Pull sony-2.6.24 into release branch
[deliverable/linux.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87
88 #include <asm/uaccess.h>
89 #include <asm/unistd.h>
90
91 #include <net/compat.h>
92
93 #include <net/sock.h>
94 #include <linux/netfilter.h>
95
96 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
97 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
98 unsigned long nr_segs, loff_t pos);
99 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
100 unsigned long nr_segs, loff_t pos);
101 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
102
103 static int sock_close(struct inode *inode, struct file *file);
104 static unsigned int sock_poll(struct file *file,
105 struct poll_table_struct *wait);
106 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
107 #ifdef CONFIG_COMPAT
108 static long compat_sock_ioctl(struct file *file,
109 unsigned int cmd, unsigned long arg);
110 #endif
111 static int sock_fasync(int fd, struct file *filp, int on);
112 static ssize_t sock_sendpage(struct file *file, struct page *page,
113 int offset, size_t size, loff_t *ppos, int more);
114
115 /*
116 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
117 * in the operation structures but are done directly via the socketcall() multiplexor.
118 */
119
120 static const struct file_operations socket_file_ops = {
121 .owner = THIS_MODULE,
122 .llseek = no_llseek,
123 .aio_read = sock_aio_read,
124 .aio_write = sock_aio_write,
125 .poll = sock_poll,
126 .unlocked_ioctl = sock_ioctl,
127 #ifdef CONFIG_COMPAT
128 .compat_ioctl = compat_sock_ioctl,
129 #endif
130 .mmap = sock_mmap,
131 .open = sock_no_open, /* special open code to disallow open via /proc */
132 .release = sock_close,
133 .fasync = sock_fasync,
134 .sendpage = sock_sendpage,
135 .splice_write = generic_splice_sendpage,
136 };
137
138 /*
139 * The protocol list. Each protocol is registered in here.
140 */
141
142 static DEFINE_SPINLOCK(net_family_lock);
143 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
144
145 /*
146 * Statistics counters of the socket lists
147 */
148
149 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
150
151 /*
152 * Support routines.
153 * Move socket addresses back and forth across the kernel/user
154 * divide and look after the messy bits.
155 */
156
157 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
158 16 for IP, 16 for IPX,
159 24 for IPv6,
160 about 80 for AX.25
161 must be at least one bigger than
162 the AF_UNIX size (see net/unix/af_unix.c
163 :unix_mkname()).
164 */
165
166 /**
167 * move_addr_to_kernel - copy a socket address into kernel space
168 * @uaddr: Address in user space
169 * @kaddr: Address in kernel space
170 * @ulen: Length in user space
171 *
172 * The address is copied into kernel space. If the provided address is
173 * too long an error code of -EINVAL is returned. If the copy gives
174 * invalid addresses -EFAULT is returned. On a success 0 is returned.
175 */
176
177 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
178 {
179 if (ulen < 0 || ulen > MAX_SOCK_ADDR)
180 return -EINVAL;
181 if (ulen == 0)
182 return 0;
183 if (copy_from_user(kaddr, uaddr, ulen))
184 return -EFAULT;
185 return audit_sockaddr(ulen, kaddr);
186 }
187
188 /**
189 * move_addr_to_user - copy an address to user space
190 * @kaddr: kernel space address
191 * @klen: length of address in kernel
192 * @uaddr: user space address
193 * @ulen: pointer to user length field
194 *
195 * The value pointed to by ulen on entry is the buffer length available.
196 * This is overwritten with the buffer space used. -EINVAL is returned
197 * if an overlong buffer is specified or a negative buffer size. -EFAULT
198 * is returned if either the buffer or the length field are not
199 * accessible.
200 * After copying the data up to the limit the user specifies, the true
201 * length of the data is written over the length limit the user
202 * specified. Zero is returned for a success.
203 */
204
205 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
206 int __user *ulen)
207 {
208 int err;
209 int len;
210
211 err = get_user(len, ulen);
212 if (err)
213 return err;
214 if (len > klen)
215 len = klen;
216 if (len < 0 || len > MAX_SOCK_ADDR)
217 return -EINVAL;
218 if (len) {
219 if (audit_sockaddr(klen, kaddr))
220 return -ENOMEM;
221 if (copy_to_user(uaddr, kaddr, len))
222 return -EFAULT;
223 }
224 /*
225 * "fromlen shall refer to the value before truncation.."
226 * 1003.1g
227 */
228 return __put_user(klen, ulen);
229 }
230
231 #define SOCKFS_MAGIC 0x534F434B
232
233 static struct kmem_cache *sock_inode_cachep __read_mostly;
234
235 static struct inode *sock_alloc_inode(struct super_block *sb)
236 {
237 struct socket_alloc *ei;
238
239 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
240 if (!ei)
241 return NULL;
242 init_waitqueue_head(&ei->socket.wait);
243
244 ei->socket.fasync_list = NULL;
245 ei->socket.state = SS_UNCONNECTED;
246 ei->socket.flags = 0;
247 ei->socket.ops = NULL;
248 ei->socket.sk = NULL;
249 ei->socket.file = NULL;
250
251 return &ei->vfs_inode;
252 }
253
254 static void sock_destroy_inode(struct inode *inode)
255 {
256 kmem_cache_free(sock_inode_cachep,
257 container_of(inode, struct socket_alloc, vfs_inode));
258 }
259
260 static void init_once(void *foo, struct kmem_cache *cachep, unsigned long flags)
261 {
262 struct socket_alloc *ei = (struct socket_alloc *)foo;
263
264 inode_init_once(&ei->vfs_inode);
265 }
266
267 static int init_inodecache(void)
268 {
269 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
270 sizeof(struct socket_alloc),
271 0,
272 (SLAB_HWCACHE_ALIGN |
273 SLAB_RECLAIM_ACCOUNT |
274 SLAB_MEM_SPREAD),
275 init_once);
276 if (sock_inode_cachep == NULL)
277 return -ENOMEM;
278 return 0;
279 }
280
281 static struct super_operations sockfs_ops = {
282 .alloc_inode = sock_alloc_inode,
283 .destroy_inode =sock_destroy_inode,
284 .statfs = simple_statfs,
285 };
286
287 static int sockfs_get_sb(struct file_system_type *fs_type,
288 int flags, const char *dev_name, void *data,
289 struct vfsmount *mnt)
290 {
291 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
292 mnt);
293 }
294
295 static struct vfsmount *sock_mnt __read_mostly;
296
297 static struct file_system_type sock_fs_type = {
298 .name = "sockfs",
299 .get_sb = sockfs_get_sb,
300 .kill_sb = kill_anon_super,
301 };
302
303 static int sockfs_delete_dentry(struct dentry *dentry)
304 {
305 /*
306 * At creation time, we pretended this dentry was hashed
307 * (by clearing DCACHE_UNHASHED bit in d_flags)
308 * At delete time, we restore the truth : not hashed.
309 * (so that dput() can proceed correctly)
310 */
311 dentry->d_flags |= DCACHE_UNHASHED;
312 return 0;
313 }
314
315 /*
316 * sockfs_dname() is called from d_path().
317 */
318 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
319 {
320 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
321 dentry->d_inode->i_ino);
322 }
323
324 static struct dentry_operations sockfs_dentry_operations = {
325 .d_delete = sockfs_delete_dentry,
326 .d_dname = sockfs_dname,
327 };
328
329 /*
330 * Obtains the first available file descriptor and sets it up for use.
331 *
332 * These functions create file structures and maps them to fd space
333 * of the current process. On success it returns file descriptor
334 * and file struct implicitly stored in sock->file.
335 * Note that another thread may close file descriptor before we return
336 * from this function. We use the fact that now we do not refer
337 * to socket after mapping. If one day we will need it, this
338 * function will increment ref. count on file by 1.
339 *
340 * In any case returned fd MAY BE not valid!
341 * This race condition is unavoidable
342 * with shared fd spaces, we cannot solve it inside kernel,
343 * but we take care of internal coherence yet.
