MAINTAINERS: add an explicit entry for tm6000
[deliverable/linux.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108
109 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
110 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
111 unsigned long nr_segs, loff_t pos);
112 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
113 unsigned long nr_segs, loff_t pos);
114 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115
116 static int sock_close(struct inode *inode, struct file *file);
117 static unsigned int sock_poll(struct file *file,
118 struct poll_table_struct *wait);
119 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
120 #ifdef CONFIG_COMPAT
121 static long compat_sock_ioctl(struct file *file,
122 unsigned int cmd, unsigned long arg);
123 #endif
124 static int sock_fasync(int fd, struct file *filp, int on);
125 static ssize_t sock_sendpage(struct file *file, struct page *page,
126 int offset, size_t size, loff_t *ppos, int more);
127 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
128 struct pipe_inode_info *pipe, size_t len,
129 unsigned int flags);
130
131 /*
132 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
133 * in the operation structures but are done directly via the socketcall() multiplexor.
134 */
135
136 static const struct file_operations socket_file_ops = {
137 .owner = THIS_MODULE,
138 .llseek = no_llseek,
139 .aio_read = sock_aio_read,
140 .aio_write = sock_aio_write,
141 .poll = sock_poll,
142 .unlocked_ioctl = sock_ioctl,
143 #ifdef CONFIG_COMPAT
144 .compat_ioctl = compat_sock_ioctl,
145 #endif
146 .mmap = sock_mmap,
147 .open = sock_no_open, /* special open code to disallow open via /proc */
148 .release = sock_close,
149 .fasync = sock_fasync,
150 .sendpage = sock_sendpage,
151 .splice_write = generic_splice_sendpage,
152 .splice_read = sock_splice_read,
153 };
154
155 /*
156 * The protocol list. Each protocol is registered in here.
157 */
158
159 static DEFINE_SPINLOCK(net_family_lock);
160 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
161
162 /*
163 * Statistics counters of the socket lists
164 */
165
166 static DEFINE_PER_CPU(int, sockets_in_use);
167
168 /*
169 * Support routines.
170 * Move socket addresses back and forth across the kernel/user
171 * divide and look after the messy bits.
172 */
173
174 /**
175 * move_addr_to_kernel - copy a socket address into kernel space
176 * @uaddr: Address in user space
177 * @kaddr: Address in kernel space
178 * @ulen: Length in user space
179 *
180 * The address is copied into kernel space. If the provided address is
181 * too long an error code of -EINVAL is returned. If the copy gives
182 * invalid addresses -EFAULT is returned. On a success 0 is returned.
183 */
184
185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
186 {
187 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
188 return -EINVAL;
189 if (ulen == 0)
190 return 0;
191 if (copy_from_user(kaddr, uaddr, ulen))
192 return -EFAULT;
193 return audit_sockaddr(ulen, kaddr);
194 }
195
196 /**
197 * move_addr_to_user - copy an address to user space
198 * @kaddr: kernel space address
199 * @klen: length of address in kernel
200 * @uaddr: user space address
201 * @ulen: pointer to user length field
202 *
203 * The value pointed to by ulen on entry is the buffer length available.
204 * This is overwritten with the buffer space used. -EINVAL is returned
205 * if an overlong buffer is specified or a negative buffer size. -EFAULT
206 * is returned if either the buffer or the length field are not
207 * accessible.
208 * After copying the data up to the limit the user specifies, the true
209 * length of the data is written over the length limit the user
210 * specified. Zero is returned for a success.
211 */
212
213 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
214 void __user *uaddr, int __user *ulen)
215 {
216 int err;
217 int len;
218
219 err = get_user(len, ulen);
220 if (err)
221 return err;
222 if (len > klen)
223 len = klen;
224 if (len < 0 || len > sizeof(struct sockaddr_storage))
225 return -EINVAL;
226 if (len) {
227 if (audit_sockaddr(klen, kaddr))
228 return -ENOMEM;
229 if (copy_to_user(uaddr, kaddr, len))
230 return -EFAULT;
231 }
232 /*
233 * "fromlen shall refer to the value before truncation.."
234 * 1003.1g
235 */
236 return __put_user(klen, ulen);
237 }
238
239 static struct kmem_cache *sock_inode_cachep __read_mostly;
240
241 static struct inode *sock_alloc_inode(struct super_block *sb)
242 {
243 struct socket_alloc *ei;
244 struct socket_wq *wq;
245
246 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
247 if (!ei)
248 return NULL;
249 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
250 if (!wq) {
251 kmem_cache_free(sock_inode_cachep, ei);
252 return NULL;
253 }
254 init_waitqueue_head(&wq->wait);
255 wq->fasync_list = NULL;
256 RCU_INIT_POINTER(ei->socket.wq, wq);
257
258 ei->socket.state = SS_UNCONNECTED;
259 ei->socket.flags = 0;
260 ei->socket.ops = NULL;
261 ei->socket.sk = NULL;
262 ei->socket.file = NULL;
263
264 return &ei->vfs_inode;
265 }
266
267 static void sock_destroy_inode(struct inode *inode)
268 {
269 struct socket_alloc *ei;
270 struct socket_wq *wq;
271
272 ei = container_of(inode, struct socket_alloc, vfs_inode);
273 wq = rcu_dereference_protected(ei->socket.wq, 1);
274 kfree_rcu(wq, rcu);
275 kmem_cache_free(sock_inode_cachep, ei);
276 }
277
278 static void init_once(void *foo)
279 {
280 struct socket_alloc *ei = (struct socket_alloc *)foo;
281
282 inode_init_once(&ei->vfs_inode);
283 }
284
285 static int init_inodecache(void)
286 {
287 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
288 sizeof(struct socket_alloc),
289 0,
290 (SLAB_HWCACHE_ALIGN |
291 SLAB_RECLAIM_ACCOUNT |
292 SLAB_MEM_SPREAD),
293 init_once);
294 if (sock_inode_cachep == NULL)
295 return -ENOMEM;
296 return 0;
297 }
298
299 static const struct super_operations sockfs_ops = {
300 .alloc_inode = sock_alloc_inode,
301 .destroy_inode = sock_destroy_inode,
302 .statfs = simple_statfs,
303 };
304
305 /*
306 * sockfs_dname() is called from d_path().
307 */
308 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
309 {
310 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
311 dentry->d_inode->i_ino);
312 }
313
314 static const struct dentry_operations sockfs_dentry_operations = {
315 .d_dname = sockfs_dname,
316 };
317
318 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
319 int flags, const char *dev_name, void *data)
320 {
321 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
322 &sockfs_dentry_operations, SOCKFS_MAGIC);
323 }
324
325 static struct vfsmount *sock_mnt __read_mostly;
326
327 static struct file_system_type sock_fs_type = {
328 .name = "sockfs",
329 .mount = sockfs_mount,
330 .kill_sb = kill_anon_super,
331 };
332
333 /*
334 * Obtains the first available file descriptor and sets it up for use.
335 *
336 * These functions create file structures and maps them to fd space
337 * of the current process. On success it returns file descriptor
338 * and file struct implicitly stored in sock->file.
339 * Note that another thread may close file descriptor before we return
340 * from this function. We use the fact that now we do not refer
341 * to socket after mapping. If one day we will need it, this
342 * function will increment ref. count on file by 1.
343 *
344 * In any case returned fd MAY BE not valid!
345 * This race condition is unavoidable
346 * with shared fd spaces, we cannot solve it inside kernel,
347 * but we take care of internal coherence yet.
348 */
349
350 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
351 {
352 struct qstr name = { .name = "" };
353 struct path path;
354 struct file *file;
355
356 if (dname) {
357 name.name = dname;
358 name.len = strlen(name.name);
359 } else if (sock->sk) {
360 name.name = sock->sk->sk_prot_creator->name;
361 name.len = strlen(name.name);
362 }
363 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
364 if (unlikely(!path.dentry))
365 return ERR_PTR(-ENOMEM);
366 path.mnt = mntget(sock_mnt);
367
368 d_instantiate(path.dentry, SOCK_INODE(sock));
369 SOCK_INODE(sock)->i_fop = &socket_file_ops;
370
371 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
372 &socket_file_ops);
373 if (unlikely(!file)) {
374 /* drop dentry, keep inode */
375 ihold(path.dentry->d_inode);
376 path_put(&path);
377 return ERR_PTR(-ENFILE);
378 }
379
380 sock->file = file;
381 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
382 file->f_pos = 0;
383 file->private_data = sock;
384 return file;
385 }
386 EXPORT_SYMBOL(sock_alloc_file);
387
388 static int sock_map_fd(struct socket *sock, int flags)
389 {
390 struct file *newfile;
391 int fd = get_unused_fd_flags(flags);
392 if (unlikely(fd < 0))
393 return fd;
394
395 newfile = sock_alloc_file(sock, flags, NULL);
396 if (likely(!IS_ERR(newfile))) {
397 fd_install(fd, newfile);
398 return fd;
399 }
400
401 put_unused_fd(fd);
402 return PTR_ERR(newfile);
403 }
404
405 struct socket *sock_from_file(struct file *file, int *err)
406 {
407 if (file->f_op == &socket_file_ops)
408 return file->private_data; /* set in sock_map_fd */
409
410 *err = -ENOTSOCK;
411 return NULL;
412 }
413 EXPORT_SYMBOL(sock_from_file);
414
415 /**
416 * sockfd_lookup - Go from a file number to its socket slot
417 * @fd: file handle
418 * @err: pointer to an error code return
419 *
420 * The file handle passed in is locked and the socket it is bound
421 * too is returned. If an error occurs the err pointer is overwritten
422 * with a negative errno code and NULL is returned. The function checks
423 * for both invalid handles and passing a handle which is not a socket.
424 *
425 * On a success the socket object pointer is returned.
426 */
427
428 struct socket *sockfd_lookup(int fd, int *err)
429 {
430 struct file *file;
431 struct socket *sock;
432
433 file = fget(fd);
434 if (!file) {
435 *err = -EBADF;
436 return NULL;
437 }
438
439 sock = sock_from_file(file, err);
440 if (!sock)
441 fput(file);
442 return sock;
443 }
444 EXPORT_SYMBOL(sockfd_lookup);
445
446 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
447 {
448 struct file *file;
449 struct socket *sock;
450
451 *err = -EBADF;
452 file = fget_light(fd, fput_needed);
453 if (file) {
454 sock = sock_from_file(file, err);
455 if (sock)
456 return sock;
457 fput_light(file, *fput_needed);
458 }
459 return NULL;
460 }
461
462 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
463 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
464 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
465 static ssize_t sockfs_getxattr(struct dentry *dentry,
466 const char *name, void *value, size_t size)
467 {
468 const char *proto_name;
469 size_t proto_size;
470 int error;
471
472 error = -ENODATA;
473 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
474 proto_name = dentry->d_name.name;
475 proto_size = strlen(proto_name);
476
477 if (value) {
478 error = -ERANGE;
479 if (proto_size + 1 > size)
480 goto out;
481
482 strncpy(value, proto_name, proto_size + 1);
483 }
484 error = proto_size + 1;
485 }
486
487 out:
488 return error;
489 }
490
491 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
492 size_t size)
493 {
494 ssize_t len;
495 ssize_t used = 0;
496
497 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
498 if (len < 0)
499 return len;
500 used += len;
501 if (buffer) {
502 if (size < used)
503 return -ERANGE;
504 buffer += len;
505 }
506
507 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
508 used += len;
509 if (buffer) {
510 if (size < used)
511 return -ERANGE;
512 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
513 buffer += len;
514 }
515
516 return used;
517 }
518
519 static const struct inode_operations sockfs_inode_ops = {
520 .getxattr = sockfs_getxattr,
521 .listxattr = sockfs_listxattr,
522 };
523
524 /**
525 * sock_alloc - allocate a socket
526 *
527 * Allocate a new inode and socket object. The two are bound together
528 * and initialised. The socket is then returned. If we are out of inodes
529 * NULL is returned.
