flag parameters: NONBLOCK in socket and socketpair
[deliverable/linux.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/thread_info.h>
73 #include <linux/wanrouter.h>
74 #include <linux/if_bridge.h>
75 #include <linux/if_frad.h>
76 #include <linux/if_vlan.h>
77 #include <linux/init.h>
78 #include <linux/poll.h>
79 #include <linux/cache.h>
80 #include <linux/module.h>
81 #include <linux/highmem.h>
82 #include <linux/mount.h>
83 #include <linux/security.h>
84 #include <linux/syscalls.h>
85 #include <linux/compat.h>
86 #include <linux/kmod.h>
87 #include <linux/audit.h>
88 #include <linux/wireless.h>
89 #include <linux/nsproxy.h>
90
91 #include <asm/uaccess.h>
92 #include <asm/unistd.h>
93
94 #include <net/compat.h>
95 #include <net/wext.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
101 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
102 unsigned long nr_segs, loff_t pos);
103 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
104 unsigned long nr_segs, loff_t pos);
105 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
106
107 static int sock_close(struct inode *inode, struct file *file);
108 static unsigned int sock_poll(struct file *file,
109 struct poll_table_struct *wait);
110 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
111 #ifdef CONFIG_COMPAT
112 static long compat_sock_ioctl(struct file *file,
113 unsigned int cmd, unsigned long arg);
114 #endif
115 static int sock_fasync(int fd, struct file *filp, int on);
116 static ssize_t sock_sendpage(struct file *file, struct page *page,
117 int offset, size_t size, loff_t *ppos, int more);
118 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
119 struct pipe_inode_info *pipe, size_t len,
120 unsigned int flags);
121
122 /*
123 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
124 * in the operation structures but are done directly via the socketcall() multiplexor.
125 */
126
127 static const struct file_operations socket_file_ops = {
128 .owner = THIS_MODULE,
129 .llseek = no_llseek,
130 .aio_read = sock_aio_read,
131 .aio_write = sock_aio_write,
132 .poll = sock_poll,
133 .unlocked_ioctl = sock_ioctl,
134 #ifdef CONFIG_COMPAT
135 .compat_ioctl = compat_sock_ioctl,
136 #endif
137 .mmap = sock_mmap,
138 .open = sock_no_open, /* special open code to disallow open via /proc */
139 .release = sock_close,
140 .fasync = sock_fasync,
141 .sendpage = sock_sendpage,
142 .splice_write = generic_splice_sendpage,
143 .splice_read = sock_splice_read,
144 };
145
146 /*
147 * The protocol list. Each protocol is registered in here.
148 */
149
150 static DEFINE_SPINLOCK(net_family_lock);
151 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
152
153 /*
154 * Statistics counters of the socket lists
155 */
156
157 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
158
159 /*
160 * Support routines.
161 * Move socket addresses back and forth across the kernel/user
162 * divide and look after the messy bits.
163 */
164
165 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
166 16 for IP, 16 for IPX,
167 24 for IPv6,
168 about 80 for AX.25
169 must be at least one bigger than
170 the AF_UNIX size (see net/unix/af_unix.c
171 :unix_mkname()).
172 */
173
174 /**
175 * move_addr_to_kernel - copy a socket address into kernel space
176 * @uaddr: Address in user space
177 * @kaddr: Address in kernel space
178 * @ulen: Length in user space
179 *
180 * The address is copied into kernel space. If the provided address is
181 * too long an error code of -EINVAL is returned. If the copy gives
182 * invalid addresses -EFAULT is returned. On a success 0 is returned.
183 */
184
185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
186 {
187 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
188 return -EINVAL;
189 if (ulen == 0)
190 return 0;
191 if (copy_from_user(kaddr, uaddr, ulen))
192 return -EFAULT;
193 return audit_sockaddr(ulen, kaddr);
194 }
195
196 /**
197 * move_addr_to_user - copy an address to user space
198 * @kaddr: kernel space address
199 * @klen: length of address in kernel
200 * @uaddr: user space address
201 * @ulen: pointer to user length field
202 *
203 * The value pointed to by ulen on entry is the buffer length available.
204 * This is overwritten with the buffer space used. -EINVAL is returned
205 * if an overlong buffer is specified or a negative buffer size. -EFAULT
206 * is returned if either the buffer or the length field are not
207 * accessible.
208 * After copying the data up to the limit the user specifies, the true
209 * length of the data is written over the length limit the user
210 * specified. Zero is returned for a success.
211 */
212
213 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
214 int __user *ulen)
215 {
216 int err;
217 int len;
218
219 err = get_user(len, ulen);
220 if (err)
221 return err;
222 if (len > klen)
223 len = klen;
224 if (len < 0 || len > sizeof(struct sockaddr_storage))
225 return -EINVAL;
226 if (len) {
227 if (audit_sockaddr(klen, kaddr))
228 return -ENOMEM;
229 if (copy_to_user(uaddr, kaddr, len))
230 return -EFAULT;
231 }
232 /*
233 * "fromlen shall refer to the value before truncation.."
234 * 1003.1g
235 */
236 return __put_user(klen, ulen);
237 }
238
239 #define SOCKFS_MAGIC 0x534F434B
240
241 static struct kmem_cache *sock_inode_cachep __read_mostly;
242
243 static struct inode *sock_alloc_inode(struct super_block *sb)
244 {
245 struct socket_alloc *ei;
246
247 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
248 if (!ei)
249 return NULL;
250 init_waitqueue_head(&ei->socket.wait);
251
252 ei->socket.fasync_list = NULL;
253 ei->socket.state = SS_UNCONNECTED;
254 ei->socket.flags = 0;
255 ei->socket.ops = NULL;
256 ei->socket.sk = NULL;
257 ei->socket.file = NULL;
258
259 return &ei->vfs_inode;
260 }
261
262 static void sock_destroy_inode(struct inode *inode)
263 {
264 kmem_cache_free(sock_inode_cachep,
265 container_of(inode, struct socket_alloc, vfs_inode));
266 }
267
268 static void init_once(struct kmem_cache *cachep, void *foo)
269 {
270 struct socket_alloc *ei = (struct socket_alloc *)foo;
271
272 inode_init_once(&ei->vfs_inode);
273 }
274
275 static int init_inodecache(void)
276 {
277 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
278 sizeof(struct socket_alloc),
279 0,
280 (SLAB_HWCACHE_ALIGN |
281 SLAB_RECLAIM_ACCOUNT |
282 SLAB_MEM_SPREAD),
283 init_once);
284 if (sock_inode_cachep == NULL)
285 return -ENOMEM;
286 return 0;
287 }
288
289 static struct super_operations sockfs_ops = {
290 .alloc_inode = sock_alloc_inode,
291 .destroy_inode =sock_destroy_inode,
292 .statfs = simple_statfs,
293 };
294
295 static int sockfs_get_sb(struct file_system_type *fs_type,
296 int flags, const char *dev_name, void *data,
297 struct vfsmount *mnt)
298 {
299 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
300 mnt);
301 }
302
303 static struct vfsmount *sock_mnt __read_mostly;
304
305 static struct file_system_type sock_fs_type = {
306 .name = "sockfs",
307 .get_sb = sockfs_get_sb,
308 .kill_sb = kill_anon_super,
309 };
310
311 static int sockfs_delete_dentry(struct dentry *dentry)
312 {
313 /*
314 * At creation time, we pretended this dentry was hashed
315 * (by clearing DCACHE_UNHASHED bit in d_flags)
316 * At delete time, we restore the truth : not hashed.
317 * (so that dput() can proceed correctly)
318 */
319 dentry->d_flags |= DCACHE_UNHASHED;
320 return 0;
321 }
322
323 /*
324 * sockfs_dname() is called from d_path().
325 */
326 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
327 {
328 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
329 dentry->d_inode->i_ino);
330 }
331
332 static struct dentry_operations sockfs_dentry_operations = {
333 .d_delete = sockfs_delete_dentry,
334 .d_dname = sockfs_dname,
335 };
336
337 /*
338 * Obtains the first available file descriptor and sets it up for use.
339 *
340 * These functions create file structures and maps them to fd space
341 * of the current process. On success it returns file descriptor
342 * and file struct implicitly stored in sock->file.
343 * Note that another thread may close file descriptor before we return
344 * from this function. We use the fact that now we do not refer
345 * to socket after mapping. If one day we will need it, this
346 * function will increment ref. count on file by 1.
347 *
348 * In any case returned fd MAY BE not valid!