344 */
345
346 static int sock_alloc_fd(struct file **filep)
347 {
348 int fd;
349
350 fd = get_unused_fd();
351 if (likely(fd >= 0)) {
352 struct file *file = get_empty_filp();
353
354 *filep = file;
355 if (unlikely(!file)) {
356 put_unused_fd(fd);
357 return -ENFILE;
358 }
359 } else
360 *filep = NULL;
361 return fd;
362 }
363
364 static int sock_attach_fd(struct socket *sock, struct file *file)
365 {
366 struct qstr name = { .name = "" };
367
368 file->f_path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
369 if (unlikely(!file->f_path.dentry))
370 return -ENOMEM;
371
372 file->f_path.dentry->d_op = &sockfs_dentry_operations;
373 /*
374 * We dont want to push this dentry into global dentry hash table.
375 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
376 * This permits a working /proc/$pid/fd/XXX on sockets
377 */
378 file->f_path.dentry->d_flags &= ~DCACHE_UNHASHED;
379 d_instantiate(file->f_path.dentry, SOCK_INODE(sock));
380 file->f_path.mnt = mntget(sock_mnt);
381 file->f_mapping = file->f_path.dentry->d_inode->i_mapping;
382
383 sock->file = file;
384 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
385 file->f_mode = FMODE_READ | FMODE_WRITE;
386 file->f_flags = O_RDWR;
387 file->f_pos = 0;
388 file->private_data = sock;
389
390 return 0;
391 }
392
393 int sock_map_fd(struct socket *sock)
394 {
395 struct file *newfile;
396 int fd = sock_alloc_fd(&newfile);
397
398 if (likely(fd >= 0)) {
399 int err = sock_attach_fd(sock, newfile);
400
401 if (unlikely(err < 0)) {
402 put_filp(newfile);
403 put_unused_fd(fd);
404 return err;
405 }
406 fd_install(fd, newfile);
407 }
408 return fd;
409 }
410
411 static struct socket *sock_from_file(struct file *file, int *err)
412 {
413 if (file->f_op == &socket_file_ops)
414 return file->private_data; /* set in sock_map_fd */
415
416 *err = -ENOTSOCK;
417 return NULL;
418 }
419
420 /**
421 * sockfd_lookup - Go from a file number to its socket slot
422 * @fd: file handle
423 * @err: pointer to an error code return
424 *
425 * The file handle passed in is locked and the socket it is bound
426 * too is returned. If an error occurs the err pointer is overwritten
427 * with a negative errno code and NULL is returned. The function checks
428 * for both invalid handles and passing a handle which is not a socket.
429 *
430 * On a success the socket object pointer is returned.
431 */
432
433 struct socket *sockfd_lookup(int fd, int *err)
434 {
435 struct file *file;
436 struct socket *sock;
437
438 file = fget(fd);
439 if (!file) {
440 *err = -EBADF;
441 return NULL;
442 }
443
444 sock = sock_from_file(file, err);
445 if (!sock)
446 fput(file);
447 return sock;
448 }
449
450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
451 {
452 struct file *file;
453 struct socket *sock;
454
455 *err = -EBADF;
456 file = fget_light(fd, fput_needed);
457 if (file) {
458 sock = sock_from_file(file, err);
459 if (sock)
460 return sock;
461 fput_light(file, *fput_needed);
462 }
463 return NULL;
464 }
465
466 /**
467 * sock_alloc - allocate a socket
468 *
469 * Allocate a new inode and socket object. The two are bound together
470 * and initialised. The socket is then returned. If we are out of inodes
471 * NULL is returned.
472 */
473
474 static struct socket *sock_alloc(void)
475 {
476 struct inode *inode;
477 struct socket *sock;
478
479 inode = new_inode(sock_mnt->mnt_sb);
480 if (!inode)
481 return NULL;
482
483 sock = SOCKET_I(inode);
484
485 inode->i_mode = S_IFSOCK | S_IRWXUGO;
486 inode->i_uid = current->fsuid;
487 inode->i_gid = current->fsgid;
488
489 get_cpu_var(sockets_in_use)++;
490 put_cpu_var(sockets_in_use);
491 return sock;
492 }
493
494 /*
495 * In theory you can't get an open on this inode, but /proc provides
496 * a back door. Remember to keep it shut otherwise you'll let the
497 * creepy crawlies in.
498 */
499
500 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
501 {
502 return -ENXIO;
503 }
504
505 const struct file_operations bad_sock_fops = {
506 .owner = THIS_MODULE,
507 .open = sock_no_open,
508 };
509
510 /**
511 * sock_release - close a socket
512 * @sock: socket to close
513 *
514 * The socket is released from the protocol stack if it has a release
515 * callback, and the inode is then released if the socket is bound to
516 * an inode not a file.
517 */
518
519 void sock_release(struct socket *sock)
520 {
521 if (sock->ops) {
522 struct module *owner = sock->ops->owner;
523
524 sock->ops->release(sock);
525 sock->ops = NULL;
526 module_put(owner);
527 }
528
529 if (sock->fasync_list)
530 printk(KERN_ERR "sock_release: fasync list not empty!\n");
531
532 get_cpu_var(sockets_in_use)--;
533 put_cpu_var(sockets_in_use);
534 if (!sock->file) {
535 iput(SOCK_INODE(sock));
536 return;
537 }
538 sock->file = NULL;
539 }
540
541 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
542 struct msghdr *msg, size_t size)
543 {
544 struct sock_iocb *si = kiocb_to_siocb(iocb);
545 int err;
546
547 si->sock = sock;
548 si->scm = NULL;
549 si->msg = msg;
550 si->size = size;
551
552 err = security_socket_sendmsg(sock, msg, size);
553 if (err)
554 return err;
555
556 return sock->ops->sendmsg(iocb, sock, msg, size);
557 }
558
559 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
560 {
561 struct kiocb iocb;
562 struct sock_iocb siocb;
563 int ret;
564
565 init_sync_kiocb(&iocb, NULL);
566 iocb.private = &siocb;
567 ret = __sock_sendmsg(&iocb, sock, msg, size);
568 if (-EIOCBQUEUED == ret)
569 ret = wait_on_sync_kiocb(&iocb);
570 return ret;
571 }
572
573 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
574 struct kvec *vec, size_t num, size_t size)
575 {
576 mm_segment_t oldfs = get_fs();
577 int result;
578
579 set_fs(KERNEL_DS);
580 /*
581 * the following is safe, since for compiler definitions of kvec and
582 * iovec are identical, yielding the same in-core layout and alignment
583 */
584 msg->msg_iov = (struct iovec *)vec;
585 msg->msg_iovlen = num;
586 result = sock_sendmsg(sock, msg, size);
587 set_fs(oldfs);
588 return result;
589 }
590
591 /*
592 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
593 */
594 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
595 struct sk_buff *skb)
596 {
597 ktime_t kt = skb->tstamp;
598
599 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
600 struct timeval tv;
601 /* Race occurred between timestamp enabling and packet
602 receiving. Fill in the current time for now. */
603 if (kt.tv64 == 0)
604 kt = ktime_get_real();
605 skb->tstamp = kt;
606 tv = ktime_to_timeval(kt);
607 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
608 } else {
609 struct timespec ts;
610 /* Race occurred between timestamp enabling and packet
611 receiving. Fill in the current time for now. */
612 if (kt.tv64 == 0)
613 kt = ktime_get_real();
614 skb->tstamp = kt;
615 ts = ktime_to_timespec(kt);
616 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
617 }
618 }
619
620 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
621
622 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