530 */
531
532 static struct socket *sock_alloc(void)
533 {
534 struct inode *inode;
535 struct socket *sock;
536
537 inode = new_inode_pseudo(sock_mnt->mnt_sb);
538 if (!inode)
539 return NULL;
540
541 sock = SOCKET_I(inode);
542
543 kmemcheck_annotate_bitfield(sock, type);
544 inode->i_ino = get_next_ino();
545 inode->i_mode = S_IFSOCK | S_IRWXUGO;
546 inode->i_uid = current_fsuid();
547 inode->i_gid = current_fsgid();
548 inode->i_op = &sockfs_inode_ops;
549
550 this_cpu_add(sockets_in_use, 1);
551 return sock;
552 }
553
554 /*
555 * In theory you can't get an open on this inode, but /proc provides
556 * a back door. Remember to keep it shut otherwise you'll let the
557 * creepy crawlies in.
558 */
559
560 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
561 {
562 return -ENXIO;
563 }
564
565 const struct file_operations bad_sock_fops = {
566 .owner = THIS_MODULE,
567 .open = sock_no_open,
568 .llseek = noop_llseek,
569 };
570
571 /**
572 * sock_release - close a socket
573 * @sock: socket to close
574 *
575 * The socket is released from the protocol stack if it has a release
576 * callback, and the inode is then released if the socket is bound to
577 * an inode not a file.
578 */
579
580 void sock_release(struct socket *sock)
581 {
582 if (sock->ops) {
583 struct module *owner = sock->ops->owner;
584
585 sock->ops->release(sock);
586 sock->ops = NULL;
587 module_put(owner);
588 }
589
590 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
591 printk(KERN_ERR "sock_release: fasync list not empty!\n");
592
593 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
594 return;
595
596 this_cpu_sub(sockets_in_use, 1);
597 if (!sock->file) {
598 iput(SOCK_INODE(sock));
599 return;
600 }
601 sock->file = NULL;
602 }
603 EXPORT_SYMBOL(sock_release);
604
605 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
606 {
607 *tx_flags = 0;
608 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
609 *tx_flags |= SKBTX_HW_TSTAMP;
610 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
611 *tx_flags |= SKBTX_SW_TSTAMP;
612 if (sock_flag(sk, SOCK_WIFI_STATUS))
613 *tx_flags |= SKBTX_WIFI_STATUS;
614 return 0;
615 }
616 EXPORT_SYMBOL(sock_tx_timestamp);
617
618 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
619 struct msghdr *msg, size_t size)
620 {
621 struct sock_iocb *si = kiocb_to_siocb(iocb);
622
623 sock_update_classid(sock->sk);
624
625 si->sock = sock;
626 si->scm = NULL;
627 si->msg = msg;
628 si->size = size;
629
630 return sock->ops->sendmsg(iocb, sock, msg, size);
631 }
632
633 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
634 struct msghdr *msg, size_t size)
635 {
636 int err = security_socket_sendmsg(sock, msg, size);
637
638 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
639 }
640
641 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
642 {
643 struct kiocb iocb;
644 struct sock_iocb siocb;
645 int ret;
646
647 init_sync_kiocb(&iocb, NULL);
648 iocb.private = &siocb;
649 ret = __sock_sendmsg(&iocb, sock, msg, size);
650 if (-EIOCBQUEUED == ret)
651 ret = wait_on_sync_kiocb(&iocb);
652 return ret;
653 }
654 EXPORT_SYMBOL(sock_sendmsg);
655
656 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
657 {
658 struct kiocb iocb;
659 struct sock_iocb siocb;
660 int ret;
661
662 init_sync_kiocb(&iocb, NULL);
663 iocb.private = &siocb;
664 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
665 if (-EIOCBQUEUED == ret)
666 ret = wait_on_sync_kiocb(&iocb);
667 return ret;
668 }
669
670 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
671 struct kvec *vec, size_t num, size_t size)
672 {
673 mm_segment_t oldfs = get_fs();
674 int result;
675
676 set_fs(KERNEL_DS);
677 /*
678 * the following is safe, since for compiler definitions of kvec and
679 * iovec are identical, yielding the same in-core layout and alignment
680 */
681 msg->msg_iov = (struct iovec *)vec;
682 msg->msg_iovlen = num;
683 result = sock_sendmsg(sock, msg, size);
684 set_fs(oldfs);
685 return result;
686 }
687 EXPORT_SYMBOL(kernel_sendmsg);
688
689 static int ktime2ts(ktime_t kt, struct timespec *ts)
690 {
691 if (kt.tv64) {
692 *ts = ktime_to_timespec(kt);
693 return 1;
694 } else {
695 return 0;
696 }
697 }
698
699 /*
700 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
701 */
702 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
703 struct sk_buff *skb)
704 {
705 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
706 struct timespec ts[3];
707 int empty = 1;
708 struct skb_shared_hwtstamps *shhwtstamps =
709 skb_hwtstamps(skb);
710
711 /* Race occurred between timestamp enabling and packet
712 receiving. Fill in the current time for now. */
713 if (need_software_tstamp && skb->tstamp.tv64 == 0)
714 __net_timestamp(skb);
715
716 if (need_software_tstamp) {
717 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
718 struct timeval tv;
719 skb_get_timestamp(skb, &tv);
720 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
721 sizeof(tv), &tv);
722 } else {
723 skb_get_timestampns(skb, &ts[0]);
724 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
725 sizeof(ts[0]), &ts[0]);
726 }
727 }
728
729
730 memset(ts, 0, sizeof(ts));
731 if (skb->tstamp.tv64 &&
732 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
733 skb_get_timestampns(skb, ts + 0);
734 empty = 0;
735 }
736 if (shhwtstamps) {
737 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
738 ktime2ts(shhwtstamps->syststamp, ts + 1))
739 empty = 0;
740 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
741 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
742 empty = 0;
743 }
744 if (!empty)
745 put_cmsg(msg, SOL_SOCKET,
746 SCM_TIMESTAMPING, sizeof(ts), &ts);
747 }
748 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
749
750 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
751 struct sk_buff *skb)
752 {
753 int ack;
754
755 if (!sock_flag(sk, SOCK_WIFI_STATUS))
756 return;
757 if (!skb->wifi_acked_valid)
758 return;
759
760 ack = skb->wifi_acked;
761
762 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
763 }
764 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
765
766 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
767 struct sk_buff *skb)
768 {
769 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
770 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
771 sizeof(__u32), &skb->dropcount);
772 }
773
774 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
775 struct sk_buff *skb)
776 {
777 sock_recv_timestamp(msg, sk, skb);
778 sock_recv_drops(msg, sk, skb);
779 }
780 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
781
782 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
783 struct msghdr *msg, size_t size, int flags)
784 {
785 struct sock_iocb *si = kiocb_to_siocb(iocb);
786
787 sock_update_classid(sock->sk);
788
789 si->sock = sock;
790 si->scm = NULL;
791 si->msg = msg;
792 si->size = size;
793 si->flags = flags;
794
795 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
796 }
797
798 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
799 struct msghdr *msg, size_t size, int flags)
800 {
801 int err = security_socket_recvmsg(sock, msg, size, flags);
802
803 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
804 }
805
806 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
807 size_t size, int flags)
808 {
809 struct kiocb iocb;
810 struct sock_iocb siocb;
811 int ret;
812
813 init_sync_kiocb(&iocb, NULL);
814 iocb.private = &siocb;
815 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
816 if (-EIOCBQUEUED == ret)
817 ret = wait_on_sync_kiocb(&iocb);
818 return ret;
819 }
820 EXPORT_SYMBOL(sock_recvmsg);
821
822 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
823 size_t size, int flags)
824 {
825 struct kiocb iocb;
826 struct sock_iocb siocb;
827 int ret;
828
829 init_sync_kiocb(&iocb, NULL);
830 iocb.private = &siocb;
831 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
832 if (-EIOCBQUEUED == ret)
833 ret = wait_on_sync_kiocb(&iocb);
834 return ret;
835 }
836
837 /**
838 * kernel_recvmsg - Receive a message from a socket (kernel space)
839 * @sock: The socket to receive the message from
840 * @msg: Received message
841 * @vec: Input s/g array for message data
842 * @num: Size of input s/g array
843 * @size: Number of bytes to read
844 * @flags: Message flags (MSG_DONTWAIT, etc...)
845 *
846 * On return the msg structure contains the scatter/gather array passed in the
847 * vec argument. The array is modified so that it consists of the unfilled
848 * portion of the original array.
849 *
850 * The returned value is the total number of bytes received, or an error.
851 */
852 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
853 struct kvec *vec, size_t num, size_t size, int flags)
854 {
855 mm_segment_t oldfs = get_fs();
856 int result;
857
858 set_fs(KERNEL_DS);
859 /*
860 * the following is safe, since for compiler definitions of kvec and
861 * iovec are identical, yielding the same in-core layout and alignment
862 */
863 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
864 result = sock_recvmsg(sock, msg, size, flags);
865 set_fs(oldfs);
866 return result;
867 }
868 EXPORT_SYMBOL(kernel_recvmsg);
869
870 static void sock_aio_dtor(struct kiocb *iocb)
871 {
872 kfree(iocb->private);
873 }
874
875 static ssize_t sock_sendpage(struct file *file, struct page *page,
876 int offset, size_t size, loff_t *ppos, int more)
877 {
878 struct socket *sock;
879 int flags;
880
881 sock = file->private_data;
882
883 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
884 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
885 flags |= more;
886
887 return kernel_sendpage(sock, page, offset, size, flags);
888 }
889
890 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
891 struct pipe_inode_info *pipe, size_t len,
892 unsigned int flags)
893 {
894 struct socket *sock = file->private_data;
895
896 if (unlikely(!sock->ops->splice_read))
897 return -EINVAL;
898
899 sock_update_classid(sock->sk);
900
901 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
902 }
903
904 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
905 struct sock_iocb *siocb)
906 {
907 if (!is_sync_kiocb(iocb)) {
908 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
909 if (!siocb)
910 return NULL;
911 iocb->ki_dtor = sock_aio_dtor;
912 }
913
914 siocb->kiocb = iocb;
915 iocb->private = siocb;
916 return siocb;
917 }
918
919 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
920 struct file *file, const struct iovec *iov,
921 unsigned long nr_segs)
922 {
923 struct socket *sock = file->private_data;
924 size_t size = 0;
925 int i;
926
927 for (i = 0; i < nr_segs; i++)
928 size += iov[i].iov_len;
929
930 msg->msg_name = NULL;
931 msg->msg_namelen = 0;
932 msg->msg_control = NULL;
933 msg->msg_controllen = 0;
934 msg->msg_iov = (struct iovec *)iov;
935 msg->msg_iovlen = nr_segs;
936 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
937
938 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
939 }
940
941 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
942 unsigned long nr_segs, loff_t pos)
943 {
944 struct sock_iocb siocb, *x;
945
946 if (pos != 0)
947 return -ESPIPE;
948
949 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
950 return 0;
951
952
953 x = alloc_sock_iocb(iocb, &siocb);
954 if (!x)
955 return -ENOMEM;
956 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
957 }
958
959 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
960 struct file *file, const struct iovec *iov,
961 unsigned long nr_segs)
962 {
963 struct socket *sock = file->private_data;
964 size_t size = 0;
965 int i;
966
967 for (i = 0; i < nr_segs; i++)
968 size += iov[i].iov_len;
969
970 msg->msg_name = NULL;
971 msg->msg_namelen = 0;
972 msg->msg_control = NULL;
973 msg->msg_controllen = 0;
974 msg->msg_iov = (struct iovec *)iov;
975 msg->msg_iovlen = nr_segs;
976 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
977 if (sock->type == SOCK_SEQPACKET)
978 msg->msg_flags |= MSG_EOR;
979
980 return __sock_sendmsg(iocb, sock, msg, size);
981 }
982
983 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
984 unsigned long nr_segs, loff_t pos)
985 {
986 struct sock_iocb siocb, *x;
987
988 if (pos != 0)
989 return -ESPIPE;
990
991 x = alloc_sock_iocb(iocb, &siocb);
992 if (!x)
993 return -ENOMEM;
994
995 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
996 }
997
998 /*
999 * Atomic setting of ioctl hooks to avoid race
1000 * with module unload.
