Merge tag 'sound-3.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[deliverable/linux.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
117 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
118 unsigned long nr_segs, loff_t pos);
119 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
120 unsigned long nr_segs, loff_t pos);
121 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
122
123 static int sock_close(struct inode *inode, struct file *file);
124 static unsigned int sock_poll(struct file *file,
125 struct poll_table_struct *wait);
126 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
127 #ifdef CONFIG_COMPAT
128 static long compat_sock_ioctl(struct file *file,
129 unsigned int cmd, unsigned long arg);
130 #endif
131 static int sock_fasync(int fd, struct file *filp, int on);
132 static ssize_t sock_sendpage(struct file *file, struct page *page,
133 int offset, size_t size, loff_t *ppos, int more);
134 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
135 struct pipe_inode_info *pipe, size_t len,
136 unsigned int flags);
137
138 /*
139 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
140 * in the operation structures but are done directly via the socketcall() multiplexor.
141 */
142
143 static const struct file_operations socket_file_ops = {
144 .owner = THIS_MODULE,
145 .llseek = no_llseek,
146 .aio_read = sock_aio_read,
147 .aio_write = sock_aio_write,
148 .poll = sock_poll,
149 .unlocked_ioctl = sock_ioctl,
150 #ifdef CONFIG_COMPAT
151 .compat_ioctl = compat_sock_ioctl,
152 #endif
153 .mmap = sock_mmap,
154 .open = sock_no_open, /* special open code to disallow open via /proc */
155 .release = sock_close,
156 .fasync = sock_fasync,
157 .sendpage = sock_sendpage,
158 .splice_write = generic_splice_sendpage,
159 .splice_read = sock_splice_read,
160 };
161
162 /*
163 * The protocol list. Each protocol is registered in here.
164 */
165
166 static DEFINE_SPINLOCK(net_family_lock);
167 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
168
169 /*
170 * Statistics counters of the socket lists
171 */
172
173 static DEFINE_PER_CPU(int, sockets_in_use);
174
175 /*
176 * Support routines.
177 * Move socket addresses back and forth across the kernel/user
178 * divide and look after the messy bits.
179 */
180
181 /**
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
186 *
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 */
191
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 return -EINVAL;
196 if (ulen == 0)
197 return 0;
198 if (copy_from_user(kaddr, uaddr, ulen))
199 return -EFAULT;
200 return audit_sockaddr(ulen, kaddr);
201 }
202
203 /**
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
209 *
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
214 * accessible.
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
218 */
219
220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 void __user *uaddr, int __user *ulen)
222 {
223 int err;
224 int len;
225
226 BUG_ON(klen > sizeof(struct sockaddr_storage));
227 err = get_user(len, ulen);
228 if (err)
229 return err;
230 if (len > klen)
231 len = klen;
232 if (len < 0)
233 return -EINVAL;
234 if (len) {
235 if (audit_sockaddr(klen, kaddr))
236 return -ENOMEM;
237 if (copy_to_user(uaddr, kaddr, len))
238 return -EFAULT;
239 }
240 /*
241 * "fromlen shall refer to the value before truncation.."
242 * 1003.1g
243 */
244 return __put_user(klen, ulen);
245 }
246
247 static struct kmem_cache *sock_inode_cachep __read_mostly;
248
249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 struct socket_alloc *ei;
252 struct socket_wq *wq;
253
254 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
255 if (!ei)
256 return NULL;
257 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
258 if (!wq) {
259 kmem_cache_free(sock_inode_cachep, ei);
260 return NULL;
261 }
262 init_waitqueue_head(&wq->wait);
263 wq->fasync_list = NULL;
264 RCU_INIT_POINTER(ei->socket.wq, wq);
265
266 ei->socket.state = SS_UNCONNECTED;
267 ei->socket.flags = 0;
268 ei->socket.ops = NULL;
269 ei->socket.sk = NULL;
270 ei->socket.file = NULL;
271
272 return &ei->vfs_inode;
273 }
274
275 static void sock_destroy_inode(struct inode *inode)
276 {
277 struct socket_alloc *ei;
278 struct socket_wq *wq;
279
280 ei = container_of(inode, struct socket_alloc, vfs_inode);
281 wq = rcu_dereference_protected(ei->socket.wq, 1);
282 kfree_rcu(wq, rcu);
283 kmem_cache_free(sock_inode_cachep, ei);
284 }
285
286 static void init_once(void *foo)
287 {
288 struct socket_alloc *ei = (struct socket_alloc *)foo;
289
290 inode_init_once(&ei->vfs_inode);
291 }
292
293 static int init_inodecache(void)
294 {
295 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
296 sizeof(struct socket_alloc),
297 0,
298 (SLAB_HWCACHE_ALIGN |
299 SLAB_RECLAIM_ACCOUNT |
300 SLAB_MEM_SPREAD),
301 init_once);
302 if (sock_inode_cachep == NULL)
303 return -ENOMEM;
304 return 0;
305 }
306
307 static const struct super_operations sockfs_ops = {
308 .alloc_inode = sock_alloc_inode,
309 .destroy_inode = sock_destroy_inode,
310 .statfs = simple_statfs,
311 };
312
313 /*
314 * sockfs_dname() is called from d_path().
315 */
316 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
317 {
318 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
319 dentry->d_inode->i_ino);
320 }
321
322 static const struct dentry_operations sockfs_dentry_operations = {
323 .d_dname = sockfs_dname,
324 };
325
326 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
327 int flags, const char *dev_name, void *data)
328 {
329 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
330 &sockfs_dentry_operations, SOCKFS_MAGIC);
331 }
332
333 static struct vfsmount *sock_mnt __read_mostly;
334
335 static struct file_system_type sock_fs_type = {
336 .name = "sockfs",
337 .mount = sockfs_mount,
338 .kill_sb = kill_anon_super,
339 };
340
341 /*
342 * Obtains the first available file descriptor and sets it up for use.
343 *
344 * These functions create file structures and maps them to fd space
345 * of the current process. On success it returns file descriptor
346 * and file struct implicitly stored in sock->file.
347 * Note that another thread may close file descriptor before we return
348 * from this function. We use the fact that now we do not refer
349 * to socket after mapping. If one day we will need it, this
350 * function will increment ref. count on file by 1.
351 *
352 * In any case returned fd MAY BE not valid!
353 * This race condition is unavoidable
354 * with shared fd spaces, we cannot solve it inside kernel,
355 * but we take care of internal coherence yet.
356 */
357
358 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
359 {
360 struct qstr name = { .name = "" };
361 struct path path;
362 struct file *file;
363
364 if (dname) {
365 name.name = dname;
366 name.len = strlen(name.name);
367 } else if (sock->sk) {
368 name.name = sock->sk->sk_prot_creator->name;
369 name.len = strlen(name.name);
370 }
371 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
372 if (unlikely(!path.dentry))
373 return ERR_PTR(-ENOMEM);
374 path.mnt = mntget(sock_mnt);
375
376 d_instantiate(path.dentry, SOCK_INODE(sock));
377 SOCK_INODE(sock)->i_fop = &socket_file_ops;
378
379 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
380 &socket_file_ops);
381 if (unlikely(IS_ERR(file))) {
382 /* drop dentry, keep inode */
383 ihold(path.dentry->d_inode);
384 path_put(&path);
385 return file;
386 }
387
388 sock->file = file;
389 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
390 file->private_data = sock;
391 return file;
392 }
393 EXPORT_SYMBOL(sock_alloc_file);
394
395 static int sock_map_fd(struct socket *sock, int flags)
396 {
397 struct file *newfile;
398 int fd = get_unused_fd_flags(flags);
399 if (unlikely(fd < 0))
400 return fd;
401
402 newfile = sock_alloc_file(sock, flags, NULL);
403 if (likely(!IS_ERR(newfile))) {
404 fd_install(fd, newfile);
405 return fd;
406 }
407
408 put_unused_fd(fd);
409 return PTR_ERR(newfile);
410 }
411
412 struct socket *sock_from_file(struct file *file, int *err)
413 {
414 if (file->f_op == &socket_file_ops)
415 return file->private_data; /* set in sock_map_fd */
416
417 *err = -ENOTSOCK;
418 return NULL;
419 }
420 EXPORT_SYMBOL(sock_from_file);
421
422 /**
423 * sockfd_lookup - Go from a file number to its socket slot
424 * @fd: file handle
425 * @err: pointer to an error code return
426 *
427 * The file handle passed in is locked and the socket it is bound
428 * too is returned. If an error occurs the err pointer is overwritten
429 * with a negative errno code and NULL is returned. The function checks
430 * for both invalid handles and passing a handle which is not a socket.
431 *
432 * On a success the socket object pointer is returned.
433 */
434
435 struct socket *sockfd_lookup(int fd, int *err)
436 {
437 struct file *file;
438 struct socket *sock;
439
440 file = fget(fd);
441 if (!file) {
442 *err = -EBADF;
443 return NULL;
444 }
445
446 sock = sock_from_file(file, err);
447 if (!sock)
448 fput(file);
449 return sock;
450 }
451 EXPORT_SYMBOL(sockfd_lookup);
452
453 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
454 {
455 struct fd f = fdget(fd);
456 struct socket *sock;
457
458 *err = -EBADF;
459 if (f.file) {
460 sock = sock_from_file(f.file, err);
461 if (likely(sock)) {
462 *fput_needed = f.flags;
463 return sock;
464 }
465 fdput(f);
466 }
467 return NULL;
468 }
469
470 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
471 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
472 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
473 static ssize_t sockfs_getxattr(struct dentry *dentry,
474 const char *name, void *value, size_t size)
475 {
476 const char *proto_name;
477 size_t proto_size;
478 int error;
479
480 error = -ENODATA;
481 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
482 proto_name = dentry->d_name.name;
483 proto_size = strlen(proto_name);
484
485 if (value) {
486 error = -ERANGE;
487 if (proto_size + 1 > size)
488 goto out;
489
490 strncpy(value, proto_name, proto_size + 1);
491 }
492 error = proto_size + 1;
493 }
494
495 out:
496 return error;
497 }
498
499 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
500 size_t size)
501 {
502 ssize_t len;
503 ssize_t used = 0;
504
505 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
506 if (len < 0)
507 return len;
508 used += len;
509 if (buffer) {
510 if (size < used)
511 return -ERANGE;
512 buffer += len;
513 }
514
515 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
516 used += len;
517 if (buffer) {
518 if (size < used)
519 return -ERANGE;
520 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
521 buffer += len;
522 }
523
524 return used;
525 }
526
527 static const struct inode_operations sockfs_inode_ops = {
528 .getxattr = sockfs_getxattr,
529 .listxattr = sockfs_listxattr,
530 };
531
532 /**
533 * sock_alloc - allocate a socket
534 *
535 * Allocate a new inode and socket object. The two are bound together
536 * and initialised. The socket is then returned. If we are out of inodes
537 * NULL is returned.