623 struct msghdr *msg, size_t size, int flags)
624 {
625 int err;
626 struct sock_iocb *si = kiocb_to_siocb(iocb);
627
628 si->sock = sock;
629 si->scm = NULL;
630 si->msg = msg;
631 si->size = size;
632 si->flags = flags;
633
634 err = security_socket_recvmsg(sock, msg, size, flags);
635 if (err)
636 return err;
637
638 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
639 }
640
641 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
642 size_t size, int flags)
643 {
644 struct kiocb iocb;
645 struct sock_iocb siocb;
646 int ret;
647
648 init_sync_kiocb(&iocb, NULL);
649 iocb.private = &siocb;
650 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
651 if (-EIOCBQUEUED == ret)
652 ret = wait_on_sync_kiocb(&iocb);
653 return ret;
654 }
655
656 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
657 struct kvec *vec, size_t num, size_t size, int flags)
658 {
659 mm_segment_t oldfs = get_fs();
660 int result;
661
662 set_fs(KERNEL_DS);
663 /*
664 * the following is safe, since for compiler definitions of kvec and
665 * iovec are identical, yielding the same in-core layout and alignment
666 */
667 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
668 result = sock_recvmsg(sock, msg, size, flags);
669 set_fs(oldfs);
670 return result;
671 }
672
673 static void sock_aio_dtor(struct kiocb *iocb)
674 {
675 kfree(iocb->private);
676 }
677
678 static ssize_t sock_sendpage(struct file *file, struct page *page,
679 int offset, size_t size, loff_t *ppos, int more)
680 {
681 struct socket *sock;
682 int flags;
683
684 sock = file->private_data;
685
686 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
687 if (more)
688 flags |= MSG_MORE;
689
690 return sock->ops->sendpage(sock, page, offset, size, flags);
691 }
692
693 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
694 struct sock_iocb *siocb)
695 {
696 if (!is_sync_kiocb(iocb)) {
697 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
698 if (!siocb)
699 return NULL;
700 iocb->ki_dtor = sock_aio_dtor;
701 }
702
703 siocb->kiocb = iocb;
704 iocb->private = siocb;
705 return siocb;
706 }
707
708 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
709 struct file *file, const struct iovec *iov,
710 unsigned long nr_segs)
711 {
712 struct socket *sock = file->private_data;
713 size_t size = 0;
714 int i;
715
716 for (i = 0; i < nr_segs; i++)
717 size += iov[i].iov_len;
718
719 msg->msg_name = NULL;
720 msg->msg_namelen = 0;
721 msg->msg_control = NULL;
722 msg->msg_controllen = 0;
723 msg->msg_iov = (struct iovec *)iov;
724 msg->msg_iovlen = nr_segs;
725 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
726
727 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
728 }
729
730 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
731 unsigned long nr_segs, loff_t pos)
732 {
733 struct sock_iocb siocb, *x;
734
735 if (pos != 0)
736 return -ESPIPE;
737
738 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
739 return 0;
740
741
742 x = alloc_sock_iocb(iocb, &siocb);
743 if (!x)
744 return -ENOMEM;
745 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
746 }
747
748 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
749 struct file *file, const struct iovec *iov,
750 unsigned long nr_segs)
751 {
752 struct socket *sock = file->private_data;
753 size_t size = 0;
754 int i;
755
756 for (i = 0; i < nr_segs; i++)
757 size += iov[i].iov_len;
758
759 msg->msg_name = NULL;
760 msg->msg_namelen = 0;
761 msg->msg_control = NULL;
762 msg->msg_controllen = 0;
763 msg->msg_iov = (struct iovec *)iov;
764 msg->msg_iovlen = nr_segs;
765 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
766 if (sock->type == SOCK_SEQPACKET)
767 msg->msg_flags |= MSG_EOR;
768
769 return __sock_sendmsg(iocb, sock, msg, size);
770 }
771
772 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
773 unsigned long nr_segs, loff_t pos)
774 {
775 struct sock_iocb siocb, *x;
776
777 if (pos != 0)
778 return -ESPIPE;
779
780 x = alloc_sock_iocb(iocb, &siocb);
781 if (!x)
782 return -ENOMEM;
783
784 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
785 }
786
787 /*
788 * Atomic setting of ioctl hooks to avoid race
789 * with module unload.
790 */
791
792 static DEFINE_MUTEX(br_ioctl_mutex);
793 static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL;
794
795 void brioctl_set(int (*hook) (unsigned int, void __user *))
796 {
797 mutex_lock(&br_ioctl_mutex);
798 br_ioctl_hook = hook;
799 mutex_unlock(&br_ioctl_mutex);
800 }
801
802 EXPORT_SYMBOL(brioctl_set);
803
804 static DEFINE_MUTEX(vlan_ioctl_mutex);
805 static int (*vlan_ioctl_hook) (void __user *arg);
806
807 void vlan_ioctl_set(int (*hook) (void __user *))
808 {
809 mutex_lock(&vlan_ioctl_mutex);
810 vlan_ioctl_hook = hook;
811 mutex_unlock(&vlan_ioctl_mutex);
812 }
813
814 EXPORT_SYMBOL(vlan_ioctl_set);
815
816 static DEFINE_MUTEX(dlci_ioctl_mutex);
817 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
818
819 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
820 {
821 mutex_lock(&dlci_ioctl_mutex);
822 dlci_ioctl_hook = hook;
823 mutex_unlock(&dlci_ioctl_mutex);
824 }
825
826 EXPORT_SYMBOL(dlci_ioctl_set);
827
828 /*
829 * With an ioctl, arg may well be a user mode pointer, but we don't know
830 * what to do with it - that's up to the protocol still.
831 */
832
833 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
834 {
835 struct socket *sock;
836 void __user *argp = (void __user *)arg;
837 int pid, err;
838
839 sock = file->private_data;
840 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
841 err = dev_ioctl(cmd, argp);
842 } else
843 #ifdef CONFIG_WIRELESS_EXT
844 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
845 err = dev_ioctl(cmd, argp);
846 } else
847 #endif /* CONFIG_WIRELESS_EXT */
848 switch (cmd) {
849 case FIOSETOWN:
850 case SIOCSPGRP:
851 err = -EFAULT;
852 if (get_user(pid, (int __user *)argp))
853 break;
854 err = f_setown(sock->file, pid, 1);
855 break;
856 case FIOGETOWN:
857 case SIOCGPGRP:
858 err = put_user(f_getown(sock->file),
859 (int __user *)argp);
860 break;
861 case SIOCGIFBR:
862 case SIOCSIFBR:
863 case SIOCBRADDBR:
864 case SIOCBRDELBR:
865 err = -ENOPKG;
866 if (!br_ioctl_hook)
867 request_module("bridge");
868
869 mutex_lock(&br_ioctl_mutex);
870 if (br_ioctl_hook)
871 err = br_ioctl_hook(cmd, argp);
872 mutex_unlock(&br_ioctl_mutex);
873 break;
874 case SIOCGIFVLAN:
875 case SIOCSIFVLAN:
876 err = -ENOPKG;
877 if (!vlan_ioctl_hook)
878 request_module("8021q");
879
880 mutex_lock(&vlan_ioctl_mutex);
881 if (vlan_ioctl_hook)
882 err = vlan_ioctl_hook(argp);
883 mutex_unlock(&vlan_ioctl_mutex);
884 break;
885 case SIOCADDDLCI:
886 case SIOCDELDLCI:
887 err = -ENOPKG;
888 if (!dlci_ioctl_hook)
889 request_module("dlci");
890
891 if (dlci_ioctl_hook) {
892 mutex_lock(&dlci_ioctl_mutex);
893 err = dlci_ioctl_hook(cmd, argp);
894 mutex_unlock(&dlci_ioctl_mutex);
895 }
896 break;
897 default:
898 err = sock->ops->ioctl(sock, cmd, arg);
899
900 /*
901 * If this ioctl is unknown try to hand it down
902 * to the NIC driver.