1001 */
1002
1003 static DEFINE_MUTEX(br_ioctl_mutex);
1004 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1005
1006 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1007 {
1008 mutex_lock(&br_ioctl_mutex);
1009 br_ioctl_hook = hook;
1010 mutex_unlock(&br_ioctl_mutex);
1011 }
1012 EXPORT_SYMBOL(brioctl_set);
1013
1014 static DEFINE_MUTEX(vlan_ioctl_mutex);
1015 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1016
1017 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1018 {
1019 mutex_lock(&vlan_ioctl_mutex);
1020 vlan_ioctl_hook = hook;
1021 mutex_unlock(&vlan_ioctl_mutex);
1022 }
1023 EXPORT_SYMBOL(vlan_ioctl_set);
1024
1025 static DEFINE_MUTEX(dlci_ioctl_mutex);
1026 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1027
1028 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1029 {
1030 mutex_lock(&dlci_ioctl_mutex);
1031 dlci_ioctl_hook = hook;
1032 mutex_unlock(&dlci_ioctl_mutex);
1033 }
1034 EXPORT_SYMBOL(dlci_ioctl_set);
1035
1036 static long sock_do_ioctl(struct net *net, struct socket *sock,
1037 unsigned int cmd, unsigned long arg)
1038 {
1039 int err;
1040 void __user *argp = (void __user *)arg;
1041
1042 err = sock->ops->ioctl(sock, cmd, arg);
1043
1044 /*
1045 * If this ioctl is unknown try to hand it down
1046 * to the NIC driver.
1047 */
1048 if (err == -ENOIOCTLCMD)
1049 err = dev_ioctl(net, cmd, argp);
1050
1051 return err;
1052 }
1053
1054 /*
1055 * With an ioctl, arg may well be a user mode pointer, but we don't know
1056 * what to do with it - that's up to the protocol still.
1057 */
1058
1059 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1060 {
1061 struct socket *sock;
1062 struct sock *sk;
1063 void __user *argp = (void __user *)arg;
1064 int pid, err;
1065 struct net *net;
1066
1067 sock = file->private_data;
1068 sk = sock->sk;
1069 net = sock_net(sk);
1070 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1071 err = dev_ioctl(net, cmd, argp);
1072 } else
1073 #ifdef CONFIG_WEXT_CORE
1074 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1075 err = dev_ioctl(net, cmd, argp);
1076 } else
1077 #endif
1078 switch (cmd) {
1079 case FIOSETOWN:
1080 case SIOCSPGRP:
1081 err = -EFAULT;
1082 if (get_user(pid, (int __user *)argp))
1083 break;
1084 err = f_setown(sock->file, pid, 1);
1085 break;
1086 case FIOGETOWN:
1087 case SIOCGPGRP:
1088 err = put_user(f_getown(sock->file),
1089 (int __user *)argp);
1090 break;
1091 case SIOCGIFBR:
1092 case SIOCSIFBR:
1093 case SIOCBRADDBR:
1094 case SIOCBRDELBR:
1095 err = -ENOPKG;
1096 if (!br_ioctl_hook)
1097 request_module("bridge");
1098
1099 mutex_lock(&br_ioctl_mutex);
1100 if (br_ioctl_hook)
1101 err = br_ioctl_hook(net, cmd, argp);
1102 mutex_unlock(&br_ioctl_mutex);
1103 break;
1104 case SIOCGIFVLAN:
1105 case SIOCSIFVLAN:
1106 err = -ENOPKG;
1107 if (!vlan_ioctl_hook)
1108 request_module("8021q");
1109
1110 mutex_lock(&vlan_ioctl_mutex);
1111 if (vlan_ioctl_hook)
1112 err = vlan_ioctl_hook(net, argp);
1113 mutex_unlock(&vlan_ioctl_mutex);
1114 break;
1115 case SIOCADDDLCI:
1116 case SIOCDELDLCI:
1117 err = -ENOPKG;
1118 if (!dlci_ioctl_hook)
1119 request_module("dlci");
1120
1121 mutex_lock(&dlci_ioctl_mutex);
1122 if (dlci_ioctl_hook)
1123 err = dlci_ioctl_hook(cmd, argp);
1124 mutex_unlock(&dlci_ioctl_mutex);
1125 break;
1126 default:
1127 err = sock_do_ioctl(net, sock, cmd, arg);
1128 break;
1129 }
1130 return err;
1131 }
1132
1133 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1134 {
1135 int err;
1136 struct socket *sock = NULL;
1137
1138 err = security_socket_create(family, type, protocol, 1);
1139 if (err)
1140 goto out;
1141
1142 sock = sock_alloc();
1143 if (!sock) {
1144 err = -ENOMEM;
1145 goto out;
1146 }
1147
1148 sock->type = type;
1149 err = security_socket_post_create(sock, family, type, protocol, 1);
1150 if (err)
1151 goto out_release;
1152
1153 out:
1154 *res = sock;
1155 return err;
1156 out_release:
1157 sock_release(sock);
1158 sock = NULL;
1159 goto out;
1160 }
1161 EXPORT_SYMBOL(sock_create_lite);
1162
1163 /* No kernel lock held - perfect */
1164 static unsigned int sock_poll(struct file *file, poll_table *wait)
1165 {
1166 struct socket *sock;
1167
1168 /*
1169 * We can't return errors to poll, so it's either yes or no.
1170 */
1171 sock = file->private_data;
1172 return sock->ops->poll(file, sock, wait);
1173 }
1174
1175 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1176 {
1177 struct socket *sock = file->private_data;
1178
1179 return sock->ops->mmap(file, sock, vma);
1180 }
1181
1182 static int sock_close(struct inode *inode, struct file *filp)
1183 {
1184 /*
1185 * It was possible the inode is NULL we were
1186 * closing an unfinished socket.
1187 */
1188
1189 if (!inode) {
1190 printk(KERN_DEBUG "sock_close: NULL inode\n");
1191 return 0;
1192 }
1193 sock_release(SOCKET_I(inode));
1194 return 0;
1195 }
1196
1197 /*
1198 * Update the socket async list
1199 *
1200 * Fasync_list locking strategy.
1201 *
1202 * 1. fasync_list is modified only under process context socket lock
1203 * i.e. under semaphore.
1204 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1205 * or under socket lock
1206 */
1207
1208 static int sock_fasync(int fd, struct file *filp, int on)
1209 {
1210 struct socket *sock = filp->private_data;
1211 struct sock *sk = sock->sk;
1212 struct socket_wq *wq;
1213
1214 if (sk == NULL)
1215 return -EINVAL;
1216
1217 lock_sock(sk);
1218 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1219 fasync_helper(fd, filp, on, &wq->fasync_list);
1220
1221 if (!wq->fasync_list)
1222 sock_reset_flag(sk, SOCK_FASYNC);
1223 else
1224 sock_set_flag(sk, SOCK_FASYNC);
1225
1226 release_sock(sk);
1227 return 0;
1228 }
1229
1230 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1231
1232 int sock_wake_async(struct socket *sock, int how, int band)
1233 {
1234 struct socket_wq *wq;
1235
1236 if (!sock)
1237 return -1;
1238 rcu_read_lock();
1239 wq = rcu_dereference(sock->wq);
1240 if (!wq || !wq->fasync_list) {
1241 rcu_read_unlock();
1242 return -1;
1243 }
1244 switch (how) {
1245 case SOCK_WAKE_WAITD:
1246 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1247 break;
1248 goto call_kill;
1249 case SOCK_WAKE_SPACE:
1250 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1251 break;
1252 /* fall through */
1253 case SOCK_WAKE_IO:
1254 call_kill:
1255 kill_fasync(&wq->fasync_list, SIGIO, band);
1256 break;
1257 case SOCK_WAKE_URG:
1258 kill_fasync(&wq->fasync_list, SIGURG, band);
1259 }
1260 rcu_read_unlock();
1261 return 0;
1262 }
1263 EXPORT_SYMBOL(sock_wake_async);
1264
1265 int __sock_create(struct net *net, int family, int type, int protocol,
1266 struct socket **res, int kern)
1267 {
1268 int err;
1269 struct socket *sock;
1270 const struct net_proto_family *pf;
1271
1272 /*
1273 * Check protocol is in range
1274 */
1275 if (family < 0 || family >= NPROTO)
1276 return -EAFNOSUPPORT;
1277 if (type < 0 || type >= SOCK_MAX)
1278 return -EINVAL;
1279
1280 /* Compatibility.
1281
1282 This uglymoron is moved from INET layer to here to avoid
1283 deadlock in module load.
1284 */
1285 if (family == PF_INET && type == SOCK_PACKET) {
1286 static int warned;
1287 if (!warned) {
1288 warned = 1;
1289 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1290 current->comm);
1291 }
1292 family = PF_PACKET;
1293 }
1294
1295 err = security_socket_create(family, type, protocol, kern);
1296 if (err)
1297 return err;
1298
1299 /*
1300 * Allocate the socket and allow the family to set things up. if
1301 * the protocol is 0, the family is instructed to select an appropriate
1302 * default.
1303 */
1304 sock = sock_alloc();
1305 if (!sock) {
1306 net_warn_ratelimited("socket: no more sockets\n");
1307 return -ENFILE; /* Not exactly a match, but its the
1308 closest posix thing */
1309 }
1310
1311 sock->type = type;
1312
1313 #ifdef CONFIG_MODULES
1314 /* Attempt to load a protocol module if the find failed.
1315 *
1316 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1317 * requested real, full-featured networking support upon configuration.
1318 * Otherwise module support will break!
1319 */
1320 if (rcu_access_pointer(net_families[family]) == NULL)
1321 request_module("net-pf-%d", family);
1322 #endif
1323
1324 rcu_read_lock();
1325 pf = rcu_dereference(net_families[family]);
1326 err = -EAFNOSUPPORT;
1327 if (!pf)
1328 goto out_release;
1329
1330 /*
1331 * We will call the ->create function, that possibly is in a loadable
1332 * module, so we have to bump that loadable module refcnt first.
1333 */
1334 if (!try_module_get(pf->owner))
1335 goto out_release;
1336
1337 /* Now protected by module ref count */
1338 rcu_read_unlock();
1339
1340 err = pf->create(net, sock, protocol, kern);
1341 if (err < 0)
1342 goto out_module_put;
1343
1344 /*
1345 * Now to bump the refcnt of the [loadable] module that owns this
1346 * socket at sock_release time we decrement its refcnt.