538 */
539
540 static struct socket *sock_alloc(void)
541 {
542 struct inode *inode;
543 struct socket *sock;
544
545 inode = new_inode_pseudo(sock_mnt->mnt_sb);
546 if (!inode)
547 return NULL;
548
549 sock = SOCKET_I(inode);
550
551 kmemcheck_annotate_bitfield(sock, type);
552 inode->i_ino = get_next_ino();
553 inode->i_mode = S_IFSOCK | S_IRWXUGO;
554 inode->i_uid = current_fsuid();
555 inode->i_gid = current_fsgid();
556 inode->i_op = &sockfs_inode_ops;
557
558 this_cpu_add(sockets_in_use, 1);
559 return sock;
560 }
561
562 /*
563 * In theory you can't get an open on this inode, but /proc provides
564 * a back door. Remember to keep it shut otherwise you'll let the
565 * creepy crawlies in.
566 */
567
568 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
569 {
570 return -ENXIO;
571 }
572
573 const struct file_operations bad_sock_fops = {
574 .owner = THIS_MODULE,
575 .open = sock_no_open,
576 .llseek = noop_llseek,
577 };
578
579 /**
580 * sock_release - close a socket
581 * @sock: socket to close
582 *
583 * The socket is released from the protocol stack if it has a release
584 * callback, and the inode is then released if the socket is bound to
585 * an inode not a file.
586 */
587
588 void sock_release(struct socket *sock)
589 {
590 if (sock->ops) {
591 struct module *owner = sock->ops->owner;
592
593 sock->ops->release(sock);
594 sock->ops = NULL;
595 module_put(owner);
596 }
597
598 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
599 pr_err("%s: fasync list not empty!\n", __func__);
600
601 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
602 return;
603
604 this_cpu_sub(sockets_in_use, 1);
605 if (!sock->file) {
606 iput(SOCK_INODE(sock));
607 return;
608 }
609 sock->file = NULL;
610 }
611 EXPORT_SYMBOL(sock_release);
612
613 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
614 {
615 *tx_flags = 0;
616 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
617 *tx_flags |= SKBTX_HW_TSTAMP;
618 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
619 *tx_flags |= SKBTX_SW_TSTAMP;
620 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
621 *tx_flags |= SKBTX_SCHED_TSTAMP;
622 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
623 *tx_flags |= SKBTX_ACK_TSTAMP;
624
625 if (sock_flag(sk, SOCK_WIFI_STATUS))
626 *tx_flags |= SKBTX_WIFI_STATUS;
627 }
628 EXPORT_SYMBOL(sock_tx_timestamp);
629
630 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
631 struct msghdr *msg, size_t size)
632 {
633 struct sock_iocb *si = kiocb_to_siocb(iocb);
634
635 si->sock = sock;
636 si->scm = NULL;
637 si->msg = msg;
638 si->size = size;
639
640 return sock->ops->sendmsg(iocb, sock, msg, size);
641 }
642
643 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
644 struct msghdr *msg, size_t size)
645 {
646 int err = security_socket_sendmsg(sock, msg, size);
647
648 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
649 }
650
651 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
652 {
653 struct kiocb iocb;
654 struct sock_iocb siocb;
655 int ret;
656
657 init_sync_kiocb(&iocb, NULL);
658 iocb.private = &siocb;
659 ret = __sock_sendmsg(&iocb, sock, msg, size);
660 if (-EIOCBQUEUED == ret)
661 ret = wait_on_sync_kiocb(&iocb);
662 return ret;
663 }
664 EXPORT_SYMBOL(sock_sendmsg);
665
666 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
667 {
668 struct kiocb iocb;
669 struct sock_iocb siocb;
670 int ret;
671
672 init_sync_kiocb(&iocb, NULL);
673 iocb.private = &siocb;
674 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
675 if (-EIOCBQUEUED == ret)
676 ret = wait_on_sync_kiocb(&iocb);
677 return ret;
678 }
679
680 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
681 struct kvec *vec, size_t num, size_t size)
682 {
683 mm_segment_t oldfs = get_fs();
684 int result;
685
686 set_fs(KERNEL_DS);
687 /*
688 * the following is safe, since for compiler definitions of kvec and
689 * iovec are identical, yielding the same in-core layout and alignment
690 */
691 msg->msg_iov = (struct iovec *)vec;
692 msg->msg_iovlen = num;
693 result = sock_sendmsg(sock, msg, size);
694 set_fs(oldfs);
695 return result;
696 }
697 EXPORT_SYMBOL(kernel_sendmsg);
698
699 /*
700 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
701 */
702 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
703 struct sk_buff *skb)
704 {
705 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
706 struct scm_timestamping tss;
707 int empty = 1;
708 struct skb_shared_hwtstamps *shhwtstamps =
709 skb_hwtstamps(skb);
710
711 /* Race occurred between timestamp enabling and packet
712 receiving. Fill in the current time for now. */
713 if (need_software_tstamp && skb->tstamp.tv64 == 0)
714 __net_timestamp(skb);
715
716 if (need_software_tstamp) {
717 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
718 struct timeval tv;
719 skb_get_timestamp(skb, &tv);
720 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
721 sizeof(tv), &tv);
722 } else {
723 struct timespec ts;
724 skb_get_timestampns(skb, &ts);
725 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
726 sizeof(ts), &ts);
727 }
728 }
729
730 memset(&tss, 0, sizeof(tss));
731 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE ||
732 skb_shinfo(skb)->tx_flags & SKBTX_ANY_SW_TSTAMP) &&
733 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
734 empty = 0;
735 if (shhwtstamps &&
736 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
737 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
738 empty = 0;
739 if (!empty)
740 put_cmsg(msg, SOL_SOCKET,
741 SCM_TIMESTAMPING, sizeof(tss), &tss);
742 }
743 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
744
745 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
746 struct sk_buff *skb)
747 {
748 int ack;
749
750 if (!sock_flag(sk, SOCK_WIFI_STATUS))
751 return;
752 if (!skb->wifi_acked_valid)
753 return;
754
755 ack = skb->wifi_acked;
756
757 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
758 }
759 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
760
761 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
762 struct sk_buff *skb)
763 {
764 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
765 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
766 sizeof(__u32), &skb->dropcount);
767 }
768
769 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
770 struct sk_buff *skb)
771 {
772 sock_recv_timestamp(msg, sk, skb);
773 sock_recv_drops(msg, sk, skb);
774 }
775 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
776
777 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
778 struct msghdr *msg, size_t size, int flags)
779 {
780 struct sock_iocb *si = kiocb_to_siocb(iocb);
781
782 si->sock = sock;
783 si->scm = NULL;
784 si->msg = msg;
785 si->size = size;
786 si->flags = flags;
787
788 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
789 }
790
791 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
792 struct msghdr *msg, size_t size, int flags)
793 {
794 int err = security_socket_recvmsg(sock, msg, size, flags);
795
796 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
797 }
798
799 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
800 size_t size, int flags)
801 {
802 struct kiocb iocb;
803 struct sock_iocb siocb;
804 int ret;
805
806 init_sync_kiocb(&iocb, NULL);
807 iocb.private = &siocb;
808 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
809 if (-EIOCBQUEUED == ret)
810 ret = wait_on_sync_kiocb(&iocb);
811 return ret;
812 }
813 EXPORT_SYMBOL(sock_recvmsg);
814
815 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
816 size_t size, int flags)
817 {
818 struct kiocb iocb;
819 struct sock_iocb siocb;
820 int ret;
821
822 init_sync_kiocb(&iocb, NULL);
823 iocb.private = &siocb;
824 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
825 if (-EIOCBQUEUED == ret)
826 ret = wait_on_sync_kiocb(&iocb);
827 return ret;
828 }
829
830 /**
831 * kernel_recvmsg - Receive a message from a socket (kernel space)
832 * @sock: The socket to receive the message from
833 * @msg: Received message
834 * @vec: Input s/g array for message data
835 * @num: Size of input s/g array
836 * @size: Number of bytes to read
837 * @flags: Message flags (MSG_DONTWAIT, etc...)
838 *
839 * On return the msg structure contains the scatter/gather array passed in the
840 * vec argument. The array is modified so that it consists of the unfilled
841 * portion of the original array.
842 *
843 * The returned value is the total number of bytes received, or an error.
844 */
845 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
846 struct kvec *vec, size_t num, size_t size, int flags)
847 {
848 mm_segment_t oldfs = get_fs();
849 int result;
850
851 set_fs(KERNEL_DS);
852 /*
853 * the following is safe, since for compiler definitions of kvec and
854 * iovec are identical, yielding the same in-core layout and alignment
855 */
856 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
857 result = sock_recvmsg(sock, msg, size, flags);
858 set_fs(oldfs);
859 return result;
860 }
861 EXPORT_SYMBOL(kernel_recvmsg);
862
863 static ssize_t sock_sendpage(struct file *file, struct page *page,
864 int offset, size_t size, loff_t *ppos, int more)
865 {
866 struct socket *sock;
867 int flags;
868
869 sock = file->private_data;
870
871 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
872 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
873 flags |= more;
874
875 return kernel_sendpage(sock, page, offset, size, flags);
876 }
877
878 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
879 struct pipe_inode_info *pipe, size_t len,
880 unsigned int flags)
881 {
882 struct socket *sock = file->private_data;
883
884 if (unlikely(!sock->ops->splice_read))
885 return -EINVAL;
886
887 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
888 }
889
890 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
891 struct sock_iocb *siocb)
892 {
893 if (!is_sync_kiocb(iocb))
894 BUG();
895
896 siocb->kiocb = iocb;
897 iocb->private = siocb;
898 return siocb;
899 }
900
901 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
902 struct file *file, const struct iovec *iov,
903 unsigned long nr_segs)
904 {
905 struct socket *sock = file->private_data;
906 size_t size = 0;
907 int i;
908
909 for (i = 0; i < nr_segs; i++)
910 size += iov[i].iov_len;
911
912 msg->msg_name = NULL;
913 msg->msg_namelen = 0;
914 msg->msg_control = NULL;
915 msg->msg_controllen = 0;
916 msg->msg_iov = (struct iovec *)iov;
917 msg->msg_iovlen = nr_segs;
918 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
919
920 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
921 }
922
923 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
924 unsigned long nr_segs, loff_t pos)
925 {
926 struct sock_iocb siocb, *x;
927
928 if (pos != 0)
929 return -ESPIPE;
930
931 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
932 return 0;
933
934
935 x = alloc_sock_iocb(iocb, &siocb);
936 if (!x)
937 return -ENOMEM;
938 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
939 }
940
941 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
942 struct file *file, const struct iovec *iov,
943 unsigned long nr_segs)
944 {
945 struct socket *sock = file->private_data;
946 size_t size = 0;
947 int i;
948
949 for (i = 0; i < nr_segs; i++)
950 size += iov[i].iov_len;
951
952 msg->msg_name = NULL;
953 msg->msg_namelen = 0;
954 msg->msg_control = NULL;
955 msg->msg_controllen = 0;
956 msg->msg_iov = (struct iovec *)iov;
957 msg->msg_iovlen = nr_segs;
958 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
959 if (sock->type == SOCK_SEQPACKET)
960 msg->msg_flags |= MSG_EOR;
961
962 return __sock_sendmsg(iocb, sock, msg, size);
963 }
964
965 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
966 unsigned long nr_segs, loff_t pos)
967 {
968 struct sock_iocb siocb, *x;
969
970 if (pos != 0)
971 return -ESPIPE;
972
973 x = alloc_sock_iocb(iocb, &siocb);
974 if (!x)
975 return -ENOMEM;
976
977 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
978 }
979
980 /*
981 * Atomic setting of ioctl hooks to avoid race
982 * with module unload.