903 */
904 if (err == -ENOIOCTLCMD)
905 err = dev_ioctl(cmd, argp);
906 break;
907 }
908 return err;
909 }
910
911 int sock_create_lite(int family, int type, int protocol, struct socket **res)
912 {
913 int err;
914 struct socket *sock = NULL;
915
916 err = security_socket_create(family, type, protocol, 1);
917 if (err)
918 goto out;
919
920 sock = sock_alloc();
921 if (!sock) {
922 err = -ENOMEM;
923 goto out;
924 }
925
926 sock->type = type;
927 err = security_socket_post_create(sock, family, type, protocol, 1);
928 if (err)
929 goto out_release;
930
931 out:
932 *res = sock;
933 return err;
934 out_release:
935 sock_release(sock);
936 sock = NULL;
937 goto out;
938 }
939
940 /* No kernel lock held - perfect */
941 static unsigned int sock_poll(struct file *file, poll_table *wait)
942 {
943 struct socket *sock;
944
945 /*
946 * We can't return errors to poll, so it's either yes or no.
947 */
948 sock = file->private_data;
949 return sock->ops->poll(file, sock, wait);
950 }
951
952 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
953 {
954 struct socket *sock = file->private_data;
955
956 return sock->ops->mmap(file, sock, vma);
957 }
958
959 static int sock_close(struct inode *inode, struct file *filp)
960 {
961 /*
962 * It was possible the inode is NULL we were
963 * closing an unfinished socket.
964 */
965
966 if (!inode) {
967 printk(KERN_DEBUG "sock_close: NULL inode\n");
968 return 0;
969 }
970 sock_fasync(-1, filp, 0);
971 sock_release(SOCKET_I(inode));
972 return 0;
973 }
974
975 /*
976 * Update the socket async list
977 *
978 * Fasync_list locking strategy.
979 *
980 * 1. fasync_list is modified only under process context socket lock
981 * i.e. under semaphore.
982 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
983 * or under socket lock.
984 * 3. fasync_list can be used from softirq context, so that
985 * modification under socket lock have to be enhanced with
986 * write_lock_bh(&sk->sk_callback_lock).
987 * --ANK (990710)
988 */
989
990 static int sock_fasync(int fd, struct file *filp, int on)
991 {
992 struct fasync_struct *fa, *fna = NULL, **prev;
993 struct socket *sock;
994 struct sock *sk;
995
996 if (on) {
997 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
998 if (fna == NULL)
999 return -ENOMEM;
1000 }
1001
1002 sock = filp->private_data;
1003
1004 sk = sock->sk;
1005 if (sk == NULL) {
1006 kfree(fna);
1007 return -EINVAL;
1008 }
1009
1010 lock_sock(sk);
1011
1012 prev = &(sock->fasync_list);
1013
1014 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1015 if (fa->fa_file == filp)
1016 break;
1017
1018 if (on) {
1019 if (fa != NULL) {
1020 write_lock_bh(&sk->sk_callback_lock);
1021 fa->fa_fd = fd;
1022 write_unlock_bh(&sk->sk_callback_lock);
1023
1024 kfree(fna);
1025 goto out;
1026 }
1027 fna->fa_file = filp;
1028 fna->fa_fd = fd;
1029 fna->magic = FASYNC_MAGIC;
1030 fna->fa_next = sock->fasync_list;
1031 write_lock_bh(&sk->sk_callback_lock);
1032 sock->fasync_list = fna;
1033 write_unlock_bh(&sk->sk_callback_lock);
1034 } else {
1035 if (fa != NULL) {
1036 write_lock_bh(&sk->sk_callback_lock);
1037 *prev = fa->fa_next;
1038 write_unlock_bh(&sk->sk_callback_lock);
1039 kfree(fa);
1040 }
1041 }
1042
1043 out:
1044 release_sock(sock->sk);
1045 return 0;
1046 }
1047
1048 /* This function may be called only under socket lock or callback_lock */
1049
1050 int sock_wake_async(struct socket *sock, int how, int band)
1051 {
1052 if (!sock || !sock->fasync_list)
1053 return -1;
1054 switch (how) {
1055 case 1:
1056
1057 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1058 break;
1059 goto call_kill;
1060 case 2:
1061 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1062 break;
1063 /* fall through */
1064 case 0:
1065 call_kill:
1066 __kill_fasync(sock->fasync_list, SIGIO, band);
1067 break;
1068 case 3:
1069 __kill_fasync(sock->fasync_list, SIGURG, band);
1070 }
1071 return 0;
1072 }
1073
1074 static int __sock_create(int family, int type, int protocol,
1075 struct socket **res, int kern)
1076 {
1077 int err;
1078 struct socket *sock;
1079 const struct net_proto_family *pf;
1080
1081 /*
1082 * Check protocol is in range
1083 */
1084 if (family < 0 || family >= NPROTO)
1085 return -EAFNOSUPPORT;
1086 if (type < 0 || type >= SOCK_MAX)
1087 return -EINVAL;
1088
1089 /* Compatibility.
1090
1091 This uglymoron is moved from INET layer to here to avoid
1092 deadlock in module load.
1093 */
1094 if (family == PF_INET && type == SOCK_PACKET) {
1095 static int warned;
1096 if (!warned) {
1097 warned = 1;
1098 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1099 current->comm);
1100 }
1101 family = PF_PACKET;
1102 }
1103
1104 err = security_socket_create(family, type, protocol, kern);
1105 if (err)
1106 return err;
1107
1108 /*
1109 * Allocate the socket and allow the family to set things up. if
1110 * the protocol is 0, the family is instructed to select an appropriate
1111 * default.
1112 */
1113 sock = sock_alloc();
1114 if (!sock) {
1115 if (net_ratelimit())
1116 printk(KERN_WARNING "socket: no more sockets\n");
1117 return -ENFILE; /* Not exactly a match, but its the
1118 closest posix thing */
1119 }
1120
1121 sock->type = type;
1122
1123 #if defined(CONFIG_KMOD)
1124 /* Attempt to load a protocol module if the find failed.
1125 *
1126 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1127 * requested real, full-featured networking support upon configuration.
1128 * Otherwise module support will break!
1129 */
1130 if (net_families[family] == NULL)
1131 request_module("net-pf-%d", family);
1132 #endif
1133
1134 rcu_read_lock();
1135 pf = rcu_dereference(net_families[family]);
1136 err = -EAFNOSUPPORT;
1137 if (!pf)
1138 goto out_release;
1139
1140 /*
1141 * We will call the ->create function, that possibly is in a loadable
1142 * module, so we have to bump that loadable module refcnt first.
1143 */
1144 if (!try_module_get(pf->owner))
1145 goto out_release;
1146
1147 /* Now protected by module ref count */
1148 rcu_read_unlock();
1149
1150 err = pf->create(sock, protocol);
1151 if (err < 0)
1152 goto out_module_put;
1153
1154 /*
1155 * Now to bump the refcnt of the [loadable] module that owns this
1156 * socket at sock_release time we decrement its refcnt.
1157 */
1158 if (!try_module_get(sock->ops->owner))
1159 goto out_module_busy;
1160
1161 /*
1162 * Now that we're done with the ->create function, the [loadable]
1163 * module can have its refcnt decremented
1164 */
1165 module_put(pf->owner);
1166 err = security_socket_post_create(sock, family, type, protocol, kern);
1167 if (err)
1168 goto out_sock_release;
1169 *res = sock;
1170
1171 return 0;
1172
1173 out_module_busy:
1174 err = -EAFNOSUPPORT;
1175 out_module_put:
1176 sock->ops = NULL;
1177 module_put(pf->owner);
1178 out_sock_release:
1179 sock_release(sock);
1180 return err;
1181
1182 out_release:
1183 rcu_read_unlock();
1184 goto out_sock_release;
1185 }
1186
1187 int sock_create(int family, int type, int protocol, struct socket **res)
1188 {
1189 return __sock_create(family, type, protocol, res, 0);
1190 }
1191
1192 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1193 {
1194 return __sock_create(family, type, protocol, res, 1);
1195 }
1196
1197 asmlinkage long sys_socket(int family, int type, int protocol)
1198 {
1199 int retval;
1200 struct socket *sock;
1201
1202 retval = sock_create(family, type, protocol, &sock);
1203 if (retval < 0)
1204 goto out;
1205
1206 retval = sock_map_fd(sock);
1207 if (retval < 0)
1208 goto out_release;
1209
1210 out:
1211 /* It may be already another descriptor 8) Not kernel problem. */
1212 return retval;
1213
1214 out_release:
1215 sock_release(sock);
1216 return retval;
1217 }
1218
1219 /*
1220 * Create a pair of connected sockets.