1347 */
1348 if (!try_module_get(sock->ops->owner))
1349 goto out_module_busy;
1350
1351 /*
1352 * Now that we're done with the ->create function, the [loadable]
1353 * module can have its refcnt decremented
1354 */
1355 module_put(pf->owner);
1356 err = security_socket_post_create(sock, family, type, protocol, kern);
1357 if (err)
1358 goto out_sock_release;
1359 *res = sock;
1360
1361 return 0;
1362
1363 out_module_busy:
1364 err = -EAFNOSUPPORT;
1365 out_module_put:
1366 sock->ops = NULL;
1367 module_put(pf->owner);
1368 out_sock_release:
1369 sock_release(sock);
1370 return err;
1371
1372 out_release:
1373 rcu_read_unlock();
1374 goto out_sock_release;
1375 }
1376 EXPORT_SYMBOL(__sock_create);
1377
1378 int sock_create(int family, int type, int protocol, struct socket **res)
1379 {
1380 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1381 }
1382 EXPORT_SYMBOL(sock_create);
1383
1384 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1385 {
1386 return __sock_create(&init_net, family, type, protocol, res, 1);
1387 }
1388 EXPORT_SYMBOL(sock_create_kern);
1389
1390 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1391 {
1392 int retval;
1393 struct socket *sock;
1394 int flags;
1395
1396 /* Check the SOCK_* constants for consistency. */
1397 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1398 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1399 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1400 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1401
1402 flags = type & ~SOCK_TYPE_MASK;
1403 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1404 return -EINVAL;
1405 type &= SOCK_TYPE_MASK;
1406
1407 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1408 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1409
1410 retval = sock_create(family, type, protocol, &sock);
1411 if (retval < 0)
1412 goto out;
1413
1414 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1415 if (retval < 0)
1416 goto out_release;
1417
1418 out:
1419 /* It may be already another descriptor 8) Not kernel problem. */
1420 return retval;
1421
1422 out_release:
1423 sock_release(sock);
1424 return retval;
1425 }
1426
1427 /*
1428 * Create a pair of connected sockets.
1429 */
1430
1431 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1432 int __user *, usockvec)
1433 {
1434 struct socket *sock1, *sock2;
1435 int fd1, fd2, err;
1436 struct file *newfile1, *newfile2;
1437 int flags;
1438
1439 flags = type & ~SOCK_TYPE_MASK;
1440 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1441 return -EINVAL;
1442 type &= SOCK_TYPE_MASK;
1443
1444 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1445 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1446
1447 /*
1448 * Obtain the first socket and check if the underlying protocol
1449 * supports the socketpair call.
1450 */
1451
1452 err = sock_create(family, type, protocol, &sock1);
1453 if (err < 0)
1454 goto out;
1455
1456 err = sock_create(family, type, protocol, &sock2);
1457 if (err < 0)
1458 goto out_release_1;
1459
1460 err = sock1->ops->socketpair(sock1, sock2);
1461 if (err < 0)
1462 goto out_release_both;
1463
1464 fd1 = get_unused_fd_flags(flags);
1465 if (unlikely(fd1 < 0)) {
1466 err = fd1;
1467 goto out_release_both;
1468 }
1469 fd2 = get_unused_fd_flags(flags);
1470 if (unlikely(fd2 < 0)) {
1471 err = fd2;
1472 put_unused_fd(fd1);
1473 goto out_release_both;
1474 }
1475
1476 newfile1 = sock_alloc_file(sock1, flags, NULL);
1477 if (unlikely(IS_ERR(newfile1))) {
1478 err = PTR_ERR(newfile1);
1479 put_unused_fd(fd1);
1480 put_unused_fd(fd2);
1481 goto out_release_both;
1482 }
1483
1484 newfile2 = sock_alloc_file(sock2, flags, NULL);
1485 if (IS_ERR(newfile2)) {
1486 err = PTR_ERR(newfile2);
1487 fput(newfile1);
1488 put_unused_fd(fd1);
1489 put_unused_fd(fd2);
1490 sock_release(sock2);
1491 goto out;
1492 }
1493
1494 audit_fd_pair(fd1, fd2);
1495 fd_install(fd1, newfile1);
1496 fd_install(fd2, newfile2);
1497 /* fd1 and fd2 may be already another descriptors.
1498 * Not kernel problem.
1499 */
1500
1501 err = put_user(fd1, &usockvec[0]);
1502 if (!err)
1503 err = put_user(fd2, &usockvec[1]);
1504 if (!err)
1505 return 0;
1506
1507 sys_close(fd2);
1508 sys_close(fd1);
1509 return err;
1510
1511 out_release_both:
1512 sock_release(sock2);
1513 out_release_1:
1514 sock_release(sock1);
1515 out:
1516 return err;
1517 }
1518
1519 /*
1520 * Bind a name to a socket. Nothing much to do here since it's
1521 * the protocol's responsibility to handle the local address.
1522 *
1523 * We move the socket address to kernel space before we call
1524 * the protocol layer (having also checked the address is ok).
1525 */
1526
1527 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1528 {
1529 struct socket *sock;
1530 struct sockaddr_storage address;
1531 int err, fput_needed;
1532
1533 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1534 if (sock) {
1535 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1536 if (err >= 0) {
1537 err = security_socket_bind(sock,
1538 (struct sockaddr *)&address,
1539 addrlen);
1540 if (!err)
1541 err = sock->ops->bind(sock,
1542 (struct sockaddr *)
1543 &address, addrlen);
1544 }
1545 fput_light(sock->file, fput_needed);
1546 }
1547 return err;
1548 }
1549
1550 /*
1551 * Perform a listen. Basically, we allow the protocol to do anything
1552 * necessary for a listen, and if that works, we mark the socket as
1553 * ready for listening.
1554 */
1555
1556 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1557 {
1558 struct socket *sock;
1559 int err, fput_needed;
1560 int somaxconn;
1561
1562 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1563 if (sock) {
1564 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1565 if ((unsigned int)backlog > somaxconn)
1566 backlog = somaxconn;
1567
1568 err = security_socket_listen(sock, backlog);
1569 if (!err)
1570 err = sock->ops->listen(sock, backlog);
1571
1572 fput_light(sock->file, fput_needed);
1573 }
1574 return err;
1575 }
1576
1577 /*
1578 * For accept, we attempt to create a new socket, set up the link
1579 * with the client, wake up the client, then return the new
1580 * connected fd. We collect the address of the connector in kernel
1581 * space and move it to user at the very end. This is unclean because
1582 * we open the socket then return an error.
1583 *
1584 * 1003.1g adds the ability to recvmsg() to query connection pending
1585 * status to recvmsg. We need to add that support in a way thats
1586 * clean when we restucture accept also.
1587 */
1588
1589 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1590 int __user *, upeer_addrlen, int, flags)
1591 {
1592 struct socket *sock, *newsock;
1593 struct file *newfile;
1594 int err, len, newfd, fput_needed;
1595 struct sockaddr_storage address;
1596
1597 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1598 return -EINVAL;
1599
1600 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1601 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1602
1603 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1604 if (!sock)
1605 goto out;
1606
1607 err = -ENFILE;
1608 newsock = sock_alloc();
1609 if (!newsock)
1610 goto out_put;
1611
1612 newsock->type = sock->type;
1613 newsock->ops = sock->ops;
1614
1615 /*
1616 * We don't need try_module_get here, as the listening socket (sock)
1617 * has the protocol module (sock->ops->owner) held.
1618 */
1619 __module_get(newsock->ops->owner);
1620
1621 newfd = get_unused_fd_flags(flags);
1622 if (unlikely(newfd < 0)) {
1623 err = newfd;
1624 sock_release(newsock);
1625 goto out_put;
1626 }
1627 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1628 if (unlikely(IS_ERR(newfile))) {
1629 err = PTR_ERR(newfile);
1630 put_unused_fd(newfd);
1631 sock_release(newsock);
1632 goto out_put;
1633 }
1634
1635 err = security_socket_accept(sock, newsock);
1636 if (err)
1637 goto out_fd;
1638
1639 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1640 if (err < 0)
1641 goto out_fd;
1642
1643 if (upeer_sockaddr) {
1644 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1645 &len, 2) < 0) {
1646 err = -ECONNABORTED;
1647 goto out_fd;
1648 }
1649 err = move_addr_to_user(&address,
1650 len, upeer_sockaddr, upeer_addrlen);
1651 if (err < 0)
1652 goto out_fd;
1653 }
1654
1655 /* File flags are not inherited via accept() unlike another OSes. */
1656
1657 fd_install(newfd, newfile);
1658 err = newfd;
1659
1660 out_put:
1661 fput_light(sock->file, fput_needed);
1662 out:
1663 return err;
1664 out_fd:
1665 fput(newfile);
1666 put_unused_fd(newfd);
1667 goto out_put;
1668 }
1669
1670 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1671 int __user *, upeer_addrlen)
1672 {
1673 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1674 }
1675
1676 /*
1677 * Attempt to connect to a socket with the server address. The address
1678 * is in user space so we verify it is OK and move it to kernel space.
1679 *
1680 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1681 * break bindings
1682 *
1683 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1684 * other SEQPACKET protocols that take time to connect() as it doesn't
1685 * include the -EINPROGRESS status for such sockets.
1686 */
1687
1688 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1689 int, addrlen)
1690 {
1691 struct socket *sock;
1692 struct sockaddr_storage address;
1693 int err, fput_needed;
1694
1695 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1696 if (!sock)
1697 goto out;
1698 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1699 if (err < 0)
1700 goto out_put;
1701
1702 err =
1703 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1704 if (err)
1705 goto out_put;
1706
1707 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1708 sock->file->f_flags);
1709 out_put:
1710 fput_light(sock->file, fput_needed);
1711 out:
1712 return err;
1713 }
1714
1715 /*
1716 * Get the local address ('name') of a socket object. Move the obtained
1717 * name to user space.
1718 */
1719
1720 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1721 int __user *, usockaddr_len)
1722 {
1723 struct socket *sock;
1724 struct sockaddr_storage address;
1725 int len, err, fput_needed;
1726
1727 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1728 if (!sock)
1729 goto out;
1730
1731 err = security_socket_getsockname(sock);
1732 if (err)
1733 goto out_put;
1734
1735 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1736 if (err)
1737 goto out_put;
1738 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1739
1740 out_put:
1741 fput_light(sock->file, fput_needed);
1742 out:
1743 return err;
1744 }
1745
1746 /*
1747 * Get the remote address ('name') of a socket object. Move the obtained
1748 * name to user space.
1749 */
1750
1751 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1752 int __user *, usockaddr_len)
1753 {
1754 struct socket *sock;
1755 struct sockaddr_storage address;
1756 int len, err, fput_needed;
1757
1758 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1759 if (sock != NULL) {
1760 err = security_socket_getpeername(sock);
1761 if (err) {
1762 fput_light(sock->file, fput_needed);
1763 return err;
1764 }
1765
1766 err =
1767 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1768 1);
1769 if (!err)
1770 err = move_addr_to_user(&address, len, usockaddr,
1771 usockaddr_len);
1772 fput_light(sock->file, fput_needed);
1773 }
1774 return err;
1775 }
1776
1777 /*
1778 * Send a datagram to a given address. We move the address into kernel
1779 * space and check the user space data area is readable before invoking
1780 * the protocol.
1781 */
1782
1783 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1784 unsigned int, flags, struct sockaddr __user *, addr,
1785 int, addr_len)
1786 {
1787 struct socket *sock;
1788 struct sockaddr_storage address;
1789 int err;
1790 struct msghdr msg;
1791 struct iovec iov;
1792 int fput_needed;
1793
1794 if (len > INT_MAX)
1795 len = INT_MAX;
1796 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1797 if (!sock)
1798 goto out;
1799
1800 iov.iov_base = buff;
1801 iov.iov_len = len;
1802 msg.msg_name = NULL;
1803 msg.msg_iov = &iov;
1804 msg.msg_iovlen = 1;
1805 msg.msg_control = NULL;
1806 msg.msg_controllen = 0;
1807 msg.msg_namelen = 0;
1808 if (addr) {
1809 err = move_addr_to_kernel(addr, addr_len, &address);
1810 if (err < 0)
1811 goto out_put;
1812 msg.msg_name = (struct sockaddr *)&address;
1813 msg.msg_namelen = addr_len;
1814 }
1815 if (sock->file->f_flags & O_NONBLOCK)
1816 flags |= MSG_DONTWAIT;
1817 msg.msg_flags = flags;
1818 err = sock_sendmsg(sock, &msg, len);
1819
1820 out_put:
1821 fput_light(sock->file, fput_needed);
1822 out:
1823 return err;
1824 }
1825
1826 /*
1827 * Send a datagram down a socket.