983 */
984
985 static DEFINE_MUTEX(br_ioctl_mutex);
986 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
987
988 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
989 {
990 mutex_lock(&br_ioctl_mutex);
991 br_ioctl_hook = hook;
992 mutex_unlock(&br_ioctl_mutex);
993 }
994 EXPORT_SYMBOL(brioctl_set);
995
996 static DEFINE_MUTEX(vlan_ioctl_mutex);
997 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
998
999 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1000 {
1001 mutex_lock(&vlan_ioctl_mutex);
1002 vlan_ioctl_hook = hook;
1003 mutex_unlock(&vlan_ioctl_mutex);
1004 }
1005 EXPORT_SYMBOL(vlan_ioctl_set);
1006
1007 static DEFINE_MUTEX(dlci_ioctl_mutex);
1008 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1009
1010 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1011 {
1012 mutex_lock(&dlci_ioctl_mutex);
1013 dlci_ioctl_hook = hook;
1014 mutex_unlock(&dlci_ioctl_mutex);
1015 }
1016 EXPORT_SYMBOL(dlci_ioctl_set);
1017
1018 static long sock_do_ioctl(struct net *net, struct socket *sock,
1019 unsigned int cmd, unsigned long arg)
1020 {
1021 int err;
1022 void __user *argp = (void __user *)arg;
1023
1024 err = sock->ops->ioctl(sock, cmd, arg);
1025
1026 /*
1027 * If this ioctl is unknown try to hand it down
1028 * to the NIC driver.
1029 */
1030 if (err == -ENOIOCTLCMD)
1031 err = dev_ioctl(net, cmd, argp);
1032
1033 return err;
1034 }
1035
1036 /*
1037 * With an ioctl, arg may well be a user mode pointer, but we don't know
1038 * what to do with it - that's up to the protocol still.
1039 */
1040
1041 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1042 {
1043 struct socket *sock;
1044 struct sock *sk;
1045 void __user *argp = (void __user *)arg;
1046 int pid, err;
1047 struct net *net;
1048
1049 sock = file->private_data;
1050 sk = sock->sk;
1051 net = sock_net(sk);
1052 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1053 err = dev_ioctl(net, cmd, argp);
1054 } else
1055 #ifdef CONFIG_WEXT_CORE
1056 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1057 err = dev_ioctl(net, cmd, argp);
1058 } else
1059 #endif
1060 switch (cmd) {
1061 case FIOSETOWN:
1062 case SIOCSPGRP:
1063 err = -EFAULT;
1064 if (get_user(pid, (int __user *)argp))
1065 break;
1066 err = f_setown(sock->file, pid, 1);
1067 break;
1068 case FIOGETOWN:
1069 case SIOCGPGRP:
1070 err = put_user(f_getown(sock->file),
1071 (int __user *)argp);
1072 break;
1073 case SIOCGIFBR:
1074 case SIOCSIFBR:
1075 case SIOCBRADDBR:
1076 case SIOCBRDELBR:
1077 err = -ENOPKG;
1078 if (!br_ioctl_hook)
1079 request_module("bridge");
1080
1081 mutex_lock(&br_ioctl_mutex);
1082 if (br_ioctl_hook)
1083 err = br_ioctl_hook(net, cmd, argp);
1084 mutex_unlock(&br_ioctl_mutex);
1085 break;
1086 case SIOCGIFVLAN:
1087 case SIOCSIFVLAN:
1088 err = -ENOPKG;
1089 if (!vlan_ioctl_hook)
1090 request_module("8021q");
1091
1092 mutex_lock(&vlan_ioctl_mutex);
1093 if (vlan_ioctl_hook)
1094 err = vlan_ioctl_hook(net, argp);
1095 mutex_unlock(&vlan_ioctl_mutex);
1096 break;
1097 case SIOCADDDLCI:
1098 case SIOCDELDLCI:
1099 err = -ENOPKG;
1100 if (!dlci_ioctl_hook)
1101 request_module("dlci");
1102
1103 mutex_lock(&dlci_ioctl_mutex);
1104 if (dlci_ioctl_hook)
1105 err = dlci_ioctl_hook(cmd, argp);
1106 mutex_unlock(&dlci_ioctl_mutex);
1107 break;
1108 default:
1109 err = sock_do_ioctl(net, sock, cmd, arg);
1110 break;
1111 }
1112 return err;
1113 }
1114
1115 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1116 {
1117 int err;
1118 struct socket *sock = NULL;
1119
1120 err = security_socket_create(family, type, protocol, 1);
1121 if (err)
1122 goto out;
1123
1124 sock = sock_alloc();
1125 if (!sock) {
1126 err = -ENOMEM;
1127 goto out;
1128 }
1129
1130 sock->type = type;
1131 err = security_socket_post_create(sock, family, type, protocol, 1);
1132 if (err)
1133 goto out_release;
1134
1135 out:
1136 *res = sock;
1137 return err;
1138 out_release:
1139 sock_release(sock);
1140 sock = NULL;
1141 goto out;
1142 }
1143 EXPORT_SYMBOL(sock_create_lite);
1144
1145 /* No kernel lock held - perfect */
1146 static unsigned int sock_poll(struct file *file, poll_table *wait)
1147 {
1148 unsigned int busy_flag = 0;
1149 struct socket *sock;
1150
1151 /*
1152 * We can't return errors to poll, so it's either yes or no.
1153 */
1154 sock = file->private_data;
1155
1156 if (sk_can_busy_loop(sock->sk)) {
1157 /* this socket can poll_ll so tell the system call */
1158 busy_flag = POLL_BUSY_LOOP;
1159
1160 /* once, only if requested by syscall */
1161 if (wait && (wait->_key & POLL_BUSY_LOOP))
1162 sk_busy_loop(sock->sk, 1);
1163 }
1164
1165 return busy_flag | sock->ops->poll(file, sock, wait);
1166 }
1167
1168 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1169 {
1170 struct socket *sock = file->private_data;
1171
1172 return sock->ops->mmap(file, sock, vma);
1173 }
1174
1175 static int sock_close(struct inode *inode, struct file *filp)
1176 {
1177 sock_release(SOCKET_I(inode));
1178 return 0;
1179 }
1180
1181 /*
1182 * Update the socket async list
1183 *
1184 * Fasync_list locking strategy.
1185 *
1186 * 1. fasync_list is modified only under process context socket lock
1187 * i.e. under semaphore.
1188 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1189 * or under socket lock
1190 */
1191
1192 static int sock_fasync(int fd, struct file *filp, int on)
1193 {
1194 struct socket *sock = filp->private_data;
1195 struct sock *sk = sock->sk;
1196 struct socket_wq *wq;
1197
1198 if (sk == NULL)
1199 return -EINVAL;
1200
1201 lock_sock(sk);
1202 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1203 fasync_helper(fd, filp, on, &wq->fasync_list);
1204
1205 if (!wq->fasync_list)
1206 sock_reset_flag(sk, SOCK_FASYNC);
1207 else
1208 sock_set_flag(sk, SOCK_FASYNC);
1209
1210 release_sock(sk);
1211 return 0;
1212 }
1213
1214 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1215
1216 int sock_wake_async(struct socket *sock, int how, int band)
1217 {
1218 struct socket_wq *wq;
1219
1220 if (!sock)
1221 return -1;
1222 rcu_read_lock();
1223 wq = rcu_dereference(sock->wq);
1224 if (!wq || !wq->fasync_list) {
1225 rcu_read_unlock();
1226 return -1;
1227 }
1228 switch (how) {
1229 case SOCK_WAKE_WAITD:
1230 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1231 break;
1232 goto call_kill;
1233 case SOCK_WAKE_SPACE:
1234 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1235 break;
1236 /* fall through */
1237 case SOCK_WAKE_IO:
1238 call_kill:
1239 kill_fasync(&wq->fasync_list, SIGIO, band);
1240 break;
1241 case SOCK_WAKE_URG:
1242 kill_fasync(&wq->fasync_list, SIGURG, band);
1243 }
1244 rcu_read_unlock();
1245 return 0;
1246 }
1247 EXPORT_SYMBOL(sock_wake_async);
1248
1249 int __sock_create(struct net *net, int family, int type, int protocol,
1250 struct socket **res, int kern)
1251 {
1252 int err;
1253 struct socket *sock;
1254 const struct net_proto_family *pf;
1255
1256 /*
1257 * Check protocol is in range
1258 */
1259 if (family < 0 || family >= NPROTO)
1260 return -EAFNOSUPPORT;
1261 if (type < 0 || type >= SOCK_MAX)
1262 return -EINVAL;
1263
1264 /* Compatibility.
1265
1266 This uglymoron is moved from INET layer to here to avoid
1267 deadlock in module load.
1268 */
1269 if (family == PF_INET && type == SOCK_PACKET) {
1270 static int warned;
1271 if (!warned) {
1272 warned = 1;
1273 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1274 current->comm);
1275 }
1276 family = PF_PACKET;
1277 }
1278
1279 err = security_socket_create(family, type, protocol, kern);
1280 if (err)
1281 return err;
1282
1283 /*
1284 * Allocate the socket and allow the family to set things up. if
1285 * the protocol is 0, the family is instructed to select an appropriate
1286 * default.
1287 */
1288 sock = sock_alloc();
1289 if (!sock) {
1290 net_warn_ratelimited("socket: no more sockets\n");
1291 return -ENFILE; /* Not exactly a match, but its the
1292 closest posix thing */
1293 }
1294
1295 sock->type = type;
1296
1297 #ifdef CONFIG_MODULES
1298 /* Attempt to load a protocol module if the find failed.
1299 *
1300 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1301 * requested real, full-featured networking support upon configuration.
1302 * Otherwise module support will break!
1303 */
1304 if (rcu_access_pointer(net_families[family]) == NULL)
1305 request_module("net-pf-%d", family);
1306 #endif
1307
1308 rcu_read_lock();
1309 pf = rcu_dereference(net_families[family]);
1310 err = -EAFNOSUPPORT;
1311 if (!pf)
1312 goto out_release;
1313
1314 /*
1315 * We will call the ->create function, that possibly is in a loadable
1316 * module, so we have to bump that loadable module refcnt first.
1317 */
1318 if (!try_module_get(pf->owner))
1319 goto out_release;
1320
1321 /* Now protected by module ref count */
1322 rcu_read_unlock();
1323
1324 err = pf->create(net, sock, protocol, kern);
1325 if (err < 0)
1326 goto out_module_put;
1327
1328 /*
1329 * Now to bump the refcnt of the [loadable] module that owns this
1330 * socket at sock_release time we decrement its refcnt.
