).
3056 *
3057 * The following structure is used to access and modify this parameter:
3058 *
3059 * struct sctp_assoc_value {
3060 * sctp_assoc_t assoc_id;
3061 * uint32_t assoc_value;
3062 * };
3063 *
3064 * assoc_id: This parameter is ignored for one-to-one style sockets.
3065 * For one-to-many style sockets this parameter indicates which
3066 * association the user is performing an action upon. Note that if
3067 * this field's value is zero then the endpoints default value is
3068 * changed (effecting future associations only).
3069 * assoc_value: This parameter specifies the maximum size in bytes.
3070 */
3071 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3072 {
3073 struct sctp_assoc_value params;
3074 struct sctp_association *asoc;
3075 struct sctp_sock *sp = sctp_sk(sk);
3076 int val;
3077
3078 if (optlen == sizeof(int)) {
3079 pr_warn_ratelimited(DEPRECATED
3080 "%s (pid %d) "
3081 "Use of int in maxseg socket option.\n"
3082 "Use struct sctp_assoc_value instead\n",
3083 current->comm, task_pid_nr(current));
3084 if (copy_from_user(&val, optval, optlen))
3085 return -EFAULT;
3086 params.assoc_id = 0;
3087 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3088 if (copy_from_user(&params, optval, optlen))
3089 return -EFAULT;
3090 val = params.assoc_value;
3091 } else
3092 return -EINVAL;
3093
3094 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3095 return -EINVAL;
3096
3097 asoc = sctp_id2assoc(sk, params.assoc_id);
3098 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3099 return -EINVAL;
3100
3101 if (asoc) {
3102 if (val == 0) {
3103 val = asoc->pathmtu;
3104 val -= sp->pf->af->net_header_len;
3105 val -= sizeof(struct sctphdr) +
3106 sizeof(struct sctp_data_chunk);
3107 }
3108 asoc->user_frag = val;
3109 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3110 } else {
3111 sp->user_frag = val;
3112 }
3113
3114 return 0;
3115 }
3116
3117
3118 /*
3119 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3120 *
3121 * Requests that the peer mark the enclosed address as the association
3122 * primary. The enclosed address must be one of the association's
3123 * locally bound addresses. The following structure is used to make a
3124 * set primary request:
3125 */
3126 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3127 unsigned int optlen)
3128 {
3129 struct net *net = sock_net(sk);
3130 struct sctp_sock *sp;
3131 struct sctp_association *asoc = NULL;
3132 struct sctp_setpeerprim prim;
3133 struct sctp_chunk *chunk;
3134 struct sctp_af *af;
3135 int err;
3136
3137 sp = sctp_sk(sk);
3138
3139 if (!net->sctp.addip_enable)
3140 return -EPERM;
3141
3142 if (optlen != sizeof(struct sctp_setpeerprim))
3143 return -EINVAL;
3144
3145 if (copy_from_user(&prim, optval, optlen))
3146 return -EFAULT;
3147
3148 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3149 if (!asoc)
3150 return -EINVAL;
3151
3152 if (!asoc->peer.asconf_capable)
3153 return -EPERM;
3154
3155 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3156 return -EPERM;
3157
3158 if (!sctp_state(asoc, ESTABLISHED))
3159 return -ENOTCONN;
3160
3161 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3162 if (!af)
3163 return -EINVAL;
3164
3165 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3166 return -EADDRNOTAVAIL;
3167
3168 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3169 return -EADDRNOTAVAIL;
3170
3171 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3172 chunk = sctp_make_asconf_set_prim(asoc,
3173 (union sctp_addr *)&prim.sspp_addr);
3174 if (!chunk)
3175 return -ENOMEM;
3176
3177 err = sctp_send_asconf(asoc, chunk);
3178
3179 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3180
3181 return err;
3182 }
3183
3184 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3185 unsigned int optlen)
3186 {
3187 struct sctp_setadaptation adaptation;
3188
3189 if (optlen != sizeof(struct sctp_setadaptation))
3190 return -EINVAL;
3191 if (copy_from_user(&adaptation, optval, optlen))
3192 return -EFAULT;
3193
3194 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3195
3196 return 0;
3197 }
3198
3199 /*
3200 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3201 *
3202 * The context field in the sctp_sndrcvinfo structure is normally only
3203 * used when a failed message is retrieved holding the value that was
3204 * sent down on the actual send call. This option allows the setting of
3205 * a default context on an association basis that will be received on
3206 * reading messages from the peer. This is especially helpful in the
3207 * one-2-many model for an application to keep some reference to an
3208 * internal state machine that is processing messages on the
3209 * association. Note that the setting of this value only effects
3210 * received messages from the peer and does not effect the value that is
3211 * saved with outbound messages.
3212 */
3213 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3214 unsigned int optlen)
3215 {
3216 struct sctp_assoc_value params;
3217 struct sctp_sock *sp;
3218 struct sctp_association *asoc;
3219
3220 if (optlen != sizeof(struct sctp_assoc_value))
3221 return -EINVAL;
3222 if (copy_from_user(&params, optval, optlen))
3223 return -EFAULT;
3224
3225 sp = sctp_sk(sk);
3226
3227 if (params.assoc_id != 0) {
3228 asoc = sctp_id2assoc(sk, params.assoc_id);
3229 if (!asoc)
3230 return -EINVAL;
3231 asoc->default_rcv_context = params.assoc_value;
3232 } else {
3233 sp->default_rcv_context = params.assoc_value;
3234 }
3235
3236 return 0;
3237 }
3238
3239 /*
3240 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3241 *
3242 * This options will at a minimum specify if the implementation is doing
3243 * fragmented interleave. Fragmented interleave, for a one to many
3244 * socket, is when subsequent calls to receive a message may return
3245 * parts of messages from different associations. Some implementations
3246 * may allow you to turn this value on or off. If so, when turned off,
3247 * no fragment interleave will occur (which will cause a head of line
3248 * blocking amongst multiple associations sharing the same one to many
3249 * socket). When this option is turned on, then each receive call may
3250 * come from a different association (thus the user must receive data
3251 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3252 * association each receive belongs to.
3253 *
3254 * This option takes a boolean value. A non-zero value indicates that
3255 * fragmented interleave is on. A value of zero indicates that
3256 * fragmented interleave is off.
3257 *
3258 * Note that it is important that an implementation that allows this
3259 * option to be turned on, have it off by default. Otherwise an unaware
3260 * application using the one to many model may become confused and act
3261 * incorrectly.
3262 */
3263 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3264 char __user *optval,
3265 unsigned int optlen)
3266 {
3267 int val;
3268
3269 if (optlen != sizeof(int))
3270 return -EINVAL;
3271 if (get_user(val, (int __user *)optval))
3272 return -EFAULT;
3273
3274 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3275
3276 return 0;
3277 }
3278
3279 /*
3280 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3281 * (SCTP_PARTIAL_DELIVERY_POINT)
3282 *
3283 * This option will set or get the SCTP partial delivery point. This
3284 * point is the size of a message where the partial delivery API will be
3285 * invoked to help free up rwnd space for the peer. Setting this to a
3286 * lower value will cause partial deliveries to happen more often. The
3287 * calls argument is an integer that sets or gets the partial delivery
3288 * point. Note also that the call will fail if the user attempts to set
3289 * this value larger than the socket receive buffer size.
3290 *
3291 * Note that any single message having a length smaller than or equal to
3292 * the SCTP partial delivery point will be delivered in one single read
3293 * call as long as the user provided buffer is large enough to hold the
3294 * message.
3295 */
3296 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3297 char __user *optval,
3298 unsigned int optlen)
3299 {
3300 u32 val;
3301
3302 if (optlen != sizeof(u32))
3303 return -EINVAL;
3304 if (get_user(val, (int __user *)optval))
3305 return -EFAULT;
3306
3307 /* Note: We double the receive buffer from what the user sets
3308 * it to be, also initial rwnd is based on rcvbuf/2.
3309 */
3310 if (val > (sk->sk_rcvbuf >> 1))
3311 return -EINVAL;
3312
3313 sctp_sk(sk)->pd_point = val;
3314
3315 return 0; /* is this the right error code? */
3316 }
3317
3318 /*
3319 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3320 *
3321 * This option will allow a user to change the maximum burst of packets
3322 * that can be emitted by this association. Note that the default value
3323 * is 4, and some implementations may restrict this setting so that it
3324 * can only be lowered.
3325 *
3326 * NOTE: This text doesn't seem right. Do this on a socket basis with
3327 * future associations inheriting the socket value.
3328 */
3329 static int sctp_setsockopt_maxburst(struct sock *sk,
3330 char __user *optval,
3331 unsigned int optlen)
3332 {
3333 struct sctp_assoc_value params;
3334 struct sctp_sock *sp;
3335 struct sctp_association *asoc;
3336 int val;
3337 int assoc_id = 0;
3338
3339 if (optlen == sizeof(int)) {
3340 pr_warn_ratelimited(DEPRECATED
3341 "%s (pid %d) "
3342 "Use of int in max_burst socket option deprecated.\n"
3343 "Use struct sctp_assoc_value instead\n",
3344 current->comm, task_pid_nr(current));
3345 if (copy_from_user(&val, optval, optlen))
3346 return -EFAULT;
3347 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3348 if (copy_from_user(&params, optval, optlen))
3349 return -EFAULT;
3350 val = params.assoc_value;
3351 assoc_id = params.assoc_id;
3352 } else
3353 return -EINVAL;
3354
3355 sp = sctp_sk(sk);
3356
3357 if (assoc_id != 0) {
3358 asoc = sctp_id2assoc(sk, assoc_id);
3359 if (!asoc)
3360 return -EINVAL;
3361 asoc->max_burst = val;
3362 } else
3363 sp->max_burst = val;
3364
3365 return 0;
3366 }
3367
3368 /*
3369 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3370 *
3371 * This set option adds a chunk type that the user is requesting to be
3372 * received only in an authenticated way. Changes to the list of chunks
3373 * will only effect future associations on the socket.
3374 */
3375 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3376 char __user *optval,
3377 unsigned int optlen)
3378 {
3379 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3380 struct sctp_authchunk val;
3381
3382 if (!ep->auth_enable)
3383 return -EACCES;
3384
3385 if (optlen != sizeof(struct sctp_authchunk))
3386 return -EINVAL;
3387 if (copy_from_user(&val, optval, optlen))
3388 return -EFAULT;
3389
3390 switch (val.sauth_chunk) {
3391 case SCTP_CID_INIT:
3392 case SCTP_CID_INIT_ACK:
3393 case SCTP_CID_SHUTDOWN_COMPLETE:
3394 case SCTP_CID_AUTH:
3395 return -EINVAL;
3396 }
3397
3398 /* add this chunk id to the endpoint */
3399 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3400 }
3401
3402 /*
3403 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3404 *
3405 * This option gets or sets the list of HMAC algorithms that the local
3406 * endpoint requires the peer to use.
3407 */
3408 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3409 char __user *optval,
3410 unsigned int optlen)
3411 {
3412 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3413 struct sctp_hmacalgo *hmacs;
3414 u32 idents;
3415 int err;
3416
3417 if (!ep->auth_enable)
3418 return -EACCES;
3419
3420 if (optlen < sizeof(struct sctp_hmacalgo))
3421 return -EINVAL;
3422
3423 hmacs = memdup_user(optval, optlen);
3424 if (IS_ERR(hmacs))
3425 return PTR_ERR(hmacs);
3426
3427 idents = hmacs->shmac_num_idents;
3428 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3429 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3430 err = -EINVAL;
3431 goto out;
3432 }
3433
3434 err = sctp_auth_ep_set_hmacs(ep, hmacs);
3435 out:
3436 kfree(hmacs);
3437 return err;
3438 }
3439
3440 /*
3441 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3442 *
3443 * This option will set a shared secret key which is used to build an
3444 * association shared key.
3445 */
3446 static int sctp_setsockopt_auth_key(struct sock *sk,
3447 char __user *optval,
3448 unsigned int optlen)
3449 {
3450 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3451 struct sctp_authkey *authkey;
3452 struct sctp_association *asoc;
3453 int ret;
3454
3455 if (!ep->auth_enable)
3456 return -EACCES;
3457
3458 if (optlen <= sizeof(struct sctp_authkey))
3459 return -EINVAL;
3460
3461 authkey = memdup_user(optval, optlen);
3462 if (IS_ERR(authkey))
3463 return PTR_ERR(authkey);
3464
3465 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3466 ret = -EINVAL;
3467 goto out;
3468 }
3469
3470 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3471 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3472 ret = -EINVAL;
3473 goto out;
3474 }
3475
3476 ret = sctp_auth_set_key(ep, asoc, authkey);
3477 out:
3478 kzfree(authkey);
3479 return ret;
3480 }
3481
3482 /*
3483 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3484 *
3485 * This option will get or set the active shared key to be used to build
3486 * the association shared key.
3487 */
3488 static int sctp_setsockopt_active_key(struct sock *sk,
3489 char __user *optval,
3490 unsigned int optlen)
3491 {
3492 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3493 struct sctp_authkeyid val;
3494 struct sctp_association *asoc;
3495
3496 if (!ep->auth_enable)
3497 return -EACCES;
3498
3499 if (optlen != sizeof(struct sctp_authkeyid))
3500 return -EINVAL;
3501 if (copy_from_user(&val, optval, optlen))
3502 return -EFAULT;
3503
3504 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3505 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3506 return -EINVAL;
3507
3508 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3509 }
3510
3511 /*
3512 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3513 *
3514 * This set option will delete a shared secret key from use.
3515 */
3516 static int sctp_setsockopt_del_key(struct sock *sk,
3517 char __user *optval,
3518 unsigned int optlen)
3519 {
3520 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3521 struct sctp_authkeyid val;
3522 struct sctp_association *asoc;
3523
3524 if (!ep->auth_enable)
3525 return -EACCES;
3526
3527 if (optlen != sizeof(struct sctp_authkeyid))
3528 return -EINVAL;
3529 if (copy_from_user(&val, optval, optlen))
3530 return -EFAULT;
3531
3532 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3533 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3534 return -EINVAL;
3535
3536 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3537
3538 }
3539
3540 /*
3541 * 8.1.23 SCTP_AUTO_ASCONF
3542 *
3543 * This option will enable or disable the use of the automatic generation of
3544 * ASCONF chunks to add and delete addresses to an existing association. Note
3545 * that this option has two caveats namely: a) it only affects sockets that
3546 * are bound to all addresses available to the SCTP stack, and b) the system
3547 * administrator may have an overriding control that turns the ASCONF feature
3548 * off no matter what setting the socket option may have.
3549 * This option expects an integer boolean flag, where a non-zero value turns on
3550 * the option, and a zero value turns off the option.
3551 * Note. In this implementation, socket operation overrides default parameter
3552 * being set by sysctl as well as FreeBSD implementation
3553 */
3554 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3555 unsigned int optlen)
3556 {
3557 int val;
3558 struct sctp_sock *sp = sctp_sk(sk);
3559
3560 if (optlen < sizeof(int))
3561 return -EINVAL;
3562 if (get_user(val, (int __user *)optval))
3563 return -EFAULT;
3564 if (!sctp_is_ep_boundall(sk) && val)
3565 return -EINVAL;
3566 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3567 return 0;
3568
3569 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3570 if (val == 0 && sp->do_auto_asconf) {
3571 list_del(&sp->auto_asconf_list);
3572 sp->do_auto_asconf = 0;
3573 } else if (val && !sp->do_auto_asconf) {
3574 list_add_tail(&sp->auto_asconf_list,
3575 &sock_net(sk)->sctp.auto_asconf_splist);
3576 sp->do_auto_asconf = 1;
3577 }
3578 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3579 return 0;
3580 }
3581
3582 /*
3583 * SCTP_PEER_ADDR_THLDS
3584 *
3585 * This option allows us to alter the partially failed threshold for one or all
3586 * transports in an association. See Section 6.1 of:
3587 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3588 */
3589 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3590 char __user *optval,
3591 unsigned int optlen)
3592 {
3593 struct sctp_paddrthlds val;
3594 struct sctp_transport *trans;
3595 struct sctp_association *asoc;
3596
3597 if (optlen < sizeof(struct sctp_paddrthlds))
3598 return -EINVAL;
3599 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3600 sizeof(struct sctp_paddrthlds)))
3601 return -EFAULT;
3602
3603
3604 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3605 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3606 if (!asoc)
3607 return -ENOENT;
3608 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3609 transports) {
3610 if (val.spt_pathmaxrxt)
3611 trans->pathmaxrxt = val.spt_pathmaxrxt;
3612 trans->pf_retrans = val.spt_pathpfthld;
3613 }
3614
3615 if (val.spt_pathmaxrxt)
3616 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3617 asoc->pf_retrans = val.spt_pathpfthld;
3618 } else {
3619 trans = sctp_addr_id2transport(sk, &val.spt_address,
3620 val.spt_assoc_id);
3621 if (!trans)
3622 return -ENOENT;
3623
3624 if (val.spt_pathmaxrxt)
3625 trans->pathmaxrxt = val.spt_pathmaxrxt;
3626 trans->pf_retrans = val.spt_pathpfthld;
3627 }
3628
3629 return 0;
3630 }
3631
3632 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3633 char __user *optval,
3634 unsigned int optlen)
3635 {
3636 int val;
3637
3638 if (optlen < sizeof(int))
3639 return -EINVAL;
3640 if (get_user(val, (int __user *) optval))
3641 return -EFAULT;
3642
3643 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3644
3645 return 0;
3646 }
3647
3648 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3649 char __user *optval,
3650 unsigned int optlen)
3651 {
3652 int val;
3653
3654 if (optlen < sizeof(int))
3655 return -EINVAL;
3656 if (get_user(val, (int __user *) optval))
3657 return -EFAULT;
3658
3659 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3660
3661 return 0;
3662 }
3663
3664 /* API 6.2 setsockopt(), getsockopt()
3665 *
3666 * Applications use setsockopt() and getsockopt() to set or retrieve
3667 * socket options. Socket options are used to change the default
3668 * behavior of sockets calls. They are described in Section 7.