349 * This race condition is unavoidable
350 * with shared fd spaces, we cannot solve it inside kernel,
351 * but we take care of internal coherence yet.
352 */
353
354 static int sock_alloc_fd(struct file **filep, int flags)
355 {
356 int fd;
357
358 fd = get_unused_fd_flags(flags);
359 if (likely(fd >= 0)) {
360 struct file *file = get_empty_filp();
361
362 *filep = file;
363 if (unlikely(!file)) {
364 put_unused_fd(fd);
365 return -ENFILE;
366 }
367 } else
368 *filep = NULL;
369 return fd;
370 }
371
372 static int sock_attach_fd(struct socket *sock, struct file *file, int flags)
373 {
374 struct dentry *dentry;
375 struct qstr name = { .name = "" };
376
377 dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
378 if (unlikely(!dentry))
379 return -ENOMEM;
380
381 dentry->d_op = &sockfs_dentry_operations;
382 /*
383 * We dont want to push this dentry into global dentry hash table.
384 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
385 * This permits a working /proc/$pid/fd/XXX on sockets
386 */
387 dentry->d_flags &= ~DCACHE_UNHASHED;
388 d_instantiate(dentry, SOCK_INODE(sock));
389
390 sock->file = file;
391 init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
392 &socket_file_ops);
393 SOCK_INODE(sock)->i_fop = &socket_file_ops;
394 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
395 file->f_pos = 0;
396 file->private_data = sock;
397
398 return 0;
399 }
400
401 int sock_map_fd(struct socket *sock, int flags)
402 {
403 struct file *newfile;
404 int fd = sock_alloc_fd(&newfile, flags);
405
406 if (likely(fd >= 0)) {
407 int err = sock_attach_fd(sock, newfile, flags);
408
409 if (unlikely(err < 0)) {
410 put_filp(newfile);
411 put_unused_fd(fd);
412 return err;
413 }
414 fd_install(fd, newfile);
415 }
416 return fd;
417 }
418
419 static struct socket *sock_from_file(struct file *file, int *err)
420 {
421 if (file->f_op == &socket_file_ops)
422 return file->private_data; /* set in sock_map_fd */
423
424 *err = -ENOTSOCK;
425 return NULL;
426 }
427
428 /**
429 * sockfd_lookup - Go from a file number to its socket slot
430 * @fd: file handle
431 * @err: pointer to an error code return
432 *
433 * The file handle passed in is locked and the socket it is bound
434 * too is returned. If an error occurs the err pointer is overwritten
435 * with a negative errno code and NULL is returned. The function checks
436 * for both invalid handles and passing a handle which is not a socket.
437 *
438 * On a success the socket object pointer is returned.
439 */
440
441 struct socket *sockfd_lookup(int fd, int *err)
442 {
443 struct file *file;
444 struct socket *sock;
445
446 file = fget(fd);
447 if (!file) {
448 *err = -EBADF;
449 return NULL;
450 }
451
452 sock = sock_from_file(file, err);
453 if (!sock)
454 fput(file);
455 return sock;
456 }
457
458 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
459 {
460 struct file *file;
461 struct socket *sock;
462
463 *err = -EBADF;
464 file = fget_light(fd, fput_needed);
465 if (file) {
466 sock = sock_from_file(file, err);
467 if (sock)
468 return sock;
469 fput_light(file, *fput_needed);
470 }
471 return NULL;
472 }
473
474 /**
475 * sock_alloc - allocate a socket
476 *
477 * Allocate a new inode and socket object. The two are bound together
478 * and initialised. The socket is then returned. If we are out of inodes
479 * NULL is returned.
480 */
481
482 static struct socket *sock_alloc(void)
483 {
484 struct inode *inode;
485 struct socket *sock;
486
487 inode = new_inode(sock_mnt->mnt_sb);
488 if (!inode)
489 return NULL;
490
491 sock = SOCKET_I(inode);
492
493 inode->i_mode = S_IFSOCK | S_IRWXUGO;
494 inode->i_uid = current->fsuid;
495 inode->i_gid = current->fsgid;
496
497 get_cpu_var(sockets_in_use)++;
498 put_cpu_var(sockets_in_use);
499 return sock;
500 }
501
502 /*
503 * In theory you can't get an open on this inode, but /proc provides
504 * a back door. Remember to keep it shut otherwise you'll let the
505 * creepy crawlies in.
506 */
507
508 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
509 {
510 return -ENXIO;
511 }
512
513 const struct file_operations bad_sock_fops = {
514 .owner = THIS_MODULE,
515 .open = sock_no_open,
516 };
517
518 /**
519 * sock_release - close a socket
520 * @sock: socket to close
521 *
522 * The socket is released from the protocol stack if it has a release
523 * callback, and the inode is then released if the socket is bound to
524 * an inode not a file.
525 */
526
527 void sock_release(struct socket *sock)
528 {
529 if (sock->ops) {
530 struct module *owner = sock->ops->owner;
531
532 sock->ops->release(sock);
533 sock->ops = NULL;
534 module_put(owner);
535 }
536
537 if (sock->fasync_list)
538 printk(KERN_ERR "sock_release: fasync list not empty!\n");
539
540 get_cpu_var(sockets_in_use)--;
541 put_cpu_var(sockets_in_use);
542 if (!sock->file) {
543 iput(SOCK_INODE(sock));
544 return;
545 }
546 sock->file = NULL;
547 }
548
549 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
550 struct msghdr *msg, size_t size)
551 {
552 struct sock_iocb *si = kiocb_to_siocb(iocb);
553 int err;
554
555 si->sock = sock;
556 si->scm = NULL;
557 si->msg = msg;
558 si->size = size;
559
560 err = security_socket_sendmsg(sock, msg, size);
561 if (err)
562 return err;
563
564 return sock->ops->sendmsg(iocb, sock, msg, size);
565 }
566
567 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
568 {
569 struct kiocb iocb;
570 struct sock_iocb siocb;
571 int ret;
572
573 init_sync_kiocb(&iocb, NULL);
574 iocb.private = &siocb;
575 ret = __sock_sendmsg(&iocb, sock, msg, size);
576 if (-EIOCBQUEUED == ret)
577 ret = wait_on_sync_kiocb(&iocb);
578 return ret;
579 }
580
581 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
582 struct kvec *vec, size_t num, size_t size)
583 {
584 mm_segment_t oldfs = get_fs();
585 int result;
586
587 set_fs(KERNEL_DS);
588 /*
589 * the following is safe, since for compiler definitions of kvec and
590 * iovec are identical, yielding the same in-core layout and alignment
591 */
592 msg->msg_iov = (struct iovec *)vec;
593 msg->msg_iovlen = num;
594 result = sock_sendmsg(sock, msg, size);
595 set_fs(oldfs);
596 return result;
597 }
598
599 /*
600 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
601 */
602 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
603 struct sk_buff *skb)
604 {
605 ktime_t kt = skb->tstamp;
606
607 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
608 struct timeval tv;
609 /* Race occurred between timestamp enabling and packet
610 receiving. Fill in the current time for now. */
611 if (kt.tv64 == 0)
612 kt = ktime_get_real();
613 skb->tstamp = kt;
614 tv = ktime_to_timeval(kt);
615 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
616 } else {
617 struct timespec ts;
618 /* Race occurred between timestamp enabling and packet
619 receiving. Fill in the current time for now. */
620 if (kt.tv64 == 0)
621 kt = ktime_get_real();
622 skb->tstamp = kt;
623 ts = ktime_to_timespec(kt);
624 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
625 }
626 }
627
628 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
629
630 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
631 struct msghdr *msg, size_t size, int flags)
632 {
633 int err;
634 struct sock_iocb *si = kiocb_to_siocb(iocb);
635
636 si->sock = sock;
637 si->scm = NULL;
638 si->msg = msg;
639 si->size = size;
640 si->flags = flags;
641
642 err = security_socket_recvmsg(sock, msg, size, flags);
643 if (err)
644 return err;
645
646 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
647 }
648
649 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
650 size_t size, int flags)
651 {
652 struct kiocb iocb;
653 struct sock_iocb siocb;
654 int ret;
655
656 init_sync_kiocb(&iocb, NULL);