1828 */
1829
1830 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1831 unsigned int, flags)
1832 {
1833 return sys_sendto(fd, buff, len, flags, NULL, 0);
1834 }
1835
1836 /*
1837 * Receive a frame from the socket and optionally record the address of the
1838 * sender. We verify the buffers are writable and if needed move the
1839 * sender address from kernel to user space.
1840 */
1841
1842 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1843 unsigned int, flags, struct sockaddr __user *, addr,
1844 int __user *, addr_len)
1845 {
1846 struct socket *sock;
1847 struct iovec iov;
1848 struct msghdr msg;
1849 struct sockaddr_storage address;
1850 int err, err2;
1851 int fput_needed;
1852
1853 if (size > INT_MAX)
1854 size = INT_MAX;
1855 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1856 if (!sock)
1857 goto out;
1858
1859 msg.msg_control = NULL;
1860 msg.msg_controllen = 0;
1861 msg.msg_iovlen = 1;
1862 msg.msg_iov = &iov;
1863 iov.iov_len = size;
1864 iov.iov_base = ubuf;
1865 msg.msg_name = (struct sockaddr *)&address;
1866 msg.msg_namelen = sizeof(address);
1867 if (sock->file->f_flags & O_NONBLOCK)
1868 flags |= MSG_DONTWAIT;
1869 err = sock_recvmsg(sock, &msg, size, flags);
1870
1871 if (err >= 0 && addr != NULL) {
1872 err2 = move_addr_to_user(&address,
1873 msg.msg_namelen, addr, addr_len);
1874 if (err2 < 0)
1875 err = err2;
1876 }
1877
1878 fput_light(sock->file, fput_needed);
1879 out:
1880 return err;
1881 }
1882
1883 /*
1884 * Receive a datagram from a socket.
1885 */
1886
1887 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1888 unsigned int flags)
1889 {
1890 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1891 }
1892
1893 /*
1894 * Set a socket option. Because we don't know the option lengths we have
1895 * to pass the user mode parameter for the protocols to sort out.
1896 */
1897
1898 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1899 char __user *, optval, int, optlen)
1900 {
1901 int err, fput_needed;
1902 struct socket *sock;
1903
1904 if (optlen < 0)
1905 return -EINVAL;
1906
1907 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1908 if (sock != NULL) {
1909 err = security_socket_setsockopt(sock, level, optname);
1910 if (err)
1911 goto out_put;
1912
1913 if (level == SOL_SOCKET)
1914 err =
1915 sock_setsockopt(sock, level, optname, optval,
1916 optlen);
1917 else
1918 err =
1919 sock->ops->setsockopt(sock, level, optname, optval,
1920 optlen);
1921 out_put:
1922 fput_light(sock->file, fput_needed);
1923 }
1924 return err;
1925 }
1926
1927 /*
1928 * Get a socket option. Because we don't know the option lengths we have
1929 * to pass a user mode parameter for the protocols to sort out.
1930 */
1931
1932 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1933 char __user *, optval, int __user *, optlen)
1934 {
1935 int err, fput_needed;
1936 struct socket *sock;
1937
1938 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1939 if (sock != NULL) {
1940 err = security_socket_getsockopt(sock, level, optname);
1941 if (err)
1942 goto out_put;
1943
1944 if (level == SOL_SOCKET)
1945 err =
1946 sock_getsockopt(sock, level, optname, optval,
1947 optlen);
1948 else
1949 err =
1950 sock->ops->getsockopt(sock, level, optname, optval,
1951 optlen);
1952 out_put:
1953 fput_light(sock->file, fput_needed);
1954 }
1955 return err;
1956 }
1957
1958 /*
1959 * Shutdown a socket.
1960 */
1961
1962 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1963 {
1964 int err, fput_needed;
1965 struct socket *sock;
1966
1967 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1968 if (sock != NULL) {
1969 err = security_socket_shutdown(sock, how);
1970 if (!err)
1971 err = sock->ops->shutdown(sock, how);
1972 fput_light(sock->file, fput_needed);
1973 }
1974 return err;
1975 }
1976
1977 /* A couple of helpful macros for getting the address of the 32/64 bit
1978 * fields which are the same type (int / unsigned) on our platforms.
1979 */
1980 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1981 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1982 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1983
1984 struct used_address {
1985 struct sockaddr_storage name;
1986 unsigned int name_len;
1987 };
1988
1989 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1990 struct msghdr *msg_sys, unsigned int flags,
1991 struct used_address *used_address)
1992 {
1993 struct compat_msghdr __user *msg_compat =
1994 (struct compat_msghdr __user *)msg;
1995 struct sockaddr_storage address;
1996 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1997 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1998 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1999 /* 20 is size of ipv6_pktinfo */
2000 unsigned char *ctl_buf = ctl;
2001 int err, ctl_len, total_len;
2002
2003 err = -EFAULT;
2004 if (MSG_CMSG_COMPAT & flags) {
2005 if (get_compat_msghdr(msg_sys, msg_compat))
2006 return -EFAULT;
2007 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2008 return -EFAULT;
2009
2010 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2011 err = -EMSGSIZE;
2012 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2013 goto out;
2014 err = -ENOMEM;
2015 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2016 GFP_KERNEL);
2017 if (!iov)
2018 goto out;
2019 }
2020
2021 /* This will also move the address data into kernel space */
2022 if (MSG_CMSG_COMPAT & flags) {
2023 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2024 } else
2025 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2026 if (err < 0)
2027 goto out_freeiov;
2028 total_len = err;
2029
2030 err = -ENOBUFS;
2031
2032 if (msg_sys->msg_controllen > INT_MAX)
2033 goto out_freeiov;
2034 ctl_len = msg_sys->msg_controllen;
2035 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2036 err =
2037 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2038 sizeof(ctl));
2039 if (err)
2040 goto out_freeiov;
2041 ctl_buf = msg_sys->msg_control;
2042 ctl_len = msg_sys->msg_controllen;
2043 } else if (ctl_len) {
2044 if (ctl_len > sizeof(ctl)) {
2045 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2046 if (ctl_buf == NULL)
2047 goto out_freeiov;
2048 }
2049 err = -EFAULT;
2050 /*
2051 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2052 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2053 * checking falls down on this.
2054 */
2055 if (copy_from_user(ctl_buf,
2056 (void __user __force *)msg_sys->msg_control,
2057 ctl_len))
2058 goto out_freectl;
2059 msg_sys->msg_control = ctl_buf;
2060 }
2061 msg_sys->msg_flags = flags;
2062
2063 if (sock->file->f_flags & O_NONBLOCK)
2064 msg_sys->msg_flags |= MSG_DONTWAIT;
2065 /*
2066 * If this is sendmmsg() and current destination address is same as
2067 * previously succeeded address, omit asking LSM's decision.
2068 * used_address->name_len is initialized to UINT_MAX so that the first
2069 * destination address never matches.
2070 */
2071 if (used_address && msg_sys->msg_name &&
2072 used_address->name_len == msg_sys->msg_namelen &&
2073 !memcmp(&used_address->name, msg_sys->msg_name,
2074 used_address->name_len)) {
2075 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2076 goto out_freectl;
2077 }
2078 err = sock_sendmsg(sock, msg_sys, total_len);
2079 /*
2080 * If this is sendmmsg() and sending to current destination address was
2081 * successful, remember it.
2082 */
2083 if (used_address && err >= 0) {
2084 used_address->name_len = msg_sys->msg_namelen;
2085 if (msg_sys->msg_name)
2086 memcpy(&used_address->name, msg_sys->msg_name,
2087 used_address->name_len);
2088 }
2089
2090 out_freectl:
2091 if (ctl_buf != ctl)
2092 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2093 out_freeiov:
2094 if (iov != iovstack)
2095 kfree(iov);
2096 out:
2097 return err;
2098 }
2099
2100 /*
2101 * BSD sendmsg interface
2102 */
2103
2104 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2105 {
2106 int fput_needed, err;
2107 struct msghdr msg_sys;
2108 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2109
2110 if (!sock)
2111 goto out;
2112
2113 err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2114
2115 fput_light(sock->file, fput_needed);
2116 out:
2117 return err;
2118 }
2119
2120 /*
2121 * Linux sendmmsg interface
2122 */
2123
2124 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2125 unsigned int flags)
2126 {
2127 int fput_needed, err, datagrams;
2128 struct socket *sock;
2129 struct mmsghdr __user *entry;
2130 struct compat_mmsghdr __user *compat_entry;
2131 struct msghdr msg_sys;
2132 struct used_address used_address;
2133
2134 if (vlen > UIO_MAXIOV)
2135 vlen = UIO_MAXIOV;
2136
2137 datagrams = 0;
2138
2139 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2140 if (!sock)
2141 return err;
2142
2143 used_address.name_len = UINT_MAX;
2144 entry = mmsg;
2145 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2146 err = 0;
2147
2148 while (datagrams < vlen) {
2149 if (MSG_CMSG_COMPAT & flags) {
2150 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2151 &msg_sys, flags, &used_address);
2152 if (err < 0)
2153 break;
2154 err = __put_user(err, &compat_entry->msg_len);
2155 ++compat_entry;
2156 } else {
2157 err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2158 &msg_sys, flags, &used_address);
2159 if (err < 0)
2160 break;
2161 err = put_user(err, &entry->msg_len);
2162 ++entry;
2163 }
2164
2165 if (err)
2166 break;
2167 ++datagrams;
2168 }
2169
2170 fput_light(sock->file, fput_needed);
2171
2172 /* We only return an error if no datagrams were able to be sent */
2173 if (datagrams != 0)
2174 return datagrams;
2175
2176 return err;
2177 }
2178
2179 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2180 unsigned int, vlen, unsigned int, flags)
2181 {
2182 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2183 }
2184
2185 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2186 struct msghdr *msg_sys, unsigned int flags, int nosec)
2187 {
2188 struct compat_msghdr __user *msg_compat =
2189 (struct compat_msghdr __user *)msg;
2190 struct iovec iovstack[UIO_FASTIOV];
2191 struct iovec *iov = iovstack;
2192 unsigned long cmsg_ptr;
2193 int err, total_len, len;
2194
2195 /* kernel mode address */
2196 struct sockaddr_storage addr;
2197
2198 /* user mode address pointers */
2199 struct sockaddr __user *uaddr;
2200 int __user *uaddr_len;
2201
2202 if (MSG_CMSG_COMPAT & flags) {
2203 if (get_compat_msghdr(msg_sys, msg_compat))
2204 return -EFAULT;
2205 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2206 return -EFAULT;
2207
2208 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2209 err = -EMSGSIZE;
2210 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2211 goto out;
2212 err = -ENOMEM;
2213 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2214 GFP_KERNEL);
2215 if (!iov)
2216 goto out;
2217 }
2218
2219 /*
2220 * Save the user-mode address (verify_iovec will change the
2221 * kernel msghdr to use the kernel address space)
2222 */
2223
2224 uaddr = (__force void __user *)msg_sys->msg_name;
2225 uaddr_len = COMPAT_NAMELEN(msg);
2226 if (MSG_CMSG_COMPAT & flags) {
2227 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2228 } else
2229 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2230 if (err < 0)
2231 goto out_freeiov;
2232 total_len = err;
2233
2234 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2235 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2236
2237 if (sock->file->f_flags & O_NONBLOCK)
2238 flags |= MSG_DONTWAIT;
2239 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2240 total_len, flags);
2241 if (err < 0)
2242 goto out_freeiov;
2243 len = err;
2244
2245 if (uaddr != NULL) {
2246 err = move_addr_to_user(&addr,
2247 msg_sys->msg_namelen, uaddr,
2248 uaddr_len);
2249 if (err < 0)
2250 goto out_freeiov;
2251 }
2252 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2253 COMPAT_FLAGS(msg));
2254 if (err)
2255 goto out_freeiov;
2256 if (MSG_CMSG_COMPAT & flags)
2257 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2258 &msg_compat->msg_controllen);
2259 else
2260 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2261 &msg->msg_controllen);
2262 if (err)
2263 goto out_freeiov;
2264 err = len;
2265
2266 out_freeiov:
2267 if (iov != iovstack)
2268 kfree(iov);
2269 out:
2270 return err;
2271 }
2272
2273 /*
2274 * BSD recvmsg interface
2275 */
2276
2277 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2278 unsigned int, flags)
2279 {
2280 int fput_needed, err;
2281 struct msghdr msg_sys;
2282 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2283
2284 if (!sock)
2285 goto out;
2286
2287 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2288
2289 fput_light(sock->file, fput_needed);
2290 out:
2291 return err;
2292 }
2293
2294 /*
2295 * Linux recvmmsg interface
2296 */
2297
2298 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2299 unsigned int flags, struct timespec *timeout)
2300 {
2301 int fput_needed, err, datagrams;
2302 struct socket *sock;
2303 struct mmsghdr __user *entry;
2304 struct compat_mmsghdr __user *compat_entry;
2305 struct msghdr msg_sys;
2306 struct timespec end_time;
2307
2308 if (timeout &&
2309 poll_select_set_timeout(&end_time, timeout->tv_sec,
2310 timeout->tv_nsec))
2311 return -EINVAL;
2312
2313 datagrams = 0;
2314
2315 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2316 if (!sock)
2317 return err;
2318
2319 err = sock_error(sock->sk);
2320 if (err)
2321 goto out_put;
2322
2323 entry = mmsg;
2324 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2325
2326 while (datagrams < vlen) {
2327 /*
2328 * No need to ask LSM for more than the first datagram.