1221 */
1222
1223 asmlinkage long sys_socketpair(int family, int type, int protocol,
1224 int __user *usockvec)
1225 {
1226 struct socket *sock1, *sock2;
1227 int fd1, fd2, err;
1228 struct file *newfile1, *newfile2;
1229
1230 /*
1231 * Obtain the first socket and check if the underlying protocol
1232 * supports the socketpair call.
1233 */
1234
1235 err = sock_create(family, type, protocol, &sock1);
1236 if (err < 0)
1237 goto out;
1238
1239 err = sock_create(family, type, protocol, &sock2);
1240 if (err < 0)
1241 goto out_release_1;
1242
1243 err = sock1->ops->socketpair(sock1, sock2);
1244 if (err < 0)
1245 goto out_release_both;
1246
1247 fd1 = sock_alloc_fd(&newfile1);
1248 if (unlikely(fd1 < 0))
1249 goto out_release_both;
1250
1251 fd2 = sock_alloc_fd(&newfile2);
1252 if (unlikely(fd2 < 0)) {
1253 put_filp(newfile1);
1254 put_unused_fd(fd1);
1255 goto out_release_both;
1256 }
1257
1258 err = sock_attach_fd(sock1, newfile1);
1259 if (unlikely(err < 0)) {
1260 goto out_fd2;
1261 }
1262
1263 err = sock_attach_fd(sock2, newfile2);
1264 if (unlikely(err < 0)) {
1265 fput(newfile1);
1266 goto out_fd1;
1267 }
1268
1269 err = audit_fd_pair(fd1, fd2);
1270 if (err < 0) {
1271 fput(newfile1);
1272 fput(newfile2);
1273 goto out_fd;
1274 }
1275
1276 fd_install(fd1, newfile1);
1277 fd_install(fd2, newfile2);
1278 /* fd1 and fd2 may be already another descriptors.
1279 * Not kernel problem.
1280 */
1281
1282 err = put_user(fd1, &usockvec[0]);
1283 if (!err)
1284 err = put_user(fd2, &usockvec[1]);
1285 if (!err)
1286 return 0;
1287
1288 sys_close(fd2);
1289 sys_close(fd1);
1290 return err;
1291
1292 out_release_both:
1293 sock_release(sock2);
1294 out_release_1:
1295 sock_release(sock1);
1296 out:
1297 return err;
1298
1299 out_fd2:
1300 put_filp(newfile1);
1301 sock_release(sock1);
1302 out_fd1:
1303 put_filp(newfile2);
1304 sock_release(sock2);
1305 out_fd:
1306 put_unused_fd(fd1);
1307 put_unused_fd(fd2);
1308 goto out;
1309 }
1310
1311 /*
1312 * Bind a name to a socket. Nothing much to do here since it's
1313 * the protocol's responsibility to handle the local address.
1314 *
1315 * We move the socket address to kernel space before we call
1316 * the protocol layer (having also checked the address is ok).
1317 */
1318
1319 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1320 {
1321 struct socket *sock;
1322 char address[MAX_SOCK_ADDR];
1323 int err, fput_needed;
1324
1325 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1326 if (sock) {
1327 err = move_addr_to_kernel(umyaddr, addrlen, address);
1328 if (err >= 0) {
1329 err = security_socket_bind(sock,
1330 (struct sockaddr *)address,
1331 addrlen);
1332 if (!err)
1333 err = sock->ops->bind(sock,
1334 (struct sockaddr *)
1335 address, addrlen);
1336 }
1337 fput_light(sock->file, fput_needed);
1338 }
1339 return err;
1340 }
1341
1342 /*
1343 * Perform a listen. Basically, we allow the protocol to do anything
1344 * necessary for a listen, and if that works, we mark the socket as
1345 * ready for listening.
1346 */
1347
1348 int sysctl_somaxconn __read_mostly = SOMAXCONN;
1349
1350 asmlinkage long sys_listen(int fd, int backlog)
1351 {
1352 struct socket *sock;
1353 int err, fput_needed;
1354
1355 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1356 if (sock) {
1357 if ((unsigned)backlog > sysctl_somaxconn)
1358 backlog = sysctl_somaxconn;
1359
1360 err = security_socket_listen(sock, backlog);
1361 if (!err)
1362 err = sock->ops->listen(sock, backlog);
1363
1364 fput_light(sock->file, fput_needed);
1365 }
1366 return err;
1367 }
1368
1369 /*
1370 * For accept, we attempt to create a new socket, set up the link
1371 * with the client, wake up the client, then return the new
1372 * connected fd. We collect the address of the connector in kernel
1373 * space and move it to user at the very end. This is unclean because
1374 * we open the socket then return an error.
1375 *
1376 * 1003.1g adds the ability to recvmsg() to query connection pending
1377 * status to recvmsg. We need to add that support in a way thats
1378 * clean when we restucture accept also.
1379 */
1380
1381 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1382 int __user *upeer_addrlen)
1383 {
1384 struct socket *sock, *newsock;
1385 struct file *newfile;
1386 int err, len, newfd, fput_needed;
1387 char address[MAX_SOCK_ADDR];
1388
1389 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1390 if (!sock)
1391 goto out;
1392
1393 err = -ENFILE;
1394 if (!(newsock = sock_alloc()))
1395 goto out_put;
1396
1397 newsock->type = sock->type;
1398 newsock->ops = sock->ops;
1399
1400 /*
1401 * We don't need try_module_get here, as the listening socket (sock)
1402 * has the protocol module (sock->ops->owner) held.
1403 */
1404 __module_get(newsock->ops->owner);
1405
1406 newfd = sock_alloc_fd(&newfile);
1407 if (unlikely(newfd < 0)) {
1408 err = newfd;
1409 sock_release(newsock);
1410 goto out_put;
1411 }
1412
1413 err = sock_attach_fd(newsock, newfile);
1414 if (err < 0)
1415 goto out_fd_simple;
1416
1417 err = security_socket_accept(sock, newsock);
1418 if (err)
1419 goto out_fd;
1420
1421 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1422 if (err < 0)
1423 goto out_fd;
1424
1425 if (upeer_sockaddr) {
1426 if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1427 &len, 2) < 0) {
1428 err = -ECONNABORTED;
1429 goto out_fd;
1430 }
1431 err = move_addr_to_user(address, len, upeer_sockaddr,
1432 upeer_addrlen);
1433 if (err < 0)
1434 goto out_fd;
1435 }
1436
1437 /* File flags are not inherited via accept() unlike another OSes. */
1438
1439 fd_install(newfd, newfile);
1440 err = newfd;
1441
1442 security_socket_post_accept(sock, newsock);
1443
1444 out_put:
1445 fput_light(sock->file, fput_needed);
1446 out:
1447 return err;
1448 out_fd_simple:
1449 sock_release(newsock);
1450 put_filp(newfile);
1451 put_unused_fd(newfd);
1452 goto out_put;
1453 out_fd:
1454 fput(newfile);
1455 put_unused_fd(newfd);
1456 goto out_put;
1457 }
1458
1459 /*
1460 * Attempt to connect to a socket with the server address. The address
1461 * is in user space so we verify it is OK and move it to kernel space.
1462 *
1463 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1464 * break bindings
1465 *
1466 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1467 * other SEQPACKET protocols that take time to connect() as it doesn't
1468 * include the -EINPROGRESS status for such sockets.
1469 */
1470
1471 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1472 int addrlen)
1473 {
1474 struct socket *sock;
1475 char address[MAX_SOCK_ADDR];
1476 int err, fput_needed;
1477
1478 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1479 if (!sock)
1480 goto out;
1481 err = move_addr_to_kernel(uservaddr, addrlen, address);
1482 if (err < 0)
1483 goto out_put;
1484
1485 err =
1486 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1487 if (err)
1488 goto out_put;
1489
1490 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1491 sock->file->f_flags);
1492 out_put:
1493 fput_light(sock->file, fput_needed);
1494 out:
1495 return err;
1496 }
1497
1498 /*
1499 * Get the local address ('name') of a socket object. Move the obtained
1500 * name to user space.