3669 *
3670 * The syntax is:
3671 *
3672 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3673 * int __user *optlen);
3674 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3675 * int optlen);
3676 *
3677 * sd - the socket descript.
3678 * level - set to IPPROTO_SCTP for all SCTP options.
3679 * optname - the option name.
3680 * optval - the buffer to store the value of the option.
3681 * optlen - the size of the buffer.
3682 */
3683 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3684 char __user *optval, unsigned int optlen)
3685 {
3686 int retval = 0;
3687
3688 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3689
3690 /* I can hardly begin to describe how wrong this is. This is
3691 * so broken as to be worse than useless. The API draft
3692 * REALLY is NOT helpful here... I am not convinced that the
3693 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3694 * are at all well-founded.
3695 */
3696 if (level != SOL_SCTP) {
3697 struct sctp_af *af = sctp_sk(sk)->pf->af;
3698 retval = af->setsockopt(sk, level, optname, optval, optlen);
3699 goto out_nounlock;
3700 }
3701
3702 lock_sock(sk);
3703
3704 switch (optname) {
3705 case SCTP_SOCKOPT_BINDX_ADD:
3706 /* 'optlen' is the size of the addresses buffer. */
3707 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3708 optlen, SCTP_BINDX_ADD_ADDR);
3709 break;
3710
3711 case SCTP_SOCKOPT_BINDX_REM:
3712 /* 'optlen' is the size of the addresses buffer. */
3713 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3714 optlen, SCTP_BINDX_REM_ADDR);
3715 break;
3716
3717 case SCTP_SOCKOPT_CONNECTX_OLD:
3718 /* 'optlen' is the size of the addresses buffer. */
3719 retval = sctp_setsockopt_connectx_old(sk,
3720 (struct sockaddr __user *)optval,
3721 optlen);
3722 break;
3723
3724 case SCTP_SOCKOPT_CONNECTX:
3725 /* 'optlen' is the size of the addresses buffer. */
3726 retval = sctp_setsockopt_connectx(sk,
3727 (struct sockaddr __user *)optval,
3728 optlen);
3729 break;
3730
3731 case SCTP_DISABLE_FRAGMENTS:
3732 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3733 break;
3734
3735 case SCTP_EVENTS:
3736 retval = sctp_setsockopt_events(sk, optval, optlen);
3737 break;
3738
3739 case SCTP_AUTOCLOSE:
3740 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3741 break;
3742
3743 case SCTP_PEER_ADDR_PARAMS:
3744 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3745 break;
3746
3747 case SCTP_DELAYED_SACK:
3748 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3749 break;
3750 case SCTP_PARTIAL_DELIVERY_POINT:
3751 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3752 break;
3753
3754 case SCTP_INITMSG:
3755 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3756 break;
3757 case SCTP_DEFAULT_SEND_PARAM:
3758 retval = sctp_setsockopt_default_send_param(sk, optval,
3759 optlen);
3760 break;
3761 case SCTP_DEFAULT_SNDINFO:
3762 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3763 break;
3764 case SCTP_PRIMARY_ADDR:
3765 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3766 break;
3767 case SCTP_SET_PEER_PRIMARY_ADDR:
3768 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3769 break;
3770 case SCTP_NODELAY:
3771 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3772 break;
3773 case SCTP_RTOINFO:
3774 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3775 break;
3776 case SCTP_ASSOCINFO:
3777 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3778 break;
3779 case SCTP_I_WANT_MAPPED_V4_ADDR:
3780 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3781 break;
3782 case SCTP_MAXSEG:
3783 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3784 break;
3785 case SCTP_ADAPTATION_LAYER:
3786 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3787 break;
3788 case SCTP_CONTEXT:
3789 retval = sctp_setsockopt_context(sk, optval, optlen);
3790 break;
3791 case SCTP_FRAGMENT_INTERLEAVE:
3792 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3793 break;
3794 case SCTP_MAX_BURST:
3795 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3796 break;
3797 case SCTP_AUTH_CHUNK:
3798 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3799 break;
3800 case SCTP_HMAC_IDENT:
3801 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3802 break;
3803 case SCTP_AUTH_KEY:
3804 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3805 break;
3806 case SCTP_AUTH_ACTIVE_KEY:
3807 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3808 break;
3809 case SCTP_AUTH_DELETE_KEY:
3810 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3811 break;
3812 case SCTP_AUTO_ASCONF:
3813 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3814 break;
3815 case SCTP_PEER_ADDR_THLDS:
3816 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3817 break;
3818 case SCTP_RECVRCVINFO:
3819 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3820 break;
3821 case SCTP_RECVNXTINFO:
3822 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3823 break;
3824 default:
3825 retval = -ENOPROTOOPT;
3826 break;
3827 }
3828
3829 release_sock(sk);
3830
3831 out_nounlock:
3832 return retval;
3833 }
3834
3835 /* API 3.1.6 connect() - UDP Style Syntax
3836 *
3837 * An application may use the connect() call in the UDP model to initiate an
3838 * association without sending data.
3839 *
3840 * The syntax is:
3841 *
3842 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3843 *
3844 * sd: the socket descriptor to have a new association added to.
3845 *
3846 * nam: the address structure (either struct sockaddr_in or struct
3847 * sockaddr_in6 defined in RFC2553 [7]).
3848 *
3849 * len: the size of the address.
3850 */
3851 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3852 int addr_len)
3853 {
3854 int err = 0;
3855 struct sctp_af *af;
3856
3857 lock_sock(sk);
3858
3859 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3860 addr, addr_len);
3861
3862 /* Validate addr_len before calling common connect/connectx routine. */
3863 af = sctp_get_af_specific(addr->sa_family);
3864 if (!af || addr_len < af->sockaddr_len) {
3865 err = -EINVAL;
3866 } else {
3867 /* Pass correct addr len to common routine (so it knows there
3868 * is only one address being passed.
3869 */
3870 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3871 }
3872
3873 release_sock(sk);
3874 return err;
3875 }
3876
3877 /* FIXME: Write comments. */
3878 static int sctp_disconnect(struct sock *sk, int flags)
3879 {
3880 return -EOPNOTSUPP; /* STUB */
3881 }
3882
3883 /* 4.1.4 accept() - TCP Style Syntax
3884 *
3885 * Applications use accept() call to remove an established SCTP
3886 * association from the accept queue of the endpoint. A new socket
3887 * descriptor will be returned from accept() to represent the newly
3888 * formed association.
3889 */
3890 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3891 {
3892 struct sctp_sock *sp;
3893 struct sctp_endpoint *ep;
3894 struct sock *newsk = NULL;
3895 struct sctp_association *asoc;
3896 long timeo;
3897 int error = 0;
3898
3899 lock_sock(sk);
3900
3901 sp = sctp_sk(sk);
3902 ep = sp->ep;
3903
3904 if (!sctp_style(sk, TCP)) {
3905 error = -EOPNOTSUPP;
3906 goto out;
3907 }
3908
3909 if (!sctp_sstate(sk, LISTENING)) {
3910 error = -EINVAL;
3911 goto out;
3912 }
3913
3914 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3915
3916 error = sctp_wait_for_accept(sk, timeo);
3917 if (error)
3918 goto out;
3919
3920 /* We treat the list of associations on the endpoint as the accept
3921 * queue and pick the first association on the list.
3922 */
3923 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3924
3925 newsk = sp->pf->create_accept_sk(sk, asoc);
3926 if (!newsk) {
3927 error = -ENOMEM;
3928 goto out;
3929 }
3930
3931 /* Populate the fields of the newsk from the oldsk and migrate the
3932 * asoc to the newsk.
3933 */
3934 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3935
3936 out:
3937 release_sock(sk);
3938 *err = error;
3939 return newsk;
3940 }
3941
3942 /* The SCTP ioctl handler. */
3943 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3944 {
3945 int rc = -ENOTCONN;
3946
3947 lock_sock(sk);
3948
3949 /*
3950 * SEQPACKET-style sockets in LISTENING state are valid, for
3951 * SCTP, so only discard TCP-style sockets in LISTENING state.
3952 */
3953 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3954 goto out;
3955
3956 switch (cmd) {
3957 case SIOCINQ: {
3958 struct sk_buff *skb;
3959 unsigned int amount = 0;
3960
3961 skb = skb_peek(&sk->sk_receive_queue);
3962 if (skb != NULL) {
3963 /*
3964 * We will only return the amount of this packet since
3965 * that is all that will be read.
3966 */
3967 amount = skb->len;
3968 }
3969 rc = put_user(amount, (int __user *)arg);
3970 break;
3971 }
3972 default:
3973 rc = -ENOIOCTLCMD;
3974 break;
3975 }
3976 out:
3977 release_sock(sk);
3978 return rc;
3979 }
3980
3981 /* This is the function which gets called during socket creation to
3982 * initialized the SCTP-specific portion of the sock.
3983 * The sock structure should already be zero-filled memory.
3984 */
3985 static int sctp_init_sock(struct sock *sk)
3986 {
3987 struct net *net = sock_net(sk);
3988 struct sctp_sock *sp;
3989
3990 pr_debug("%s: sk:%p\n", __func__, sk);
3991
3992 sp = sctp_sk(sk);
3993
3994 /* Initialize the SCTP per socket area. */
3995 switch (sk->sk_type) {
3996 case SOCK_SEQPACKET:
3997 sp->type = SCTP_SOCKET_UDP;
3998 break;
3999 case SOCK_STREAM:
4000 sp->type = SCTP_SOCKET_TCP;
4001 break;
4002 default:
4003 return -ESOCKTNOSUPPORT;
4004 }
4005
4006 /* Initialize default send parameters. These parameters can be
4007 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4008 */
4009 sp->default_stream = 0;
4010 sp->default_ppid = 0;
4011 sp->default_flags = 0;
4012 sp->default_context = 0;
4013 sp->default_timetolive = 0;
4014
4015 sp->default_rcv_context = 0;
4016 sp->max_burst = net->sctp.max_burst;
4017
4018 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4019
4020 /* Initialize default setup parameters. These parameters
4021 * can be modified with the SCTP_INITMSG socket option or
4022 * overridden by the SCTP_INIT CMSG.
4023 */
4024 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4025 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4026 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4027 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4028
4029 /* Initialize default RTO related parameters. These parameters can
4030 * be modified for with the SCTP_RTOINFO socket option.
4031 */
4032 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4033 sp->rtoinfo.srto_max = net->sctp.rto_max;
4034 sp->rtoinfo.srto_min = net->sctp.rto_min;
4035
4036 /* Initialize default association related parameters. These parameters
4037 * can be modified with the SCTP_ASSOCINFO socket option.
4038 */
4039 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4040 sp->assocparams.sasoc_number_peer_destinations = 0;
4041 sp->assocparams.sasoc_peer_rwnd = 0;
4042 sp->assocparams.sasoc_local_rwnd = 0;
4043 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4044
4045 /* Initialize default event subscriptions. By default, all the
4046 * options are off.
4047 */
4048 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4049
4050 /* Default Peer Address Parameters. These defaults can
4051 * be modified via SCTP_PEER_ADDR_PARAMS
4052 */
4053 sp->hbinterval = net->sctp.hb_interval;
4054 sp->pathmaxrxt = net->sctp.max_retrans_path;
4055 sp->pathmtu = 0; /* allow default discovery */
4056 sp->sackdelay = net->sctp.sack_timeout;
4057 sp->sackfreq = 2;
4058 sp->param_flags = SPP_HB_ENABLE |
4059 SPP_PMTUD_ENABLE |
4060 SPP_SACKDELAY_ENABLE;
4061
4062 /* If enabled no SCTP message fragmentation will be performed.
4063 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4064 */
4065 sp->disable_fragments = 0;
4066
4067 /* Enable Nagle algorithm by default. */
4068 sp->nodelay = 0;
4069
4070 sp->recvrcvinfo = 0;
4071 sp->recvnxtinfo = 0;
4072
4073 /* Enable by default. */
4074 sp->v4mapped = 1;
4075
4076 /* Auto-close idle associations after the configured
4077 * number of seconds. A value of 0 disables this
4078 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4079 * for UDP-style sockets only.
4080 */
4081 sp->autoclose = 0;
4082
4083 /* User specified fragmentation limit. */
4084 sp->user_frag = 0;
4085
4086 sp->adaptation_ind = 0;
4087
4088 sp->pf = sctp_get_pf_specific(sk->sk_family);
4089
4090 /* Control variables for partial data delivery. */
4091 atomic_set(&sp->pd_mode, 0);
4092 skb_queue_head_init(&sp->pd_lobby);
4093 sp->frag_interleave = 0;
4094
4095 /* Create a per socket endpoint structure. Even if we
4096 * change the data structure relationships, this may still
4097 * be useful for storing pre-connect address information.
4098 */
4099 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4100 if (!sp->ep)
4101 return -ENOMEM;
4102
4103 sp->hmac = NULL;
4104
4105 sk->sk_destruct = sctp_destruct_sock;
4106
4107 SCTP_DBG_OBJCNT_INC(sock);
4108
4109 local_bh_disable();
4110 percpu_counter_inc(&sctp_sockets_allocated);
4111 sock_prot_inuse_add(net, sk->sk_prot, 1);
4112
4113 /* Nothing can fail after this block, otherwise
4114 * sctp_destroy_sock() will be called without addr_wq_lock held
4115 */
4116 if (net->sctp.default_auto_asconf) {
4117 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4118 list_add_tail(&sp->auto_asconf_list,
4119 &net->sctp.auto_asconf_splist);
4120 sp->do_auto_asconf = 1;
4121 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4122 } else {
4123 sp->do_auto_asconf = 0;
4124 }
4125
4126 local_bh_enable();
4127
4128 return 0;
4129 }
4130
4131 /* Cleanup any SCTP per socket resources. Must be called with
4132 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4133 */
4134 static void sctp_destroy_sock(struct sock *sk)
4135 {
4136 struct sctp_sock *sp;
4137
4138 pr_debug("%s: sk:%p\n", __func__, sk);
4139
4140 /* Release our hold on the endpoint. */
4141 sp = sctp_sk(sk);
4142 /* This could happen during socket init, thus we bail out
4143 * early, since the rest of the below is not setup either.
4144 */
4145 if (sp->ep == NULL)
4146 return;
4147
4148 if (sp->do_auto_asconf) {
4149 sp->do_auto_asconf = 0;
4150 list_del(&sp->auto_asconf_list);
4151 }
4152 sctp_endpoint_free(sp->ep);
4153 local_bh_disable();
4154 percpu_counter_dec(&sctp_sockets_allocated);
4155 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4156 local_bh_enable();
4157 }
4158
4159 /* Triggered when there are no references on the socket anymore */
4160 static void sctp_destruct_sock(struct sock *sk)
4161 {
4162 struct sctp_sock *sp = sctp_sk(sk);
4163
4164 /* Free up the HMAC transform. */
4165 crypto_free_shash(sp->hmac);
4166
4167 inet_sock_destruct(sk);
4168 }
4169
4170 /* API 4.1.7 shutdown() - TCP Style Syntax
4171 * int shutdown(int socket, int how);
4172 *
4173 * sd - the socket descriptor of the association to be closed.
4174 * how - Specifies the type of shutdown. The values are
4175 * as follows:
4176 * SHUT_RD
4177 * Disables further receive operations. No SCTP
4178 * protocol action is taken.
4179 * SHUT_WR
4180 * Disables further send operations, and initiates
4181 * the SCTP shutdown sequence.
4182 * SHUT_RDWR
4183 * Disables further send and receive operations
4184 * and initiates the SCTP shutdown sequence.