657 iocb.private = &siocb;
658 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
659 if (-EIOCBQUEUED == ret)
660 ret = wait_on_sync_kiocb(&iocb);
661 return ret;
662 }
663
664 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
665 struct kvec *vec, size_t num, size_t size, int flags)
666 {
667 mm_segment_t oldfs = get_fs();
668 int result;
669
670 set_fs(KERNEL_DS);
671 /*
672 * the following is safe, since for compiler definitions of kvec and
673 * iovec are identical, yielding the same in-core layout and alignment
674 */
675 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
676 result = sock_recvmsg(sock, msg, size, flags);
677 set_fs(oldfs);
678 return result;
679 }
680
681 static void sock_aio_dtor(struct kiocb *iocb)
682 {
683 kfree(iocb->private);
684 }
685
686 static ssize_t sock_sendpage(struct file *file, struct page *page,
687 int offset, size_t size, loff_t *ppos, int more)
688 {
689 struct socket *sock;
690 int flags;
691
692 sock = file->private_data;
693
694 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
695 if (more)
696 flags |= MSG_MORE;
697
698 return sock->ops->sendpage(sock, page, offset, size, flags);
699 }
700
701 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
702 struct pipe_inode_info *pipe, size_t len,
703 unsigned int flags)
704 {
705 struct socket *sock = file->private_data;
706
707 if (unlikely(!sock->ops->splice_read))
708 return -EINVAL;
709
710 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
711 }
712
713 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
714 struct sock_iocb *siocb)
715 {
716 if (!is_sync_kiocb(iocb)) {
717 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
718 if (!siocb)
719 return NULL;
720 iocb->ki_dtor = sock_aio_dtor;
721 }
722
723 siocb->kiocb = iocb;
724 iocb->private = siocb;
725 return siocb;
726 }
727
728 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
729 struct file *file, const struct iovec *iov,
730 unsigned long nr_segs)
731 {
732 struct socket *sock = file->private_data;
733 size_t size = 0;
734 int i;
735
736 for (i = 0; i < nr_segs; i++)
737 size += iov[i].iov_len;
738
739 msg->msg_name = NULL;
740 msg->msg_namelen = 0;
741 msg->msg_control = NULL;
742 msg->msg_controllen = 0;
743 msg->msg_iov = (struct iovec *)iov;
744 msg->msg_iovlen = nr_segs;
745 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
746
747 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
748 }
749
750 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
751 unsigned long nr_segs, loff_t pos)
752 {
753 struct sock_iocb siocb, *x;
754
755 if (pos != 0)
756 return -ESPIPE;
757
758 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
759 return 0;
760
761
762 x = alloc_sock_iocb(iocb, &siocb);
763 if (!x)
764 return -ENOMEM;
765 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
766 }
767
768 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
769 struct file *file, const struct iovec *iov,
770 unsigned long nr_segs)
771 {
772 struct socket *sock = file->private_data;
773 size_t size = 0;
774 int i;
775
776 for (i = 0; i < nr_segs; i++)
777 size += iov[i].iov_len;
778
779 msg->msg_name = NULL;
780 msg->msg_namelen = 0;
781 msg->msg_control = NULL;
782 msg->msg_controllen = 0;
783 msg->msg_iov = (struct iovec *)iov;
784 msg->msg_iovlen = nr_segs;
785 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
786 if (sock->type == SOCK_SEQPACKET)
787 msg->msg_flags |= MSG_EOR;
788
789 return __sock_sendmsg(iocb, sock, msg, size);
790 }
791
792 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
793 unsigned long nr_segs, loff_t pos)
794 {
795 struct sock_iocb siocb, *x;
796
797 if (pos != 0)
798 return -ESPIPE;
799
800 x = alloc_sock_iocb(iocb, &siocb);
801 if (!x)
802 return -ENOMEM;
803
804 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
805 }
806
807 /*
808 * Atomic setting of ioctl hooks to avoid race
809 * with module unload.
810 */
811
812 static DEFINE_MUTEX(br_ioctl_mutex);
813 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
814
815 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
816 {
817 mutex_lock(&br_ioctl_mutex);
818 br_ioctl_hook = hook;
819 mutex_unlock(&br_ioctl_mutex);
820 }
821
822 EXPORT_SYMBOL(brioctl_set);
823
824 static DEFINE_MUTEX(vlan_ioctl_mutex);
825 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
826
827 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
828 {
829 mutex_lock(&vlan_ioctl_mutex);
830 vlan_ioctl_hook = hook;
831 mutex_unlock(&vlan_ioctl_mutex);
832 }
833
834 EXPORT_SYMBOL(vlan_ioctl_set);
835
836 static DEFINE_MUTEX(dlci_ioctl_mutex);
837 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
838
839 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
840 {
841 mutex_lock(&dlci_ioctl_mutex);
842 dlci_ioctl_hook = hook;
843 mutex_unlock(&dlci_ioctl_mutex);
844 }
845
846 EXPORT_SYMBOL(dlci_ioctl_set);
847
848 /*
849 * With an ioctl, arg may well be a user mode pointer, but we don't know
850 * what to do with it - that's up to the protocol still.
851 */
852
853 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
854 {
855 struct socket *sock;
856 struct sock *sk;
857 void __user *argp = (void __user *)arg;
858 int pid, err;
859 struct net *net;
860
861 sock = file->private_data;
862 sk = sock->sk;
863 net = sock_net(sk);
864 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
865 err = dev_ioctl(net, cmd, argp);
866 } else
867 #ifdef CONFIG_WIRELESS_EXT
868 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
869 err = dev_ioctl(net, cmd, argp);
870 } else
871 #endif /* CONFIG_WIRELESS_EXT */
872 switch (cmd) {
873 case FIOSETOWN:
874 case SIOCSPGRP:
875 err = -EFAULT;
876 if (get_user(pid, (int __user *)argp))
877 break;
878 err = f_setown(sock->file, pid, 1);
879 break;
880 case FIOGETOWN:
881 case SIOCGPGRP:
882 err = put_user(f_getown(sock->file),
883 (int __user *)argp);
884 break;
885 case SIOCGIFBR:
886 case SIOCSIFBR:
887 case SIOCBRADDBR:
888 case SIOCBRDELBR:
889 err = -ENOPKG;
890 if (!br_ioctl_hook)
891 request_module("bridge");
892
893 mutex_lock(&br_ioctl_mutex);
894 if (br_ioctl_hook)
895 err = br_ioctl_hook(net, cmd, argp);
896 mutex_unlock(&br_ioctl_mutex);
897 break;
898 case SIOCGIFVLAN:
899 case SIOCSIFVLAN:
900 err = -ENOPKG;
901 if (!vlan_ioctl_hook)
902 request_module("8021q");
903
904 mutex_lock(&vlan_ioctl_mutex);
905 if (vlan_ioctl_hook)
906 err = vlan_ioctl_hook(net, argp);
907 mutex_unlock(&vlan_ioctl_mutex);
908 break;
909 case SIOCADDDLCI:
910 case SIOCDELDLCI:
911 err = -ENOPKG;
912 if (!dlci_ioctl_hook)
913 request_module("dlci");
914
915 mutex_lock(&dlci_ioctl_mutex);
916 if (dlci_ioctl_hook)
917 err = dlci_ioctl_hook(cmd, argp);
918 mutex_unlock(&dlci_ioctl_mutex);
919 break;
920 default:
921 err = sock->ops->ioctl(sock, cmd, arg);
922
923 /*
924 * If this ioctl is unknown try to hand it down
925 * to the NIC driver.
926 */
927 if (err == -ENOIOCTLCMD)
928 err = dev_ioctl(net, cmd, argp);
929 break;
930 }
931 return err;
932 }
933
934 int sock_create_lite(int family, int type, int protocol, struct socket **res)
935 {
936 int err;
937 struct socket *sock = NULL;
938
939 err = security_socket_create(family, type, protocol, 1);
940 if (err)
941 goto out;
942
943 sock = sock_alloc();
944 if (!sock) {
945 err = -ENOMEM;
946 goto out;
947 }
948
949 sock->type = type;
950 err = security_socket_post_create(sock, family, type, protocol, 1);
951 if (err)
952 goto out_release;
953
954 out:
955 *res = sock;
956 return err;
957 out_release:
958 sock_release(sock);
959 sock = NULL;
960 goto out;
961 }
962
963 /* No kernel lock held - perfect */
964 static unsigned int sock_poll(struct file *file, poll_table *wait)
965 {
966 struct socket *sock;
967
968 /*
969 * We can't return errors to poll, so it's either yes or no.