2329 */
2330 if (MSG_CMSG_COMPAT & flags) {
2331 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2332 &msg_sys, flags & ~MSG_WAITFORONE,
2333 datagrams);
2334 if (err < 0)
2335 break;
2336 err = __put_user(err, &compat_entry->msg_len);
2337 ++compat_entry;
2338 } else {
2339 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2340 &msg_sys, flags & ~MSG_WAITFORONE,
2341 datagrams);
2342 if (err < 0)
2343 break;
2344 err = put_user(err, &entry->msg_len);
2345 ++entry;
2346 }
2347
2348 if (err)
2349 break;
2350 ++datagrams;
2351
2352 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2353 if (flags & MSG_WAITFORONE)
2354 flags |= MSG_DONTWAIT;
2355
2356 if (timeout) {
2357 ktime_get_ts(timeout);
2358 *timeout = timespec_sub(end_time, *timeout);
2359 if (timeout->tv_sec < 0) {
2360 timeout->tv_sec = timeout->tv_nsec = 0;
2361 break;
2362 }
2363
2364 /* Timeout, return less than vlen datagrams */
2365 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2366 break;
2367 }
2368
2369 /* Out of band data, return right away */
2370 if (msg_sys.msg_flags & MSG_OOB)
2371 break;
2372 }
2373
2374 out_put:
2375 fput_light(sock->file, fput_needed);
2376
2377 if (err == 0)
2378 return datagrams;
2379
2380 if (datagrams != 0) {
2381 /*
2382 * We may return less entries than requested (vlen) if the
2383 * sock is non block and there aren't enough datagrams...
2384 */
2385 if (err != -EAGAIN) {
2386 /*
2387 * ... or if recvmsg returns an error after we
2388 * received some datagrams, where we record the
2389 * error to return on the next call or if the
2390 * app asks about it using getsockopt(SO_ERROR).
2391 */
2392 sock->sk->sk_err = -err;
2393 }
2394
2395 return datagrams;
2396 }
2397
2398 return err;
2399 }
2400
2401 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2402 unsigned int, vlen, unsigned int, flags,
2403 struct timespec __user *, timeout)
2404 {
2405 int datagrams;
2406 struct timespec timeout_sys;
2407
2408 if (!timeout)
2409 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2410
2411 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2412 return -EFAULT;
2413
2414 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2415
2416 if (datagrams > 0 &&
2417 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2418 datagrams = -EFAULT;
2419
2420 return datagrams;
2421 }
2422
2423 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2424 /* Argument list sizes for sys_socketcall */
2425 #define AL(x) ((x) * sizeof(unsigned long))
2426 static const unsigned char nargs[21] = {
2427 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2428 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2429 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2430 AL(4), AL(5), AL(4)
2431 };
2432
2433 #undef AL
2434
2435 /*
2436 * System call vectors.
2437 *
2438 * Argument checking cleaned up. Saved 20% in size.
2439 * This function doesn't need to set the kernel lock because
2440 * it is set by the callees.
2441 */
2442
2443 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2444 {
2445 unsigned long a[6];
2446 unsigned long a0, a1;
2447 int err;
2448 unsigned int len;
2449
2450 if (call < 1 || call > SYS_SENDMMSG)
2451 return -EINVAL;
2452
2453 len = nargs[call];
2454 if (len > sizeof(a))
2455 return -EINVAL;
2456
2457 /* copy_from_user should be SMP safe. */
2458 if (copy_from_user(a, args, len))
2459 return -EFAULT;
2460
2461 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2462
2463 a0 = a[0];
2464 a1 = a[1];
2465
2466 switch (call) {
2467 case SYS_SOCKET:
2468 err = sys_socket(a0, a1, a[2]);
2469 break;
2470 case SYS_BIND:
2471 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2472 break;
2473 case SYS_CONNECT:
2474 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2475 break;
2476 case SYS_LISTEN:
2477 err = sys_listen(a0, a1);
2478 break;
2479 case SYS_ACCEPT:
2480 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2481 (int __user *)a[2], 0);
2482 break;
2483 case SYS_GETSOCKNAME:
2484 err =
2485 sys_getsockname(a0, (struct sockaddr __user *)a1,
2486 (int __user *)a[2]);
2487 break;
2488 case SYS_GETPEERNAME:
2489 err =
2490 sys_getpeername(a0, (struct sockaddr __user *)a1,
2491 (int __user *)a[2]);
2492 break;
2493 case SYS_SOCKETPAIR:
2494 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2495 break;
2496 case SYS_SEND:
2497 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2498 break;
2499 case SYS_SENDTO:
2500 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2501 (struct sockaddr __user *)a[4], a[5]);
2502 break;
2503 case SYS_RECV:
2504 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2505 break;
2506 case SYS_RECVFROM:
2507 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2508 (struct sockaddr __user *)a[4],
2509 (int __user *)a[5]);
2510 break;
2511 case SYS_SHUTDOWN:
2512 err = sys_shutdown(a0, a1);
2513 break;
2514 case SYS_SETSOCKOPT:
2515 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2516 break;
2517 case SYS_GETSOCKOPT:
2518 err =
2519 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2520 (int __user *)a[4]);
2521 break;
2522 case SYS_SENDMSG:
2523 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2524 break;
2525 case SYS_SENDMMSG:
2526 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2527 break;
2528 case SYS_RECVMSG:
2529 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2530 break;
2531 case SYS_RECVMMSG:
2532 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2533 (struct timespec __user *)a[4]);
2534 break;
2535 case SYS_ACCEPT4:
2536 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2537 (int __user *)a[2], a[3]);
2538 break;
2539 default:
2540 err = -EINVAL;
2541 break;
2542 }
2543 return err;
2544 }
2545
2546 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2547
2548 /**
2549 * sock_register - add a socket protocol handler
2550 * @ops: description of protocol
2551 *
2552 * This function is called by a protocol handler that wants to
2553 * advertise its address family, and have it linked into the
2554 * socket interface. The value ops->family coresponds to the
2555 * socket system call protocol family.
2556 */
2557 int sock_register(const struct net_proto_family *ops)
2558 {
2559 int err;
2560
2561 if (ops->family >= NPROTO) {
2562 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2563 NPROTO);
2564 return -ENOBUFS;
2565 }
2566
2567 spin_lock(&net_family_lock);
2568 if (rcu_dereference_protected(net_families[ops->family],
2569 lockdep_is_held(&net_family_lock)))
2570 err = -EEXIST;
2571 else {
2572 rcu_assign_pointer(net_families[ops->family], ops);
2573 err = 0;
2574 }
2575 spin_unlock(&net_family_lock);
2576
2577 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2578 return err;
2579 }
2580 EXPORT_SYMBOL(sock_register);
2581
2582 /**
2583 * sock_unregister - remove a protocol handler
2584 * @family: protocol family to remove
2585 *
2586 * This function is called by a protocol handler that wants to
2587 * remove its address family, and have it unlinked from the
2588 * new socket creation.
2589 *
2590 * If protocol handler is a module, then it can use module reference
2591 * counts to protect against new references. If protocol handler is not
2592 * a module then it needs to provide its own protection in
2593 * the ops->create routine.
2594 */
2595 void sock_unregister(int family)
2596 {
2597 BUG_ON(family < 0 || family >= NPROTO);
2598
2599 spin_lock(&net_family_lock);
2600 RCU_INIT_POINTER(net_families[family], NULL);
2601 spin_unlock(&net_family_lock);
2602
2603 synchronize_rcu();
2604
2605 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2606 }
2607 EXPORT_SYMBOL(sock_unregister);
2608
2609 static int __init sock_init(void)
2610 {
2611 int err;
2612 /*
2613 * Initialize the network sysctl infrastructure.
2614 */
2615 err = net_sysctl_init();
2616 if (err)
2617 goto out;
2618
2619 /*
2620 * Initialize skbuff SLAB cache
2621 */
2622 skb_init();
2623
2624 /*
2625 * Initialize the protocols module.
2626 */
2627
2628 init_inodecache();
2629
2630 err = register_filesystem(&sock_fs_type);
2631 if (err)
2632 goto out_fs;
2633 sock_mnt = kern_mount(&sock_fs_type);
2634 if (IS_ERR(sock_mnt)) {
2635 err = PTR_ERR(sock_mnt);
2636 goto out_mount;
2637 }
2638
2639 /* The real protocol initialization is performed in later initcalls.