1501 */
1502
1503 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1504 int __user *usockaddr_len)
1505 {
1506 struct socket *sock;
1507 char address[MAX_SOCK_ADDR];
1508 int len, err, fput_needed;
1509
1510 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1511 if (!sock)
1512 goto out;
1513
1514 err = security_socket_getsockname(sock);
1515 if (err)
1516 goto out_put;
1517
1518 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1519 if (err)
1520 goto out_put;
1521 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1522
1523 out_put:
1524 fput_light(sock->file, fput_needed);
1525 out:
1526 return err;
1527 }
1528
1529 /*
1530 * Get the remote address ('name') of a socket object. Move the obtained
1531 * name to user space.
1532 */
1533
1534 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1535 int __user *usockaddr_len)
1536 {
1537 struct socket *sock;
1538 char address[MAX_SOCK_ADDR];
1539 int len, err, fput_needed;
1540
1541 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1542 if (sock != NULL) {
1543 err = security_socket_getpeername(sock);
1544 if (err) {
1545 fput_light(sock->file, fput_needed);
1546 return err;
1547 }
1548
1549 err =
1550 sock->ops->getname(sock, (struct sockaddr *)address, &len,
1551 1);
1552 if (!err)
1553 err = move_addr_to_user(address, len, usockaddr,
1554 usockaddr_len);
1555 fput_light(sock->file, fput_needed);
1556 }
1557 return err;
1558 }
1559
1560 /*
1561 * Send a datagram to a given address. We move the address into kernel
1562 * space and check the user space data area is readable before invoking
1563 * the protocol.
1564 */
1565
1566 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1567 unsigned flags, struct sockaddr __user *addr,
1568 int addr_len)
1569 {
1570 struct socket *sock;
1571 char address[MAX_SOCK_ADDR];
1572 int err;
1573 struct msghdr msg;
1574 struct iovec iov;
1575 int fput_needed;
1576 struct file *sock_file;
1577
1578 sock_file = fget_light(fd, &fput_needed);
1579 err = -EBADF;
1580 if (!sock_file)
1581 goto out;
1582
1583 sock = sock_from_file(sock_file, &err);
1584 if (!sock)
1585 goto out_put;
1586 iov.iov_base = buff;
1587 iov.iov_len = len;
1588 msg.msg_name = NULL;
1589 msg.msg_iov = &iov;
1590 msg.msg_iovlen = 1;
1591 msg.msg_control = NULL;
1592 msg.msg_controllen = 0;
1593 msg.msg_namelen = 0;
1594 if (addr) {
1595 err = move_addr_to_kernel(addr, addr_len, address);
1596 if (err < 0)
1597 goto out_put;
1598 msg.msg_name = address;
1599 msg.msg_namelen = addr_len;
1600 }
1601 if (sock->file->f_flags & O_NONBLOCK)
1602 flags |= MSG_DONTWAIT;
1603 msg.msg_flags = flags;
1604 err = sock_sendmsg(sock, &msg, len);
1605
1606 out_put:
1607 fput_light(sock_file, fput_needed);
1608 out:
1609 return err;
1610 }
1611
1612 /*
1613 * Send a datagram down a socket.
1614 */
1615
1616 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1617 {
1618 return sys_sendto(fd, buff, len, flags, NULL, 0);
1619 }
1620
1621 /*
1622 * Receive a frame from the socket and optionally record the address of the
1623 * sender. We verify the buffers are writable and if needed move the
1624 * sender address from kernel to user space.
1625 */
1626
1627 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1628 unsigned flags, struct sockaddr __user *addr,
1629 int __user *addr_len)
1630 {
1631 struct socket *sock;
1632 struct iovec iov;
1633 struct msghdr msg;
1634 char address[MAX_SOCK_ADDR];
1635 int err, err2;
1636 struct file *sock_file;
1637 int fput_needed;
1638
1639 sock_file = fget_light(fd, &fput_needed);
1640 err = -EBADF;
1641 if (!sock_file)
1642 goto out;
1643
1644 sock = sock_from_file(sock_file, &err);
1645 if (!sock)
1646 goto out_put;
1647
1648 msg.msg_control = NULL;
1649 msg.msg_controllen = 0;
1650 msg.msg_iovlen = 1;
1651 msg.msg_iov = &iov;
1652 iov.iov_len = size;
1653 iov.iov_base = ubuf;
1654 msg.msg_name = address;
1655 msg.msg_namelen = MAX_SOCK_ADDR;
1656 if (sock->file->f_flags & O_NONBLOCK)
1657 flags |= MSG_DONTWAIT;
1658 err = sock_recvmsg(sock, &msg, size, flags);
1659
1660 if (err >= 0 && addr != NULL) {
1661 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1662 if (err2 < 0)
1663 err = err2;
1664 }
1665 out_put:
1666 fput_light(sock_file, fput_needed);
1667 out:
1668 return err;
1669 }
1670
1671 /*
1672 * Receive a datagram from a socket.
1673 */
1674
1675 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1676 unsigned flags)
1677 {
1678 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1679 }
1680
1681 /*
1682 * Set a socket option. Because we don't know the option lengths we have
1683 * to pass the user mode parameter for the protocols to sort out.
1684 */
1685
1686 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1687 char __user *optval, int optlen)
1688 {
1689 int err, fput_needed;
1690 struct socket *sock;
1691
1692 if (optlen < 0)
1693 return -EINVAL;
1694
1695 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1696 if (sock != NULL) {
1697 err = security_socket_setsockopt(sock, level, optname);
1698 if (err)
1699 goto out_put;
1700
1701 if (level == SOL_SOCKET)
1702 err =
1703 sock_setsockopt(sock, level, optname, optval,
1704 optlen);
1705 else
1706 err =
1707 sock->ops->setsockopt(sock, level, optname, optval,
1708 optlen);
1709 out_put:
1710 fput_light(sock->file, fput_needed);
1711 }
1712 return err;
1713 }
1714
1715 /*
1716 * Get a socket option. Because we don't know the option lengths we have
1717 * to pass a user mode parameter for the protocols to sort out.
1718 */
1719
1720 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1721 char __user *optval, int __user *optlen)
1722 {
1723 int err, fput_needed;
1724 struct socket *sock;
1725
1726 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1727 if (sock != NULL) {
1728 err = security_socket_getsockopt(sock, level, optname);
1729 if (err)
1730 goto out_put;
1731
1732 if (level == SOL_SOCKET)
1733 err =
1734 sock_getsockopt(sock, level, optname, optval,
1735 optlen);
1736 else
1737 err =
1738 sock->ops->getsockopt(sock, level, optname, optval,
1739 optlen);
1740 out_put:
1741 fput_light(sock->file, fput_needed);
1742 }
1743 return err;
1744 }
1745
1746 /*
1747 * Shutdown a socket.
1748 */
1749
1750 asmlinkage long sys_shutdown(int fd, int how)
1751 {
1752 int err, fput_needed;
1753 struct socket *sock;
1754
1755 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1756 if (sock != NULL) {
1757 err = security_socket_shutdown(sock, how);
1758 if (!err)
1759 err = sock->ops->shutdown(sock, how);
1760 fput_light(sock->file, fput_needed);
1761 }
1762 return err;
1763 }
1764
1765 /* A couple of helpful macros for getting the address of the 32/64 bit
1766 * fields which are the same type (int / unsigned) on our platforms.