970 */
971 sock = file->private_data;
972 return sock->ops->poll(file, sock, wait);
973 }
974
975 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
976 {
977 struct socket *sock = file->private_data;
978
979 return sock->ops->mmap(file, sock, vma);
980 }
981
982 static int sock_close(struct inode *inode, struct file *filp)
983 {
984 /*
985 * It was possible the inode is NULL we were
986 * closing an unfinished socket.
987 */
988
989 if (!inode) {
990 printk(KERN_DEBUG "sock_close: NULL inode\n");
991 return 0;
992 }
993 sock_fasync(-1, filp, 0);
994 sock_release(SOCKET_I(inode));
995 return 0;
996 }
997
998 /*
999 * Update the socket async list
1000 *
1001 * Fasync_list locking strategy.
1002 *
1003 * 1. fasync_list is modified only under process context socket lock
1004 * i.e. under semaphore.
1005 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1006 * or under socket lock.
1007 * 3. fasync_list can be used from softirq context, so that
1008 * modification under socket lock have to be enhanced with
1009 * write_lock_bh(&sk->sk_callback_lock).
1010 * --ANK (990710)
1011 */
1012
1013 static int sock_fasync(int fd, struct file *filp, int on)
1014 {
1015 struct fasync_struct *fa, *fna = NULL, **prev;
1016 struct socket *sock;
1017 struct sock *sk;
1018
1019 if (on) {
1020 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1021 if (fna == NULL)
1022 return -ENOMEM;
1023 }
1024
1025 sock = filp->private_data;
1026
1027 sk = sock->sk;
1028 if (sk == NULL) {
1029 kfree(fna);
1030 return -EINVAL;
1031 }
1032
1033 lock_sock(sk);
1034
1035 prev = &(sock->fasync_list);
1036
1037 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1038 if (fa->fa_file == filp)
1039 break;
1040
1041 if (on) {
1042 if (fa != NULL) {
1043 write_lock_bh(&sk->sk_callback_lock);
1044 fa->fa_fd = fd;
1045 write_unlock_bh(&sk->sk_callback_lock);
1046
1047 kfree(fna);
1048 goto out;
1049 }
1050 fna->fa_file = filp;
1051 fna->fa_fd = fd;
1052 fna->magic = FASYNC_MAGIC;
1053 fna->fa_next = sock->fasync_list;
1054 write_lock_bh(&sk->sk_callback_lock);
1055 sock->fasync_list = fna;
1056 write_unlock_bh(&sk->sk_callback_lock);
1057 } else {
1058 if (fa != NULL) {
1059 write_lock_bh(&sk->sk_callback_lock);
1060 *prev = fa->fa_next;
1061 write_unlock_bh(&sk->sk_callback_lock);
1062 kfree(fa);
1063 }
1064 }
1065
1066 out:
1067 release_sock(sock->sk);
1068 return 0;
1069 }
1070
1071 /* This function may be called only under socket lock or callback_lock */
1072
1073 int sock_wake_async(struct socket *sock, int how, int band)
1074 {
1075 if (!sock || !sock->fasync_list)
1076 return -1;
1077 switch (how) {
1078 case SOCK_WAKE_WAITD:
1079 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1080 break;
1081 goto call_kill;
1082 case SOCK_WAKE_SPACE:
1083 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1084 break;
1085 /* fall through */
1086 case SOCK_WAKE_IO:
1087 call_kill:
1088 __kill_fasync(sock->fasync_list, SIGIO, band);
1089 break;
1090 case SOCK_WAKE_URG:
1091 __kill_fasync(sock->fasync_list, SIGURG, band);
1092 }
1093 return 0;
1094 }
1095
1096 static int __sock_create(struct net *net, int family, int type, int protocol,
1097 struct socket **res, int kern)
1098 {
1099 int err;
1100 struct socket *sock;
1101 const struct net_proto_family *pf;
1102
1103 /*
1104 * Check protocol is in range
1105 */
1106 if (family < 0 || family >= NPROTO)
1107 return -EAFNOSUPPORT;
1108 if (type < 0 || type >= SOCK_MAX)
1109 return -EINVAL;
1110
1111 /* Compatibility.
1112
1113 This uglymoron is moved from INET layer to here to avoid
1114 deadlock in module load.
1115 */
1116 if (family == PF_INET && type == SOCK_PACKET) {
1117 static int warned;
1118 if (!warned) {
1119 warned = 1;
1120 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1121 current->comm);
1122 }
1123 family = PF_PACKET;
1124 }
1125
1126 err = security_socket_create(family, type, protocol, kern);
1127 if (err)
1128 return err;
1129
1130 /*
1131 * Allocate the socket and allow the family to set things up. if
1132 * the protocol is 0, the family is instructed to select an appropriate
1133 * default.
1134 */
1135 sock = sock_alloc();
1136 if (!sock) {
1137 if (net_ratelimit())
1138 printk(KERN_WARNING "socket: no more sockets\n");
1139 return -ENFILE; /* Not exactly a match, but its the
1140 closest posix thing */
1141 }
1142
1143 sock->type = type;
1144
1145 #if defined(CONFIG_KMOD)
1146 /* Attempt to load a protocol module if the find failed.
1147 *
1148 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1149 * requested real, full-featured networking support upon configuration.
1150 * Otherwise module support will break!
1151 */
1152 if (net_families[family] == NULL)
1153 request_module("net-pf-%d", family);
1154 #endif
1155
1156 rcu_read_lock();
1157 pf = rcu_dereference(net_families[family]);
1158 err = -EAFNOSUPPORT;
1159 if (!pf)
1160 goto out_release;
1161
1162 /*
1163 * We will call the ->create function, that possibly is in a loadable
1164 * module, so we have to bump that loadable module refcnt first.
1165 */
1166 if (!try_module_get(pf->owner))
1167 goto out_release;
1168
1169 /* Now protected by module ref count */
1170 rcu_read_unlock();
1171
1172 err = pf->create(net, sock, protocol);
1173 if (err < 0)
1174 goto out_module_put;
1175
1176 /*
1177 * Now to bump the refcnt of the [loadable] module that owns this
1178 * socket at sock_release time we decrement its refcnt.
1179 */
1180 if (!try_module_get(sock->ops->owner))
1181 goto out_module_busy;
1182
1183 /*
1184 * Now that we're done with the ->create function, the [loadable]
1185 * module can have its refcnt decremented
1186 */
1187 module_put(pf->owner);
1188 err = security_socket_post_create(sock, family, type, protocol, kern);
1189 if (err)
1190 goto out_sock_release;
1191 *res = sock;
1192
1193 return 0;
1194
1195 out_module_busy:
1196 err = -EAFNOSUPPORT;
1197 out_module_put:
1198 sock->ops = NULL;
1199 module_put(pf->owner);
1200 out_sock_release:
1201 sock_release(sock);
1202 return err;
1203
1204 out_release:
1205 rcu_read_unlock();
1206 goto out_sock_release;
1207 }
1208
1209 int sock_create(int family, int type, int protocol, struct socket **res)
1210 {
1211 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1212 }
1213
1214 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1215 {
1216 return __sock_create(&init_net, family, type, protocol, res, 1);
1217 }
1218
1219 asmlinkage long sys_socket(int family, int type, int protocol)
1220 {
1221 int retval;
1222 struct socket *sock;
1223 int flags;
1224
1225 flags = type & ~SOCK_TYPE_MASK;
1226 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1227 return -EINVAL;
1228 type &= SOCK_TYPE_MASK;
1229
1230 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1231 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1232
1233 retval = sock_create(family, type, protocol, &sock);
1234 if (retval < 0)
1235 goto out;
1236
1237 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1238 if (retval < 0)
1239 goto out_release;
1240
1241 out:
1242 /* It may be already another descriptor 8) Not kernel problem. */
1243 return retval;
1244
1245 out_release:
1246 sock_release(sock);
1247 return retval;
1248 }
1249
1250 /*
1251 * Create a pair of connected sockets.
1252 */
1253
1254 asmlinkage long sys_socketpair(int family, int type, int protocol,
1255 int __user *usockvec)
1256 {
1257 struct socket *sock1, *sock2;
1258 int fd1, fd2, err;
1259 struct file *newfile1, *newfile2;
1260 int flags;
1261
1262 flags = type & ~SOCK_TYPE_MASK;
1263 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1264 return -EINVAL;
1265 type &= SOCK_TYPE_MASK;
1266
1267 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1268 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1269
1270 /*
1271 * Obtain the first socket and check if the underlying protocol
1272 * supports the socketpair call.