2640 */
2641
2642 #ifdef CONFIG_NETFILTER
2643 netfilter_init();
2644 #endif
2645
2646 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2647 skb_timestamping_init();
2648 #endif
2649
2650 out:
2651 return err;
2652
2653 out_mount:
2654 unregister_filesystem(&sock_fs_type);
2655 out_fs:
2656 goto out;
2657 }
2658
2659 core_initcall(sock_init); /* early initcall */
2660
2661 #ifdef CONFIG_PROC_FS
2662 void socket_seq_show(struct seq_file *seq)
2663 {
2664 int cpu;
2665 int counter = 0;
2666
2667 for_each_possible_cpu(cpu)
2668 counter += per_cpu(sockets_in_use, cpu);
2669
2670 /* It can be negative, by the way. 8) */
2671 if (counter < 0)
2672 counter = 0;
2673
2674 seq_printf(seq, "sockets: used %d\n", counter);
2675 }
2676 #endif /* CONFIG_PROC_FS */
2677
2678 #ifdef CONFIG_COMPAT
2679 static int do_siocgstamp(struct net *net, struct socket *sock,
2680 unsigned int cmd, void __user *up)
2681 {
2682 mm_segment_t old_fs = get_fs();
2683 struct timeval ktv;
2684 int err;
2685
2686 set_fs(KERNEL_DS);
2687 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2688 set_fs(old_fs);
2689 if (!err)
2690 err = compat_put_timeval(&ktv, up);
2691
2692 return err;
2693 }
2694
2695 static int do_siocgstampns(struct net *net, struct socket *sock,
2696 unsigned int cmd, void __user *up)
2697 {
2698 mm_segment_t old_fs = get_fs();
2699 struct timespec kts;
2700 int err;
2701
2702 set_fs(KERNEL_DS);
2703 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2704 set_fs(old_fs);
2705 if (!err)
2706 err = compat_put_timespec(&kts, up);
2707
2708 return err;
2709 }
2710
2711 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2712 {
2713 struct ifreq __user *uifr;
2714 int err;
2715
2716 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2717 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2718 return -EFAULT;
2719
2720 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2721 if (err)
2722 return err;
2723
2724 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2725 return -EFAULT;
2726
2727 return 0;
2728 }
2729
2730 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2731 {
2732 struct compat_ifconf ifc32;
2733 struct ifconf ifc;
2734 struct ifconf __user *uifc;
2735 struct compat_ifreq __user *ifr32;
2736 struct ifreq __user *ifr;
2737 unsigned int i, j;
2738 int err;
2739
2740 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2741 return -EFAULT;
2742
2743 memset(&ifc, 0, sizeof(ifc));
2744 if (ifc32.ifcbuf == 0) {
2745 ifc32.ifc_len = 0;
2746 ifc.ifc_len = 0;
2747 ifc.ifc_req = NULL;
2748 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2749 } else {
2750 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2751 sizeof(struct ifreq);
2752 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2753 ifc.ifc_len = len;
2754 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2755 ifr32 = compat_ptr(ifc32.ifcbuf);
2756 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2757 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2758 return -EFAULT;
2759 ifr++;
2760 ifr32++;
2761 }
2762 }
2763 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2764 return -EFAULT;
2765
2766 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2767 if (err)
2768 return err;
2769
2770 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2771 return -EFAULT;
2772
2773 ifr = ifc.ifc_req;
2774 ifr32 = compat_ptr(ifc32.ifcbuf);
2775 for (i = 0, j = 0;
2776 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2777 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2778 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2779 return -EFAULT;
2780 ifr32++;
2781 ifr++;
2782 }
2783
2784 if (ifc32.ifcbuf == 0) {
2785 /* Translate from 64-bit structure multiple to
2786 * a 32-bit one.
2787 */
2788 i = ifc.ifc_len;
2789 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2790 ifc32.ifc_len = i;
2791 } else {
2792 ifc32.ifc_len = i;
2793 }
2794 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2795 return -EFAULT;
2796
2797 return 0;
2798 }
2799
2800 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2801 {
2802 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2803 bool convert_in = false, convert_out = false;
2804 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2805 struct ethtool_rxnfc __user *rxnfc;
2806 struct ifreq __user *ifr;
2807 u32 rule_cnt = 0, actual_rule_cnt;
2808 u32 ethcmd;
2809 u32 data;
2810 int ret;
2811
2812 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2813 return -EFAULT;
2814
2815 compat_rxnfc = compat_ptr(data);
2816
2817 if (get_user(ethcmd, &compat_rxnfc->cmd))
2818 return -EFAULT;
2819
2820 /* Most ethtool structures are defined without padding.
2821 * Unfortunately struct ethtool_rxnfc is an exception.
2822 */
2823 switch (ethcmd) {
2824 default:
2825 break;
2826 case ETHTOOL_GRXCLSRLALL:
2827 /* Buffer size is variable */
2828 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2829 return -EFAULT;
2830 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2831 return -ENOMEM;
2832 buf_size += rule_cnt * sizeof(u32);
2833 /* fall through */
2834 case ETHTOOL_GRXRINGS:
2835 case ETHTOOL_GRXCLSRLCNT:
2836 case ETHTOOL_GRXCLSRULE:
2837 case ETHTOOL_SRXCLSRLINS:
2838 convert_out = true;
2839 /* fall through */
2840 case ETHTOOL_SRXCLSRLDEL:
2841 buf_size += sizeof(struct ethtool_rxnfc);
2842 convert_in = true;
2843 break;
2844 }
2845
2846 ifr = compat_alloc_user_space(buf_size);
2847 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2848
2849 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2850 return -EFAULT;
2851
2852 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2853 &ifr->ifr_ifru.ifru_data))
2854 return -EFAULT;
2855
2856 if (convert_in) {
2857 /* We expect there to be holes between fs.m_ext and
2858 * fs.ring_cookie and at the end of fs, but nowhere else.
2859 */
2860 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2861 sizeof(compat_rxnfc->fs.m_ext) !=
2862 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2863 sizeof(rxnfc->fs.m_ext));
2864 BUILD_BUG_ON(
2865 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2866 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2867 offsetof(struct ethtool_rxnfc, fs.location) -
2868 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2869
2870 if (copy_in_user(rxnfc, compat_rxnfc,
2871 (void *)(&rxnfc->fs.m_ext + 1) -
2872 (void *)rxnfc) ||
2873 copy_in_user(&rxnfc->fs.ring_cookie,
2874 &compat_rxnfc->fs.ring_cookie,
2875 (void *)(&rxnfc->fs.location + 1) -
2876 (void *)&rxnfc->fs.ring_cookie) ||
2877 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2878 sizeof(rxnfc->rule_cnt)))
2879 return -EFAULT;
2880 }
2881
2882 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2883 if (ret)
2884 return ret;
2885
2886 if (convert_out) {
2887 if (copy_in_user(compat_rxnfc, rxnfc,
2888 (const void *)(&rxnfc->fs.m_ext + 1) -
2889 (const void *)rxnfc) ||
2890 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2891 &rxnfc->fs.ring_cookie,
2892 (const void *)(&rxnfc->fs.location + 1) -
2893 (const void *)&rxnfc->fs.ring_cookie) ||
2894 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2895 sizeof(rxnfc->rule_cnt)))
2896 return -EFAULT;
2897
2898 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2899 /* As an optimisation, we only copy the actual
2900 * number of rules that the underlying
2901 * function returned. Since Mallory might
2902 * change the rule count in user memory, we
2903 * check that it is less than the rule count
2904 * originally given (as the user buffer size),
2905 * which has been range-checked.
2906 */
2907 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2908 return -EFAULT;
2909 if (actual_rule_cnt < rule_cnt)
2910 rule_cnt = actual_rule_cnt;
2911 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2912 &rxnfc->rule_locs[0],
2913 rule_cnt * sizeof(u32)))
2914 return -EFAULT;
2915 }
2916 }
2917
2918 return 0;
2919 }
2920
2921 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2922 {
2923 void __user *uptr;
2924 compat_uptr_t uptr32;
2925 struct ifreq __user *uifr;
2926
2927 uifr = compat_alloc_user_space(sizeof(*uifr));
2928 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2929 return -EFAULT;
2930
2931 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2932 return -EFAULT;
2933
2934 uptr = compat_ptr(uptr32);
2935
2936 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2937 return -EFAULT;
2938
2939 return dev_ioctl(net, SIOCWANDEV, uifr);
2940 }
2941
2942 static int bond_ioctl(struct net *net, unsigned int cmd,
2943 struct compat_ifreq __user *ifr32)
2944 {
2945 struct ifreq kifr;
2946 struct ifreq __user *uifr;
2947 mm_segment_t old_fs;
2948 int err;
2949 u32 data;
2950 void __user *datap;
2951
2952 switch (cmd) {
2953 case SIOCBONDENSLAVE:
2954 case SIOCBONDRELEASE:
2955 case SIOCBONDSETHWADDR:
2956 case SIOCBONDCHANGEACTIVE:
2957 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2958 return -EFAULT;
2959
2960 old_fs = get_fs();
2961 set_fs(KERNEL_DS);
2962 err = dev_ioctl(net, cmd,
2963 (struct ifreq __user __force *) &kifr);
2964 set_fs(old_fs);
2965
2966 return err;
2967 case SIOCBONDSLAVEINFOQUERY:
2968 case SIOCBONDINFOQUERY:
2969 uifr = compat_alloc_user_space(sizeof(*uifr));
2970 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2971 return -EFAULT;
2972
2973 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2974 return -EFAULT;
2975
2976 datap = compat_ptr(data);
2977 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2978 return -EFAULT;
2979
2980 return dev_ioctl(net, cmd, uifr);
2981 default:
2982 return -ENOIOCTLCMD;
2983 }
2984 }
2985
2986 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2987 struct compat_ifreq __user *u_ifreq32)
2988 {
2989 struct ifreq __user *u_ifreq64;
2990 char tmp_buf[IFNAMSIZ];
2991 void __user *data64;
2992 u32 data32;
2993
2994 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2995 IFNAMSIZ))
2996 return -EFAULT;
2997 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2998 return -EFAULT;
2999 data64 = compat_ptr(data32);
3000
3001 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3002
3003 /* Don't check these user accesses, just let that get trapped
3004 * in the ioctl handler instead.