4185 */
4186 static void sctp_shutdown(struct sock *sk, int how)
4187 {
4188 struct net *net = sock_net(sk);
4189 struct sctp_endpoint *ep;
4190 struct sctp_association *asoc;
4191
4192 if (!sctp_style(sk, TCP))
4193 return;
4194
4195 if (how & SEND_SHUTDOWN) {
4196 ep = sctp_sk(sk)->ep;
4197 if (!list_empty(&ep->asocs)) {
4198 asoc = list_entry(ep->asocs.next,
4199 struct sctp_association, asocs);
4200 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4201 }
4202 }
4203 }
4204
4205 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4206 struct sctp_info *info)
4207 {
4208 struct sctp_transport *prim;
4209 struct list_head *pos;
4210 int mask;
4211
4212 memset(info, 0, sizeof(*info));
4213 if (!asoc) {
4214 struct sctp_sock *sp = sctp_sk(sk);
4215
4216 info->sctpi_s_autoclose = sp->autoclose;
4217 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4218 info->sctpi_s_pd_point = sp->pd_point;
4219 info->sctpi_s_nodelay = sp->nodelay;
4220 info->sctpi_s_disable_fragments = sp->disable_fragments;
4221 info->sctpi_s_v4mapped = sp->v4mapped;
4222 info->sctpi_s_frag_interleave = sp->frag_interleave;
4223
4224 return 0;
4225 }
4226
4227 info->sctpi_tag = asoc->c.my_vtag;
4228 info->sctpi_state = asoc->state;
4229 info->sctpi_rwnd = asoc->a_rwnd;
4230 info->sctpi_unackdata = asoc->unack_data;
4231 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4232 info->sctpi_instrms = asoc->c.sinit_max_instreams;
4233 info->sctpi_outstrms = asoc->c.sinit_num_ostreams;
4234 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4235 info->sctpi_inqueue++;
4236 list_for_each(pos, &asoc->outqueue.out_chunk_list)
4237 info->sctpi_outqueue++;
4238 info->sctpi_overall_error = asoc->overall_error_count;
4239 info->sctpi_max_burst = asoc->max_burst;
4240 info->sctpi_maxseg = asoc->frag_point;
4241 info->sctpi_peer_rwnd = asoc->peer.rwnd;
4242 info->sctpi_peer_tag = asoc->c.peer_vtag;
4243
4244 mask = asoc->peer.ecn_capable << 1;
4245 mask = (mask | asoc->peer.ipv4_address) << 1;
4246 mask = (mask | asoc->peer.ipv6_address) << 1;
4247 mask = (mask | asoc->peer.hostname_address) << 1;
4248 mask = (mask | asoc->peer.asconf_capable) << 1;
4249 mask = (mask | asoc->peer.prsctp_capable) << 1;
4250 mask = (mask | asoc->peer.auth_capable);
4251 info->sctpi_peer_capable = mask;
4252 mask = asoc->peer.sack_needed << 1;
4253 mask = (mask | asoc->peer.sack_generation) << 1;
4254 mask = (mask | asoc->peer.zero_window_announced);
4255 info->sctpi_peer_sack = mask;
4256
4257 info->sctpi_isacks = asoc->stats.isacks;
4258 info->sctpi_osacks = asoc->stats.osacks;
4259 info->sctpi_opackets = asoc->stats.opackets;
4260 info->sctpi_ipackets = asoc->stats.ipackets;
4261 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4262 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4263 info->sctpi_idupchunks = asoc->stats.idupchunks;
4264 info->sctpi_gapcnt = asoc->stats.gapcnt;
4265 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4266 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4267 info->sctpi_oodchunks = asoc->stats.oodchunks;
4268 info->sctpi_iodchunks = asoc->stats.iodchunks;
4269 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4270 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4271
4272 prim = asoc->peer.primary_path;
4273 memcpy(&info->sctpi_p_address, &prim->ipaddr,
4274 sizeof(struct sockaddr_storage));
4275 info->sctpi_p_state = prim->state;
4276 info->sctpi_p_cwnd = prim->cwnd;
4277 info->sctpi_p_srtt = prim->srtt;
4278 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
4279 info->sctpi_p_hbinterval = prim->hbinterval;
4280 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
4281 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
4282 info->sctpi_p_ssthresh = prim->ssthresh;
4283 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
4284 info->sctpi_p_flight_size = prim->flight_size;
4285 info->sctpi_p_error = prim->error_count;
4286
4287 return 0;
4288 }
4289 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
4290
4291 /* use callback to avoid exporting the core structure */
4292 int sctp_transport_walk_start(struct rhashtable_iter *iter)
4293 {
4294 int err;
4295
4296 err = rhashtable_walk_init(&sctp_transport_hashtable, iter,
4297 GFP_KERNEL);
4298 if (err)
4299 return err;
4300
4301 err = rhashtable_walk_start(iter);
4302 if (err && err != -EAGAIN) {
4303 rhashtable_walk_exit(iter);
4304 return err;
4305 }
4306
4307 return 0;
4308 }
4309
4310 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
4311 {
4312 rhashtable_walk_stop(iter);
4313 rhashtable_walk_exit(iter);
4314 }
4315
4316 struct sctp_transport *sctp_transport_get_next(struct net *net,
4317 struct rhashtable_iter *iter)
4318 {
4319 struct sctp_transport *t;
4320
4321 t = rhashtable_walk_next(iter);
4322 for (; t; t = rhashtable_walk_next(iter)) {
4323 if (IS_ERR(t)) {
4324 if (PTR_ERR(t) == -EAGAIN)
4325 continue;
4326 break;
4327 }
4328
4329 if (net_eq(sock_net(t->asoc->base.sk), net) &&
4330 t->asoc->peer.primary_path == t)
4331 break;
4332 }
4333
4334 return t;
4335 }
4336
4337 struct sctp_transport *sctp_transport_get_idx(struct net *net,
4338 struct rhashtable_iter *iter,
4339 int pos)
4340 {
4341 void *obj = SEQ_START_TOKEN;
4342
4343 while (pos && (obj = sctp_transport_get_next(net, iter)) &&
4344 !IS_ERR(obj))
4345 pos--;
4346
4347 return obj;
4348 }
4349
4350 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
4351 void *p) {
4352 int err = 0;
4353 int hash = 0;
4354 struct sctp_ep_common *epb;
4355 struct sctp_hashbucket *head;
4356
4357 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
4358 hash++, head++) {
4359 read_lock(&head->lock);
4360 sctp_for_each_hentry(epb, &head->chain) {
4361 err = cb(sctp_ep(epb), p);
4362 if (err)
4363 break;
4364 }
4365 read_unlock(&head->lock);
4366 }
4367
4368 return err;
4369 }
4370 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
4371
4372 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
4373 struct net *net,
4374 const union sctp_addr *laddr,
4375 const union sctp_addr *paddr, void *p)
4376 {
4377 struct sctp_transport *transport;
4378 int err = 0;
4379
4380 rcu_read_lock();
4381 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
4382 if (!transport || !sctp_transport_hold(transport))
4383 goto out;
4384 err = cb(transport, p);
4385 sctp_transport_put(transport);
4386
4387 out:
4388 rcu_read_unlock();
4389 return err;
4390 }
4391 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
4392
4393 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
4394 struct net *net, int pos, void *p) {
4395 struct rhashtable_iter hti;
4396 void *obj;
4397 int err;
4398
4399 err = sctp_transport_walk_start(&hti);
4400 if (err)
4401 return err;
4402
4403 sctp_transport_get_idx(net, &hti, pos);
4404 obj = sctp_transport_get_next(net, &hti);
4405 for (; obj && !IS_ERR(obj); obj = sctp_transport_get_next(net, &hti)) {
4406 struct sctp_transport *transport = obj;
4407
4408 if (!sctp_transport_hold(transport))
4409 continue;
4410 err = cb(transport, p);
4411 sctp_transport_put(transport);
4412 if (err)
4413 break;
4414 }
4415 sctp_transport_walk_stop(&hti);
4416
4417 return err;
4418 }
4419 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
4420
4421 /* 7.2.1 Association Status (SCTP_STATUS)
4422
4423 * Applications can retrieve current status information about an
4424 * association, including association state, peer receiver window size,
4425 * number of unacked data chunks, and number of data chunks pending
4426 * receipt. This information is read-only.
4427 */
4428 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4429 char __user *optval,
4430 int __user *optlen)
4431 {
4432 struct sctp_status status;
4433 struct sctp_association *asoc = NULL;
4434 struct sctp_transport *transport;
4435 sctp_assoc_t associd;
4436 int retval = 0;
4437
4438 if (len < sizeof(status)) {
4439 retval = -EINVAL;
4440 goto out;
4441 }
4442
4443 len = sizeof(status);
4444 if (copy_from_user(&status, optval, len)) {
4445 retval = -EFAULT;
4446 goto out;
4447 }
4448
4449 associd = status.sstat_assoc_id;
4450 asoc = sctp_id2assoc(sk, associd);
4451 if (!asoc) {
4452 retval = -EINVAL;
4453 goto out;
4454 }
4455
4456 transport = asoc->peer.primary_path;
4457
4458 status.sstat_assoc_id = sctp_assoc2id(asoc);
4459 status.sstat_state = sctp_assoc_to_state(asoc);
4460 status.sstat_rwnd = asoc->peer.rwnd;
4461 status.sstat_unackdata = asoc->unack_data;
4462
4463 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4464 status.sstat_instrms = asoc->c.sinit_max_instreams;
4465 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4466 status.sstat_fragmentation_point = asoc->frag_point;
4467 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4468 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4469 transport->af_specific->sockaddr_len);
4470 /* Map ipv4 address into v4-mapped-on-v6 address. */
4471 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4472 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4473 status.sstat_primary.spinfo_state = transport->state;
4474 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4475 status.sstat_primary.spinfo_srtt = transport->srtt;
4476 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4477 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4478
4479 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4480 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4481
4482 if (put_user(len, optlen)) {
4483 retval = -EFAULT;
4484 goto out;
4485 }
4486
4487 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4488 __func__, len, status.sstat_state, status.sstat_rwnd,
4489 status.sstat_assoc_id);
4490
4491 if (copy_to_user(optval, &status, len)) {
4492 retval = -EFAULT;
4493 goto out;
4494 }
4495
4496 out:
4497 return retval;
4498 }
4499
4500
4501 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4502 *
4503 * Applications can retrieve information about a specific peer address
4504 * of an association, including its reachability state, congestion
4505 * window, and retransmission timer values. This information is
4506 * read-only.
4507 */
4508 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4509 char __user *optval,
4510 int __user *optlen)
4511 {
4512 struct sctp_paddrinfo pinfo;
4513 struct sctp_transport *transport;
4514 int retval = 0;
4515
4516 if (len < sizeof(pinfo)) {
4517 retval = -EINVAL;
4518 goto out;
4519 }
4520
4521 len = sizeof(pinfo);
4522 if (copy_from_user(&pinfo, optval, len)) {
4523 retval = -EFAULT;
4524 goto out;
4525 }
4526
4527 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4528 pinfo.spinfo_assoc_id);
4529 if (!transport)
4530 return -EINVAL;
4531
4532 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4533 pinfo.spinfo_state = transport->state;
4534 pinfo.spinfo_cwnd = transport->cwnd;
4535 pinfo.spinfo_srtt = transport->srtt;
4536 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4537 pinfo.spinfo_mtu = transport->pathmtu;
4538
4539 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4540 pinfo.spinfo_state = SCTP_ACTIVE;
4541
4542 if (put_user(len, optlen)) {
4543 retval = -EFAULT;
4544 goto out;
4545 }
4546
4547 if (copy_to_user(optval, &pinfo, len)) {
4548 retval = -EFAULT;
4549 goto out;
4550 }
4551
4552 out:
4553 return retval;
4554 }
4555
4556 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4557 *
4558 * This option is a on/off flag. If enabled no SCTP message
4559 * fragmentation will be performed. Instead if a message being sent
4560 * exceeds the current PMTU size, the message will NOT be sent and
4561 * instead a error will be indicated to the user.
4562 */
4563 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4564 char __user *optval, int __user *optlen)
4565 {
4566 int val;
4567
4568 if (len < sizeof(int))
4569 return -EINVAL;
4570
4571 len = sizeof(int);
4572 val = (sctp_sk(sk)->disable_fragments == 1);
4573 if (put_user(len, optlen))
4574 return -EFAULT;
4575 if (copy_to_user(optval, &val, len))
4576 return -EFAULT;
4577 return 0;
4578 }
4579
4580 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4581 *
4582 * This socket option is used to specify various notifications and
4583 * ancillary data the user wishes to receive.
4584 */
4585 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4586 int __user *optlen)
4587 {
4588 if (len <= 0)
4589 return -EINVAL;
4590 if (len > sizeof(struct sctp_event_subscribe))
4591 len = sizeof(struct sctp_event_subscribe);
4592 if (put_user(len, optlen))
4593 return -EFAULT;
4594 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4595 return -EFAULT;
4596 return 0;
4597 }
4598
4599 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4600 *
4601 * This socket option is applicable to the UDP-style socket only. When
4602 * set it will cause associations that are idle for more than the
4603 * specified number of seconds to automatically close. An association
4604 * being idle is defined an association that has NOT sent or received
4605 * user data. The special value of '0' indicates that no automatic
4606 * close of any associations should be performed. The option expects an
4607 * integer defining the number of seconds of idle time before an
4608 * association is closed.
4609 */
4610 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4611 {
4612 /* Applicable to UDP-style socket only */
4613 if (sctp_style(sk, TCP))
4614 return -EOPNOTSUPP;
4615 if (len < sizeof(int))
4616 return -EINVAL;
4617 len = sizeof(int);
4618 if (put_user(len, optlen))
4619 return -EFAULT;
4620 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4621 return -EFAULT;
4622 return 0;
4623 }
4624
4625 /* Helper routine to branch off an association to a new socket. */
4626 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4627 {
4628 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4629 struct sctp_sock *sp = sctp_sk(sk);
4630 struct socket *sock;
4631 int err = 0;
4632
4633 if (!asoc)
4634 return -EINVAL;
4635
4636 /* An association cannot be branched off from an already peeled-off
4637 * socket, nor is this supported for tcp style sockets.
4638 */
4639 if (!sctp_style(sk, UDP))
4640 return -EINVAL;
4641
4642 /* Create a new socket. */
4643 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4644 if (err < 0)
4645 return err;
4646
4647 sctp_copy_sock(sock->sk, sk, asoc);
4648
4649 /* Make peeled-off sockets more like 1-1 accepted sockets.
4650 * Set the daddr and initialize id to something more random
4651 */
4652 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4653
4654 /* Populate the fields of the newsk from the oldsk and migrate the
4655 * asoc to the newsk.
4656 */
4657 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4658
4659 *sockp = sock;
4660
4661 return err;
4662 }
4663 EXPORT_SYMBOL(sctp_do_peeloff);
4664
4665 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4666 {
4667 sctp_peeloff_arg_t peeloff;
4668 struct socket *newsock;
4669 struct file *newfile;
4670 int retval = 0;
4671
4672 if (len < sizeof(sctp_peeloff_arg_t))
4673 return -EINVAL;
4674 len = sizeof(sctp_peeloff_arg_t);
4675 if (copy_from_user(&peeloff, optval, len))
4676 return -EFAULT;
4677
4678 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4679 if (retval < 0)
4680 goto out;
4681
4682 /* Map the socket to an unused fd that can be returned to the user. */
4683 retval = get_unused_fd_flags(0);
4684 if (retval < 0) {
4685 sock_release(newsock);
4686 goto out;
4687 }
4688
4689 newfile = sock_alloc_file(newsock, 0, NULL);
4690 if (IS_ERR(newfile)) {
4691 put_unused_fd(retval);
4692 sock_release(newsock);
4693 return PTR_ERR(newfile);
4694 }
4695
4696 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4697 retval);
4698
4699 /* Return the fd mapped to the new socket. */
4700 if (put_user(len, optlen)) {
4701 fput(newfile);
4702 put_unused_fd(retval);
4703 return -EFAULT;
4704 }
4705 peeloff.sd = retval;
4706 if (copy_to_user(optval, &peeloff, len)) {
4707 fput(newfile);
4708 put_unused_fd(retval);
4709 return -EFAULT;
4710 }
4711 fd_install(retval, newfile);
4712 out:
4713 return retval;
4714 }
4715
4716 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4717 *
4718 * Applications can enable or disable heartbeats for any peer address of
4719 * an association, modify an address's heartbeat interval, force a
4720 * heartbeat to be sent immediately, and adjust the address's maximum
4721 * number of retransmissions sent before an address is considered
4722 * unreachable. The following structure is used to access and modify an
4723 * address's parameters:
4724 *
4725 * struct sctp_paddrparams {
4726 * sctp_assoc_t spp_assoc_id;
4727 * struct sockaddr_storage spp_address;
4728 * uint32_t spp_hbinterval;
4729 * uint16_t spp_pathmaxrxt;
4730 * uint32_t spp_pathmtu;
4731 * uint32_t spp_sackdelay;
4732 * uint32_t spp_flags;
4733 * };
4734 *
4735 * spp_assoc_id - (one-to-many style socket) This is filled in the
4736 * application, and identifies the association for
4737 * this query.
4738 * spp_address - This specifies which address is of interest.
4739 * spp_hbinterval - This contains the value of the heartbeat interval,
4740 * in milliseconds. If a value of zero
4741 * is present in this field then no changes are to
4742 * be made to this parameter.
4743 * spp_pathmaxrxt - This contains the maximum number of
4744 * retransmissions before this address shall be
4745 * considered unreachable. If a value of zero
4746 * is present in this field then no changes are to
4747 * be made to this parameter.
4748 * spp_pathmtu - When Path MTU discovery is disabled the value
4749 * specified here will be the "fixed" path mtu.
4750 * Note that if the spp_address field is empty
4751 * then all associations on this address will
4752 * have this fixed path mtu set upon them.
4753 *
4754 * spp_sackdelay - When delayed sack is enabled, this value specifies
4755 * the number of milliseconds that sacks will be delayed
4756 * for. This value will apply to all addresses of an
4757 * association if the spp_address field is empty. Note
4758 * also, that if delayed sack is enabled and this
4759 * value is set to 0, no change is made to the last
4760 * recorded delayed sack timer value.
4761 *
4762 * spp_flags - These flags are used to control various features
4763 * on an association. The flag field may contain
4764 * zero or more of the following options.
4765 *
4766 * SPP_HB_ENABLE - Enable heartbeats on the
4767 * specified address. Note that if the address
4768 * field is empty all addresses for the association
4769 * have heartbeats enabled upon them.
4770 *
4771 * SPP_HB_DISABLE - Disable heartbeats on the
4772 * speicifed address. Note that if the address
4773 * field is empty all addresses for the association
4774 * will have their heartbeats disabled. Note also
4775 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4776 * mutually exclusive, only one of these two should
4777 * be specified. Enabling both fields will have
4778 * undetermined results.
4779 *
4780 * SPP_HB_DEMAND - Request a user initiated heartbeat
4781 * to be made immediately.
4782 *
4783 * SPP_PMTUD_ENABLE - This field will enable PMTU
4784 * discovery upon the specified address. Note that
4785 * if the address feild is empty then all addresses
4786 * on the association are effected.
4787 *
4788 * SPP_PMTUD_DISABLE - This field will disable PMTU
4789 * discovery upon the specified address. Note that
4790 * if the address feild is empty then all addresses
4791 * on the association are effected. Not also that
4792 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4793 * exclusive. Enabling both will have undetermined
4794 * results.