1331 */
1332 if (!try_module_get(sock->ops->owner))
1333 goto out_module_busy;
1334
1335 /*
1336 * Now that we're done with the ->create function, the [loadable]
1337 * module can have its refcnt decremented
1338 */
1339 module_put(pf->owner);
1340 err = security_socket_post_create(sock, family, type, protocol, kern);
1341 if (err)
1342 goto out_sock_release;
1343 *res = sock;
1344
1345 return 0;
1346
1347 out_module_busy:
1348 err = -EAFNOSUPPORT;
1349 out_module_put:
1350 sock->ops = NULL;
1351 module_put(pf->owner);
1352 out_sock_release:
1353 sock_release(sock);
1354 return err;
1355
1356 out_release:
1357 rcu_read_unlock();
1358 goto out_sock_release;
1359 }
1360 EXPORT_SYMBOL(__sock_create);
1361
1362 int sock_create(int family, int type, int protocol, struct socket **res)
1363 {
1364 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1365 }
1366 EXPORT_SYMBOL(sock_create);
1367
1368 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1369 {
1370 return __sock_create(&init_net, family, type, protocol, res, 1);
1371 }
1372 EXPORT_SYMBOL(sock_create_kern);
1373
1374 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1375 {
1376 int retval;
1377 struct socket *sock;
1378 int flags;
1379
1380 /* Check the SOCK_* constants for consistency. */
1381 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1382 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1383 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1384 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1385
1386 flags = type & ~SOCK_TYPE_MASK;
1387 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1388 return -EINVAL;
1389 type &= SOCK_TYPE_MASK;
1390
1391 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1392 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1393
1394 retval = sock_create(family, type, protocol, &sock);
1395 if (retval < 0)
1396 goto out;
1397
1398 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1399 if (retval < 0)
1400 goto out_release;
1401
1402 out:
1403 /* It may be already another descriptor 8) Not kernel problem. */
1404 return retval;
1405
1406 out_release:
1407 sock_release(sock);
1408 return retval;
1409 }
1410
1411 /*
1412 * Create a pair of connected sockets.
1413 */
1414
1415 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1416 int __user *, usockvec)
1417 {
1418 struct socket *sock1, *sock2;
1419 int fd1, fd2, err;
1420 struct file *newfile1, *newfile2;
1421 int flags;
1422
1423 flags = type & ~SOCK_TYPE_MASK;
1424 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1425 return -EINVAL;
1426 type &= SOCK_TYPE_MASK;
1427
1428 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1429 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1430
1431 /*
1432 * Obtain the first socket and check if the underlying protocol
1433 * supports the socketpair call.
1434 */
1435
1436 err = sock_create(family, type, protocol, &sock1);
1437 if (err < 0)
1438 goto out;
1439
1440 err = sock_create(family, type, protocol, &sock2);
1441 if (err < 0)
1442 goto out_release_1;
1443
1444 err = sock1->ops->socketpair(sock1, sock2);
1445 if (err < 0)
1446 goto out_release_both;
1447
1448 fd1 = get_unused_fd_flags(flags);
1449 if (unlikely(fd1 < 0)) {
1450 err = fd1;
1451 goto out_release_both;
1452 }
1453
1454 fd2 = get_unused_fd_flags(flags);
1455 if (unlikely(fd2 < 0)) {
1456 err = fd2;
1457 goto out_put_unused_1;
1458 }
1459
1460 newfile1 = sock_alloc_file(sock1, flags, NULL);
1461 if (unlikely(IS_ERR(newfile1))) {
1462 err = PTR_ERR(newfile1);
1463 goto out_put_unused_both;
1464 }
1465
1466 newfile2 = sock_alloc_file(sock2, flags, NULL);
1467 if (IS_ERR(newfile2)) {
1468 err = PTR_ERR(newfile2);
1469 goto out_fput_1;
1470 }
1471
1472 err = put_user(fd1, &usockvec[0]);
1473 if (err)
1474 goto out_fput_both;
1475
1476 err = put_user(fd2, &usockvec[1]);
1477 if (err)
1478 goto out_fput_both;
1479
1480 audit_fd_pair(fd1, fd2);
1481
1482 fd_install(fd1, newfile1);
1483 fd_install(fd2, newfile2);
1484 /* fd1 and fd2 may be already another descriptors.
1485 * Not kernel problem.
1486 */
1487
1488 return 0;
1489
1490 out_fput_both:
1491 fput(newfile2);
1492 fput(newfile1);
1493 put_unused_fd(fd2);
1494 put_unused_fd(fd1);
1495 goto out;
1496
1497 out_fput_1:
1498 fput(newfile1);
1499 put_unused_fd(fd2);
1500 put_unused_fd(fd1);
1501 sock_release(sock2);
1502 goto out;
1503
1504 out_put_unused_both:
1505 put_unused_fd(fd2);
1506 out_put_unused_1:
1507 put_unused_fd(fd1);
1508 out_release_both:
1509 sock_release(sock2);
1510 out_release_1:
1511 sock_release(sock1);
1512 out:
1513 return err;
1514 }
1515
1516 /*
1517 * Bind a name to a socket. Nothing much to do here since it's
1518 * the protocol's responsibility to handle the local address.
1519 *
1520 * We move the socket address to kernel space before we call
1521 * the protocol layer (having also checked the address is ok).
1522 */
1523
1524 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1525 {
1526 struct socket *sock;
1527 struct sockaddr_storage address;
1528 int err, fput_needed;
1529
1530 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1531 if (sock) {
1532 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1533 if (err >= 0) {
1534 err = security_socket_bind(sock,
1535 (struct sockaddr *)&address,
1536 addrlen);
1537 if (!err)
1538 err = sock->ops->bind(sock,
1539 (struct sockaddr *)
1540 &address, addrlen);
1541 }
1542 fput_light(sock->file, fput_needed);
1543 }
1544 return err;
1545 }
1546
1547 /*
1548 * Perform a listen. Basically, we allow the protocol to do anything
1549 * necessary for a listen, and if that works, we mark the socket as
1550 * ready for listening.
1551 */
1552
1553 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1554 {
1555 struct socket *sock;
1556 int err, fput_needed;
1557 int somaxconn;
1558
1559 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1560 if (sock) {
1561 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1562 if ((unsigned int)backlog > somaxconn)
1563 backlog = somaxconn;
1564
1565 err = security_socket_listen(sock, backlog);
1566 if (!err)
1567 err = sock->ops->listen(sock, backlog);
1568
1569 fput_light(sock->file, fput_needed);
1570 }
1571 return err;
1572 }
1573
1574 /*
1575 * For accept, we attempt to create a new socket, set up the link
1576 * with the client, wake up the client, then return the new
1577 * connected fd. We collect the address of the connector in kernel
1578 * space and move it to user at the very end. This is unclean because
1579 * we open the socket then return an error.
1580 *
1581 * 1003.1g adds the ability to recvmsg() to query connection pending
1582 * status to recvmsg. We need to add that support in a way thats
1583 * clean when we restucture accept also.
1584 */
1585
1586 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1587 int __user *, upeer_addrlen, int, flags)
1588 {
1589 struct socket *sock, *newsock;
1590 struct file *newfile;
1591 int err, len, newfd, fput_needed;
1592 struct sockaddr_storage address;
1593
1594 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1595 return -EINVAL;
1596
1597 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1598 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1599
1600 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1601 if (!sock)
1602 goto out;
1603
1604 err = -ENFILE;
1605 newsock = sock_alloc();
1606 if (!newsock)
1607 goto out_put;
1608
1609 newsock->type = sock->type;
1610 newsock->ops = sock->ops;
1611
1612 /*
1613 * We don't need try_module_get here, as the listening socket (sock)
1614 * has the protocol module (sock->ops->owner) held.
1615 */
1616 __module_get(newsock->ops->owner);
1617
1618 newfd = get_unused_fd_flags(flags);
1619 if (unlikely(newfd < 0)) {
1620 err = newfd;
1621 sock_release(newsock);
1622 goto out_put;
1623 }
1624 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1625 if (unlikely(IS_ERR(newfile))) {
1626 err = PTR_ERR(newfile);
1627 put_unused_fd(newfd);
1628 sock_release(newsock);
1629 goto out_put;
1630 }
1631
1632 err = security_socket_accept(sock, newsock);
1633 if (err)
1634 goto out_fd;
1635
1636 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1637 if (err < 0)
1638 goto out_fd;
1639
1640 if (upeer_sockaddr) {
1641 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1642 &len, 2) < 0) {
1643 err = -ECONNABORTED;
1644 goto out_fd;
1645 }
1646 err = move_addr_to_user(&address,
1647 len, upeer_sockaddr, upeer_addrlen);
1648 if (err < 0)
1649 goto out_fd;
1650 }
1651
1652 /* File flags are not inherited via accept() unlike another OSes. */
1653
1654 fd_install(newfd, newfile);
1655 err = newfd;
1656
1657 out_put:
1658 fput_light(sock->file, fput_needed);
1659 out:
1660 return err;
1661 out_fd:
1662 fput(newfile);
1663 put_unused_fd(newfd);
1664 goto out_put;
1665 }
1666
1667 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1668 int __user *, upeer_addrlen)
1669 {
1670 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1671 }
1672
1673 /*
1674 * Attempt to connect to a socket with the server address. The address
1675 * is in user space so we verify it is OK and move it to kernel space.
1676 *
1677 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1678 * break bindings
1679 *
1680 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1681 * other SEQPACKET protocols that take time to connect() as it doesn't
1682 * include the -EINPROGRESS status for such sockets.
1683 */
1684
1685 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1686 int, addrlen)
1687 {
1688 struct socket *sock;
1689 struct sockaddr_storage address;
1690 int err, fput_needed;
1691
1692 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1693 if (!sock)
1694 goto out;
1695 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1696 if (err < 0)
1697 goto out_put;
1698
1699 err =
1700 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1701 if (err)
1702 goto out_put;
1703
1704 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1705 sock->file->f_flags);
1706 out_put:
1707 fput_light(sock->file, fput_needed);
1708 out:
1709 return err;
1710 }
1711
1712 /*
1713 * Get the local address ('name') of a socket object. Move the obtained
1714 * name to user space.
1715 */
1716
1717 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1718 int __user *, usockaddr_len)
1719 {
1720 struct socket *sock;
1721 struct sockaddr_storage address;
1722 int len, err, fput_needed;
1723
1724 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1725 if (!sock)
1726 goto out;
1727
1728 err = security_socket_getsockname(sock);
1729 if (err)
1730 goto out_put;
1731
1732 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1733 if (err)
1734 goto out_put;
1735 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1736
1737 out_put:
1738 fput_light(sock->file, fput_needed);
1739 out:
1740 return err;
1741 }
1742
1743 /*
1744 * Get the remote address ('name') of a socket object. Move the obtained
1745 * name to user space.
1746 */
1747
1748 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1749 int __user *, usockaddr_len)
1750 {
1751 struct socket *sock;
1752 struct sockaddr_storage address;
1753 int len, err, fput_needed;
1754
1755 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1756 if (sock != NULL) {
1757 err = security_socket_getpeername(sock);
1758 if (err) {
1759 fput_light(sock->file, fput_needed);
1760 return err;
1761 }
1762
1763 err =
1764 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1765 1);
1766 if (!err)
1767 err = move_addr_to_user(&address, len, usockaddr,
1768 usockaddr_len);
1769 fput_light(sock->file, fput_needed);
1770 }
1771 return err;
1772 }
1773
1774 /*
1775 * Send a datagram to a given address. We move the address into kernel
1776 * space and check the user space data area is readable before invoking
1777 * the protocol.