1767 */
1768 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1769 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1770 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1771
1772 /*
1773 * BSD sendmsg interface
1774 */
1775
1776 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1777 {
1778 struct compat_msghdr __user *msg_compat =
1779 (struct compat_msghdr __user *)msg;
1780 struct socket *sock;
1781 char address[MAX_SOCK_ADDR];
1782 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1783 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1784 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1785 /* 20 is size of ipv6_pktinfo */
1786 unsigned char *ctl_buf = ctl;
1787 struct msghdr msg_sys;
1788 int err, ctl_len, iov_size, total_len;
1789 int fput_needed;
1790
1791 err = -EFAULT;
1792 if (MSG_CMSG_COMPAT & flags) {
1793 if (get_compat_msghdr(&msg_sys, msg_compat))
1794 return -EFAULT;
1795 }
1796 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1797 return -EFAULT;
1798
1799 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1800 if (!sock)
1801 goto out;
1802
1803 /* do not move before msg_sys is valid */
1804 err = -EMSGSIZE;
1805 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1806 goto out_put;
1807
1808 /* Check whether to allocate the iovec area */
1809 err = -ENOMEM;
1810 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1811 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1812 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1813 if (!iov)
1814 goto out_put;
1815 }
1816
1817 /* This will also move the address data into kernel space */
1818 if (MSG_CMSG_COMPAT & flags) {
1819 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1820 } else
1821 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1822 if (err < 0)
1823 goto out_freeiov;
1824 total_len = err;
1825
1826 err = -ENOBUFS;
1827
1828 if (msg_sys.msg_controllen > INT_MAX)
1829 goto out_freeiov;
1830 ctl_len = msg_sys.msg_controllen;
1831 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1832 err =
1833 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1834 sizeof(ctl));
1835 if (err)
1836 goto out_freeiov;
1837 ctl_buf = msg_sys.msg_control;
1838 ctl_len = msg_sys.msg_controllen;
1839 } else if (ctl_len) {
1840 if (ctl_len > sizeof(ctl)) {
1841 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1842 if (ctl_buf == NULL)
1843 goto out_freeiov;
1844 }
1845 err = -EFAULT;
1846 /*
1847 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1848 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1849 * checking falls down on this.
1850 */
1851 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1852 ctl_len))
1853 goto out_freectl;
1854 msg_sys.msg_control = ctl_buf;
1855 }
1856 msg_sys.msg_flags = flags;
1857
1858 if (sock->file->f_flags & O_NONBLOCK)
1859 msg_sys.msg_flags |= MSG_DONTWAIT;
1860 err = sock_sendmsg(sock, &msg_sys, total_len);
1861
1862 out_freectl:
1863 if (ctl_buf != ctl)
1864 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1865 out_freeiov:
1866 if (iov != iovstack)
1867 sock_kfree_s(sock->sk, iov, iov_size);
1868 out_put:
1869 fput_light(sock->file, fput_needed);
1870 out:
1871 return err;
1872 }
1873
1874 /*
1875 * BSD recvmsg interface
1876 */
1877
1878 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1879 unsigned int flags)
1880 {
1881 struct compat_msghdr __user *msg_compat =
1882 (struct compat_msghdr __user *)msg;
1883 struct socket *sock;
1884 struct iovec iovstack[UIO_FASTIOV];
1885 struct iovec *iov = iovstack;
1886 struct msghdr msg_sys;
1887 unsigned long cmsg_ptr;
1888 int err, iov_size, total_len, len;
1889 int fput_needed;
1890
1891 /* kernel mode address */
1892 char addr[MAX_SOCK_ADDR];
1893
1894 /* user mode address pointers */
1895 struct sockaddr __user *uaddr;
1896 int __user *uaddr_len;
1897
1898 if (MSG_CMSG_COMPAT & flags) {
1899 if (get_compat_msghdr(&msg_sys, msg_compat))
1900 return -EFAULT;
1901 }
1902 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1903 return -EFAULT;
1904
1905 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1906 if (!sock)
1907 goto out;
1908
1909 err = -EMSGSIZE;
1910 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1911 goto out_put;
1912
1913 /* Check whether to allocate the iovec area */
1914 err = -ENOMEM;
1915 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1916 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1917 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1918 if (!iov)
1919 goto out_put;
1920 }
1921
1922 /*
1923 * Save the user-mode address (verify_iovec will change the
1924 * kernel msghdr to use the kernel address space)
1925 */
1926
1927 uaddr = (void __user *)msg_sys.msg_name;
1928 uaddr_len = COMPAT_NAMELEN(msg);
1929 if (MSG_CMSG_COMPAT & flags) {
1930 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1931 } else
1932 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1933 if (err < 0)
1934 goto out_freeiov;
1935 total_len = err;
1936
1937 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1938 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
1939
1940 if (sock->file->f_flags & O_NONBLOCK)
1941 flags |= MSG_DONTWAIT;
1942 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1943 if (err < 0)
1944 goto out_freeiov;
1945 len = err;
1946
1947 if (uaddr != NULL) {
1948 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1949 uaddr_len);
1950 if (err < 0)
1951 goto out_freeiov;
1952 }
1953 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1954 COMPAT_FLAGS(msg));
1955 if (err)
1956 goto out_freeiov;
1957 if (MSG_CMSG_COMPAT & flags)
1958 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1959 &msg_compat->msg_controllen);
1960 else
1961 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1962 &msg->msg_controllen);
1963 if (err)
1964 goto out_freeiov;
1965 err = len;
1966
1967 out_freeiov:
1968 if (iov != iovstack)
1969 sock_kfree_s(sock->sk, iov, iov_size);
1970 out_put:
1971 fput_light(sock->file, fput_needed);
1972 out:
1973 return err;
1974 }
1975
1976 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1977
1978 /* Argument list sizes for sys_socketcall */
1979 #define AL(x) ((x) * sizeof(unsigned long))
1980 static const unsigned char nargs[18]={
1981 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1982 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1983 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1984 };
1985
1986 #undef AL
1987
1988 /*
1989 * System call vectors.
1990 *
1991 * Argument checking cleaned up. Saved 20% in size.
1992 * This function doesn't need to set the kernel lock because
1993 * it is set by the callees.
1994 */
1995
1996 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1997 {
1998 unsigned long a[6];
1999 unsigned long a0, a1;
2000 int err;
2001
2002 if (call < 1 || call > SYS_RECVMSG)
2003 return -EINVAL;
2004
2005 /* copy_from_user should be SMP safe. */
2006 if (copy_from_user(a, args, nargs[call]))
2007 return -EFAULT;
2008
2009 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2010 if (err)
2011 return err;
2012
2013 a0 = a[0];
2014 a1 = a[1];
2015
2016 switch (call) {
2017 case SYS_SOCKET:
2018 err = sys_socket(a0, a1, a[2]);
2019 break;
2020 case SYS_BIND:
2021 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2022 break;
2023 case SYS_CONNECT:
2024 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2025 break;
2026 case SYS_LISTEN:
2027 err = sys_listen(a0, a1);
2028 break;
2029 case SYS_ACCEPT:
2030 err =
2031 sys_accept(a0, (struct sockaddr __user *)a1,
2032 (int __user *)a[2]);
2033 break;
2034 case SYS_GETSOCKNAME:
2035 err =
2036 sys_getsockname(a0, (struct sockaddr __user *)a1,
2037 (int __user *)a[2]);
2038 break;
2039 case SYS_GETPEERNAME:
2040 err =
2041 sys_getpeername(a0, (struct sockaddr __user *)a1,
2042 (int __user *)a[2]);
2043 break;
2044 case SYS_SOCKETPAIR:
2045 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2046 break;
2047 case SYS_SEND:
2048 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2049 break;
2050 case SYS_SENDTO:
2051 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2052 (struct sockaddr __user *)a[4], a[5]);
2053 break;
2054 case SYS_RECV:
2055 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2056 break;
2057 case SYS_RECVFROM:
2058 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2059 (struct sockaddr __user *)a[4],
2060 (int __user *)a[5]);
2061 break;
2062 case SYS_SHUTDOWN:
2063 err = sys_shutdown(a0, a1);
2064 break;
2065 case SYS_SETSOCKOPT:
2066 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2067 break;
2068 case SYS_GETSOCKOPT:
2069 err =
2070 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2071 (int __user *)a[4]);
2072 break;
2073 case SYS_SENDMSG:
2074 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2075 break;
2076 case SYS_RECVMSG:
2077 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2078 break;
2079 default:
2080 err = -EINVAL;
2081 break;
2082 }
2083 return err;
2084 }
2085
2086 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2087
2088 /**
2089 * sock_register - add a socket protocol handler
2090 * @ops: description of protocol
2091 *
2092 * This function is called by a protocol handler that wants to
2093 * advertise its address family, and have it linked into the
2094 * socket interface. The value ops->family coresponds to the
2095 * socket system call protocol family.