4795 *
4796 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4797 * on delayed sack. The time specified in spp_sackdelay
4798 * is used to specify the sack delay for this address. Note
4799 * that if spp_address is empty then all addresses will
4800 * enable delayed sack and take on the sack delay
4801 * value specified in spp_sackdelay.
4802 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4803 * off delayed sack. If the spp_address field is blank then
4804 * delayed sack is disabled for the entire association. Note
4805 * also that this field is mutually exclusive to
4806 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4807 * results.
4808 */
4809 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4810 char __user *optval, int __user *optlen)
4811 {
4812 struct sctp_paddrparams params;
4813 struct sctp_transport *trans = NULL;
4814 struct sctp_association *asoc = NULL;
4815 struct sctp_sock *sp = sctp_sk(sk);
4816
4817 if (len < sizeof(struct sctp_paddrparams))
4818 return -EINVAL;
4819 len = sizeof(struct sctp_paddrparams);
4820 if (copy_from_user(&params, optval, len))
4821 return -EFAULT;
4822
4823 /* If an address other than INADDR_ANY is specified, and
4824 * no transport is found, then the request is invalid.
4825 */
4826 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4827 trans = sctp_addr_id2transport(sk, &params.spp_address,
4828 params.spp_assoc_id);
4829 if (!trans) {
4830 pr_debug("%s: failed no transport\n", __func__);
4831 return -EINVAL;
4832 }
4833 }
4834
4835 /* Get association, if assoc_id != 0 and the socket is a one
4836 * to many style socket, and an association was not found, then
4837 * the id was invalid.
4838 */
4839 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4840 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4841 pr_debug("%s: failed no association\n", __func__);
4842 return -EINVAL;
4843 }
4844
4845 if (trans) {
4846 /* Fetch transport values. */
4847 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4848 params.spp_pathmtu = trans->pathmtu;
4849 params.spp_pathmaxrxt = trans->pathmaxrxt;
4850 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4851
4852 /*draft-11 doesn't say what to return in spp_flags*/
4853 params.spp_flags = trans->param_flags;
4854 } else if (asoc) {
4855 /* Fetch association values. */
4856 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4857 params.spp_pathmtu = asoc->pathmtu;
4858 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4859 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4860
4861 /*draft-11 doesn't say what to return in spp_flags*/
4862 params.spp_flags = asoc->param_flags;
4863 } else {
4864 /* Fetch socket values. */
4865 params.spp_hbinterval = sp->hbinterval;
4866 params.spp_pathmtu = sp->pathmtu;
4867 params.spp_sackdelay = sp->sackdelay;
4868 params.spp_pathmaxrxt = sp->pathmaxrxt;
4869
4870 /*draft-11 doesn't say what to return in spp_flags*/
4871 params.spp_flags = sp->param_flags;
4872 }
4873
4874 if (copy_to_user(optval, &params, len))
4875 return -EFAULT;
4876
4877 if (put_user(len, optlen))
4878 return -EFAULT;
4879
4880 return 0;
4881 }
4882
4883 /*
4884 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4885 *
4886 * This option will effect the way delayed acks are performed. This
4887 * option allows you to get or set the delayed ack time, in
4888 * milliseconds. It also allows changing the delayed ack frequency.
4889 * Changing the frequency to 1 disables the delayed sack algorithm. If
4890 * the assoc_id is 0, then this sets or gets the endpoints default
4891 * values. If the assoc_id field is non-zero, then the set or get
4892 * effects the specified association for the one to many model (the
4893 * assoc_id field is ignored by the one to one model). Note that if
4894 * sack_delay or sack_freq are 0 when setting this option, then the
4895 * current values will remain unchanged.
4896 *
4897 * struct sctp_sack_info {
4898 * sctp_assoc_t sack_assoc_id;
4899 * uint32_t sack_delay;
4900 * uint32_t sack_freq;
4901 * };
4902 *
4903 * sack_assoc_id - This parameter, indicates which association the user
4904 * is performing an action upon. Note that if this field's value is
4905 * zero then the endpoints default value is changed (effecting future
4906 * associations only).
4907 *
4908 * sack_delay - This parameter contains the number of milliseconds that
4909 * the user is requesting the delayed ACK timer be set to. Note that
4910 * this value is defined in the standard to be between 200 and 500
4911 * milliseconds.
4912 *
4913 * sack_freq - This parameter contains the number of packets that must
4914 * be received before a sack is sent without waiting for the delay
4915 * timer to expire. The default value for this is 2, setting this
4916 * value to 1 will disable the delayed sack algorithm.
4917 */
4918 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4919 char __user *optval,
4920 int __user *optlen)
4921 {
4922 struct sctp_sack_info params;
4923 struct sctp_association *asoc = NULL;
4924 struct sctp_sock *sp = sctp_sk(sk);
4925
4926 if (len >= sizeof(struct sctp_sack_info)) {
4927 len = sizeof(struct sctp_sack_info);
4928
4929 if (copy_from_user(&params, optval, len))
4930 return -EFAULT;
4931 } else if (len == sizeof(struct sctp_assoc_value)) {
4932 pr_warn_ratelimited(DEPRECATED
4933 "%s (pid %d) "
4934 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
4935 "Use struct sctp_sack_info instead\n",
4936 current->comm, task_pid_nr(current));
4937 if (copy_from_user(&params, optval, len))
4938 return -EFAULT;
4939 } else
4940 return -EINVAL;
4941
4942 /* Get association, if sack_assoc_id != 0 and the socket is a one
4943 * to many style socket, and an association was not found, then
4944 * the id was invalid.
4945 */
4946 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4947 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4948 return -EINVAL;
4949
4950 if (asoc) {
4951 /* Fetch association values. */
4952 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4953 params.sack_delay = jiffies_to_msecs(
4954 asoc->sackdelay);
4955 params.sack_freq = asoc->sackfreq;
4956
4957 } else {
4958 params.sack_delay = 0;
4959 params.sack_freq = 1;
4960 }
4961 } else {
4962 /* Fetch socket values. */
4963 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4964 params.sack_delay = sp->sackdelay;
4965 params.sack_freq = sp->sackfreq;
4966 } else {
4967 params.sack_delay = 0;
4968 params.sack_freq = 1;
4969 }
4970 }
4971
4972 if (copy_to_user(optval, &params, len))
4973 return -EFAULT;
4974
4975 if (put_user(len, optlen))
4976 return -EFAULT;
4977
4978 return 0;
4979 }
4980
4981 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4982 *
4983 * Applications can specify protocol parameters for the default association
4984 * initialization. The option name argument to setsockopt() and getsockopt()
4985 * is SCTP_INITMSG.
4986 *
4987 * Setting initialization parameters is effective only on an unconnected
4988 * socket (for UDP-style sockets only future associations are effected
4989 * by the change). With TCP-style sockets, this option is inherited by
4990 * sockets derived from a listener socket.
4991 */
4992 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4993 {
4994 if (len < sizeof(struct sctp_initmsg))
4995 return -EINVAL;
4996 len = sizeof(struct sctp_initmsg);
4997 if (put_user(len, optlen))
4998 return -EFAULT;
4999 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5000 return -EFAULT;
5001 return 0;
5002 }
5003
5004
5005 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5006 char __user *optval, int __user *optlen)
5007 {
5008 struct sctp_association *asoc;
5009 int cnt = 0;
5010 struct sctp_getaddrs getaddrs;
5011 struct sctp_transport *from;
5012 void __user *to;
5013 union sctp_addr temp;
5014 struct sctp_sock *sp = sctp_sk(sk);
5015 int addrlen;
5016 size_t space_left;
5017 int bytes_copied;
5018
5019 if (len < sizeof(struct sctp_getaddrs))
5020 return -EINVAL;
5021
5022 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5023 return -EFAULT;
5024
5025 /* For UDP-style sockets, id specifies the association to query. */
5026 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5027 if (!asoc)
5028 return -EINVAL;
5029
5030 to = optval + offsetof(struct sctp_getaddrs, addrs);
5031 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5032
5033 list_for_each_entry(from, &asoc->peer.transport_addr_list,
5034 transports) {
5035 memcpy(&temp, &from->ipaddr, sizeof(temp));
5036 addrlen = sctp_get_pf_specific(sk->sk_family)
5037 ->addr_to_user(sp, &temp);
5038 if (space_left < addrlen)
5039 return -ENOMEM;
5040 if (copy_to_user(to, &temp, addrlen))
5041 return -EFAULT;
5042 to += addrlen;
5043 cnt++;
5044 space_left -= addrlen;
5045 }
5046
5047 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5048 return -EFAULT;
5049 bytes_copied = ((char __user *)to) - optval;
5050 if (put_user(bytes_copied, optlen))
5051 return -EFAULT;
5052
5053 return 0;
5054 }
5055
5056 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5057 size_t space_left, int *bytes_copied)
5058 {
5059 struct sctp_sockaddr_entry *addr;
5060 union sctp_addr temp;
5061 int cnt = 0;
5062 int addrlen;
5063 struct net *net = sock_net(sk);
5064
5065 rcu_read_lock();
5066 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5067 if (!addr->valid)
5068 continue;
5069
5070 if ((PF_INET == sk->sk_family) &&
5071 (AF_INET6 == addr->a.sa.sa_family))
5072 continue;
5073 if ((PF_INET6 == sk->sk_family) &&
5074 inet_v6_ipv6only(sk) &&
5075 (AF_INET == addr->a.sa.sa_family))
5076 continue;
5077 memcpy(&temp, &addr->a, sizeof(temp));
5078 if (!temp.v4.sin_port)
5079 temp.v4.sin_port = htons(port);
5080
5081 addrlen = sctp_get_pf_specific(sk->sk_family)
5082 ->addr_to_user(sctp_sk(sk), &temp);
5083
5084 if (space_left < addrlen) {
5085 cnt = -ENOMEM;
5086 break;
5087 }
5088 memcpy(to, &temp, addrlen);
5089
5090 to += addrlen;
5091 cnt++;
5092 space_left -= addrlen;
5093 *bytes_copied += addrlen;
5094 }
5095 rcu_read_unlock();
5096
5097 return cnt;
5098 }
5099
5100
5101 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5102 char __user *optval, int __user *optlen)
5103 {
5104 struct sctp_bind_addr *bp;
5105 struct sctp_association *asoc;
5106 int cnt = 0;
5107 struct sctp_getaddrs getaddrs;
5108 struct sctp_sockaddr_entry *addr;
5109 void __user *to;
5110 union sctp_addr temp;
5111 struct sctp_sock *sp = sctp_sk(sk);
5112 int addrlen;
5113 int err = 0;
5114 size_t space_left;
5115 int bytes_copied = 0;
5116 void *addrs;
5117 void *buf;
5118
5119 if (len < sizeof(struct sctp_getaddrs))
5120 return -EINVAL;
5121
5122 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5123 return -EFAULT;
5124
5125 /*
5126 * For UDP-style sockets, id specifies the association to query.
5127 * If the id field is set to the value '0' then the locally bound
5128 * addresses are returned without regard to any particular
5129 * association.
5130 */
5131 if (0 == getaddrs.assoc_id) {
5132 bp = &sctp_sk(sk)->ep->base.bind_addr;
5133 } else {
5134 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5135 if (!asoc)
5136 return -EINVAL;
5137 bp = &asoc->base.bind_addr;
5138 }
5139
5140 to = optval + offsetof(struct sctp_getaddrs, addrs);
5141 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5142
5143 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
5144 if (!addrs)
5145 return -ENOMEM;
5146
5147 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
5148 * addresses from the global local address list.
5149 */
5150 if (sctp_list_single_entry(&bp->address_list)) {
5151 addr = list_entry(bp->address_list.next,
5152 struct sctp_sockaddr_entry, list);
5153 if (sctp_is_any(sk, &addr->a)) {
5154 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5155 space_left, &bytes_copied);
5156 if (cnt < 0) {
5157 err = cnt;
5158 goto out;
5159 }
5160 goto copy_getaddrs;
5161 }
5162 }
5163
5164 buf = addrs;
5165 /* Protection on the bound address list is not needed since
5166 * in the socket option context we hold a socket lock and
5167 * thus the bound address list can't change.
5168 */
5169 list_for_each_entry(addr, &bp->address_list, list) {
5170 memcpy(&temp, &addr->a, sizeof(temp));
5171 addrlen = sctp_get_pf_specific(sk->sk_family)
5172 ->addr_to_user(sp, &temp);
5173 if (space_left < addrlen) {
5174 err = -ENOMEM; /*fixme: right error?*/
5175 goto out;
5176 }
5177 memcpy(buf, &temp, addrlen);
5178 buf += addrlen;
5179 bytes_copied += addrlen;
5180 cnt++;
5181 space_left -= addrlen;
5182 }
5183
5184 copy_getaddrs:
5185 if (copy_to_user(to, addrs, bytes_copied)) {
5186 err = -EFAULT;
5187 goto out;
5188 }
5189 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
5190 err = -EFAULT;
5191 goto out;
5192 }
5193 if (put_user(bytes_copied, optlen))
5194 err = -EFAULT;
5195 out:
5196 kfree(addrs);
5197 return err;
5198 }
5199
5200 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
5201 *
5202 * Requests that the local SCTP stack use the enclosed peer address as
5203 * the association primary. The enclosed address must be one of the
5204 * association peer's addresses.
5205 */
5206 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5207 char __user *optval, int __user *optlen)
5208 {
5209 struct sctp_prim prim;
5210 struct sctp_association *asoc;
5211 struct sctp_sock *sp = sctp_sk(sk);
5212
5213 if (len < sizeof(struct sctp_prim))
5214 return -EINVAL;
5215
5216 len = sizeof(struct sctp_prim);
5217
5218 if (copy_from_user(&prim, optval, len))
5219 return -EFAULT;
5220
5221 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5222 if (!asoc)
5223 return -EINVAL;
5224
5225 if (!asoc->peer.primary_path)
5226 return -ENOTCONN;
5227
5228 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5229 asoc->peer.primary_path->af_specific->sockaddr_len);
5230
5231 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5232 (union sctp_addr *)&prim.ssp_addr);
5233
5234 if (put_user(len, optlen))
5235 return -EFAULT;
5236 if (copy_to_user(optval, &prim, len))
5237 return -EFAULT;
5238
5239 return 0;
5240 }
5241
5242 /*
5243 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5244 *
5245 * Requests that the local endpoint set the specified Adaptation Layer
5246 * Indication parameter for all future INIT and INIT-ACK exchanges.
5247 */
5248 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5249 char __user *optval, int __user *optlen)
5250 {
5251 struct sctp_setadaptation adaptation;
5252
5253 if (len < sizeof(struct sctp_setadaptation))
5254 return -EINVAL;
5255
5256 len = sizeof(struct sctp_setadaptation);
5257
5258 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5259
5260 if (put_user(len, optlen))
5261 return -EFAULT;
5262 if (copy_to_user(optval, &adaptation, len))
5263 return -EFAULT;
5264
5265 return 0;
5266 }
5267
5268 /*
5269 *
5270 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5271 *
5272 * Applications that wish to use the sendto() system call may wish to
5273 * specify a default set of parameters that would normally be supplied
5274 * through the inclusion of ancillary data. This socket option allows
5275 * such an application to set the default sctp_sndrcvinfo structure.
5276
5277
5278 * The application that wishes to use this socket option simply passes
5279 * in to this call the sctp_sndrcvinfo structure defined in Section
5280 * 5.2.2) The input parameters accepted by this call include
5281 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5282 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
5283 * to this call if the caller is using the UDP model.
5284 *
5285 * For getsockopt, it get the default sctp_sndrcvinfo structure.
5286 */
5287 static int sctp_getsockopt_default_send_param(struct sock *sk,
5288 int len, char __user *optval,
5289 int __user *optlen)
5290 {
5291 struct sctp_sock *sp = sctp_sk(sk);
5292 struct sctp_association *asoc;
5293 struct sctp_sndrcvinfo info;
5294
5295 if (len < sizeof(info))
5296 return -EINVAL;
5297
5298 len = sizeof(info);
5299
5300 if (copy_from_user(&info, optval, len))
5301 return -EFAULT;
5302
5303 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5304 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5305 return -EINVAL;
5306 if (asoc) {
5307 info.sinfo_stream = asoc->default_stream;
5308 info.sinfo_flags = asoc->default_flags;
5309 info.sinfo_ppid = asoc->default_ppid;
5310 info.sinfo_context = asoc->default_context;
5311 info.sinfo_timetolive = asoc->default_timetolive;
5312 } else {
5313 info.sinfo_stream = sp->default_stream;
5314 info.sinfo_flags = sp->default_flags;
5315 info.sinfo_ppid = sp->default_ppid;
5316 info.sinfo_context = sp->default_context;
5317 info.sinfo_timetolive = sp->default_timetolive;
5318 }
5319
5320 if (put_user(len, optlen))
5321 return -EFAULT;
5322 if (copy_to_user(optval, &info, len))
5323 return -EFAULT;
5324
5325 return 0;
5326 }
5327
5328 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5329 * (SCTP_DEFAULT_SNDINFO)
5330 */
5331 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5332 char __user *optval,
5333 int __user *optlen)
5334 {
5335 struct sctp_sock *sp = sctp_sk(sk);
5336 struct sctp_association *asoc;
5337 struct sctp_sndinfo info;
5338
5339 if (len < sizeof(info))
5340 return -EINVAL;
5341
5342 len = sizeof(info);
5343
5344 if (copy_from_user(&info, optval, len))
5345 return -EFAULT;
5346
5347 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5348 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5349 return -EINVAL;
5350 if (asoc) {
5351 info.snd_sid = asoc->default_stream;
5352 info.snd_flags = asoc->default_flags;
5353 info.snd_ppid = asoc->default_ppid;
5354 info.snd_context = asoc->default_context;
5355 } else {
5356 info.snd_sid = sp->default_stream;
5357 info.snd_flags = sp->default_flags;
5358 info.snd_ppid = sp->default_ppid;
5359 info.snd_context = sp->default_context;
5360 }
5361
5362 if (put_user(len, optlen))
5363 return -EFAULT;
5364 if (copy_to_user(optval, &info, len))
5365 return -EFAULT;
5366
5367 return 0;
5368 }
5369
5370 /*
5371 *
5372 * 7.1.5 SCTP_NODELAY
5373 *
5374 * Turn on/off any Nagle-like algorithm. This means that packets are
5375 * generally sent as soon as possible and no unnecessary delays are
5376 * introduced, at the cost of more packets in the network. Expects an
5377 * integer boolean flag.