1778 */
1779
1780 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1781 unsigned int, flags, struct sockaddr __user *, addr,
1782 int, addr_len)
1783 {
1784 struct socket *sock;
1785 struct sockaddr_storage address;
1786 int err;
1787 struct msghdr msg;
1788 struct iovec iov;
1789 int fput_needed;
1790
1791 if (len > INT_MAX)
1792 len = INT_MAX;
1793 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1794 if (!sock)
1795 goto out;
1796
1797 iov.iov_base = buff;
1798 iov.iov_len = len;
1799 msg.msg_name = NULL;
1800 msg.msg_iov = &iov;
1801 msg.msg_iovlen = 1;
1802 msg.msg_control = NULL;
1803 msg.msg_controllen = 0;
1804 msg.msg_namelen = 0;
1805 if (addr) {
1806 err = move_addr_to_kernel(addr, addr_len, &address);
1807 if (err < 0)
1808 goto out_put;
1809 msg.msg_name = (struct sockaddr *)&address;
1810 msg.msg_namelen = addr_len;
1811 }
1812 if (sock->file->f_flags & O_NONBLOCK)
1813 flags |= MSG_DONTWAIT;
1814 msg.msg_flags = flags;
1815 err = sock_sendmsg(sock, &msg, len);
1816
1817 out_put:
1818 fput_light(sock->file, fput_needed);
1819 out:
1820 return err;
1821 }
1822
1823 /*
1824 * Send a datagram down a socket.
1825 */
1826
1827 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1828 unsigned int, flags)
1829 {
1830 return sys_sendto(fd, buff, len, flags, NULL, 0);
1831 }
1832
1833 /*
1834 * Receive a frame from the socket and optionally record the address of the
1835 * sender. We verify the buffers are writable and if needed move the
1836 * sender address from kernel to user space.
1837 */
1838
1839 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1840 unsigned int, flags, struct sockaddr __user *, addr,
1841 int __user *, addr_len)
1842 {
1843 struct socket *sock;
1844 struct iovec iov;
1845 struct msghdr msg;
1846 struct sockaddr_storage address;
1847 int err, err2;
1848 int fput_needed;
1849
1850 if (size > INT_MAX)
1851 size = INT_MAX;
1852 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1853 if (!sock)
1854 goto out;
1855
1856 msg.msg_control = NULL;
1857 msg.msg_controllen = 0;
1858 msg.msg_iovlen = 1;
1859 msg.msg_iov = &iov;
1860 iov.iov_len = size;
1861 iov.iov_base = ubuf;
1862 /* Save some cycles and don't copy the address if not needed */
1863 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1864 /* We assume all kernel code knows the size of sockaddr_storage */
1865 msg.msg_namelen = 0;
1866 if (sock->file->f_flags & O_NONBLOCK)
1867 flags |= MSG_DONTWAIT;
1868 err = sock_recvmsg(sock, &msg, size, flags);
1869
1870 if (err >= 0 && addr != NULL) {
1871 err2 = move_addr_to_user(&address,
1872 msg.msg_namelen, addr, addr_len);
1873 if (err2 < 0)
1874 err = err2;
1875 }
1876
1877 fput_light(sock->file, fput_needed);
1878 out:
1879 return err;
1880 }
1881
1882 /*
1883 * Receive a datagram from a socket.
1884 */
1885
1886 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1887 unsigned int, flags)
1888 {
1889 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1890 }
1891
1892 /*
1893 * Set a socket option. Because we don't know the option lengths we have
1894 * to pass the user mode parameter for the protocols to sort out.
1895 */
1896
1897 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1898 char __user *, optval, int, optlen)
1899 {
1900 int err, fput_needed;
1901 struct socket *sock;
1902
1903 if (optlen < 0)
1904 return -EINVAL;
1905
1906 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1907 if (sock != NULL) {
1908 err = security_socket_setsockopt(sock, level, optname);
1909 if (err)
1910 goto out_put;
1911
1912 if (level == SOL_SOCKET)
1913 err =
1914 sock_setsockopt(sock, level, optname, optval,
1915 optlen);
1916 else
1917 err =
1918 sock->ops->setsockopt(sock, level, optname, optval,
1919 optlen);
1920 out_put:
1921 fput_light(sock->file, fput_needed);
1922 }
1923 return err;
1924 }
1925
1926 /*
1927 * Get a socket option. Because we don't know the option lengths we have
1928 * to pass a user mode parameter for the protocols to sort out.
1929 */
1930
1931 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1932 char __user *, optval, int __user *, optlen)
1933 {
1934 int err, fput_needed;
1935 struct socket *sock;
1936
1937 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1938 if (sock != NULL) {
1939 err = security_socket_getsockopt(sock, level, optname);
1940 if (err)
1941 goto out_put;
1942
1943 if (level == SOL_SOCKET)
1944 err =
1945 sock_getsockopt(sock, level, optname, optval,
1946 optlen);
1947 else
1948 err =
1949 sock->ops->getsockopt(sock, level, optname, optval,
1950 optlen);
1951 out_put:
1952 fput_light(sock->file, fput_needed);
1953 }
1954 return err;
1955 }
1956
1957 /*
1958 * Shutdown a socket.
1959 */
1960
1961 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1962 {
1963 int err, fput_needed;
1964 struct socket *sock;
1965
1966 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1967 if (sock != NULL) {
1968 err = security_socket_shutdown(sock, how);
1969 if (!err)
1970 err = sock->ops->shutdown(sock, how);
1971 fput_light(sock->file, fput_needed);
1972 }
1973 return err;
1974 }
1975
1976 /* A couple of helpful macros for getting the address of the 32/64 bit
1977 * fields which are the same type (int / unsigned) on our platforms.
1978 */
1979 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1980 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1981 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1982
1983 struct used_address {
1984 struct sockaddr_storage name;
1985 unsigned int name_len;
1986 };
1987
1988 static int copy_msghdr_from_user(struct msghdr *kmsg,
1989 struct msghdr __user *umsg)
1990 {
1991 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1992 return -EFAULT;
1993
1994 if (kmsg->msg_namelen < 0)
1995 return -EINVAL;
1996
1997 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1998 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1999 return 0;
2000 }
2001
2002 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
2003 struct msghdr *msg_sys, unsigned int flags,
2004 struct used_address *used_address)
2005 {
2006 struct compat_msghdr __user *msg_compat =
2007 (struct compat_msghdr __user *)msg;
2008 struct sockaddr_storage address;
2009 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2010 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2011 __attribute__ ((aligned(sizeof(__kernel_size_t))));
2012 /* 20 is size of ipv6_pktinfo */
2013 unsigned char *ctl_buf = ctl;
2014 int err, ctl_len, total_len;
2015
2016 err = -EFAULT;
2017 if (MSG_CMSG_COMPAT & flags) {
2018 if (get_compat_msghdr(msg_sys, msg_compat))
2019 return -EFAULT;
2020 } else {
2021 err = copy_msghdr_from_user(msg_sys, msg);
2022 if (err)
2023 return err;
2024 }
2025
2026 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2027 err = -EMSGSIZE;
2028 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2029 goto out;
2030 err = -ENOMEM;
2031 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2032 GFP_KERNEL);
2033 if (!iov)
2034 goto out;
2035 }
2036
2037 /* This will also move the address data into kernel space */
2038 if (MSG_CMSG_COMPAT & flags) {
2039 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2040 } else
2041 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2042 if (err < 0)
2043 goto out_freeiov;
2044 total_len = err;
2045
2046 err = -ENOBUFS;
2047
2048 if (msg_sys->msg_controllen > INT_MAX)
2049 goto out_freeiov;
2050 ctl_len = msg_sys->msg_controllen;
2051 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2052 err =
2053 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2054 sizeof(ctl));
2055 if (err)
2056 goto out_freeiov;
2057 ctl_buf = msg_sys->msg_control;
2058 ctl_len = msg_sys->msg_controllen;
2059 } else if (ctl_len) {
2060 if (ctl_len > sizeof(ctl)) {
2061 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2062 if (ctl_buf == NULL)
2063 goto out_freeiov;
2064 }
2065 err = -EFAULT;
2066 /*
2067 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2068 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2069 * checking falls down on this.
2070 */
2071 if (copy_from_user(ctl_buf,
2072 (void __user __force *)msg_sys->msg_control,
2073 ctl_len))
2074 goto out_freectl;
2075 msg_sys->msg_control = ctl_buf;
2076 }
2077 msg_sys->msg_flags = flags;
2078
2079 if (sock->file->f_flags & O_NONBLOCK)
2080 msg_sys->msg_flags |= MSG_DONTWAIT;
2081 /*
2082 * If this is sendmmsg() and current destination address is same as
2083 * previously succeeded address, omit asking LSM's decision.
2084 * used_address->name_len is initialized to UINT_MAX so that the first
2085 * destination address never matches.
2086 */
2087 if (used_address && msg_sys->msg_name &&
2088 used_address->name_len == msg_sys->msg_namelen &&
2089 !memcmp(&used_address->name, msg_sys->msg_name,
2090 used_address->name_len)) {
2091 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2092 goto out_freectl;
2093 }
2094 err = sock_sendmsg(sock, msg_sys, total_len);
2095 /*
2096 * If this is sendmmsg() and sending to current destination address was
2097 * successful, remember it.