1273 */
1274
1275 err = sock_create(family, type, protocol, &sock1);
1276 if (err < 0)
1277 goto out;
1278
1279 err = sock_create(family, type, protocol, &sock2);
1280 if (err < 0)
1281 goto out_release_1;
1282
1283 err = sock1->ops->socketpair(sock1, sock2);
1284 if (err < 0)
1285 goto out_release_both;
1286
1287 fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC);
1288 if (unlikely(fd1 < 0)) {
1289 err = fd1;
1290 goto out_release_both;
1291 }
1292
1293 fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC);
1294 if (unlikely(fd2 < 0)) {
1295 err = fd2;
1296 put_filp(newfile1);
1297 put_unused_fd(fd1);
1298 goto out_release_both;
1299 }
1300
1301 err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK);
1302 if (unlikely(err < 0)) {
1303 goto out_fd2;
1304 }
1305
1306 err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK);
1307 if (unlikely(err < 0)) {
1308 fput(newfile1);
1309 goto out_fd1;
1310 }
1311
1312 err = audit_fd_pair(fd1, fd2);
1313 if (err < 0) {
1314 fput(newfile1);
1315 fput(newfile2);
1316 goto out_fd;
1317 }
1318
1319 fd_install(fd1, newfile1);
1320 fd_install(fd2, newfile2);
1321 /* fd1 and fd2 may be already another descriptors.
1322 * Not kernel problem.
1323 */
1324
1325 err = put_user(fd1, &usockvec[0]);
1326 if (!err)
1327 err = put_user(fd2, &usockvec[1]);
1328 if (!err)
1329 return 0;
1330
1331 sys_close(fd2);
1332 sys_close(fd1);
1333 return err;
1334
1335 out_release_both:
1336 sock_release(sock2);
1337 out_release_1:
1338 sock_release(sock1);
1339 out:
1340 return err;
1341
1342 out_fd2:
1343 put_filp(newfile1);
1344 sock_release(sock1);
1345 out_fd1:
1346 put_filp(newfile2);
1347 sock_release(sock2);
1348 out_fd:
1349 put_unused_fd(fd1);
1350 put_unused_fd(fd2);
1351 goto out;
1352 }
1353
1354 /*
1355 * Bind a name to a socket. Nothing much to do here since it's
1356 * the protocol's responsibility to handle the local address.
1357 *
1358 * We move the socket address to kernel space before we call
1359 * the protocol layer (having also checked the address is ok).
1360 */
1361
1362 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1363 {
1364 struct socket *sock;
1365 struct sockaddr_storage address;
1366 int err, fput_needed;
1367
1368 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1369 if (sock) {
1370 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1371 if (err >= 0) {
1372 err = security_socket_bind(sock,
1373 (struct sockaddr *)&address,
1374 addrlen);
1375 if (!err)
1376 err = sock->ops->bind(sock,
1377 (struct sockaddr *)
1378 &address, addrlen);
1379 }
1380 fput_light(sock->file, fput_needed);
1381 }
1382 return err;
1383 }
1384
1385 /*
1386 * Perform a listen. Basically, we allow the protocol to do anything
1387 * necessary for a listen, and if that works, we mark the socket as
1388 * ready for listening.
1389 */
1390
1391 asmlinkage long sys_listen(int fd, int backlog)
1392 {
1393 struct socket *sock;
1394 int err, fput_needed;
1395 int somaxconn;
1396
1397 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1398 if (sock) {
1399 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1400 if ((unsigned)backlog > somaxconn)
1401 backlog = somaxconn;
1402
1403 err = security_socket_listen(sock, backlog);
1404 if (!err)
1405 err = sock->ops->listen(sock, backlog);
1406
1407 fput_light(sock->file, fput_needed);
1408 }
1409 return err;
1410 }
1411
1412 /*
1413 * For accept, we attempt to create a new socket, set up the link
1414 * with the client, wake up the client, then return the new
1415 * connected fd. We collect the address of the connector in kernel
1416 * space and move it to user at the very end. This is unclean because
1417 * we open the socket then return an error.
1418 *
1419 * 1003.1g adds the ability to recvmsg() to query connection pending
1420 * status to recvmsg. We need to add that support in a way thats
1421 * clean when we restucture accept also.
1422 */
1423
1424 long do_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1425 int __user *upeer_addrlen, int flags)
1426 {
1427 struct socket *sock, *newsock;
1428 struct file *newfile;
1429 int err, len, newfd, fput_needed;
1430 struct sockaddr_storage address;
1431
1432 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1433 return -EINVAL;
1434
1435 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1436 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1437
1438 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1439 if (!sock)
1440 goto out;
1441
1442 err = -ENFILE;
1443 if (!(newsock = sock_alloc()))
1444 goto out_put;
1445
1446 newsock->type = sock->type;
1447 newsock->ops = sock->ops;
1448
1449 /*
1450 * We don't need try_module_get here, as the listening socket (sock)
1451 * has the protocol module (sock->ops->owner) held.
1452 */
1453 __module_get(newsock->ops->owner);
1454
1455 newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC);
1456 if (unlikely(newfd < 0)) {
1457 err = newfd;
1458 sock_release(newsock);
1459 goto out_put;
1460 }
1461
1462 err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK);
1463 if (err < 0)
1464 goto out_fd_simple;
1465
1466 err = security_socket_accept(sock, newsock);
1467 if (err)
1468 goto out_fd;
1469
1470 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1471 if (err < 0)
1472 goto out_fd;
1473
1474 if (upeer_sockaddr) {
1475 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1476 &len, 2) < 0) {
1477 err = -ECONNABORTED;
1478 goto out_fd;
1479 }
1480 err = move_addr_to_user((struct sockaddr *)&address,
1481 len, upeer_sockaddr, upeer_addrlen);
1482 if (err < 0)
1483 goto out_fd;
1484 }
1485
1486 /* File flags are not inherited via accept() unlike another OSes. */
1487
1488 fd_install(newfd, newfile);
1489 err = newfd;
1490
1491 security_socket_post_accept(sock, newsock);
1492
1493 out_put:
1494 fput_light(sock->file, fput_needed);
1495 out:
1496 return err;
1497 out_fd_simple:
1498 sock_release(newsock);
1499 put_filp(newfile);
1500 put_unused_fd(newfd);
1501 goto out_put;
1502 out_fd:
1503 fput(newfile);
1504 put_unused_fd(newfd);
1505 goto out_put;
1506 }
1507
1508 #ifdef HAVE_SET_RESTORE_SIGMASK
1509 asmlinkage long sys_paccept(int fd, struct sockaddr __user *upeer_sockaddr,
1510 int __user *upeer_addrlen,
1511 const sigset_t __user *sigmask,
1512 size_t sigsetsize, int flags)
1513 {
1514 sigset_t ksigmask, sigsaved;
1515 int ret;
1516
1517 if (sigmask) {
1518 /* XXX: Don't preclude handling different sized sigset_t's. */
1519 if (sigsetsize != sizeof(sigset_t))
1520 return -EINVAL;
1521 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1522 return -EFAULT;
1523
1524 sigdelsetmask(&ksigmask, sigmask(SIGKILL)|sigmask(SIGSTOP));
1525 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1526 }
1527
1528 ret = do_accept(fd, upeer_sockaddr, upeer_addrlen, flags);
1529
1530 if (ret < 0 && signal_pending(current)) {
1531 /*
1532 * Don't restore the signal mask yet. Let do_signal() deliver
1533 * the signal on the way back to userspace, before the signal
1534 * mask is restored.
1535 */
1536 if (sigmask) {
1537 memcpy(&current->saved_sigmask, &sigsaved,
1538 sizeof(sigsaved));
1539 set_restore_sigmask();
1540 }
1541 } else if (sigmask)
1542 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1543
1544 return ret;
1545 }
1546 #else
1547 asmlinkage long sys_paccept(int fd, struct sockaddr __user *upeer_sockaddr,
1548 int __user *upeer_addrlen,
1549 const sigset_t __user *sigmask,
1550 size_t sigsetsize, int flags)
1551 {
1552 /* The platform does not support restoring the signal mask in the
1553 * return path. So we do not allow using paccept() with a signal
1554 * mask. */
1555 if (sigmask)
1556 return -EINVAL;
1557
1558 return do_accept(fd, upeer_sockaddr, upeer_addrlen, flags);
1559 }
1560 #endif
1561
1562 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1563 int __user *upeer_addrlen)
1564 {
1565 return do_accept(fd, upeer_sockaddr, upeer_addrlen, 0);
1566 }
1567
1568 /*
1569 * Attempt to connect to a socket with the server address. The address
1570 * is in user space so we verify it is OK and move it to kernel space.