5378 */
5379
5380 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5381 char __user *optval, int __user *optlen)
5382 {
5383 int val;
5384
5385 if (len < sizeof(int))
5386 return -EINVAL;
5387
5388 len = sizeof(int);
5389 val = (sctp_sk(sk)->nodelay == 1);
5390 if (put_user(len, optlen))
5391 return -EFAULT;
5392 if (copy_to_user(optval, &val, len))
5393 return -EFAULT;
5394 return 0;
5395 }
5396
5397 /*
5398 *
5399 * 7.1.1 SCTP_RTOINFO
5400 *
5401 * The protocol parameters used to initialize and bound retransmission
5402 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5403 * and modify these parameters.
5404 * All parameters are time values, in milliseconds. A value of 0, when
5405 * modifying the parameters, indicates that the current value should not
5406 * be changed.
5407 *
5408 */
5409 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5410 char __user *optval,
5411 int __user *optlen) {
5412 struct sctp_rtoinfo rtoinfo;
5413 struct sctp_association *asoc;
5414
5415 if (len < sizeof (struct sctp_rtoinfo))
5416 return -EINVAL;
5417
5418 len = sizeof(struct sctp_rtoinfo);
5419
5420 if (copy_from_user(&rtoinfo, optval, len))
5421 return -EFAULT;
5422
5423 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5424
5425 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5426 return -EINVAL;
5427
5428 /* Values corresponding to the specific association. */
5429 if (asoc) {
5430 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5431 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5432 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5433 } else {
5434 /* Values corresponding to the endpoint. */
5435 struct sctp_sock *sp = sctp_sk(sk);
5436
5437 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5438 rtoinfo.srto_max = sp->rtoinfo.srto_max;
5439 rtoinfo.srto_min = sp->rtoinfo.srto_min;
5440 }
5441
5442 if (put_user(len, optlen))
5443 return -EFAULT;
5444
5445 if (copy_to_user(optval, &rtoinfo, len))
5446 return -EFAULT;
5447
5448 return 0;
5449 }
5450
5451 /*
5452 *
5453 * 7.1.2 SCTP_ASSOCINFO
5454 *
5455 * This option is used to tune the maximum retransmission attempts
5456 * of the association.
5457 * Returns an error if the new association retransmission value is
5458 * greater than the sum of the retransmission value of the peer.
5459 * See [SCTP] for more information.
5460 *
5461 */
5462 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5463 char __user *optval,
5464 int __user *optlen)
5465 {
5466
5467 struct sctp_assocparams assocparams;
5468 struct sctp_association *asoc;
5469 struct list_head *pos;
5470 int cnt = 0;
5471
5472 if (len < sizeof (struct sctp_assocparams))
5473 return -EINVAL;
5474
5475 len = sizeof(struct sctp_assocparams);
5476
5477 if (copy_from_user(&assocparams, optval, len))
5478 return -EFAULT;
5479
5480 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5481
5482 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5483 return -EINVAL;
5484
5485 /* Values correspoinding to the specific association */
5486 if (asoc) {
5487 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5488 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5489 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5490 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5491
5492 list_for_each(pos, &asoc->peer.transport_addr_list) {
5493 cnt++;
5494 }
5495
5496 assocparams.sasoc_number_peer_destinations = cnt;
5497 } else {
5498 /* Values corresponding to the endpoint */
5499 struct sctp_sock *sp = sctp_sk(sk);
5500
5501 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5502 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5503 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5504 assocparams.sasoc_cookie_life =
5505 sp->assocparams.sasoc_cookie_life;
5506 assocparams.sasoc_number_peer_destinations =
5507 sp->assocparams.
5508 sasoc_number_peer_destinations;
5509 }
5510
5511 if (put_user(len, optlen))
5512 return -EFAULT;
5513
5514 if (copy_to_user(optval, &assocparams, len))
5515 return -EFAULT;
5516
5517 return 0;
5518 }
5519
5520 /*
5521 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5522 *
5523 * This socket option is a boolean flag which turns on or off mapped V4
5524 * addresses. If this option is turned on and the socket is type
5525 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5526 * If this option is turned off, then no mapping will be done of V4
5527 * addresses and a user will receive both PF_INET6 and PF_INET type
5528 * addresses on the socket.
5529 */
5530 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5531 char __user *optval, int __user *optlen)
5532 {
5533 int val;
5534 struct sctp_sock *sp = sctp_sk(sk);
5535
5536 if (len < sizeof(int))
5537 return -EINVAL;
5538
5539 len = sizeof(int);
5540 val = sp->v4mapped;
5541 if (put_user(len, optlen))
5542 return -EFAULT;
5543 if (copy_to_user(optval, &val, len))
5544 return -EFAULT;
5545
5546 return 0;
5547 }
5548
5549 /*
5550 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5551 * (chapter and verse is quoted at sctp_setsockopt_context())
5552 */
5553 static int sctp_getsockopt_context(struct sock *sk, int len,
5554 char __user *optval, int __user *optlen)
5555 {
5556 struct sctp_assoc_value params;
5557 struct sctp_sock *sp;
5558 struct sctp_association *asoc;
5559
5560 if (len < sizeof(struct sctp_assoc_value))
5561 return -EINVAL;
5562
5563 len = sizeof(struct sctp_assoc_value);
5564
5565 if (copy_from_user(&params, optval, len))
5566 return -EFAULT;
5567
5568 sp = sctp_sk(sk);
5569
5570 if (params.assoc_id != 0) {
5571 asoc = sctp_id2assoc(sk, params.assoc_id);
5572 if (!asoc)
5573 return -EINVAL;
5574 params.assoc_value = asoc->default_rcv_context;
5575 } else {
5576 params.assoc_value = sp->default_rcv_context;
5577 }
5578
5579 if (put_user(len, optlen))
5580 return -EFAULT;
5581 if (copy_to_user(optval, &params, len))
5582 return -EFAULT;
5583
5584 return 0;
5585 }
5586
5587 /*
5588 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5589 * This option will get or set the maximum size to put in any outgoing
5590 * SCTP DATA chunk. If a message is larger than this size it will be
5591 * fragmented by SCTP into the specified size. Note that the underlying
5592 * SCTP implementation may fragment into smaller sized chunks when the
5593 * PMTU of the underlying association is smaller than the value set by
5594 * the user. The default value for this option is '0' which indicates
5595 * the user is NOT limiting fragmentation and only the PMTU will effect
5596 * SCTP's choice of DATA chunk size. Note also that values set larger
5597 * than the maximum size of an IP datagram will effectively let SCTP
5598 * control fragmentation (i.e. the same as setting this option to 0).
5599 *
5600 * The following structure is used to access and modify this parameter:
5601 *
5602 * struct sctp_assoc_value {
5603 * sctp_assoc_t assoc_id;
5604 * uint32_t assoc_value;
5605 * };
5606 *
5607 * assoc_id: This parameter is ignored for one-to-one style sockets.
5608 * For one-to-many style sockets this parameter indicates which
5609 * association the user is performing an action upon. Note that if
5610 * this field's value is zero then the endpoints default value is
5611 * changed (effecting future associations only).
5612 * assoc_value: This parameter specifies the maximum size in bytes.
5613 */
5614 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5615 char __user *optval, int __user *optlen)
5616 {
5617 struct sctp_assoc_value params;
5618 struct sctp_association *asoc;
5619
5620 if (len == sizeof(int)) {
5621 pr_warn_ratelimited(DEPRECATED
5622 "%s (pid %d) "
5623 "Use of int in maxseg socket option.\n"
5624 "Use struct sctp_assoc_value instead\n",
5625 current->comm, task_pid_nr(current));
5626 params.assoc_id = 0;
5627 } else if (len >= sizeof(struct sctp_assoc_value)) {
5628 len = sizeof(struct sctp_assoc_value);
5629 if (copy_from_user(&params, optval, sizeof(params)))
5630 return -EFAULT;
5631 } else
5632 return -EINVAL;
5633
5634 asoc = sctp_id2assoc(sk, params.assoc_id);
5635 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5636 return -EINVAL;
5637
5638 if (asoc)
5639 params.assoc_value = asoc->frag_point;
5640 else
5641 params.assoc_value = sctp_sk(sk)->user_frag;
5642
5643 if (put_user(len, optlen))
5644 return -EFAULT;
5645 if (len == sizeof(int)) {
5646 if (copy_to_user(optval, &params.assoc_value, len))
5647 return -EFAULT;
5648 } else {
5649 if (copy_to_user(optval, &params, len))
5650 return -EFAULT;
5651 }
5652
5653 return 0;
5654 }
5655
5656 /*
5657 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5658 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5659 */
5660 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5661 char __user *optval, int __user *optlen)
5662 {
5663 int val;
5664
5665 if (len < sizeof(int))
5666 return -EINVAL;
5667
5668 len = sizeof(int);
5669
5670 val = sctp_sk(sk)->frag_interleave;
5671 if (put_user(len, optlen))
5672 return -EFAULT;
5673 if (copy_to_user(optval, &val, len))
5674 return -EFAULT;
5675
5676 return 0;
5677 }
5678
5679 /*
5680 * 7.1.25. Set or Get the sctp partial delivery point
5681 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5682 */
5683 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5684 char __user *optval,
5685 int __user *optlen)
5686 {
5687 u32 val;
5688
5689 if (len < sizeof(u32))
5690 return -EINVAL;
5691
5692 len = sizeof(u32);
5693
5694 val = sctp_sk(sk)->pd_point;
5695 if (put_user(len, optlen))
5696 return -EFAULT;
5697 if (copy_to_user(optval, &val, len))
5698 return -EFAULT;
5699
5700 return 0;
5701 }
5702
5703 /*
5704 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5705 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5706 */
5707 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5708 char __user *optval,
5709 int __user *optlen)
5710 {
5711 struct sctp_assoc_value params;
5712 struct sctp_sock *sp;
5713 struct sctp_association *asoc;
5714
5715 if (len == sizeof(int)) {
5716 pr_warn_ratelimited(DEPRECATED
5717 "%s (pid %d) "
5718 "Use of int in max_burst socket option.\n"
5719 "Use struct sctp_assoc_value instead\n",
5720 current->comm, task_pid_nr(current));
5721 params.assoc_id = 0;
5722 } else if (len >= sizeof(struct sctp_assoc_value)) {
5723 len = sizeof(struct sctp_assoc_value);
5724 if (copy_from_user(&params, optval, len))
5725 return -EFAULT;
5726 } else
5727 return -EINVAL;
5728
5729 sp = sctp_sk(sk);
5730
5731 if (params.assoc_id != 0) {
5732 asoc = sctp_id2assoc(sk, params.assoc_id);
5733 if (!asoc)
5734 return -EINVAL;
5735 params.assoc_value = asoc->max_burst;
5736 } else
5737 params.assoc_value = sp->max_burst;
5738
5739 if (len == sizeof(int)) {
5740 if (copy_to_user(optval, &params.assoc_value, len))
5741 return -EFAULT;
5742 } else {
5743 if (copy_to_user(optval, &params, len))
5744 return -EFAULT;
5745 }
5746
5747 return 0;
5748
5749 }
5750
5751 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5752 char __user *optval, int __user *optlen)
5753 {
5754 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5755 struct sctp_hmacalgo __user *p = (void __user *)optval;
5756 struct sctp_hmac_algo_param *hmacs;
5757 __u16 data_len = 0;
5758 u32 num_idents;
5759 int i;
5760
5761 if (!ep->auth_enable)
5762 return -EACCES;
5763
5764 hmacs = ep->auth_hmacs_list;
5765 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5766
5767 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5768 return -EINVAL;
5769
5770 len = sizeof(struct sctp_hmacalgo) + data_len;
5771 num_idents = data_len / sizeof(u16);
5772
5773 if (put_user(len, optlen))
5774 return -EFAULT;
5775 if (put_user(num_idents, &p->shmac_num_idents))
5776 return -EFAULT;
5777 for (i = 0; i < num_idents; i++) {
5778 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
5779
5780 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
5781 return -EFAULT;
5782 }
5783 return 0;
5784 }
5785
5786 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5787 char __user *optval, int __user *optlen)
5788 {
5789 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5790 struct sctp_authkeyid val;
5791 struct sctp_association *asoc;
5792
5793 if (!ep->auth_enable)
5794 return -EACCES;
5795
5796 if (len < sizeof(struct sctp_authkeyid))
5797 return -EINVAL;
5798 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5799 return -EFAULT;
5800
5801 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5802 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5803 return -EINVAL;
5804
5805 if (asoc)
5806 val.scact_keynumber = asoc->active_key_id;
5807 else
5808 val.scact_keynumber = ep->active_key_id;
5809
5810 len = sizeof(struct sctp_authkeyid);
5811 if (put_user(len, optlen))
5812 return -EFAULT;
5813 if (copy_to_user(optval, &val, len))
5814 return -EFAULT;
5815
5816 return 0;
5817 }
5818
5819 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5820 char __user *optval, int __user *optlen)
5821 {
5822 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5823 struct sctp_authchunks __user *p = (void __user *)optval;
5824 struct sctp_authchunks val;
5825 struct sctp_association *asoc;
5826 struct sctp_chunks_param *ch;
5827 u32 num_chunks = 0;
5828 char __user *to;
5829
5830 if (!ep->auth_enable)
5831 return -EACCES;
5832
5833 if (len < sizeof(struct sctp_authchunks))
5834 return -EINVAL;
5835
5836 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5837 return -EFAULT;
5838
5839 to = p->gauth_chunks;
5840 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5841 if (!asoc)
5842 return -EINVAL;
5843
5844 ch = asoc->peer.peer_chunks;
5845 if (!ch)
5846 goto num;
5847
5848 /* See if the user provided enough room for all the data */
5849 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5850 if (len < num_chunks)
5851 return -EINVAL;
5852
5853 if (copy_to_user(to, ch->chunks, num_chunks))
5854 return -EFAULT;
5855 num:
5856 len = sizeof(struct sctp_authchunks) + num_chunks;
5857 if (put_user(len, optlen))
5858 return -EFAULT;
5859 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5860 return -EFAULT;
5861 return 0;
5862 }
5863
5864 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5865 char __user *optval, int __user *optlen)
5866 {
5867 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5868 struct sctp_authchunks __user *p = (void __user *)optval;
5869 struct sctp_authchunks val;
5870 struct sctp_association *asoc;
5871 struct sctp_chunks_param *ch;
5872 u32 num_chunks = 0;
5873 char __user *to;
5874
5875 if (!ep->auth_enable)
5876 return -EACCES;
5877
5878 if (len < sizeof(struct sctp_authchunks))
5879 return -EINVAL;
5880
5881 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5882 return -EFAULT;
5883
5884 to = p->gauth_chunks;
5885 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5886 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5887 return -EINVAL;
5888
5889 if (asoc)
5890 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5891 else
5892 ch = ep->auth_chunk_list;
5893
5894 if (!ch)
5895 goto num;
5896
5897 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5898 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5899 return -EINVAL;
5900
5901 if (copy_to_user(to, ch->chunks, num_chunks))
5902 return -EFAULT;
5903 num:
5904 len = sizeof(struct sctp_authchunks) + num_chunks;
5905 if (put_user(len, optlen))
5906 return -EFAULT;
5907 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5908 return -EFAULT;
5909
5910 return 0;
5911 }
5912
5913 /*
5914 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5915 * This option gets the current number of associations that are attached
5916 * to a one-to-many style socket. The option value is an uint32_t.
5917 */
5918 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5919 char __user *optval, int __user *optlen)
5920 {
5921 struct sctp_sock *sp = sctp_sk(sk);
5922 struct sctp_association *asoc;
5923 u32 val = 0;
5924
5925 if (sctp_style(sk, TCP))
5926 return -EOPNOTSUPP;
5927
5928 if (len < sizeof(u32))
5929 return -EINVAL;
5930
5931 len = sizeof(u32);
5932
5933 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5934 val++;
5935 }
5936
5937 if (put_user(len, optlen))
5938 return -EFAULT;
5939 if (copy_to_user(optval, &val, len))
5940 return -EFAULT;
5941
5942 return 0;
5943 }
5944
5945 /*
5946 * 8.1.23 SCTP_AUTO_ASCONF
5947 * See the corresponding setsockopt entry as description
5948 */
5949 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5950 char __user *optval, int __user *optlen)
5951 {
5952 int val = 0;
5953
5954 if (len < sizeof(int))
5955 return -EINVAL;
5956
5957 len = sizeof(int);
5958 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5959 val = 1;
5960 if (put_user(len, optlen))
5961 return -EFAULT;
5962 if (copy_to_user(optval, &val, len))
5963 return -EFAULT;
5964 return 0;
5965 }
5966
5967 /*
5968 * 8.2.6. Get the Current Identifiers of Associations
5969 * (SCTP_GET_ASSOC_ID_LIST)
5970 *
5971 * This option gets the current list of SCTP association identifiers of
5972 * the SCTP associations handled by a one-to-many style socket.