2098 */
2099 if (used_address && err >= 0) {
2100 used_address->name_len = msg_sys->msg_namelen;
2101 if (msg_sys->msg_name)
2102 memcpy(&used_address->name, msg_sys->msg_name,
2103 used_address->name_len);
2104 }
2105
2106 out_freectl:
2107 if (ctl_buf != ctl)
2108 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2109 out_freeiov:
2110 if (iov != iovstack)
2111 kfree(iov);
2112 out:
2113 return err;
2114 }
2115
2116 /*
2117 * BSD sendmsg interface
2118 */
2119
2120 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2121 {
2122 int fput_needed, err;
2123 struct msghdr msg_sys;
2124 struct socket *sock;
2125
2126 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2127 if (!sock)
2128 goto out;
2129
2130 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2131
2132 fput_light(sock->file, fput_needed);
2133 out:
2134 return err;
2135 }
2136
2137 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2138 {
2139 if (flags & MSG_CMSG_COMPAT)
2140 return -EINVAL;
2141 return __sys_sendmsg(fd, msg, flags);
2142 }
2143
2144 /*
2145 * Linux sendmmsg interface
2146 */
2147
2148 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2149 unsigned int flags)
2150 {
2151 int fput_needed, err, datagrams;
2152 struct socket *sock;
2153 struct mmsghdr __user *entry;
2154 struct compat_mmsghdr __user *compat_entry;
2155 struct msghdr msg_sys;
2156 struct used_address used_address;
2157
2158 if (vlen > UIO_MAXIOV)
2159 vlen = UIO_MAXIOV;
2160
2161 datagrams = 0;
2162
2163 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2164 if (!sock)
2165 return err;
2166
2167 used_address.name_len = UINT_MAX;
2168 entry = mmsg;
2169 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2170 err = 0;
2171
2172 while (datagrams < vlen) {
2173 if (MSG_CMSG_COMPAT & flags) {
2174 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2175 &msg_sys, flags, &used_address);
2176 if (err < 0)
2177 break;
2178 err = __put_user(err, &compat_entry->msg_len);
2179 ++compat_entry;
2180 } else {
2181 err = ___sys_sendmsg(sock,
2182 (struct msghdr __user *)entry,
2183 &msg_sys, flags, &used_address);
2184 if (err < 0)
2185 break;
2186 err = put_user(err, &entry->msg_len);
2187 ++entry;
2188 }
2189
2190 if (err)
2191 break;
2192 ++datagrams;
2193 }
2194
2195 fput_light(sock->file, fput_needed);
2196
2197 /* We only return an error if no datagrams were able to be sent */
2198 if (datagrams != 0)
2199 return datagrams;
2200
2201 return err;
2202 }
2203
2204 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2205 unsigned int, vlen, unsigned int, flags)
2206 {
2207 if (flags & MSG_CMSG_COMPAT)
2208 return -EINVAL;
2209 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2210 }
2211
2212 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2213 struct msghdr *msg_sys, unsigned int flags, int nosec)
2214 {
2215 struct compat_msghdr __user *msg_compat =
2216 (struct compat_msghdr __user *)msg;
2217 struct iovec iovstack[UIO_FASTIOV];
2218 struct iovec *iov = iovstack;
2219 unsigned long cmsg_ptr;
2220 int err, total_len, len;
2221
2222 /* kernel mode address */
2223 struct sockaddr_storage addr;
2224
2225 /* user mode address pointers */
2226 struct sockaddr __user *uaddr;
2227 int __user *uaddr_len;
2228
2229 if (MSG_CMSG_COMPAT & flags) {
2230 if (get_compat_msghdr(msg_sys, msg_compat))
2231 return -EFAULT;
2232 } else {
2233 err = copy_msghdr_from_user(msg_sys, msg);
2234 if (err)
2235 return err;
2236 }
2237
2238 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2239 err = -EMSGSIZE;
2240 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2241 goto out;
2242 err = -ENOMEM;
2243 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2244 GFP_KERNEL);
2245 if (!iov)
2246 goto out;
2247 }
2248
2249 /* Save the user-mode address (verify_iovec will change the
2250 * kernel msghdr to use the kernel address space)
2251 */
2252 uaddr = (__force void __user *)msg_sys->msg_name;
2253 uaddr_len = COMPAT_NAMELEN(msg);
2254 if (MSG_CMSG_COMPAT & flags)
2255 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2256 else
2257 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2258 if (err < 0)
2259 goto out_freeiov;
2260 total_len = err;
2261
2262 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2263 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2264
2265 /* We assume all kernel code knows the size of sockaddr_storage */
2266 msg_sys->msg_namelen = 0;
2267
2268 if (sock->file->f_flags & O_NONBLOCK)
2269 flags |= MSG_DONTWAIT;
2270 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2271 total_len, flags);
2272 if (err < 0)
2273 goto out_freeiov;
2274 len = err;
2275
2276 if (uaddr != NULL) {
2277 err = move_addr_to_user(&addr,
2278 msg_sys->msg_namelen, uaddr,
2279 uaddr_len);
2280 if (err < 0)
2281 goto out_freeiov;
2282 }
2283 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2284 COMPAT_FLAGS(msg));
2285 if (err)
2286 goto out_freeiov;
2287 if (MSG_CMSG_COMPAT & flags)
2288 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2289 &msg_compat->msg_controllen);
2290 else
2291 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2292 &msg->msg_controllen);
2293 if (err)
2294 goto out_freeiov;
2295 err = len;
2296
2297 out_freeiov:
2298 if (iov != iovstack)
2299 kfree(iov);
2300 out:
2301 return err;
2302 }
2303
2304 /*
2305 * BSD recvmsg interface
2306 */
2307
2308 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2309 {
2310 int fput_needed, err;
2311 struct msghdr msg_sys;
2312 struct socket *sock;
2313
2314 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2315 if (!sock)
2316 goto out;
2317
2318 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2319
2320 fput_light(sock->file, fput_needed);
2321 out:
2322 return err;
2323 }
2324
2325 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2326 unsigned int, flags)
2327 {
2328 if (flags & MSG_CMSG_COMPAT)
2329 return -EINVAL;
2330 return __sys_recvmsg(fd, msg, flags);
2331 }
2332
2333 /*
2334 * Linux recvmmsg interface
2335 */
2336
2337 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2338 unsigned int flags, struct timespec *timeout)
2339 {
2340 int fput_needed, err, datagrams;
2341 struct socket *sock;
2342 struct mmsghdr __user *entry;
2343 struct compat_mmsghdr __user *compat_entry;
2344 struct msghdr msg_sys;
2345 struct timespec end_time;
2346
2347 if (timeout &&
2348 poll_select_set_timeout(&end_time, timeout->tv_sec,
2349 timeout->tv_nsec))
2350 return -EINVAL;
2351
2352 datagrams = 0;
2353
2354 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2355 if (!sock)
2356 return err;
2357
2358 err = sock_error(sock->sk);
2359 if (err)
2360 goto out_put;
2361
2362 entry = mmsg;
2363 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2364
2365 while (datagrams < vlen) {
2366 /*
2367 * No need to ask LSM for more than the first datagram.
2368 */
2369 if (MSG_CMSG_COMPAT & flags) {
2370 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2371 &msg_sys, flags & ~MSG_WAITFORONE,
2372 datagrams);
2373 if (err < 0)
2374 break;
2375 err = __put_user(err, &compat_entry->msg_len);
2376 ++compat_entry;
2377 } else {
2378 err = ___sys_recvmsg(sock,
2379 (struct msghdr __user *)entry,
2380 &msg_sys, flags & ~MSG_WAITFORONE,
2381 datagrams);
2382 if (err < 0)
2383 break;
2384 err = put_user(err, &entry->msg_len);
2385 ++entry;
2386 }
2387
2388 if (err)
2389 break;
2390 ++datagrams;
2391
2392 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2393 if (flags & MSG_WAITFORONE)
2394 flags |= MSG_DONTWAIT;
2395
2396 if (timeout) {
2397 ktime_get_ts(timeout);
2398 *timeout = timespec_sub(end_time, *timeout);
2399 if (timeout->tv_sec < 0) {
2400 timeout->tv_sec = timeout->tv_nsec = 0;
2401 break;
2402 }
2403
2404 /* Timeout, return less than vlen datagrams */
2405 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2406 break;
2407 }
2408
2409 /* Out of band data, return right away */
2410 if (msg_sys.msg_flags & MSG_OOB)
2411 break;
2412 }
2413
2414 out_put:
2415 fput_light(sock->file, fput_needed);
2416
2417 if (err == 0)
2418 return datagrams;
2419
2420 if (datagrams != 0) {
2421 /*
2422 * We may return less entries than requested (vlen) if the
2423 * sock is non block and there aren't enough datagrams...
2424 */
2425 if (err != -EAGAIN) {
2426 /*
2427 * ... or if recvmsg returns an error after we
2428 * received some datagrams, where we record the
2429 * error to return on the next call or if the
2430 * app asks about it using getsockopt(SO_ERROR).
2431 */
2432 sock->sk->sk_err = -err;
2433 }
2434
2435 return datagrams;
2436 }
2437
2438 return err;
2439 }
2440
2441 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2442 unsigned int, vlen, unsigned int, flags,
2443 struct timespec __user *, timeout)
2444 {
2445 int datagrams;
2446 struct timespec timeout_sys;
2447
2448 if (flags & MSG_CMSG_COMPAT)
2449 return -EINVAL;
2450
2451 if (!timeout)
2452 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2453
2454 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2455 return -EFAULT;
2456
2457 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2458
2459 if (datagrams > 0 &&
2460 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2461 datagrams = -EFAULT;
2462
2463 return datagrams;
2464 }
2465
2466 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2467 /* Argument list sizes for sys_socketcall */
2468 #define AL(x) ((x) * sizeof(unsigned long))
2469 static const unsigned char nargs[21] = {
2470 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2471 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2472 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2473 AL(4), AL(5), AL(4)
2474 };
2475
2476 #undef AL
2477
2478 /*
2479 * System call vectors.
2480 *
2481 * Argument checking cleaned up. Saved 20% in size.
2482 * This function doesn't need to set the kernel lock because
2483 * it is set by the callees.
2484 */
2485
2486 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2487 {
2488 unsigned long a[AUDITSC_ARGS];
2489 unsigned long a0, a1;
2490 int err;
2491 unsigned int len;
2492
2493 if (call < 1 || call > SYS_SENDMMSG)
2494 return -EINVAL;
2495
2496 len = nargs[call];
2497 if (len > sizeof(a))
2498 return -EINVAL;
2499
2500 /* copy_from_user should be SMP safe. */
2501 if (copy_from_user(a, args, len))
2502 return -EFAULT;
2503
2504 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2505 if (err)
2506 return err;
2507
2508 a0 = a[0];
2509 a1 = a[1];
2510
2511 switch (call) {
2512 case SYS_SOCKET:
2513 err = sys_socket(a0, a1, a[2]);
2514 break;
2515 case SYS_BIND:
2516 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2517 break;
2518 case SYS_CONNECT:
2519 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2520 break;
2521 case SYS_LISTEN:
2522 err = sys_listen(a0, a1);
2523 break;
2524 case SYS_ACCEPT:
2525 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2526 (int __user *)a[2], 0);
2527 break;
2528 case SYS_GETSOCKNAME:
2529 err =
2530 sys_getsockname(a0, (struct sockaddr __user *)a1,
2531 (int __user *)a[2]);
2532 break;
2533 case SYS_GETPEERNAME:
2534 err =
2535 sys_getpeername(a0, (struct sockaddr __user *)a1,
2536 (int __user *)a[2]);
2537 break;
2538 case SYS_SOCKETPAIR:
2539 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2540 break;
2541 case SYS_SEND:
2542 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2543 break;
2544 case SYS_SENDTO:
2545 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2546 (struct sockaddr __user *)a[4], a[5]);
2547 break;
2548 case SYS_RECV:
2549 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2550 break;
2551 case SYS_RECVFROM:
2552 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2553 (struct sockaddr __user *)a[4],
2554 (int __user *)a[5]);
2555 break;
2556 case SYS_SHUTDOWN:
2557 err = sys_shutdown(a0, a1);
2558 break;
2559 case SYS_SETSOCKOPT:
2560 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2561 break;
2562 case SYS_GETSOCKOPT:
2563 err =
2564 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2565 (int __user *)a[4]);
2566 break;
2567 case SYS_SENDMSG:
2568 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2569 break;
2570 case SYS_SENDMMSG:
2571 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2572 break;
2573 case SYS_RECVMSG:
2574 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2575 break;
2576 case SYS_RECVMMSG:
2577 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2578 (struct timespec __user *)a[4]);
2579 break;
2580 case SYS_ACCEPT4:
2581 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2582 (int __user *)a[2], a[3]);
2583 break;
2584 default:
2585 err = -EINVAL;
2586 break;
2587 }
2588 return err;
2589 }
2590
2591 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2592
2593 /**
2594 * sock_register - add a socket protocol handler
2595 * @ops: description of protocol
2596 *
2597 * This function is called by a protocol handler that wants to
2598 * advertise its address family, and have it linked into the
2599 * socket interface. The value ops->family coresponds to the
2600 * socket system call protocol family.