1571 *
1572 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1573 * break bindings
1574 *
1575 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1576 * other SEQPACKET protocols that take time to connect() as it doesn't
1577 * include the -EINPROGRESS status for such sockets.
1578 */
1579
1580 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1581 int addrlen)
1582 {
1583 struct socket *sock;
1584 struct sockaddr_storage address;
1585 int err, fput_needed;
1586
1587 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1588 if (!sock)
1589 goto out;
1590 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1591 if (err < 0)
1592 goto out_put;
1593
1594 err =
1595 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1596 if (err)
1597 goto out_put;
1598
1599 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1600 sock->file->f_flags);
1601 out_put:
1602 fput_light(sock->file, fput_needed);
1603 out:
1604 return err;
1605 }
1606
1607 /*
1608 * Get the local address ('name') of a socket object. Move the obtained
1609 * name to user space.
1610 */
1611
1612 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1613 int __user *usockaddr_len)
1614 {
1615 struct socket *sock;
1616 struct sockaddr_storage address;
1617 int len, err, fput_needed;
1618
1619 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1620 if (!sock)
1621 goto out;
1622
1623 err = security_socket_getsockname(sock);
1624 if (err)
1625 goto out_put;
1626
1627 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1628 if (err)
1629 goto out_put;
1630 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1631
1632 out_put:
1633 fput_light(sock->file, fput_needed);
1634 out:
1635 return err;
1636 }
1637
1638 /*
1639 * Get the remote address ('name') of a socket object. Move the obtained
1640 * name to user space.
1641 */
1642
1643 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1644 int __user *usockaddr_len)
1645 {
1646 struct socket *sock;
1647 struct sockaddr_storage address;
1648 int len, err, fput_needed;
1649
1650 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1651 if (sock != NULL) {
1652 err = security_socket_getpeername(sock);
1653 if (err) {
1654 fput_light(sock->file, fput_needed);
1655 return err;
1656 }
1657
1658 err =
1659 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1660 1);
1661 if (!err)
1662 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1663 usockaddr_len);
1664 fput_light(sock->file, fput_needed);
1665 }
1666 return err;
1667 }
1668
1669 /*
1670 * Send a datagram to a given address. We move the address into kernel
1671 * space and check the user space data area is readable before invoking
1672 * the protocol.
1673 */
1674
1675 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1676 unsigned flags, struct sockaddr __user *addr,
1677 int addr_len)
1678 {
1679 struct socket *sock;
1680 struct sockaddr_storage address;
1681 int err;
1682 struct msghdr msg;
1683 struct iovec iov;
1684 int fput_needed;
1685
1686 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1687 if (!sock)
1688 goto out;
1689
1690 iov.iov_base = buff;
1691 iov.iov_len = len;
1692 msg.msg_name = NULL;
1693 msg.msg_iov = &iov;
1694 msg.msg_iovlen = 1;
1695 msg.msg_control = NULL;
1696 msg.msg_controllen = 0;
1697 msg.msg_namelen = 0;
1698 if (addr) {
1699 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1700 if (err < 0)
1701 goto out_put;
1702 msg.msg_name = (struct sockaddr *)&address;
1703 msg.msg_namelen = addr_len;
1704 }
1705 if (sock->file->f_flags & O_NONBLOCK)
1706 flags |= MSG_DONTWAIT;
1707 msg.msg_flags = flags;
1708 err = sock_sendmsg(sock, &msg, len);
1709
1710 out_put:
1711 fput_light(sock->file, fput_needed);
1712 out:
1713 return err;
1714 }
1715
1716 /*
1717 * Send a datagram down a socket.
1718 */
1719
1720 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1721 {
1722 return sys_sendto(fd, buff, len, flags, NULL, 0);
1723 }
1724
1725 /*
1726 * Receive a frame from the socket and optionally record the address of the
1727 * sender. We verify the buffers are writable and if needed move the
1728 * sender address from kernel to user space.
1729 */
1730
1731 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1732 unsigned flags, struct sockaddr __user *addr,
1733 int __user *addr_len)
1734 {
1735 struct socket *sock;
1736 struct iovec iov;
1737 struct msghdr msg;
1738 struct sockaddr_storage address;
1739 int err, err2;
1740 int fput_needed;
1741
1742 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1743 if (!sock)
1744 goto out;
1745
1746 msg.msg_control = NULL;
1747 msg.msg_controllen = 0;
1748 msg.msg_iovlen = 1;
1749 msg.msg_iov = &iov;
1750 iov.iov_len = size;
1751 iov.iov_base = ubuf;
1752 msg.msg_name = (struct sockaddr *)&address;
1753 msg.msg_namelen = sizeof(address);
1754 if (sock->file->f_flags & O_NONBLOCK)
1755 flags |= MSG_DONTWAIT;
1756 err = sock_recvmsg(sock, &msg, size, flags);
1757
1758 if (err >= 0 && addr != NULL) {
1759 err2 = move_addr_to_user((struct sockaddr *)&address,
1760 msg.msg_namelen, addr, addr_len);
1761 if (err2 < 0)
1762 err = err2;
1763 }
1764
1765 fput_light(sock->file, fput_needed);
1766 out:
1767 return err;
1768 }
1769
1770 /*
1771 * Receive a datagram from a socket.
1772 */
1773
1774 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1775 unsigned flags)
1776 {
1777 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1778 }
1779
1780 /*
1781 * Set a socket option. Because we don't know the option lengths we have
1782 * to pass the user mode parameter for the protocols to sort out.
1783 */
1784
1785 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1786 char __user *optval, int optlen)
1787 {
1788 int err, fput_needed;
1789 struct socket *sock;
1790
1791 if (optlen < 0)
1792 return -EINVAL;
1793
1794 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1795 if (sock != NULL) {
1796 err = security_socket_setsockopt(sock, level, optname);
1797 if (err)
1798 goto out_put;
1799
1800 if (level == SOL_SOCKET)
1801 err =
1802 sock_setsockopt(sock, level, optname, optval,
1803 optlen);
1804 else
1805 err =
1806 sock->ops->setsockopt(sock, level, optname, optval,
1807 optlen);
1808 out_put:
1809 fput_light(sock->file, fput_needed);
1810 }
1811 return err;
1812 }
1813
1814 /*
1815 * Get a socket option. Because we don't know the option lengths we have
1816 * to pass a user mode parameter for the protocols to sort out.
1817 */
1818
1819 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1820 char __user *optval, int __user *optlen)
1821 {
1822 int err, fput_needed;
1823 struct socket *sock;
1824
1825 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1826 if (sock != NULL) {
1827 err = security_socket_getsockopt(sock, level, optname);
1828 if (err)
1829 goto out_put;
1830
1831 if (level == SOL_SOCKET)
1832 err =
1833 sock_getsockopt(sock, level, optname, optval,
1834 optlen);
1835 else
1836 err =
1837 sock->ops->getsockopt(sock, level, optname, optval,
1838 optlen);
1839 out_put:
1840 fput_light(sock->file, fput_needed);
1841 }
1842 return err;
1843 }
1844
1845 /*
1846 * Shutdown a socket.
1847 */
1848
1849 asmlinkage long sys_shutdown(int fd, int how)
1850 {
1851 int err, fput_needed;
1852 struct socket *sock;
1853
1854 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1855 if (sock != NULL) {
1856 err = security_socket_shutdown(sock, how);
1857 if (!err)
1858 err = sock->ops->shutdown(sock, how);
1859 fput_light(sock->file, fput_needed);
1860 }
1861 return err;
1862 }
1863
1864 /* A couple of helpful macros for getting the address of the 32/64 bit
1865 * fields which are the same type (int / unsigned) on our platforms.