2096 */
2097 int sock_register(const struct net_proto_family *ops)
2098 {
2099 int err;
2100
2101 if (ops->family >= NPROTO) {
2102 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2103 NPROTO);
2104 return -ENOBUFS;
2105 }
2106
2107 spin_lock(&net_family_lock);
2108 if (net_families[ops->family])
2109 err = -EEXIST;
2110 else {
2111 net_families[ops->family] = ops;
2112 err = 0;
2113 }
2114 spin_unlock(&net_family_lock);
2115
2116 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2117 return err;
2118 }
2119
2120 /**
2121 * sock_unregister - remove a protocol handler
2122 * @family: protocol family to remove
2123 *
2124 * This function is called by a protocol handler that wants to
2125 * remove its address family, and have it unlinked from the
2126 * new socket creation.
2127 *
2128 * If protocol handler is a module, then it can use module reference
2129 * counts to protect against new references. If protocol handler is not
2130 * a module then it needs to provide its own protection in
2131 * the ops->create routine.
2132 */
2133 void sock_unregister(int family)
2134 {
2135 BUG_ON(family < 0 || family >= NPROTO);
2136
2137 spin_lock(&net_family_lock);
2138 net_families[family] = NULL;
2139 spin_unlock(&net_family_lock);
2140
2141 synchronize_rcu();
2142
2143 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2144 }
2145
2146 static int __init sock_init(void)
2147 {
2148 /*
2149 * Initialize sock SLAB cache.
2150 */
2151
2152 sk_init();
2153
2154 /*
2155 * Initialize skbuff SLAB cache
2156 */
2157 skb_init();
2158
2159 /*
2160 * Initialize the protocols module.
2161 */
2162
2163 init_inodecache();
2164 register_filesystem(&sock_fs_type);
2165 sock_mnt = kern_mount(&sock_fs_type);
2166
2167 /* The real protocol initialization is performed in later initcalls.
2168 */
2169
2170 #ifdef CONFIG_NETFILTER
2171 netfilter_init();
2172 #endif
2173
2174 return 0;
2175 }
2176
2177 core_initcall(sock_init); /* early initcall */
2178
2179 #ifdef CONFIG_PROC_FS
2180 void socket_seq_show(struct seq_file *seq)
2181 {
2182 int cpu;
2183 int counter = 0;
2184
2185 for_each_possible_cpu(cpu)
2186 counter += per_cpu(sockets_in_use, cpu);
2187
2188 /* It can be negative, by the way. 8) */
2189 if (counter < 0)
2190 counter = 0;
2191
2192 seq_printf(seq, "sockets: used %d\n", counter);
2193 }
2194 #endif /* CONFIG_PROC_FS */
2195
2196 #ifdef CONFIG_COMPAT
2197 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2198 unsigned long arg)
2199 {
2200 struct socket *sock = file->private_data;
2201 int ret = -ENOIOCTLCMD;
2202
2203 if (sock->ops->compat_ioctl)
2204 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2205
2206 return ret;
2207 }
2208 #endif
2209
2210 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2211 {
2212 return sock->ops->bind(sock, addr, addrlen);
2213 }
2214
2215 int kernel_listen(struct socket *sock, int backlog)
2216 {
2217 return sock->ops->listen(sock, backlog);
2218 }
2219
2220 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2221 {
2222 struct sock *sk = sock->sk;
2223 int err;
2224
2225 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2226 newsock);
2227 if (err < 0)
2228 goto done;
2229
2230 err = sock->ops->accept(sock, *newsock, flags);
2231 if (err < 0) {
2232 sock_release(*newsock);
2233 goto done;
2234 }
2235
2236 (*newsock)->ops = sock->ops;
2237
2238 done:
2239 return err;
2240 }
2241
2242 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2243 int flags)
2244 {
2245 return sock->ops->connect(sock, addr, addrlen, flags);
2246 }
2247
2248 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2249 int *addrlen)
2250 {
2251 return sock->ops->getname(sock, addr, addrlen, 0);
2252 }
2253
2254 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2255 int *addrlen)
2256 {
2257 return sock->ops->getname(sock, addr, addrlen, 1);
2258 }
2259
2260 int kernel_getsockopt(struct socket *sock, int level, int optname,
2261 char *optval, int *optlen)
2262 {
2263 mm_segment_t oldfs = get_fs();
2264 int err;
2265
2266 set_fs(KERNEL_DS);
2267 if (level == SOL_SOCKET)
2268 err = sock_getsockopt(sock, level, optname, optval, optlen);
2269 else
2270 err = sock->ops->getsockopt(sock, level, optname, optval,
2271 optlen);
2272 set_fs(oldfs);
2273 return err;
2274 }
2275
2276 int kernel_setsockopt(struct socket *sock, int level, int optname,
2277 char *optval, int optlen)
2278 {
2279 mm_segment_t oldfs = get_fs();
2280 int err;
2281
2282 set_fs(KERNEL_DS);
2283 if (level == SOL_SOCKET)
2284 err = sock_setsockopt(sock, level, optname, optval, optlen);
2285 else
2286 err = sock->ops->setsockopt(sock, level, optname, optval,
2287 optlen);
2288 set_fs(oldfs);
2289 return err;
2290 }
2291
2292 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2293 size_t size, int flags)
2294 {
2295 if (sock->ops->sendpage)
2296 return sock->ops->sendpage(sock, page, offset, size, flags);
2297
2298 return sock_no_sendpage(sock, page, offset, size, flags);
2299 }
2300
2301 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2302 {
2303 mm_segment_t oldfs = get_fs();
2304 int err;
2305
2306 set_fs(KERNEL_DS);
2307 err = sock->ops->ioctl(sock, cmd, arg);
2308 set_fs(oldfs);
2309
2310 return err;
2311 }
2312
2313 /* ABI emulation layers need these two */
2314 EXPORT_SYMBOL(move_addr_to_kernel);
2315 EXPORT_SYMBOL(move_addr_to_user);
2316 EXPORT_SYMBOL(sock_create);
2317 EXPORT_SYMBOL(sock_create_kern);
2318 EXPORT_SYMBOL(sock_create_lite);
2319 EXPORT_SYMBOL(sock_map_fd);
2320 EXPORT_SYMBOL(sock_recvmsg);
2321 EXPORT_SYMBOL(sock_register);
2322 EXPORT_SYMBOL(sock_release);
2323 EXPORT_SYMBOL(sock_sendmsg);
2324 EXPORT_SYMBOL(sock_unregister);
2325 EXPORT_SYMBOL(sock_wake_async);
2326 EXPORT_SYMBOL(sockfd_lookup);
2327 EXPORT_SYMBOL(kernel_sendmsg);
2328 EXPORT_SYMBOL(kernel_recvmsg);
2329 EXPORT_SYMBOL(kernel_bind);
2330 EXPORT_SYMBOL(kernel_listen);
2331 EXPORT_SYMBOL(kernel_accept);
2332 EXPORT_SYMBOL(kernel_connect);
2333 EXPORT_SYMBOL(kernel_getsockname);
2334 EXPORT_SYMBOL(kernel_getpeername);
2335 EXPORT_SYMBOL(kernel_getsockopt);
2336 EXPORT_SYMBOL(kernel_setsockopt);
2337 EXPORT_SYMBOL(kernel_sendpage);
2338 EXPORT_SYMBOL(kernel_sock_ioctl);
This page took 0.081581 seconds and 6 git commands to generate.