5973 */
5974 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5975 char __user *optval, int __user *optlen)
5976 {
5977 struct sctp_sock *sp = sctp_sk(sk);
5978 struct sctp_association *asoc;
5979 struct sctp_assoc_ids *ids;
5980 u32 num = 0;
5981
5982 if (sctp_style(sk, TCP))
5983 return -EOPNOTSUPP;
5984
5985 if (len < sizeof(struct sctp_assoc_ids))
5986 return -EINVAL;
5987
5988 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5989 num++;
5990 }
5991
5992 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5993 return -EINVAL;
5994
5995 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5996
5997 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
5998 if (unlikely(!ids))
5999 return -ENOMEM;
6000
6001 ids->gaids_number_of_ids = num;
6002 num = 0;
6003 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6004 ids->gaids_assoc_id[num++] = asoc->assoc_id;
6005 }
6006
6007 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6008 kfree(ids);
6009 return -EFAULT;
6010 }
6011
6012 kfree(ids);
6013 return 0;
6014 }
6015
6016 /*
6017 * SCTP_PEER_ADDR_THLDS
6018 *
6019 * This option allows us to fetch the partially failed threshold for one or all
6020 * transports in an association. See Section 6.1 of:
6021 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6022 */
6023 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6024 char __user *optval,
6025 int len,
6026 int __user *optlen)
6027 {
6028 struct sctp_paddrthlds val;
6029 struct sctp_transport *trans;
6030 struct sctp_association *asoc;
6031
6032 if (len < sizeof(struct sctp_paddrthlds))
6033 return -EINVAL;
6034 len = sizeof(struct sctp_paddrthlds);
6035 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6036 return -EFAULT;
6037
6038 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6039 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6040 if (!asoc)
6041 return -ENOENT;
6042
6043 val.spt_pathpfthld = asoc->pf_retrans;
6044 val.spt_pathmaxrxt = asoc->pathmaxrxt;
6045 } else {
6046 trans = sctp_addr_id2transport(sk, &val.spt_address,
6047 val.spt_assoc_id);
6048 if (!trans)
6049 return -ENOENT;
6050
6051 val.spt_pathmaxrxt = trans->pathmaxrxt;
6052 val.spt_pathpfthld = trans->pf_retrans;
6053 }
6054
6055 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6056 return -EFAULT;
6057
6058 return 0;
6059 }
6060
6061 /*
6062 * SCTP_GET_ASSOC_STATS
6063 *
6064 * This option retrieves local per endpoint statistics. It is modeled
6065 * after OpenSolaris' implementation
6066 */
6067 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6068 char __user *optval,
6069 int __user *optlen)
6070 {
6071 struct sctp_assoc_stats sas;
6072 struct sctp_association *asoc = NULL;
6073
6074 /* User must provide at least the assoc id */
6075 if (len < sizeof(sctp_assoc_t))
6076 return -EINVAL;
6077
6078 /* Allow the struct to grow and fill in as much as possible */
6079 len = min_t(size_t, len, sizeof(sas));
6080
6081 if (copy_from_user(&sas, optval, len))
6082 return -EFAULT;
6083
6084 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6085 if (!asoc)
6086 return -EINVAL;
6087
6088 sas.sas_rtxchunks = asoc->stats.rtxchunks;
6089 sas.sas_gapcnt = asoc->stats.gapcnt;
6090 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6091 sas.sas_osacks = asoc->stats.osacks;
6092 sas.sas_isacks = asoc->stats.isacks;
6093 sas.sas_octrlchunks = asoc->stats.octrlchunks;
6094 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6095 sas.sas_oodchunks = asoc->stats.oodchunks;
6096 sas.sas_iodchunks = asoc->stats.iodchunks;
6097 sas.sas_ouodchunks = asoc->stats.ouodchunks;
6098 sas.sas_iuodchunks = asoc->stats.iuodchunks;
6099 sas.sas_idupchunks = asoc->stats.idupchunks;
6100 sas.sas_opackets = asoc->stats.opackets;
6101 sas.sas_ipackets = asoc->stats.ipackets;
6102
6103 /* New high max rto observed, will return 0 if not a single
6104 * RTO update took place. obs_rto_ipaddr will be bogus
6105 * in such a case
6106 */
6107 sas.sas_maxrto = asoc->stats.max_obs_rto;
6108 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6109 sizeof(struct sockaddr_storage));
6110
6111 /* Mark beginning of a new observation period */
6112 asoc->stats.max_obs_rto = asoc->rto_min;
6113
6114 if (put_user(len, optlen))
6115 return -EFAULT;
6116
6117 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6118
6119 if (copy_to_user(optval, &sas, len))
6120 return -EFAULT;
6121
6122 return 0;
6123 }
6124
6125 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
6126 char __user *optval,
6127 int __user *optlen)
6128 {
6129 int val = 0;
6130
6131 if (len < sizeof(int))
6132 return -EINVAL;
6133
6134 len = sizeof(int);
6135 if (sctp_sk(sk)->recvrcvinfo)
6136 val = 1;
6137 if (put_user(len, optlen))
6138 return -EFAULT;
6139 if (copy_to_user(optval, &val, len))
6140 return -EFAULT;
6141
6142 return 0;
6143 }
6144
6145 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
6146 char __user *optval,
6147 int __user *optlen)
6148 {
6149 int val = 0;
6150
6151 if (len < sizeof(int))
6152 return -EINVAL;
6153
6154 len = sizeof(int);
6155 if (sctp_sk(sk)->recvnxtinfo)
6156 val = 1;
6157 if (put_user(len, optlen))
6158 return -EFAULT;
6159 if (copy_to_user(optval, &val, len))
6160 return -EFAULT;
6161
6162 return 0;
6163 }
6164
6165 static int sctp_getsockopt(struct sock *sk, int level, int optname,
6166 char __user *optval, int __user *optlen)
6167 {
6168 int retval = 0;
6169 int len;
6170
6171 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
6172
6173 /* I can hardly begin to describe how wrong this is. This is
6174 * so broken as to be worse than useless. The API draft
6175 * REALLY is NOT helpful here... I am not convinced that the
6176 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
6177 * are at all well-founded.
6178 */
6179 if (level != SOL_SCTP) {
6180 struct sctp_af *af = sctp_sk(sk)->pf->af;
6181
6182 retval = af->getsockopt(sk, level, optname, optval, optlen);
6183 return retval;
6184 }
6185
6186 if (get_user(len, optlen))
6187 return -EFAULT;
6188
6189 lock_sock(sk);
6190
6191 switch (optname) {
6192 case SCTP_STATUS:
6193 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
6194 break;
6195 case SCTP_DISABLE_FRAGMENTS:
6196 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
6197 optlen);
6198 break;
6199 case SCTP_EVENTS:
6200 retval = sctp_getsockopt_events(sk, len, optval, optlen);
6201 break;
6202 case SCTP_AUTOCLOSE:
6203 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
6204 break;
6205 case SCTP_SOCKOPT_PEELOFF:
6206 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
6207 break;
6208 case SCTP_PEER_ADDR_PARAMS:
6209 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
6210 optlen);
6211 break;
6212 case SCTP_DELAYED_SACK:
6213 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
6214 optlen);
6215 break;
6216 case SCTP_INITMSG:
6217 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6218 break;
6219 case SCTP_GET_PEER_ADDRS:
6220 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6221 optlen);
6222 break;
6223 case SCTP_GET_LOCAL_ADDRS:
6224 retval = sctp_getsockopt_local_addrs(sk, len, optval,
6225 optlen);
6226 break;
6227 case SCTP_SOCKOPT_CONNECTX3:
6228 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6229 break;
6230 case SCTP_DEFAULT_SEND_PARAM:
6231 retval = sctp_getsockopt_default_send_param(sk, len,
6232 optval, optlen);
6233 break;
6234 case SCTP_DEFAULT_SNDINFO:
6235 retval = sctp_getsockopt_default_sndinfo(sk, len,
6236 optval, optlen);
6237 break;
6238 case SCTP_PRIMARY_ADDR:
6239 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6240 break;
6241 case SCTP_NODELAY:
6242 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6243 break;
6244 case SCTP_RTOINFO:
6245 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6246 break;
6247 case SCTP_ASSOCINFO:
6248 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6249 break;
6250 case SCTP_I_WANT_MAPPED_V4_ADDR:
6251 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6252 break;
6253 case SCTP_MAXSEG:
6254 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6255 break;
6256 case SCTP_GET_PEER_ADDR_INFO:
6257 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6258 optlen);
6259 break;
6260 case SCTP_ADAPTATION_LAYER:
6261 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6262 optlen);
6263 break;
6264 case SCTP_CONTEXT:
6265 retval = sctp_getsockopt_context(sk, len, optval, optlen);
6266 break;
6267 case SCTP_FRAGMENT_INTERLEAVE:
6268 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6269 optlen);
6270 break;
6271 case SCTP_PARTIAL_DELIVERY_POINT:
6272 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6273 optlen);
6274 break;
6275 case SCTP_MAX_BURST:
6276 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6277 break;
6278 case SCTP_AUTH_KEY:
6279 case SCTP_AUTH_CHUNK:
6280 case SCTP_AUTH_DELETE_KEY:
6281 retval = -EOPNOTSUPP;
6282 break;
6283 case SCTP_HMAC_IDENT:
6284 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6285 break;
6286 case SCTP_AUTH_ACTIVE_KEY:
6287 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6288 break;
6289 case SCTP_PEER_AUTH_CHUNKS:
6290 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6291 optlen);
6292 break;
6293 case SCTP_LOCAL_AUTH_CHUNKS:
6294 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6295 optlen);
6296 break;
6297 case SCTP_GET_ASSOC_NUMBER:
6298 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6299 break;
6300 case SCTP_GET_ASSOC_ID_LIST:
6301 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6302 break;
6303 case SCTP_AUTO_ASCONF:
6304 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6305 break;
6306 case SCTP_PEER_ADDR_THLDS:
6307 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6308 break;
6309 case SCTP_GET_ASSOC_STATS:
6310 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6311 break;
6312 case SCTP_RECVRCVINFO:
6313 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6314 break;
6315 case SCTP_RECVNXTINFO:
6316 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6317 break;
6318 default:
6319 retval = -ENOPROTOOPT;
6320 break;
6321 }
6322
6323 release_sock(sk);
6324 return retval;
6325 }
6326
6327 static int sctp_hash(struct sock *sk)
6328 {
6329 /* STUB */
6330 return 0;
6331 }
6332
6333 static void sctp_unhash(struct sock *sk)
6334 {
6335 /* STUB */
6336 }
6337
6338 /* Check if port is acceptable. Possibly find first available port.
6339 *
6340 * The port hash table (contained in the 'global' SCTP protocol storage
6341 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6342 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6343 * list (the list number is the port number hashed out, so as you
6344 * would expect from a hash function, all the ports in a given list have
6345 * such a number that hashes out to the same list number; you were
6346 * expecting that, right?); so each list has a set of ports, with a
6347 * link to the socket (struct sock) that uses it, the port number and
6348 * a fastreuse flag (FIXME: NPI ipg).
6349 */
6350 static struct sctp_bind_bucket *sctp_bucket_create(
6351 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6352
6353 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6354 {
6355 struct sctp_bind_hashbucket *head; /* hash list */
6356 struct sctp_bind_bucket *pp;
6357 unsigned short snum;
6358 int ret;
6359
6360 snum = ntohs(addr->v4.sin_port);
6361
6362 pr_debug("%s: begins, snum:%d\n", __func__, snum);
6363
6364 local_bh_disable();
6365
6366 if (snum == 0) {
6367 /* Search for an available port. */
6368 int low, high, remaining, index;
6369 unsigned int rover;
6370 struct net *net = sock_net(sk);
6371
6372 inet_get_local_port_range(net, &low, &high);
6373 remaining = (high - low) + 1;
6374 rover = prandom_u32() % remaining + low;
6375
6376 do {
6377 rover++;
6378 if ((rover < low) || (rover > high))
6379 rover = low;
6380 if (inet_is_local_reserved_port(net, rover))
6381 continue;
6382 index = sctp_phashfn(sock_net(sk), rover);
6383 head = &sctp_port_hashtable[index];
6384 spin_lock(&head->lock);
6385 sctp_for_each_hentry(pp, &head->chain)
6386 if ((pp->port == rover) &&
6387 net_eq(sock_net(sk), pp->net))
6388 goto next;
6389 break;
6390 next:
6391 spin_unlock(&head->lock);
6392 } while (--remaining > 0);
6393
6394 /* Exhausted local port range during search? */
6395 ret = 1;
6396 if (remaining <= 0)
6397 goto fail;
6398
6399 /* OK, here is the one we will use. HEAD (the port
6400 * hash table list entry) is non-NULL and we hold it's
6401 * mutex.
6402 */
6403 snum = rover;
6404 } else {
6405 /* We are given an specific port number; we verify
6406 * that it is not being used. If it is used, we will
6407 * exahust the search in the hash list corresponding
6408 * to the port number (snum) - we detect that with the
6409 * port iterator, pp being NULL.
6410 */
6411 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6412 spin_lock(&head->lock);
6413 sctp_for_each_hentry(pp, &head->chain) {
6414 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6415 goto pp_found;
6416 }
6417 }
6418 pp = NULL;
6419 goto pp_not_found;
6420 pp_found:
6421 if (!hlist_empty(&pp->owner)) {
6422 /* We had a port hash table hit - there is an
6423 * available port (pp != NULL) and it is being
6424 * used by other socket (pp->owner not empty); that other
6425 * socket is going to be sk2.
6426 */
6427 int reuse = sk->sk_reuse;
6428 struct sock *sk2;
6429
6430 pr_debug("%s: found a possible match\n", __func__);
6431
6432 if (pp->fastreuse && sk->sk_reuse &&
6433 sk->sk_state != SCTP_SS_LISTENING)
6434 goto success;
6435
6436 /* Run through the list of sockets bound to the port
6437 * (pp->port) [via the pointers bind_next and
6438 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6439 * we get the endpoint they describe and run through
6440 * the endpoint's list of IP (v4 or v6) addresses,
6441 * comparing each of the addresses with the address of
6442 * the socket sk. If we find a match, then that means
6443 * that this port/socket (sk) combination are already
6444 * in an endpoint.
6445 */
6446 sk_for_each_bound(sk2, &pp->owner) {
6447 struct sctp_endpoint *ep2;
6448 ep2 = sctp_sk(sk2)->ep;
6449
6450 if (sk == sk2 ||
6451 (reuse && sk2->sk_reuse &&
6452 sk2->sk_state != SCTP_SS_LISTENING))
6453 continue;
6454
6455 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6456 sctp_sk(sk2), sctp_sk(sk))) {
6457 ret = (long)sk2;
6458 goto fail_unlock;
6459 }
6460 }
6461
6462 pr_debug("%s: found a match\n", __func__);
6463 }
6464 pp_not_found:
6465 /* If there was a hash table miss, create a new port. */
6466 ret = 1;
6467 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6468 goto fail_unlock;
6469
6470 /* In either case (hit or miss), make sure fastreuse is 1 only
6471 * if sk->sk_reuse is too (that is, if the caller requested
6472 * SO_REUSEADDR on this socket -sk-).
6473 */
6474 if (hlist_empty(&pp->owner)) {
6475 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6476 pp->fastreuse = 1;
6477 else
6478 pp->fastreuse = 0;
6479 } else if (pp->fastreuse &&
6480 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6481 pp->fastreuse = 0;
6482
6483 /* We are set, so fill up all the data in the hash table
6484 * entry, tie the socket list information with the rest of the
6485 * sockets FIXME: Blurry, NPI (ipg).
6486 */
6487 success:
6488 if (!sctp_sk(sk)->bind_hash) {
6489 inet_sk(sk)->inet_num = snum;
6490 sk_add_bind_node(sk, &pp->owner);
6491 sctp_sk(sk)->bind_hash = pp;
6492 }
6493 ret = 0;
6494
6495 fail_unlock:
6496 spin_unlock(&head->lock);
6497
6498 fail:
6499 local_bh_enable();
6500 return ret;
6501 }
6502
6503 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
6504 * port is requested.
6505 */
6506 static int sctp_get_port(struct sock *sk, unsigned short snum)
6507 {
6508 union sctp_addr addr;
6509 struct sctp_af *af = sctp_sk(sk)->pf->af;
6510
6511 /* Set up a dummy address struct from the sk. */
6512 af->from_sk(&addr, sk);
6513 addr.v4.sin_port = htons(snum);
6514
6515 /* Note: sk->sk_num gets filled in if ephemeral port request. */
6516 return !!sctp_get_port_local(sk, &addr);
6517 }
6518
6519 /*
6520 * Move a socket to LISTENING state.
6521 */
6522 static int sctp_listen_start(struct sock *sk, int backlog)
6523 {
6524 struct sctp_sock *sp = sctp_sk(sk);
6525 struct sctp_endpoint *ep = sp->ep;
6526 struct crypto_shash *tfm = NULL;
6527 char alg[32];
6528
6529 /* Allocate HMAC for generating cookie. */
6530 if (!sp->hmac && sp->sctp_hmac_alg) {
6531 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6532 tfm = crypto_alloc_shash(alg, 0, 0);
6533 if (IS_ERR(tfm)) {
6534 net_info_ratelimited("failed to load transform for %s: %ld\n",
6535 sp->sctp_hmac_alg, PTR_ERR(tfm));
6536 return -ENOSYS;
6537 }
6538 sctp_sk(sk)->hmac = tfm;
6539 }
6540
6541 /*
6542 * If a bind() or sctp_bindx() is not called prior to a listen()
6543 * call that allows new associations to be accepted, the system
6544 * picks an ephemeral port and will choose an address set equivalent
6545 * to binding with a wildcard address.