2601 */
2602 int sock_register(const struct net_proto_family *ops)
2603 {
2604 int err;
2605
2606 if (ops->family >= NPROTO) {
2607 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2608 return -ENOBUFS;
2609 }
2610
2611 spin_lock(&net_family_lock);
2612 if (rcu_dereference_protected(net_families[ops->family],
2613 lockdep_is_held(&net_family_lock)))
2614 err = -EEXIST;
2615 else {
2616 rcu_assign_pointer(net_families[ops->family], ops);
2617 err = 0;
2618 }
2619 spin_unlock(&net_family_lock);
2620
2621 pr_info("NET: Registered protocol family %d\n", ops->family);
2622 return err;
2623 }
2624 EXPORT_SYMBOL(sock_register);
2625
2626 /**
2627 * sock_unregister - remove a protocol handler
2628 * @family: protocol family to remove
2629 *
2630 * This function is called by a protocol handler that wants to
2631 * remove its address family, and have it unlinked from the
2632 * new socket creation.
2633 *
2634 * If protocol handler is a module, then it can use module reference
2635 * counts to protect against new references. If protocol handler is not
2636 * a module then it needs to provide its own protection in
2637 * the ops->create routine.
2638 */
2639 void sock_unregister(int family)
2640 {
2641 BUG_ON(family < 0 || family >= NPROTO);
2642
2643 spin_lock(&net_family_lock);
2644 RCU_INIT_POINTER(net_families[family], NULL);
2645 spin_unlock(&net_family_lock);
2646
2647 synchronize_rcu();
2648
2649 pr_info("NET: Unregistered protocol family %d\n", family);
2650 }
2651 EXPORT_SYMBOL(sock_unregister);
2652
2653 static int __init sock_init(void)
2654 {
2655 int err;
2656 /*
2657 * Initialize the network sysctl infrastructure.
2658 */
2659 err = net_sysctl_init();
2660 if (err)
2661 goto out;
2662
2663 /*
2664 * Initialize skbuff SLAB cache
2665 */
2666 skb_init();
2667
2668 /*
2669 * Initialize the protocols module.
2670 */
2671
2672 init_inodecache();
2673
2674 err = register_filesystem(&sock_fs_type);
2675 if (err)
2676 goto out_fs;
2677 sock_mnt = kern_mount(&sock_fs_type);
2678 if (IS_ERR(sock_mnt)) {
2679 err = PTR_ERR(sock_mnt);
2680 goto out_mount;
2681 }
2682
2683 /* The real protocol initialization is performed in later initcalls.
2684 */
2685
2686 #ifdef CONFIG_NETFILTER
2687 err = netfilter_init();
2688 if (err)
2689 goto out;
2690 #endif
2691
2692 ptp_classifier_init();
2693
2694 out:
2695 return err;
2696
2697 out_mount:
2698 unregister_filesystem(&sock_fs_type);
2699 out_fs:
2700 goto out;
2701 }
2702
2703 core_initcall(sock_init); /* early initcall */
2704
2705 #ifdef CONFIG_PROC_FS
2706 void socket_seq_show(struct seq_file *seq)
2707 {
2708 int cpu;
2709 int counter = 0;
2710
2711 for_each_possible_cpu(cpu)
2712 counter += per_cpu(sockets_in_use, cpu);
2713
2714 /* It can be negative, by the way. 8) */
2715 if (counter < 0)
2716 counter = 0;
2717
2718 seq_printf(seq, "sockets: used %d\n", counter);
2719 }
2720 #endif /* CONFIG_PROC_FS */
2721
2722 #ifdef CONFIG_COMPAT
2723 static int do_siocgstamp(struct net *net, struct socket *sock,
2724 unsigned int cmd, void __user *up)
2725 {
2726 mm_segment_t old_fs = get_fs();
2727 struct timeval ktv;
2728 int err;
2729
2730 set_fs(KERNEL_DS);
2731 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2732 set_fs(old_fs);
2733 if (!err)
2734 err = compat_put_timeval(&ktv, up);
2735
2736 return err;
2737 }
2738
2739 static int do_siocgstampns(struct net *net, struct socket *sock,
2740 unsigned int cmd, void __user *up)
2741 {
2742 mm_segment_t old_fs = get_fs();
2743 struct timespec kts;
2744 int err;
2745
2746 set_fs(KERNEL_DS);
2747 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2748 set_fs(old_fs);
2749 if (!err)
2750 err = compat_put_timespec(&kts, up);
2751
2752 return err;
2753 }
2754
2755 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2756 {
2757 struct ifreq __user *uifr;
2758 int err;
2759
2760 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2761 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2762 return -EFAULT;
2763
2764 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2765 if (err)
2766 return err;
2767
2768 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2769 return -EFAULT;
2770
2771 return 0;
2772 }
2773
2774 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2775 {
2776 struct compat_ifconf ifc32;
2777 struct ifconf ifc;
2778 struct ifconf __user *uifc;
2779 struct compat_ifreq __user *ifr32;
2780 struct ifreq __user *ifr;
2781 unsigned int i, j;
2782 int err;
2783
2784 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2785 return -EFAULT;
2786
2787 memset(&ifc, 0, sizeof(ifc));
2788 if (ifc32.ifcbuf == 0) {
2789 ifc32.ifc_len = 0;
2790 ifc.ifc_len = 0;
2791 ifc.ifc_req = NULL;
2792 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2793 } else {
2794 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2795 sizeof(struct ifreq);
2796 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2797 ifc.ifc_len = len;
2798 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2799 ifr32 = compat_ptr(ifc32.ifcbuf);
2800 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2801 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2802 return -EFAULT;
2803 ifr++;
2804 ifr32++;
2805 }
2806 }
2807 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2808 return -EFAULT;
2809
2810 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2811 if (err)
2812 return err;
2813
2814 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2815 return -EFAULT;
2816
2817 ifr = ifc.ifc_req;
2818 ifr32 = compat_ptr(ifc32.ifcbuf);
2819 for (i = 0, j = 0;
2820 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2821 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2822 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2823 return -EFAULT;
2824 ifr32++;
2825 ifr++;
2826 }
2827
2828 if (ifc32.ifcbuf == 0) {
2829 /* Translate from 64-bit structure multiple to
2830 * a 32-bit one.
2831 */
2832 i = ifc.ifc_len;
2833 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2834 ifc32.ifc_len = i;
2835 } else {
2836 ifc32.ifc_len = i;
2837 }
2838 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2839 return -EFAULT;
2840
2841 return 0;
2842 }
2843
2844 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2845 {
2846 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2847 bool convert_in = false, convert_out = false;
2848 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2849 struct ethtool_rxnfc __user *rxnfc;
2850 struct ifreq __user *ifr;
2851 u32 rule_cnt = 0, actual_rule_cnt;
2852 u32 ethcmd;
2853 u32 data;
2854 int ret;
2855
2856 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2857 return -EFAULT;
2858
2859 compat_rxnfc = compat_ptr(data);
2860
2861 if (get_user(ethcmd, &compat_rxnfc->cmd))
2862 return -EFAULT;
2863
2864 /* Most ethtool structures are defined without padding.
2865 * Unfortunately struct ethtool_rxnfc is an exception.
2866 */
2867 switch (ethcmd) {
2868 default:
2869 break;
2870 case ETHTOOL_GRXCLSRLALL:
2871 /* Buffer size is variable */
2872 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2873 return -EFAULT;
2874 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2875 return -ENOMEM;
2876 buf_size += rule_cnt * sizeof(u32);
2877 /* fall through */
2878 case ETHTOOL_GRXRINGS:
2879 case ETHTOOL_GRXCLSRLCNT:
2880 case ETHTOOL_GRXCLSRULE:
2881 case ETHTOOL_SRXCLSRLINS:
2882 convert_out = true;
2883 /* fall through */
2884 case ETHTOOL_SRXCLSRLDEL:
2885 buf_size += sizeof(struct ethtool_rxnfc);
2886 convert_in = true;
2887 break;
2888 }
2889
2890 ifr = compat_alloc_user_space(buf_size);
2891 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2892
2893 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2894 return -EFAULT;
2895
2896 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2897 &ifr->ifr_ifru.ifru_data))
2898 return -EFAULT;
2899
2900 if (convert_in) {
2901 /* We expect there to be holes between fs.m_ext and
2902 * fs.ring_cookie and at the end of fs, but nowhere else.
2903 */
2904 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2905 sizeof(compat_rxnfc->fs.m_ext) !=
2906 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2907 sizeof(rxnfc->fs.m_ext));
2908 BUILD_BUG_ON(
2909 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2910 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2911 offsetof(struct ethtool_rxnfc, fs.location) -
2912 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2913
2914 if (copy_in_user(rxnfc, compat_rxnfc,
2915 (void __user *)(&rxnfc->fs.m_ext + 1) -
2916 (void __user *)rxnfc) ||
2917 copy_in_user(&rxnfc->fs.ring_cookie,
2918 &compat_rxnfc->fs.ring_cookie,
2919 (void __user *)(&rxnfc->fs.location + 1) -
2920 (void __user *)&rxnfc->fs.ring_cookie) ||
2921 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2922 sizeof(rxnfc->rule_cnt)))
2923 return -EFAULT;
2924 }
2925
2926 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2927 if (ret)
2928 return ret;
2929
2930 if (convert_out) {
2931 if (copy_in_user(compat_rxnfc, rxnfc,
2932 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2933 (const void __user *)rxnfc) ||
2934 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2935 &rxnfc->fs.ring_cookie,
2936 (const void __user *)(&rxnfc->fs.location + 1) -
2937 (const void __user *)&rxnfc->fs.ring_cookie) ||
2938 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2939 sizeof(rxnfc->rule_cnt)))
2940 return -EFAULT;
2941
2942 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2943 /* As an optimisation, we only copy the actual
2944 * number of rules that the underlying
2945 * function returned. Since Mallory might
2946 * change the rule count in user memory, we
2947 * check that it is less than the rule count
2948 * originally given (as the user buffer size),
2949 * which has been range-checked.