3005 */
3006 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3007 IFNAMSIZ))
3008 return -EFAULT;
3009 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3010 return -EFAULT;
3011
3012 return dev_ioctl(net, cmd, u_ifreq64);
3013 }
3014
3015 static int dev_ifsioc(struct net *net, struct socket *sock,
3016 unsigned int cmd, struct compat_ifreq __user *uifr32)
3017 {
3018 struct ifreq __user *uifr;
3019 int err;
3020
3021 uifr = compat_alloc_user_space(sizeof(*uifr));
3022 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3023 return -EFAULT;
3024
3025 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3026
3027 if (!err) {
3028 switch (cmd) {
3029 case SIOCGIFFLAGS:
3030 case SIOCGIFMETRIC:
3031 case SIOCGIFMTU:
3032 case SIOCGIFMEM:
3033 case SIOCGIFHWADDR:
3034 case SIOCGIFINDEX:
3035 case SIOCGIFADDR:
3036 case SIOCGIFBRDADDR:
3037 case SIOCGIFDSTADDR:
3038 case SIOCGIFNETMASK:
3039 case SIOCGIFPFLAGS:
3040 case SIOCGIFTXQLEN:
3041 case SIOCGMIIPHY:
3042 case SIOCGMIIREG:
3043 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3044 err = -EFAULT;
3045 break;
3046 }
3047 }
3048 return err;
3049 }
3050
3051 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3052 struct compat_ifreq __user *uifr32)
3053 {
3054 struct ifreq ifr;
3055 struct compat_ifmap __user *uifmap32;
3056 mm_segment_t old_fs;
3057 int err;
3058
3059 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3060 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3061 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3062 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3063 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3064 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3065 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3066 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3067 if (err)
3068 return -EFAULT;
3069
3070 old_fs = get_fs();
3071 set_fs(KERNEL_DS);
3072 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3073 set_fs(old_fs);
3074
3075 if (cmd == SIOCGIFMAP && !err) {
3076 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3077 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3078 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3079 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3080 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3081 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3082 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3083 if (err)
3084 err = -EFAULT;
3085 }
3086 return err;
3087 }
3088
3089 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3090 {
3091 void __user *uptr;
3092 compat_uptr_t uptr32;
3093 struct ifreq __user *uifr;
3094
3095 uifr = compat_alloc_user_space(sizeof(*uifr));
3096 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3097 return -EFAULT;
3098
3099 if (get_user(uptr32, &uifr32->ifr_data))
3100 return -EFAULT;
3101
3102 uptr = compat_ptr(uptr32);
3103
3104 if (put_user(uptr, &uifr->ifr_data))
3105 return -EFAULT;
3106
3107 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3108 }
3109
3110 struct rtentry32 {
3111 u32 rt_pad1;
3112 struct sockaddr rt_dst; /* target address */
3113 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3114 struct sockaddr rt_genmask; /* target network mask (IP) */
3115 unsigned short rt_flags;
3116 short rt_pad2;
3117 u32 rt_pad3;
3118 unsigned char rt_tos;
3119 unsigned char rt_class;
3120 short rt_pad4;
3121 short rt_metric; /* +1 for binary compatibility! */
3122 /* char * */ u32 rt_dev; /* forcing the device at add */
3123 u32 rt_mtu; /* per route MTU/Window */
3124 u32 rt_window; /* Window clamping */
3125 unsigned short rt_irtt; /* Initial RTT */
3126 };
3127
3128 struct in6_rtmsg32 {
3129 struct in6_addr rtmsg_dst;
3130 struct in6_addr rtmsg_src;
3131 struct in6_addr rtmsg_gateway;
3132 u32 rtmsg_type;
3133 u16 rtmsg_dst_len;
3134 u16 rtmsg_src_len;
3135 u32 rtmsg_metric;
3136 u32 rtmsg_info;
3137 u32 rtmsg_flags;
3138 s32 rtmsg_ifindex;
3139 };
3140
3141 static int routing_ioctl(struct net *net, struct socket *sock,
3142 unsigned int cmd, void __user *argp)
3143 {
3144 int ret;
3145 void *r = NULL;
3146 struct in6_rtmsg r6;
3147 struct rtentry r4;
3148 char devname[16];
3149 u32 rtdev;
3150 mm_segment_t old_fs = get_fs();
3151
3152 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3153 struct in6_rtmsg32 __user *ur6 = argp;
3154 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3155 3 * sizeof(struct in6_addr));
3156 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3157 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3158 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3159 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3160 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3161 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3162 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3163
3164 r = (void *) &r6;
3165 } else { /* ipv4 */
3166 struct rtentry32 __user *ur4 = argp;
3167 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3168 3 * sizeof(struct sockaddr));
3169 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3170 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3171 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3172 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3173 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3174 ret |= __get_user(rtdev, &(ur4->rt_dev));
3175 if (rtdev) {
3176 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3177 r4.rt_dev = (char __user __force *)devname;
3178 devname[15] = 0;
3179 } else
3180 r4.rt_dev = NULL;
3181
3182 r = (void *) &r4;
3183 }
3184
3185 if (ret) {
3186 ret = -EFAULT;
3187 goto out;
3188 }
3189
3190 set_fs(KERNEL_DS);
3191 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3192 set_fs(old_fs);
3193
3194 out:
3195 return ret;
3196 }
3197
3198 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3199 * for some operations; this forces use of the newer bridge-utils that
3200 * use compatible ioctls
3201 */
3202 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3203 {
3204 compat_ulong_t tmp;
3205
3206 if (get_user(tmp, argp))
3207 return -EFAULT;
3208 if (tmp == BRCTL_GET_VERSION)
3209 return BRCTL_VERSION + 1;
3210 return -EINVAL;
3211 }
3212
3213 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3214 unsigned int cmd, unsigned long arg)
3215 {
3216 void __user *argp = compat_ptr(arg);
3217 struct sock *sk = sock->sk;
3218 struct net *net = sock_net(sk);
3219
3220 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3221 return siocdevprivate_ioctl(net, cmd, argp);
3222
3223 switch (cmd) {
3224 case SIOCSIFBR:
3225 case SIOCGIFBR:
3226 return old_bridge_ioctl(argp);
3227 case SIOCGIFNAME:
3228 return dev_ifname32(net, argp);
3229 case SIOCGIFCONF:
3230 return dev_ifconf(net, argp);
3231 case SIOCETHTOOL:
3232 return ethtool_ioctl(net, argp);
3233 case SIOCWANDEV:
3234 return compat_siocwandev(net, argp);
3235 case SIOCGIFMAP:
3236 case SIOCSIFMAP:
3237 return compat_sioc_ifmap(net, cmd, argp);
3238 case SIOCBONDENSLAVE:
3239 case SIOCBONDRELEASE:
3240 case SIOCBONDSETHWADDR:
3241 case SIOCBONDSLAVEINFOQUERY:
3242 case SIOCBONDINFOQUERY:
3243 case SIOCBONDCHANGEACTIVE:
3244 return bond_ioctl(net, cmd, argp);
3245 case SIOCADDRT:
3246 case SIOCDELRT:
3247 return routing_ioctl(net, sock, cmd, argp);
3248 case SIOCGSTAMP:
3249 return do_siocgstamp(net, sock, cmd, argp);
3250 case SIOCGSTAMPNS:
3251 return do_siocgstampns(net, sock, cmd, argp);
3252 case SIOCSHWTSTAMP:
3253 return compat_siocshwtstamp(net, argp);
3254
3255 case FIOSETOWN:
3256 case SIOCSPGRP:
3257 case FIOGETOWN:
3258 case SIOCGPGRP:
3259 case SIOCBRADDBR:
3260 case SIOCBRDELBR:
3261 case SIOCGIFVLAN:
3262 case SIOCSIFVLAN:
3263 case SIOCADDDLCI:
3264 case SIOCDELDLCI:
3265 return sock_ioctl(file, cmd, arg);
3266
3267 case SIOCGIFFLAGS:
3268 case SIOCSIFFLAGS:
3269 case SIOCGIFMETRIC:
3270 case SIOCSIFMETRIC:
3271 case SIOCGIFMTU:
3272 case SIOCSIFMTU:
3273 case SIOCGIFMEM:
3274 case SIOCSIFMEM:
3275 case SIOCGIFHWADDR:
3276 case SIOCSIFHWADDR:
3277 case SIOCADDMULTI:
3278 case SIOCDELMULTI:
3279 case SIOCGIFINDEX:
3280 case SIOCGIFADDR:
3281 case SIOCSIFADDR:
3282 case SIOCSIFHWBROADCAST:
3283 case SIOCDIFADDR:
3284 case SIOCGIFBRDADDR:
3285 case SIOCSIFBRDADDR:
3286 case SIOCGIFDSTADDR:
3287 case SIOCSIFDSTADDR:
3288 case SIOCGIFNETMASK:
3289 case SIOCSIFNETMASK:
3290 case SIOCSIFPFLAGS:
3291 case SIOCGIFPFLAGS:
3292 case SIOCGIFTXQLEN:
3293 case SIOCSIFTXQLEN:
3294 case SIOCBRADDIF:
3295 case SIOCBRDELIF:
3296 case SIOCSIFNAME:
3297 case SIOCGMIIPHY:
3298 case SIOCGMIIREG:
3299 case SIOCSMIIREG:
3300 return dev_ifsioc(net, sock, cmd, argp);
3301
3302 case SIOCSARP:
3303 case SIOCGARP:
3304 case SIOCDARP:
3305 case SIOCATMARK:
3306 return sock_do_ioctl(net, sock, cmd, arg);
3307 }
3308
3309 return -ENOIOCTLCMD;
3310 }
3311
3312 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3313 unsigned long arg)
3314 {
3315 struct socket *sock = file->private_data;
3316 int ret = -ENOIOCTLCMD;
3317 struct sock *sk;
3318 struct net *net;
3319
3320 sk = sock->sk;
3321 net = sock_net(sk);
3322
3323 if (sock->ops->compat_ioctl)
3324 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3325
3326 if (ret == -ENOIOCTLCMD &&
3327 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3328 ret = compat_wext_handle_ioctl(net, cmd, arg);
3329
3330 if (ret == -ENOIOCTLCMD)
3331 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3332
3333 return ret;
3334 }
3335 #endif
3336
3337 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3338 {
3339 return sock->ops->bind(sock, addr, addrlen);
3340 }
3341 EXPORT_SYMBOL(kernel_bind);
3342
3343 int kernel_listen(struct socket *sock, int backlog)
3344 {
3345 return sock->ops->listen(sock, backlog);
3346 }
3347 EXPORT_SYMBOL(kernel_listen);
3348
3349 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3350 {
3351 struct sock *sk = sock->sk;
3352 int err;
3353
3354 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3355 newsock);
3356 if (err < 0)
3357 goto done;
3358
3359 err = sock->ops->accept(sock, *newsock, flags);
3360 if (err < 0) {
3361 sock_release(*newsock);
3362 *newsock = NULL;
3363 goto done;
3364 }
3365
3366 (*newsock)->ops = sock->ops;
3367 __module_get((*newsock)->ops->owner);
3368
3369 done:
3370 return err;
3371 }
3372 EXPORT_SYMBOL(kernel_accept);
3373
3374 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3375 int flags)
3376 {
3377 return sock->ops->connect(sock, addr, addrlen, flags);
3378 }
3379 EXPORT_SYMBOL(kernel_connect);
3380
3381 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3382 int *addrlen)
3383 {
3384 return sock->ops->getname(sock, addr, addrlen, 0);
3385 }
3386 EXPORT_SYMBOL(kernel_getsockname);
3387
3388 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3389 int *addrlen)
3390 {
3391 return sock->ops->getname(sock, addr, addrlen, 1);
3392 }
3393 EXPORT_SYMBOL(kernel_getpeername);
3394
3395 int kernel_getsockopt(struct socket *sock, int level, int optname,
3396 char *optval, int *optlen)
3397 {
3398 mm_segment_t oldfs = get_fs();
3399 char __user *uoptval;
3400 int __user *uoptlen;
3401 int err;
3402
3403 uoptval = (char __user __force *) optval;
3404 uoptlen = (int __user __force *) optlen;
3405
3406 set_fs(KERNEL_DS);
3407 if (level == SOL_SOCKET)
3408 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3409 else
3410 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3411 uoptlen);
3412 set_fs(oldfs);
3413 return err;
3414 }
3415 EXPORT_SYMBOL(kernel_getsockopt);
3416
3417 int kernel_setsockopt(struct socket *sock, int level, int optname,
3418 char *optval, unsigned int optlen)
3419 {
3420 mm_segment_t oldfs = get_fs();
3421 char __user *uoptval;
3422 int err;
3423
3424 uoptval = (char __user __force *) optval;
3425
3426 set_fs(KERNEL_DS);
3427 if (level == SOL_SOCKET)
3428 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3429 else
3430 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3431 optlen);
3432 set_fs(oldfs);
3433 return err;
3434 }
3435 EXPORT_SYMBOL(kernel_setsockopt);
3436
3437 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3438 size_t size, int flags)
3439 {
3440 sock_update_classid(sock->sk);
3441
3442 if (sock->ops->sendpage)
3443 return sock->ops->sendpage(sock, page, offset, size, flags);
3444
3445 return sock_no_sendpage(sock, page, offset, size, flags);
3446 }
3447 EXPORT_SYMBOL(kernel_sendpage);
3448
3449 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3450 {
3451 mm_segment_t oldfs = get_fs();
3452 int err;
3453
3454 set_fs(KERNEL_DS);
3455 err = sock->ops->ioctl(sock, cmd, arg);
3456 set_fs(oldfs);
3457
3458 return err;
3459 }
3460 EXPORT_SYMBOL(kernel_sock_ioctl);
3461
3462 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3463 {
3464 return sock->ops->shutdown(sock, how);
3465 }
3466 EXPORT_SYMBOL(kernel_sock_shutdown);
This page took 0.129723 seconds and 5 git commands to generate.