6546 *
6547 * This is not currently spelled out in the SCTP sockets
6548 * extensions draft, but follows the practice as seen in TCP
6549 * sockets.
6550 *
6551 */
6552 sk->sk_state = SCTP_SS_LISTENING;
6553 if (!ep->base.bind_addr.port) {
6554 if (sctp_autobind(sk))
6555 return -EAGAIN;
6556 } else {
6557 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6558 sk->sk_state = SCTP_SS_CLOSED;
6559 return -EADDRINUSE;
6560 }
6561 }
6562
6563 sk->sk_max_ack_backlog = backlog;
6564 sctp_hash_endpoint(ep);
6565 return 0;
6566 }
6567
6568 /*
6569 * 4.1.3 / 5.1.3 listen()
6570 *
6571 * By default, new associations are not accepted for UDP style sockets.
6572 * An application uses listen() to mark a socket as being able to
6573 * accept new associations.
6574 *
6575 * On TCP style sockets, applications use listen() to ready the SCTP
6576 * endpoint for accepting inbound associations.
6577 *
6578 * On both types of endpoints a backlog of '0' disables listening.
6579 *
6580 * Move a socket to LISTENING state.
6581 */
6582 int sctp_inet_listen(struct socket *sock, int backlog)
6583 {
6584 struct sock *sk = sock->sk;
6585 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6586 int err = -EINVAL;
6587
6588 if (unlikely(backlog < 0))
6589 return err;
6590
6591 lock_sock(sk);
6592
6593 /* Peeled-off sockets are not allowed to listen(). */
6594 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6595 goto out;
6596
6597 if (sock->state != SS_UNCONNECTED)
6598 goto out;
6599
6600 /* If backlog is zero, disable listening. */
6601 if (!backlog) {
6602 if (sctp_sstate(sk, CLOSED))
6603 goto out;
6604
6605 err = 0;
6606 sctp_unhash_endpoint(ep);
6607 sk->sk_state = SCTP_SS_CLOSED;
6608 if (sk->sk_reuse)
6609 sctp_sk(sk)->bind_hash->fastreuse = 1;
6610 goto out;
6611 }
6612
6613 /* If we are already listening, just update the backlog */
6614 if (sctp_sstate(sk, LISTENING))
6615 sk->sk_max_ack_backlog = backlog;
6616 else {
6617 err = sctp_listen_start(sk, backlog);
6618 if (err)
6619 goto out;
6620 }
6621
6622 err = 0;
6623 out:
6624 release_sock(sk);
6625 return err;
6626 }
6627
6628 /*
6629 * This function is done by modeling the current datagram_poll() and the
6630 * tcp_poll(). Note that, based on these implementations, we don't
6631 * lock the socket in this function, even though it seems that,
6632 * ideally, locking or some other mechanisms can be used to ensure
6633 * the integrity of the counters (sndbuf and wmem_alloc) used
6634 * in this place. We assume that we don't need locks either until proven
6635 * otherwise.
6636 *
6637 * Another thing to note is that we include the Async I/O support
6638 * here, again, by modeling the current TCP/UDP code. We don't have
6639 * a good way to test with it yet.
6640 */
6641 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6642 {
6643 struct sock *sk = sock->sk;
6644 struct sctp_sock *sp = sctp_sk(sk);
6645 unsigned int mask;
6646
6647 poll_wait(file, sk_sleep(sk), wait);
6648
6649 sock_rps_record_flow(sk);
6650
6651 /* A TCP-style listening socket becomes readable when the accept queue
6652 * is not empty.
6653 */
6654 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6655 return (!list_empty(&sp->ep->asocs)) ?
6656 (POLLIN | POLLRDNORM) : 0;
6657
6658 mask = 0;
6659
6660 /* Is there any exceptional events? */
6661 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6662 mask |= POLLERR |
6663 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6664 if (sk->sk_shutdown & RCV_SHUTDOWN)
6665 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6666 if (sk->sk_shutdown == SHUTDOWN_MASK)
6667 mask |= POLLHUP;
6668
6669 /* Is it readable? Reconsider this code with TCP-style support. */
6670 if (!skb_queue_empty(&sk->sk_receive_queue))
6671 mask |= POLLIN | POLLRDNORM;
6672
6673 /* The association is either gone or not ready. */
6674 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6675 return mask;
6676
6677 /* Is it writable? */
6678 if (sctp_writeable(sk)) {
6679 mask |= POLLOUT | POLLWRNORM;
6680 } else {
6681 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
6682 /*
6683 * Since the socket is not locked, the buffer
6684 * might be made available after the writeable check and
6685 * before the bit is set. This could cause a lost I/O
6686 * signal. tcp_poll() has a race breaker for this race
6687 * condition. Based on their implementation, we put
6688 * in the following code to cover it as well.
6689 */
6690 if (sctp_writeable(sk))
6691 mask |= POLLOUT | POLLWRNORM;
6692 }
6693 return mask;
6694 }
6695
6696 /********************************************************************
6697 * 2nd Level Abstractions
6698 ********************************************************************/
6699
6700 static struct sctp_bind_bucket *sctp_bucket_create(
6701 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6702 {
6703 struct sctp_bind_bucket *pp;
6704
6705 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6706 if (pp) {
6707 SCTP_DBG_OBJCNT_INC(bind_bucket);
6708 pp->port = snum;
6709 pp->fastreuse = 0;
6710 INIT_HLIST_HEAD(&pp->owner);
6711 pp->net = net;
6712 hlist_add_head(&pp->node, &head->chain);
6713 }
6714 return pp;
6715 }
6716
6717 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6718 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6719 {
6720 if (pp && hlist_empty(&pp->owner)) {
6721 __hlist_del(&pp->node);
6722 kmem_cache_free(sctp_bucket_cachep, pp);
6723 SCTP_DBG_OBJCNT_DEC(bind_bucket);
6724 }
6725 }
6726
6727 /* Release this socket's reference to a local port. */
6728 static inline void __sctp_put_port(struct sock *sk)
6729 {
6730 struct sctp_bind_hashbucket *head =
6731 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6732 inet_sk(sk)->inet_num)];
6733 struct sctp_bind_bucket *pp;
6734
6735 spin_lock(&head->lock);
6736 pp = sctp_sk(sk)->bind_hash;
6737 __sk_del_bind_node(sk);
6738 sctp_sk(sk)->bind_hash = NULL;
6739 inet_sk(sk)->inet_num = 0;
6740 sctp_bucket_destroy(pp);
6741 spin_unlock(&head->lock);
6742 }
6743
6744 void sctp_put_port(struct sock *sk)
6745 {
6746 local_bh_disable();
6747 __sctp_put_port(sk);
6748 local_bh_enable();
6749 }
6750
6751 /*
6752 * The system picks an ephemeral port and choose an address set equivalent
6753 * to binding with a wildcard address.
6754 * One of those addresses will be the primary address for the association.
6755 * This automatically enables the multihoming capability of SCTP.
6756 */
6757 static int sctp_autobind(struct sock *sk)
6758 {
6759 union sctp_addr autoaddr;
6760 struct sctp_af *af;
6761 __be16 port;
6762
6763 /* Initialize a local sockaddr structure to INADDR_ANY. */
6764 af = sctp_sk(sk)->pf->af;
6765
6766 port = htons(inet_sk(sk)->inet_num);
6767 af->inaddr_any(&autoaddr, port);
6768
6769 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6770 }
6771
6772 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
6773 *
6774 * From RFC 2292
6775 * 4.2 The cmsghdr Structure *
6776 *
6777 * When ancillary data is sent or received, any number of ancillary data
6778 * objects can be specified by the msg_control and msg_controllen members of
6779 * the msghdr structure, because each object is preceded by
6780 * a cmsghdr structure defining the object's length (the cmsg_len member).
6781 * Historically Berkeley-derived implementations have passed only one object
6782 * at a time, but this API allows multiple objects to be
6783 * passed in a single call to sendmsg() or recvmsg(). The following example
6784 * shows two ancillary data objects in a control buffer.
6785 *
6786 * |<--------------------------- msg_controllen -------------------------->|
6787 * | |
6788 *
6789 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
6790 *
6791 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6792 * | | |
6793 *
6794 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
6795 *
6796 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
6797 * | | | | |
6798 *
6799 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6800 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
6801 *
6802 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
6803 *
6804 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6805 * ^
6806 * |
6807 *
6808 * msg_control
6809 * points here
6810 */
6811 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6812 {
6813 struct cmsghdr *cmsg;
6814 struct msghdr *my_msg = (struct msghdr *)msg;
6815
6816 for_each_cmsghdr(cmsg, my_msg) {
6817 if (!CMSG_OK(my_msg, cmsg))
6818 return -EINVAL;
6819
6820 /* Should we parse this header or ignore? */
6821 if (cmsg->cmsg_level != IPPROTO_SCTP)
6822 continue;
6823
6824 /* Strictly check lengths following example in SCM code. */
6825 switch (cmsg->cmsg_type) {
6826 case SCTP_INIT:
6827 /* SCTP Socket API Extension
6828 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
6829 *
6830 * This cmsghdr structure provides information for
6831 * initializing new SCTP associations with sendmsg().
6832 * The SCTP_INITMSG socket option uses this same data
6833 * structure. This structure is not used for
6834 * recvmsg().
6835 *
6836 * cmsg_level cmsg_type cmsg_data[]
6837 * ------------ ------------ ----------------------
6838 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
6839 */
6840 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
6841 return -EINVAL;
6842
6843 cmsgs->init = CMSG_DATA(cmsg);
6844 break;
6845
6846 case SCTP_SNDRCV:
6847 /* SCTP Socket API Extension
6848 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
6849 *
6850 * This cmsghdr structure specifies SCTP options for
6851 * sendmsg() and describes SCTP header information
6852 * about a received message through recvmsg().
6853 *
6854 * cmsg_level cmsg_type cmsg_data[]
6855 * ------------ ------------ ----------------------
6856 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
6857 */
6858 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6859 return -EINVAL;
6860
6861 cmsgs->srinfo = CMSG_DATA(cmsg);
6862
6863 if (cmsgs->srinfo->sinfo_flags &
6864 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6865 SCTP_SACK_IMMEDIATELY |
6866 SCTP_ABORT | SCTP_EOF))
6867 return -EINVAL;
6868 break;
6869
6870 case SCTP_SNDINFO:
6871 /* SCTP Socket API Extension
6872 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
6873 *
6874 * This cmsghdr structure specifies SCTP options for
6875 * sendmsg(). This structure and SCTP_RCVINFO replaces
6876 * SCTP_SNDRCV which has been deprecated.
6877 *
6878 * cmsg_level cmsg_type cmsg_data[]
6879 * ------------ ------------ ---------------------
6880 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
6881 */
6882 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
6883 return -EINVAL;
6884
6885 cmsgs->sinfo = CMSG_DATA(cmsg);
6886
6887 if (cmsgs->sinfo->snd_flags &
6888 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6889 SCTP_SACK_IMMEDIATELY |
6890 SCTP_ABORT | SCTP_EOF))
6891 return -EINVAL;
6892 break;
6893 default:
6894 return -EINVAL;
6895 }
6896 }
6897
6898 return 0;
6899 }
6900
6901 /*
6902 * Wait for a packet..
6903 * Note: This function is the same function as in core/datagram.c
6904 * with a few modifications to make lksctp work.
6905 */
6906 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
6907 {
6908 int error;
6909 DEFINE_WAIT(wait);
6910
6911 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6912
6913 /* Socket errors? */
6914 error = sock_error(sk);
6915 if (error)
6916 goto out;
6917
6918 if (!skb_queue_empty(&sk->sk_receive_queue))
6919 goto ready;
6920
6921 /* Socket shut down? */
6922 if (sk->sk_shutdown & RCV_SHUTDOWN)
6923 goto out;
6924
6925 /* Sequenced packets can come disconnected. If so we report the
6926 * problem.
6927 */
6928 error = -ENOTCONN;
6929
6930 /* Is there a good reason to think that we may receive some data? */
6931 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6932 goto out;
6933
6934 /* Handle signals. */
6935 if (signal_pending(current))
6936 goto interrupted;
6937
6938 /* Let another process have a go. Since we are going to sleep
6939 * anyway. Note: This may cause odd behaviors if the message
6940 * does not fit in the user's buffer, but this seems to be the
6941 * only way to honor MSG_DONTWAIT realistically.
6942 */
6943 release_sock(sk);
6944 *timeo_p = schedule_timeout(*timeo_p);
6945 lock_sock(sk);
6946
6947 ready:
6948 finish_wait(sk_sleep(sk), &wait);
6949 return 0;
6950
6951 interrupted:
6952 error = sock_intr_errno(*timeo_p);
6953
6954 out:
6955 finish_wait(sk_sleep(sk), &wait);
6956 *err = error;
6957 return error;
6958 }
6959
6960 /* Receive a datagram.
6961 * Note: This is pretty much the same routine as in core/datagram.c
6962 * with a few changes to make lksctp work.
6963 */
6964 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6965 int noblock, int *err)
6966 {
6967 int error;
6968 struct sk_buff *skb;
6969 long timeo;
6970
6971 timeo = sock_rcvtimeo(sk, noblock);
6972
6973 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6974 MAX_SCHEDULE_TIMEOUT);
6975
6976 do {
6977 /* Again only user level code calls this function,
6978 * so nothing interrupt level
6979 * will suddenly eat the receive_queue.
6980 *
6981 * Look at current nfs client by the way...
6982 * However, this function was correct in any case. 8)
6983 */
6984 if (flags & MSG_PEEK) {
6985 skb = skb_peek(&sk->sk_receive_queue);
6986 if (skb)
6987 atomic_inc(&skb->users);
6988 } else {
6989 skb = __skb_dequeue(&sk->sk_receive_queue);
6990 }
6991
6992 if (skb)
6993 return skb;
6994
6995 /* Caller is allowed not to check sk->sk_err before calling. */
6996 error = sock_error(sk);
6997 if (error)
6998 goto no_packet;
6999
7000 if (sk->sk_shutdown & RCV_SHUTDOWN)
7001 break;
7002
7003 if (sk_can_busy_loop(sk) &&
7004 sk_busy_loop(sk, noblock))
7005 continue;
7006
7007 /* User doesn't want to wait. */
7008 error = -EAGAIN;
7009 if (!timeo)
7010 goto no_packet;
7011 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
7012
7013 return NULL;
7014
7015 no_packet:
7016 *err = error;
7017 return NULL;
7018 }
7019
7020 /* If sndbuf has changed, wake up per association sndbuf waiters. */
7021 static void __sctp_write_space(struct sctp_association *asoc)
7022 {
7023 struct sock *sk = asoc->base.sk;
7024
7025 if (sctp_wspace(asoc) <= 0)
7026 return;
7027
7028 if (waitqueue_active(&asoc->wait))
7029 wake_up_interruptible(&asoc->wait);
7030
7031 if (sctp_writeable(sk)) {
7032 struct socket_wq *wq;
7033
7034 rcu_read_lock();
7035 wq = rcu_dereference(sk->sk_wq);
7036 if (wq) {
7037 if (waitqueue_active(&wq->wait))
7038 wake_up_interruptible(&wq->wait);
7039
7040 /* Note that we try to include the Async I/O support
7041 * here by modeling from the current TCP/UDP code.
7042 * We have not tested with it yet.
7043 */
7044 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
7045 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
7046 }
7047 rcu_read_unlock();
7048 }
7049 }
7050
7051 static void sctp_wake_up_waiters(struct sock *sk,
7052 struct sctp_association *asoc)
7053 {
7054 struct sctp_association *tmp = asoc;
7055
7056 /* We do accounting for the sndbuf space per association,
7057 * so we only need to wake our own association.
7058 */
7059 if (asoc->ep->sndbuf_policy)
7060 return __sctp_write_space(asoc);
7061
7062 /* If association goes down and is just flushing its
7063 * outq, then just normally notify others.
7064 */
7065 if (asoc->base.dead)
7066 return sctp_write_space(sk);
7067
7068 /* Accounting for the sndbuf space is per socket, so we
7069 * need to wake up others, try to be fair and in case of
7070 * other associations, let them have a go first instead
7071 * of just doing a sctp_write_space() call.
7072 *
7073 * Note that we reach sctp_wake_up_waiters() only when
7074 * associations free up queued chunks, thus we are under
7075 * lock and the list of associations on a socket is
7076 * guaranteed not to change.
7077 */
7078 for (tmp = list_next_entry(tmp, asocs); 1;
7079 tmp = list_next_entry(tmp, asocs)) {
7080 /* Manually skip the head element. */
7081 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
7082 continue;
7083 /* Wake up association. */
7084 __sctp_write_space(tmp);
7085 /* We've reached the end. */
7086 if (tmp == asoc)
7087 break;
7088 }
7089 }
7090
7091 /* Do accounting for the sndbuf space.
7092 * Decrement the used sndbuf space of the corresponding association by the
7093 * data size which was just transmitted(freed).
7094 */
7095 static void sctp_wfree(struct sk_buff *skb)
7096 {
7097 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
7098 struct sctp_association *asoc = chunk->asoc;
7099 struct sock *sk = asoc->base.sk;
7100
7101 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
7102 sizeof(struct sk_buff) +
7103 sizeof(struct sctp_chunk);
7104
7105 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
7106
7107 /*
7108 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
7109 */
7110 sk->sk_wmem_queued -= skb->truesize;
7111 sk_mem_uncharge(sk, skb->truesize);
7112
7113 sock_wfree(skb);
7114 sctp_wake_up_waiters(sk, asoc);
7115
7116 sctp_association_put(asoc);
7117 }
7118
7119 /* Do accounting for the receive space on the socket.