1866 */
1867 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1868 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1869 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1870
1871 /*
1872 * BSD sendmsg interface
1873 */
1874
1875 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1876 {
1877 struct compat_msghdr __user *msg_compat =
1878 (struct compat_msghdr __user *)msg;
1879 struct socket *sock;
1880 struct sockaddr_storage address;
1881 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1882 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1883 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1884 /* 20 is size of ipv6_pktinfo */
1885 unsigned char *ctl_buf = ctl;
1886 struct msghdr msg_sys;
1887 int err, ctl_len, iov_size, total_len;
1888 int fput_needed;
1889
1890 err = -EFAULT;
1891 if (MSG_CMSG_COMPAT & flags) {
1892 if (get_compat_msghdr(&msg_sys, msg_compat))
1893 return -EFAULT;
1894 }
1895 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1896 return -EFAULT;
1897
1898 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1899 if (!sock)
1900 goto out;
1901
1902 /* do not move before msg_sys is valid */
1903 err = -EMSGSIZE;
1904 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1905 goto out_put;
1906
1907 /* Check whether to allocate the iovec area */
1908 err = -ENOMEM;
1909 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1910 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1911 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1912 if (!iov)
1913 goto out_put;
1914 }
1915
1916 /* This will also move the address data into kernel space */
1917 if (MSG_CMSG_COMPAT & flags) {
1918 err = verify_compat_iovec(&msg_sys, iov,
1919 (struct sockaddr *)&address,
1920 VERIFY_READ);
1921 } else
1922 err = verify_iovec(&msg_sys, iov,
1923 (struct sockaddr *)&address,
1924 VERIFY_READ);
1925 if (err < 0)
1926 goto out_freeiov;
1927 total_len = err;
1928
1929 err = -ENOBUFS;
1930
1931 if (msg_sys.msg_controllen > INT_MAX)
1932 goto out_freeiov;
1933 ctl_len = msg_sys.msg_controllen;
1934 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1935 err =
1936 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1937 sizeof(ctl));
1938 if (err)
1939 goto out_freeiov;
1940 ctl_buf = msg_sys.msg_control;
1941 ctl_len = msg_sys.msg_controllen;
1942 } else if (ctl_len) {
1943 if (ctl_len > sizeof(ctl)) {
1944 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1945 if (ctl_buf == NULL)
1946 goto out_freeiov;
1947 }
1948 err = -EFAULT;
1949 /*
1950 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1951 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1952 * checking falls down on this.
1953 */
1954 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1955 ctl_len))
1956 goto out_freectl;
1957 msg_sys.msg_control = ctl_buf;
1958 }
1959 msg_sys.msg_flags = flags;
1960
1961 if (sock->file->f_flags & O_NONBLOCK)
1962 msg_sys.msg_flags |= MSG_DONTWAIT;
1963 err = sock_sendmsg(sock, &msg_sys, total_len);
1964
1965 out_freectl:
1966 if (ctl_buf != ctl)
1967 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1968 out_freeiov:
1969 if (iov != iovstack)
1970 sock_kfree_s(sock->sk, iov, iov_size);
1971 out_put:
1972 fput_light(sock->file, fput_needed);
1973 out:
1974 return err;
1975 }
1976
1977 /*
1978 * BSD recvmsg interface
1979 */
1980
1981 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1982 unsigned int flags)
1983 {
1984 struct compat_msghdr __user *msg_compat =
1985 (struct compat_msghdr __user *)msg;
1986 struct socket *sock;
1987 struct iovec iovstack[UIO_FASTIOV];
1988 struct iovec *iov = iovstack;
1989 struct msghdr msg_sys;
1990 unsigned long cmsg_ptr;
1991 int err, iov_size, total_len, len;
1992 int fput_needed;
1993
1994 /* kernel mode address */
1995 struct sockaddr_storage addr;
1996
1997 /* user mode address pointers */
1998 struct sockaddr __user *uaddr;
1999 int __user *uaddr_len;
2000
2001 if (MSG_CMSG_COMPAT & flags) {
2002 if (get_compat_msghdr(&msg_sys, msg_compat))
2003 return -EFAULT;
2004 }
2005 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
2006 return -EFAULT;
2007
2008 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2009 if (!sock)
2010 goto out;
2011
2012 err = -EMSGSIZE;
2013 if (msg_sys.msg_iovlen > UIO_MAXIOV)
2014 goto out_put;
2015
2016 /* Check whether to allocate the iovec area */
2017 err = -ENOMEM;
2018 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
2019 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
2020 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2021 if (!iov)
2022 goto out_put;
2023 }
2024
2025 /*
2026 * Save the user-mode address (verify_iovec will change the
2027 * kernel msghdr to use the kernel address space)
2028 */
2029
2030 uaddr = (__force void __user *)msg_sys.msg_name;
2031 uaddr_len = COMPAT_NAMELEN(msg);
2032 if (MSG_CMSG_COMPAT & flags) {
2033 err = verify_compat_iovec(&msg_sys, iov,
2034 (struct sockaddr *)&addr,
2035 VERIFY_WRITE);
2036 } else
2037 err = verify_iovec(&msg_sys, iov,
2038 (struct sockaddr *)&addr,
2039 VERIFY_WRITE);
2040 if (err < 0)
2041 goto out_freeiov;
2042 total_len = err;
2043
2044 cmsg_ptr = (unsigned long)msg_sys.msg_control;
2045 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2046
2047 if (sock->file->f_flags & O_NONBLOCK)
2048 flags |= MSG_DONTWAIT;
2049 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
2050 if (err < 0)
2051 goto out_freeiov;
2052 len = err;
2053
2054 if (uaddr != NULL) {
2055 err = move_addr_to_user((struct sockaddr *)&addr,
2056 msg_sys.msg_namelen, uaddr,
2057 uaddr_len);
2058 if (err < 0)
2059 goto out_freeiov;
2060 }
2061 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
2062 COMPAT_FLAGS(msg));
2063 if (err)
2064 goto out_freeiov;
2065 if (MSG_CMSG_COMPAT & flags)
2066 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2067 &msg_compat->msg_controllen);
2068 else
2069 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2070 &msg->msg_controllen);
2071 if (err)
2072 goto out_freeiov;
2073 err = len;
2074
2075 out_freeiov:
2076 if (iov != iovstack)
2077 sock_kfree_s(sock->sk, iov, iov_size);
2078 out_put:
2079 fput_light(sock->file, fput_needed);
2080 out:
2081 return err;
2082 }
2083
2084 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2085
2086 /* Argument list sizes for sys_socketcall */
2087 #define AL(x) ((x) * sizeof(unsigned long))
2088 static const unsigned char nargs[19]={
2089 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2090 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2091 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2092 AL(6)
2093 };
2094
2095 #undef AL
2096
2097 /*
2098 * System call vectors.
2099 *
2100 * Argument checking cleaned up. Saved 20% in size.
2101 * This function doesn't need to set the kernel lock because
2102 * it is set by the callees.
2103 */
2104
2105 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
2106 {
2107 unsigned long a[6];
2108 unsigned long a0, a1;
2109 int err;
2110
2111 if (call < 1 || call > SYS_PACCEPT)
2112 return -EINVAL;
2113
2114 /* copy_from_user should be SMP safe. */
2115 if (copy_from_user(a, args, nargs[call]))
2116 return -EFAULT;
2117
2118 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2119 if (err)
2120 return err;
2121
2122 a0 = a[0];
2123 a1 = a[1];
2124
2125 switch (call) {
2126 case SYS_SOCKET:
2127 err = sys_socket(a0, a1, a[2]);
2128 break;
2129 case SYS_BIND:
2130 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2131 break;
2132 case SYS_CONNECT:
2133 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2134 break;
2135 case SYS_LISTEN:
2136 err = sys_listen(a0, a1);
2137 break;
2138 case SYS_ACCEPT:
2139 err =
2140 do_accept(a0, (struct sockaddr __user *)a1,
2141 (int __user *)a[2], 0);
2142 break;
2143 case SYS_GETSOCKNAME:
2144 err =
2145 sys_getsockname(a0, (struct sockaddr __user *)a1,
2146 (int __user *)a[2]);
2147 break;
2148 case SYS_GETPEERNAME:
2149 err =
2150 sys_getpeername(a0, (struct sockaddr __user *)a1,
2151 (int __user *)a[2]);
2152 break;
2153 case SYS_SOCKETPAIR:
2154 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2155 break;
2156 case SYS_SEND:
2157 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2158 break;
2159 case SYS_SENDTO:
2160 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2161 (struct sockaddr __user *)a[4], a[5]);
2162 break;
2163 case SYS_RECV:
2164 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2165 break;
2166 case SYS_RECVFROM:
2167 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2168 (struct sockaddr __user *)a[4],
2169 (int __user *)a[5]);
2170 break;
2171 case SYS_SHUTDOWN:
2172 err = sys_shutdown(a0, a1);
2173 break;
2174 case SYS_SETSOCKOPT:
2175 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2176 break;
2177 case SYS_GETSOCKOPT:
2178 err =
2179 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2180 (int __user *)a[4]);
2181 break;
2182 case SYS_SENDMSG:
2183 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2184 break;
2185 case SYS_RECVMSG:
2186 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2187 break;
2188 case SYS_PACCEPT:
2189 err =
2190 sys_paccept(a0, (struct sockaddr __user *)a1,
2191 (int __user *)a[2],
2192 (const sigset_t __user *) a[3],
2193 a[4], a[5]);
2194 break;
2195 default:
2196 err = -EINVAL;
2197 break;
2198 }
2199 return err;
2200 }
2201
2202 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2203
2204 /**
2205 * sock_register - add a socket protocol handler
2206 * @ops: description of protocol
2207 *
2208 * This function is called by a protocol handler that wants to
2209 * advertise its address family, and have it linked into the
2210 * socket interface. The value ops->family coresponds to the
2211 * socket system call protocol family.