7120 * Accounting for the association is done in ulpevent.c
7121 * We set this as a destructor for the cloned data skbs so that
7122 * accounting is done at the correct time.
7123 */
7124 void sctp_sock_rfree(struct sk_buff *skb)
7125 {
7126 struct sock *sk = skb->sk;
7127 struct sctp_ulpevent *event = sctp_skb2event(skb);
7128
7129 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
7130
7131 /*
7132 * Mimic the behavior of sock_rfree
7133 */
7134 sk_mem_uncharge(sk, event->rmem_len);
7135 }
7136
7137
7138 /* Helper function to wait for space in the sndbuf. */
7139 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
7140 size_t msg_len)
7141 {
7142 struct sock *sk = asoc->base.sk;
7143 int err = 0;
7144 long current_timeo = *timeo_p;
7145 DEFINE_WAIT(wait);
7146
7147 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
7148 *timeo_p, msg_len);
7149
7150 /* Increment the association's refcnt. */
7151 sctp_association_hold(asoc);
7152
7153 /* Wait on the association specific sndbuf space. */
7154 for (;;) {
7155 prepare_to_wait_exclusive(&asoc->wait, &wait,
7156 TASK_INTERRUPTIBLE);
7157 if (!*timeo_p)
7158 goto do_nonblock;
7159 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7160 asoc->base.dead)
7161 goto do_error;
7162 if (signal_pending(current))
7163 goto do_interrupted;
7164 if (msg_len <= sctp_wspace(asoc))
7165 break;
7166
7167 /* Let another process have a go. Since we are going
7168 * to sleep anyway.
7169 */
7170 release_sock(sk);
7171 current_timeo = schedule_timeout(current_timeo);
7172 BUG_ON(sk != asoc->base.sk);
7173 lock_sock(sk);
7174
7175 *timeo_p = current_timeo;
7176 }
7177
7178 out:
7179 finish_wait(&asoc->wait, &wait);
7180
7181 /* Release the association's refcnt. */
7182 sctp_association_put(asoc);
7183
7184 return err;
7185
7186 do_error:
7187 err = -EPIPE;
7188 goto out;
7189
7190 do_interrupted:
7191 err = sock_intr_errno(*timeo_p);
7192 goto out;
7193
7194 do_nonblock:
7195 err = -EAGAIN;
7196 goto out;
7197 }
7198
7199 void sctp_data_ready(struct sock *sk)
7200 {
7201 struct socket_wq *wq;
7202
7203 rcu_read_lock();
7204 wq = rcu_dereference(sk->sk_wq);
7205 if (skwq_has_sleeper(wq))
7206 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
7207 POLLRDNORM | POLLRDBAND);
7208 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
7209 rcu_read_unlock();
7210 }
7211
7212 /* If socket sndbuf has changed, wake up all per association waiters. */
7213 void sctp_write_space(struct sock *sk)
7214 {
7215 struct sctp_association *asoc;
7216
7217 /* Wake up the tasks in each wait queue. */
7218 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7219 __sctp_write_space(asoc);
7220 }
7221 }
7222
7223 /* Is there any sndbuf space available on the socket?
7224 *
7225 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7226 * associations on the same socket. For a UDP-style socket with
7227 * multiple associations, it is possible for it to be "unwriteable"
7228 * prematurely. I assume that this is acceptable because
7229 * a premature "unwriteable" is better than an accidental "writeable" which
7230 * would cause an unwanted block under certain circumstances. For the 1-1
7231 * UDP-style sockets or TCP-style sockets, this code should work.
7232 * - Daisy
7233 */
7234 static int sctp_writeable(struct sock *sk)
7235 {
7236 int amt = 0;
7237
7238 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7239 if (amt < 0)
7240 amt = 0;
7241 return amt;
7242 }
7243
7244 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7245 * returns immediately with EINPROGRESS.
7246 */
7247 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7248 {
7249 struct sock *sk = asoc->base.sk;
7250 int err = 0;
7251 long current_timeo = *timeo_p;
7252 DEFINE_WAIT(wait);
7253
7254 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7255
7256 /* Increment the association's refcnt. */
7257 sctp_association_hold(asoc);
7258
7259 for (;;) {
7260 prepare_to_wait_exclusive(&asoc->wait, &wait,
7261 TASK_INTERRUPTIBLE);
7262 if (!*timeo_p)
7263 goto do_nonblock;
7264 if (sk->sk_shutdown & RCV_SHUTDOWN)
7265 break;
7266 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7267 asoc->base.dead)
7268 goto do_error;
7269 if (signal_pending(current))
7270 goto do_interrupted;
7271
7272 if (sctp_state(asoc, ESTABLISHED))
7273 break;
7274
7275 /* Let another process have a go. Since we are going
7276 * to sleep anyway.
7277 */
7278 release_sock(sk);
7279 current_timeo = schedule_timeout(current_timeo);
7280 lock_sock(sk);
7281
7282 *timeo_p = current_timeo;
7283 }
7284
7285 out:
7286 finish_wait(&asoc->wait, &wait);
7287
7288 /* Release the association's refcnt. */
7289 sctp_association_put(asoc);
7290
7291 return err;
7292
7293 do_error:
7294 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7295 err = -ETIMEDOUT;
7296 else
7297 err = -ECONNREFUSED;
7298 goto out;
7299
7300 do_interrupted:
7301 err = sock_intr_errno(*timeo_p);
7302 goto out;
7303
7304 do_nonblock:
7305 err = -EINPROGRESS;
7306 goto out;
7307 }
7308
7309 static int sctp_wait_for_accept(struct sock *sk, long timeo)
7310 {
7311 struct sctp_endpoint *ep;
7312 int err = 0;
7313 DEFINE_WAIT(wait);
7314
7315 ep = sctp_sk(sk)->ep;
7316
7317
7318 for (;;) {
7319 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7320 TASK_INTERRUPTIBLE);
7321
7322 if (list_empty(&ep->asocs)) {
7323 release_sock(sk);
7324 timeo = schedule_timeout(timeo);
7325 lock_sock(sk);
7326 }
7327
7328 err = -EINVAL;
7329 if (!sctp_sstate(sk, LISTENING))
7330 break;
7331
7332 err = 0;
7333 if (!list_empty(&ep->asocs))
7334 break;
7335
7336 err = sock_intr_errno(timeo);
7337 if (signal_pending(current))
7338 break;
7339
7340 err = -EAGAIN;
7341 if (!timeo)
7342 break;
7343 }
7344
7345 finish_wait(sk_sleep(sk), &wait);
7346
7347 return err;
7348 }
7349
7350 static void sctp_wait_for_close(struct sock *sk, long timeout)
7351 {
7352 DEFINE_WAIT(wait);
7353
7354 do {
7355 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7356 if (list_empty(&sctp_sk(sk)->ep->asocs))
7357 break;
7358 release_sock(sk);
7359 timeout = schedule_timeout(timeout);
7360 lock_sock(sk);
7361 } while (!signal_pending(current) && timeout);
7362
7363 finish_wait(sk_sleep(sk), &wait);
7364 }
7365
7366 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7367 {
7368 struct sk_buff *frag;
7369
7370 if (!skb->data_len)
7371 goto done;
7372
7373 /* Don't forget the fragments. */
7374 skb_walk_frags(skb, frag)
7375 sctp_skb_set_owner_r_frag(frag, sk);
7376
7377 done:
7378 sctp_skb_set_owner_r(skb, sk);
7379 }
7380
7381 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7382 struct sctp_association *asoc)
7383 {
7384 struct inet_sock *inet = inet_sk(sk);
7385 struct inet_sock *newinet;
7386
7387 newsk->sk_type = sk->sk_type;
7388 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7389 newsk->sk_flags = sk->sk_flags;
7390 newsk->sk_tsflags = sk->sk_tsflags;
7391 newsk->sk_no_check_tx = sk->sk_no_check_tx;
7392 newsk->sk_no_check_rx = sk->sk_no_check_rx;
7393 newsk->sk_reuse = sk->sk_reuse;
7394
7395 newsk->sk_shutdown = sk->sk_shutdown;
7396 newsk->sk_destruct = sctp_destruct_sock;
7397 newsk->sk_family = sk->sk_family;
7398 newsk->sk_protocol = IPPROTO_SCTP;
7399 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7400 newsk->sk_sndbuf = sk->sk_sndbuf;
7401 newsk->sk_rcvbuf = sk->sk_rcvbuf;
7402 newsk->sk_lingertime = sk->sk_lingertime;
7403 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7404 newsk->sk_sndtimeo = sk->sk_sndtimeo;
7405 newsk->sk_rxhash = sk->sk_rxhash;
7406
7407 newinet = inet_sk(newsk);
7408
7409 /* Initialize sk's sport, dport, rcv_saddr and daddr for
7410 * getsockname() and getpeername()
7411 */
7412 newinet->inet_sport = inet->inet_sport;
7413 newinet->inet_saddr = inet->inet_saddr;
7414 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7415 newinet->inet_dport = htons(asoc->peer.port);
7416 newinet->pmtudisc = inet->pmtudisc;
7417 newinet->inet_id = asoc->next_tsn ^ jiffies;
7418
7419 newinet->uc_ttl = inet->uc_ttl;
7420 newinet->mc_loop = 1;
7421 newinet->mc_ttl = 1;
7422 newinet->mc_index = 0;
7423 newinet->mc_list = NULL;
7424
7425 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
7426 net_enable_timestamp();
7427
7428 security_sk_clone(sk, newsk);
7429 }
7430
7431 static inline void sctp_copy_descendant(struct sock *sk_to,
7432 const struct sock *sk_from)
7433 {
7434 int ancestor_size = sizeof(struct inet_sock) +
7435 sizeof(struct sctp_sock) -
7436 offsetof(struct sctp_sock, auto_asconf_list);
7437
7438 if (sk_from->sk_family == PF_INET6)
7439 ancestor_size += sizeof(struct ipv6_pinfo);
7440
7441 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
7442 }
7443
7444 /* Populate the fields of the newsk from the oldsk and migrate the assoc
7445 * and its messages to the newsk.
7446 */
7447 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7448 struct sctp_association *assoc,
7449 sctp_socket_type_t type)
7450 {
7451 struct sctp_sock *oldsp = sctp_sk(oldsk);
7452 struct sctp_sock *newsp = sctp_sk(newsk);
7453 struct sctp_bind_bucket *pp; /* hash list port iterator */
7454 struct sctp_endpoint *newep = newsp->ep;
7455 struct sk_buff *skb, *tmp;
7456 struct sctp_ulpevent *event;
7457 struct sctp_bind_hashbucket *head;
7458
7459 /* Migrate socket buffer sizes and all the socket level options to the
7460 * new socket.
7461 */
7462 newsk->sk_sndbuf = oldsk->sk_sndbuf;
7463 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7464 /* Brute force copy old sctp opt. */
7465 sctp_copy_descendant(newsk, oldsk);
7466
7467 /* Restore the ep value that was overwritten with the above structure
7468 * copy.
7469 */
7470 newsp->ep = newep;
7471 newsp->hmac = NULL;
7472
7473 /* Hook this new socket in to the bind_hash list. */
7474 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7475 inet_sk(oldsk)->inet_num)];
7476 spin_lock_bh(&head->lock);
7477 pp = sctp_sk(oldsk)->bind_hash;
7478 sk_add_bind_node(newsk, &pp->owner);
7479 sctp_sk(newsk)->bind_hash = pp;
7480 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7481 spin_unlock_bh(&head->lock);
7482
7483 /* Copy the bind_addr list from the original endpoint to the new
7484 * endpoint so that we can handle restarts properly
7485 */
7486 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7487 &oldsp->ep->base.bind_addr, GFP_KERNEL);
7488
7489 /* Move any messages in the old socket's receive queue that are for the
7490 * peeled off association to the new socket's receive queue.
7491 */
7492 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7493 event = sctp_skb2event(skb);
7494 if (event->asoc == assoc) {
7495 __skb_unlink(skb, &oldsk->sk_receive_queue);
7496 __skb_queue_tail(&newsk->sk_receive_queue, skb);
7497 sctp_skb_set_owner_r_frag(skb, newsk);
7498 }
7499 }
7500
7501 /* Clean up any messages pending delivery due to partial
7502 * delivery. Three cases:
7503 * 1) No partial deliver; no work.
7504 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7505 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7506 */
7507 skb_queue_head_init(&newsp->pd_lobby);
7508 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7509
7510 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7511 struct sk_buff_head *queue;
7512
7513 /* Decide which queue to move pd_lobby skbs to. */
7514 if (assoc->ulpq.pd_mode) {
7515 queue = &newsp->pd_lobby;
7516 } else
7517 queue = &newsk->sk_receive_queue;
7518
7519 /* Walk through the pd_lobby, looking for skbs that
7520 * need moved to the new socket.
7521 */
7522 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7523 event = sctp_skb2event(skb);
7524 if (event->asoc == assoc) {
7525 __skb_unlink(skb, &oldsp->pd_lobby);
7526 __skb_queue_tail(queue, skb);
7527 sctp_skb_set_owner_r_frag(skb, newsk);
7528 }
7529 }
7530
7531 /* Clear up any skbs waiting for the partial
7532 * delivery to finish.
7533 */
7534 if (assoc->ulpq.pd_mode)
7535 sctp_clear_pd(oldsk, NULL);
7536
7537 }
7538
7539 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7540 sctp_skb_set_owner_r_frag(skb, newsk);
7541
7542 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7543 sctp_skb_set_owner_r_frag(skb, newsk);
7544
7545 /* Set the type of socket to indicate that it is peeled off from the
7546 * original UDP-style socket or created with the accept() call on a
7547 * TCP-style socket..
7548 */
7549 newsp->type = type;
7550
7551 /* Mark the new socket "in-use" by the user so that any packets
7552 * that may arrive on the association after we've moved it are
7553 * queued to the backlog. This prevents a potential race between
7554 * backlog processing on the old socket and new-packet processing
7555 * on the new socket.
7556 *
7557 * The caller has just allocated newsk so we can guarantee that other
7558 * paths won't try to lock it and then oldsk.
7559 */
7560 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7561 sctp_assoc_migrate(assoc, newsk);
7562
7563 /* If the association on the newsk is already closed before accept()
7564 * is called, set RCV_SHUTDOWN flag.
7565 */
7566 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7567 newsk->sk_shutdown |= RCV_SHUTDOWN;
7568
7569 newsk->sk_state = SCTP_SS_ESTABLISHED;
7570 release_sock(newsk);
7571 }
7572
7573
7574 /* This proto struct describes the ULP interface for SCTP. */
7575 struct proto sctp_prot = {
7576 .name = "SCTP",
7577 .owner = THIS_MODULE,
7578 .close = sctp_close,
7579 .connect = sctp_connect,
7580 .disconnect = sctp_disconnect,
7581 .accept = sctp_accept,
7582 .ioctl = sctp_ioctl,
7583 .init = sctp_init_sock,
7584 .destroy = sctp_destroy_sock,
7585 .shutdown = sctp_shutdown,
7586 .setsockopt = sctp_setsockopt,
7587 .getsockopt = sctp_getsockopt,
7588 .sendmsg = sctp_sendmsg,
7589 .recvmsg = sctp_recvmsg,
7590 .bind = sctp_bind,
7591 .backlog_rcv = sctp_backlog_rcv,
7592 .hash = sctp_hash,
7593 .unhash = sctp_unhash,
7594 .get_port = sctp_get_port,
7595 .obj_size = sizeof(struct sctp_sock),
7596 .sysctl_mem = sysctl_sctp_mem,
7597 .sysctl_rmem = sysctl_sctp_rmem,
7598 .sysctl_wmem = sysctl_sctp_wmem,
7599 .memory_pressure = &sctp_memory_pressure,
7600 .enter_memory_pressure = sctp_enter_memory_pressure,
7601 .memory_allocated = &sctp_memory_allocated,
7602 .sockets_allocated = &sctp_sockets_allocated,
7603 };
7604
7605 #if IS_ENABLED(CONFIG_IPV6)
7606
7607 #include <net/transp_v6.h>
7608 static void sctp_v6_destroy_sock(struct sock *sk)
7609 {
7610 sctp_destroy_sock(sk);
7611 inet6_destroy_sock(sk);
7612 }
7613
7614 struct proto sctpv6_prot = {
7615 .name = "SCTPv6",
7616 .owner = THIS_MODULE,
7617 .close = sctp_close,
7618 .connect = sctp_connect,
7619 .disconnect = sctp_disconnect,
7620 .accept = sctp_accept,
7621 .ioctl = sctp_ioctl,
7622 .init = sctp_init_sock,
7623 .destroy = sctp_v6_destroy_sock,
7624 .shutdown = sctp_shutdown,
7625 .setsockopt = sctp_setsockopt,
7626 .getsockopt = sctp_getsockopt,
7627 .sendmsg = sctp_sendmsg,
7628 .recvmsg = sctp_recvmsg,
7629 .bind = sctp_bind,
7630 .backlog_rcv = sctp_backlog_rcv,
7631 .hash = sctp_hash,
7632 .unhash = sctp_unhash,
7633 .get_port = sctp_get_port,
7634 .obj_size = sizeof(struct sctp6_sock),
7635 .sysctl_mem = sysctl_sctp_mem,
7636 .sysctl_rmem = sysctl_sctp_rmem,
7637 .sysctl_wmem = sysctl_sctp_wmem,
7638 .memory_pressure = &sctp_memory_pressure,
7639 .enter_memory_pressure = sctp_enter_memory_pressure,
7640 .memory_allocated = &sctp_memory_allocated,
7641 .sockets_allocated = &sctp_sockets_allocated,
7642 };
7643 #endif /* IS_ENABLED(CONFIG_IPV6) */
This page took 0.344832 seconds and 6 git commands to generate.