2212 */
2213 int sock_register(const struct net_proto_family *ops)
2214 {
2215 int err;
2216
2217 if (ops->family >= NPROTO) {
2218 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2219 NPROTO);
2220 return -ENOBUFS;
2221 }
2222
2223 spin_lock(&net_family_lock);
2224 if (net_families[ops->family])
2225 err = -EEXIST;
2226 else {
2227 net_families[ops->family] = ops;
2228 err = 0;
2229 }
2230 spin_unlock(&net_family_lock);
2231
2232 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2233 return err;
2234 }
2235
2236 /**
2237 * sock_unregister - remove a protocol handler
2238 * @family: protocol family to remove
2239 *
2240 * This function is called by a protocol handler that wants to
2241 * remove its address family, and have it unlinked from the
2242 * new socket creation.
2243 *
2244 * If protocol handler is a module, then it can use module reference
2245 * counts to protect against new references. If protocol handler is not
2246 * a module then it needs to provide its own protection in
2247 * the ops->create routine.
2248 */
2249 void sock_unregister(int family)
2250 {
2251 BUG_ON(family < 0 || family >= NPROTO);
2252
2253 spin_lock(&net_family_lock);
2254 net_families[family] = NULL;
2255 spin_unlock(&net_family_lock);
2256
2257 synchronize_rcu();
2258
2259 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2260 }
2261
2262 static int __init sock_init(void)
2263 {
2264 /*
2265 * Initialize sock SLAB cache.
2266 */
2267
2268 sk_init();
2269
2270 /*
2271 * Initialize skbuff SLAB cache
2272 */
2273 skb_init();
2274
2275 /*
2276 * Initialize the protocols module.
2277 */
2278
2279 init_inodecache();
2280 register_filesystem(&sock_fs_type);
2281 sock_mnt = kern_mount(&sock_fs_type);
2282
2283 /* The real protocol initialization is performed in later initcalls.
2284 */
2285
2286 #ifdef CONFIG_NETFILTER
2287 netfilter_init();
2288 #endif
2289
2290 return 0;
2291 }
2292
2293 core_initcall(sock_init); /* early initcall */
2294
2295 #ifdef CONFIG_PROC_FS
2296 void socket_seq_show(struct seq_file *seq)
2297 {
2298 int cpu;
2299 int counter = 0;
2300
2301 for_each_possible_cpu(cpu)
2302 counter += per_cpu(sockets_in_use, cpu);
2303
2304 /* It can be negative, by the way. 8) */
2305 if (counter < 0)
2306 counter = 0;
2307
2308 seq_printf(seq, "sockets: used %d\n", counter);
2309 }
2310 #endif /* CONFIG_PROC_FS */
2311
2312 #ifdef CONFIG_COMPAT
2313 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2314 unsigned long arg)
2315 {
2316 struct socket *sock = file->private_data;
2317 int ret = -ENOIOCTLCMD;
2318 struct sock *sk;
2319 struct net *net;
2320
2321 sk = sock->sk;
2322 net = sock_net(sk);
2323
2324 if (sock->ops->compat_ioctl)
2325 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2326
2327 if (ret == -ENOIOCTLCMD &&
2328 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2329 ret = compat_wext_handle_ioctl(net, cmd, arg);
2330
2331 return ret;
2332 }
2333 #endif
2334
2335 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2336 {
2337 return sock->ops->bind(sock, addr, addrlen);
2338 }
2339
2340 int kernel_listen(struct socket *sock, int backlog)
2341 {
2342 return sock->ops->listen(sock, backlog);
2343 }
2344
2345 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2346 {
2347 struct sock *sk = sock->sk;
2348 int err;
2349
2350 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2351 newsock);
2352 if (err < 0)
2353 goto done;
2354
2355 err = sock->ops->accept(sock, *newsock, flags);
2356 if (err < 0) {
2357 sock_release(*newsock);
2358 *newsock = NULL;
2359 goto done;
2360 }
2361
2362 (*newsock)->ops = sock->ops;
2363
2364 done:
2365 return err;
2366 }
2367
2368 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2369 int flags)
2370 {
2371 return sock->ops->connect(sock, addr, addrlen, flags);
2372 }
2373
2374 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2375 int *addrlen)
2376 {
2377 return sock->ops->getname(sock, addr, addrlen, 0);
2378 }
2379
2380 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2381 int *addrlen)
2382 {
2383 return sock->ops->getname(sock, addr, addrlen, 1);
2384 }
2385
2386 int kernel_getsockopt(struct socket *sock, int level, int optname,
2387 char *optval, int *optlen)
2388 {
2389 mm_segment_t oldfs = get_fs();
2390 int err;
2391
2392 set_fs(KERNEL_DS);
2393 if (level == SOL_SOCKET)
2394 err = sock_getsockopt(sock, level, optname, optval, optlen);
2395 else
2396 err = sock->ops->getsockopt(sock, level, optname, optval,
2397 optlen);
2398 set_fs(oldfs);
2399 return err;
2400 }
2401
2402 int kernel_setsockopt(struct socket *sock, int level, int optname,
2403 char *optval, int optlen)
2404 {
2405 mm_segment_t oldfs = get_fs();
2406 int err;
2407
2408 set_fs(KERNEL_DS);
2409 if (level == SOL_SOCKET)
2410 err = sock_setsockopt(sock, level, optname, optval, optlen);
2411 else
2412 err = sock->ops->setsockopt(sock, level, optname, optval,
2413 optlen);
2414 set_fs(oldfs);
2415 return err;
2416 }
2417
2418 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2419 size_t size, int flags)
2420 {
2421 if (sock->ops->sendpage)
2422 return sock->ops->sendpage(sock, page, offset, size, flags);
2423
2424 return sock_no_sendpage(sock, page, offset, size, flags);
2425 }
2426
2427 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2428 {
2429 mm_segment_t oldfs = get_fs();
2430 int err;
2431
2432 set_fs(KERNEL_DS);
2433 err = sock->ops->ioctl(sock, cmd, arg);
2434 set_fs(oldfs);
2435
2436 return err;
2437 }
2438
2439 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2440 {
2441 return sock->ops->shutdown(sock, how);
2442 }
2443
2444 EXPORT_SYMBOL(sock_create);
2445 EXPORT_SYMBOL(sock_create_kern);
2446 EXPORT_SYMBOL(sock_create_lite);
2447 EXPORT_SYMBOL(sock_map_fd);
2448 EXPORT_SYMBOL(sock_recvmsg);
2449 EXPORT_SYMBOL(sock_register);
2450 EXPORT_SYMBOL(sock_release);
2451 EXPORT_SYMBOL(sock_sendmsg);
2452 EXPORT_SYMBOL(sock_unregister);
2453 EXPORT_SYMBOL(sock_wake_async);
2454 EXPORT_SYMBOL(sockfd_lookup);
2455 EXPORT_SYMBOL(kernel_sendmsg);
2456 EXPORT_SYMBOL(kernel_recvmsg);
2457 EXPORT_SYMBOL(kernel_bind);
2458 EXPORT_SYMBOL(kernel_listen);
2459 EXPORT_SYMBOL(kernel_accept);
2460 EXPORT_SYMBOL(kernel_connect);
2461 EXPORT_SYMBOL(kernel_getsockname);
2462 EXPORT_SYMBOL(kernel_getpeername);
2463 EXPORT_SYMBOL(kernel_getsockopt);
2464 EXPORT_SYMBOL(kernel_setsockopt);
2465 EXPORT_SYMBOL(kernel_sendpage);
2466 EXPORT_SYMBOL(kernel_sock_ioctl);
2467 EXPORT_SYMBOL(kernel_sock_shutdown);
This page took 0.103154 seconds and 6 git commands to generate.