2950 */
2951 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2952 return -EFAULT;
2953 if (actual_rule_cnt < rule_cnt)
2954 rule_cnt = actual_rule_cnt;
2955 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2956 &rxnfc->rule_locs[0],
2957 rule_cnt * sizeof(u32)))
2958 return -EFAULT;
2959 }
2960 }
2961
2962 return 0;
2963 }
2964
2965 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2966 {
2967 void __user *uptr;
2968 compat_uptr_t uptr32;
2969 struct ifreq __user *uifr;
2970
2971 uifr = compat_alloc_user_space(sizeof(*uifr));
2972 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2973 return -EFAULT;
2974
2975 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2976 return -EFAULT;
2977
2978 uptr = compat_ptr(uptr32);
2979
2980 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2981 return -EFAULT;
2982
2983 return dev_ioctl(net, SIOCWANDEV, uifr);
2984 }
2985
2986 static int bond_ioctl(struct net *net, unsigned int cmd,
2987 struct compat_ifreq __user *ifr32)
2988 {
2989 struct ifreq kifr;
2990 mm_segment_t old_fs;
2991 int err;
2992
2993 switch (cmd) {
2994 case SIOCBONDENSLAVE:
2995 case SIOCBONDRELEASE:
2996 case SIOCBONDSETHWADDR:
2997 case SIOCBONDCHANGEACTIVE:
2998 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2999 return -EFAULT;
3000
3001 old_fs = get_fs();
3002 set_fs(KERNEL_DS);
3003 err = dev_ioctl(net, cmd,
3004 (struct ifreq __user __force *) &kifr);
3005 set_fs(old_fs);
3006
3007 return err;
3008 default:
3009 return -ENOIOCTLCMD;
3010 }
3011 }
3012
3013 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3014 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3015 struct compat_ifreq __user *u_ifreq32)
3016 {
3017 struct ifreq __user *u_ifreq64;
3018 char tmp_buf[IFNAMSIZ];
3019 void __user *data64;
3020 u32 data32;
3021
3022 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3023 IFNAMSIZ))
3024 return -EFAULT;
3025 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3026 return -EFAULT;
3027 data64 = compat_ptr(data32);
3028
3029 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3030
3031 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3032 IFNAMSIZ))
3033 return -EFAULT;
3034 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3035 return -EFAULT;
3036
3037 return dev_ioctl(net, cmd, u_ifreq64);
3038 }
3039
3040 static int dev_ifsioc(struct net *net, struct socket *sock,
3041 unsigned int cmd, struct compat_ifreq __user *uifr32)
3042 {
3043 struct ifreq __user *uifr;
3044 int err;
3045
3046 uifr = compat_alloc_user_space(sizeof(*uifr));
3047 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3048 return -EFAULT;
3049
3050 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3051
3052 if (!err) {
3053 switch (cmd) {
3054 case SIOCGIFFLAGS:
3055 case SIOCGIFMETRIC:
3056 case SIOCGIFMTU:
3057 case SIOCGIFMEM:
3058 case SIOCGIFHWADDR:
3059 case SIOCGIFINDEX:
3060 case SIOCGIFADDR:
3061 case SIOCGIFBRDADDR:
3062 case SIOCGIFDSTADDR:
3063 case SIOCGIFNETMASK:
3064 case SIOCGIFPFLAGS:
3065 case SIOCGIFTXQLEN:
3066 case SIOCGMIIPHY:
3067 case SIOCGMIIREG:
3068 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3069 err = -EFAULT;
3070 break;
3071 }
3072 }
3073 return err;
3074 }
3075
3076 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3077 struct compat_ifreq __user *uifr32)
3078 {
3079 struct ifreq ifr;
3080 struct compat_ifmap __user *uifmap32;
3081 mm_segment_t old_fs;
3082 int err;
3083
3084 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3085 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3086 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3087 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3088 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3089 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3090 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3091 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3092 if (err)
3093 return -EFAULT;
3094
3095 old_fs = get_fs();
3096 set_fs(KERNEL_DS);
3097 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3098 set_fs(old_fs);
3099
3100 if (cmd == SIOCGIFMAP && !err) {
3101 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3102 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3103 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3104 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3105 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3106 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3107 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3108 if (err)
3109 err = -EFAULT;
3110 }
3111 return err;
3112 }
3113
3114 struct rtentry32 {
3115 u32 rt_pad1;
3116 struct sockaddr rt_dst; /* target address */
3117 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3118 struct sockaddr rt_genmask; /* target network mask (IP) */
3119 unsigned short rt_flags;
3120 short rt_pad2;
3121 u32 rt_pad3;
3122 unsigned char rt_tos;
3123 unsigned char rt_class;
3124 short rt_pad4;
3125 short rt_metric; /* +1 for binary compatibility! */
3126 /* char * */ u32 rt_dev; /* forcing the device at add */
3127 u32 rt_mtu; /* per route MTU/Window */
3128 u32 rt_window; /* Window clamping */
3129 unsigned short rt_irtt; /* Initial RTT */
3130 };
3131
3132 struct in6_rtmsg32 {
3133 struct in6_addr rtmsg_dst;
3134 struct in6_addr rtmsg_src;
3135 struct in6_addr rtmsg_gateway;
3136 u32 rtmsg_type;
3137 u16 rtmsg_dst_len;
3138 u16 rtmsg_src_len;
3139 u32 rtmsg_metric;
3140 u32 rtmsg_info;
3141 u32 rtmsg_flags;
3142 s32 rtmsg_ifindex;
3143 };
3144
3145 static int routing_ioctl(struct net *net, struct socket *sock,
3146 unsigned int cmd, void __user *argp)
3147 {
3148 int ret;
3149 void *r = NULL;
3150 struct in6_rtmsg r6;
3151 struct rtentry r4;
3152 char devname[16];
3153 u32 rtdev;
3154 mm_segment_t old_fs = get_fs();
3155
3156 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3157 struct in6_rtmsg32 __user *ur6 = argp;
3158 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3159 3 * sizeof(struct in6_addr));
3160 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3161 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3162 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3163 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3164 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3165 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3166 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3167
3168 r = (void *) &r6;
3169 } else { /* ipv4 */
3170 struct rtentry32 __user *ur4 = argp;
3171 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3172 3 * sizeof(struct sockaddr));
3173 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3174 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3175 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3176 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3177 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3178 ret |= get_user(rtdev, &(ur4->rt_dev));
3179 if (rtdev) {
3180 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3181 r4.rt_dev = (char __user __force *)devname;
3182 devname[15] = 0;
3183 } else
3184 r4.rt_dev = NULL;
3185
3186 r = (void *) &r4;
3187 }
3188
3189 if (ret) {
3190 ret = -EFAULT;
3191 goto out;
3192 }
3193
3194 set_fs(KERNEL_DS);
3195 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3196 set_fs(old_fs);
3197
3198 out:
3199 return ret;
3200 }
3201
3202 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3203 * for some operations; this forces use of the newer bridge-utils that
3204 * use compatible ioctls
3205 */
3206 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3207 {
3208 compat_ulong_t tmp;
3209
3210 if (get_user(tmp, argp))
3211 return -EFAULT;
3212 if (tmp == BRCTL_GET_VERSION)
3213 return BRCTL_VERSION + 1;
3214 return -EINVAL;
3215 }
3216
3217 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3218 unsigned int cmd, unsigned long arg)
3219 {
3220 void __user *argp = compat_ptr(arg);
3221 struct sock *sk = sock->sk;
3222 struct net *net = sock_net(sk);
3223
3224 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3225 return compat_ifr_data_ioctl(net, cmd, argp);
3226
3227 switch (cmd) {
3228 case SIOCSIFBR:
3229 case SIOCGIFBR:
3230 return old_bridge_ioctl(argp);
3231 case SIOCGIFNAME:
3232 return dev_ifname32(net, argp);
3233 case SIOCGIFCONF:
3234 return dev_ifconf(net, argp);
3235 case SIOCETHTOOL:
3236 return ethtool_ioctl(net, argp);
3237 case SIOCWANDEV:
3238 return compat_siocwandev(net, argp);
3239 case SIOCGIFMAP:
3240 case SIOCSIFMAP:
3241 return compat_sioc_ifmap(net, cmd, argp);
3242 case SIOCBONDENSLAVE:
3243 case SIOCBONDRELEASE:
3244 case SIOCBONDSETHWADDR:
3245 case SIOCBONDCHANGEACTIVE:
3246 return bond_ioctl(net, cmd, argp);
3247 case SIOCADDRT:
3248 case SIOCDELRT:
3249 return routing_ioctl(net, sock, cmd, argp);
3250 case SIOCGSTAMP:
3251 return do_siocgstamp(net, sock, cmd, argp);
3252 case SIOCGSTAMPNS:
3253 return do_siocgstampns(net, sock, cmd, argp);
3254 case SIOCBONDSLAVEINFOQUERY:
3255 case SIOCBONDINFOQUERY:
3256 case SIOCSHWTSTAMP:
3257 case SIOCGHWTSTAMP:
3258 return compat_ifr_data_ioctl(net, cmd, argp);
3259
3260 case FIOSETOWN:
3261 case SIOCSPGRP:
3262 case FIOGETOWN:
3263 case SIOCGPGRP:
3264 case SIOCBRADDBR:
3265 case SIOCBRDELBR:
3266 case SIOCGIFVLAN:
3267 case SIOCSIFVLAN:
3268 case SIOCADDDLCI:
3269 case SIOCDELDLCI:
3270 return sock_ioctl(file, cmd, arg);
3271
3272 case SIOCGIFFLAGS:
3273 case SIOCSIFFLAGS:
3274 case SIOCGIFMETRIC:
3275 case SIOCSIFMETRIC:
3276 case SIOCGIFMTU:
3277 case SIOCSIFMTU:
3278 case SIOCGIFMEM:
3279 case SIOCSIFMEM:
3280 case SIOCGIFHWADDR:
3281 case SIOCSIFHWADDR:
3282 case SIOCADDMULTI:
3283 case SIOCDELMULTI:
3284 case SIOCGIFINDEX:
3285 case SIOCGIFADDR:
3286 case SIOCSIFADDR:
3287 case SIOCSIFHWBROADCAST:
3288 case SIOCDIFADDR:
3289 case SIOCGIFBRDADDR:
3290 case SIOCSIFBRDADDR:
3291 case SIOCGIFDSTADDR:
3292 case SIOCSIFDSTADDR:
3293 case SIOCGIFNETMASK:
3294 case SIOCSIFNETMASK:
3295 case SIOCSIFPFLAGS:
3296 case SIOCGIFPFLAGS:
3297 case SIOCGIFTXQLEN:
3298 case SIOCSIFTXQLEN:
3299 case SIOCBRADDIF:
3300 case SIOCBRDELIF:
3301 case SIOCSIFNAME:
3302 case SIOCGMIIPHY:
3303 case SIOCGMIIREG:
3304 case SIOCSMIIREG:
3305 return dev_ifsioc(net, sock, cmd, argp);
3306
3307 case SIOCSARP:
3308 case SIOCGARP:
3309 case SIOCDARP:
3310 case SIOCATMARK:
3311 return sock_do_ioctl(net, sock, cmd, arg);
3312 }
3313
3314 return -ENOIOCTLCMD;
3315 }
3316
3317 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3318 unsigned long arg)
3319 {
3320 struct socket *sock = file->private_data;
3321 int ret = -ENOIOCTLCMD;
3322 struct sock *sk;
3323 struct net *net;
3324
3325 sk = sock->sk;
3326 net = sock_net(sk);
3327
3328 if (sock->ops->compat_ioctl)
3329 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3330
3331 if (ret == -ENOIOCTLCMD &&
3332 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3333 ret = compat_wext_handle_ioctl(net, cmd, arg);
3334
3335 if (ret == -ENOIOCTLCMD)
3336 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3337
3338 return ret;
3339 }
3340 #endif
3341
3342 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3343 {
3344 return sock->ops->bind(sock, addr, addrlen);
3345 }
3346 EXPORT_SYMBOL(kernel_bind);
3347
3348 int kernel_listen(struct socket *sock, int backlog)
3349 {
3350 return sock->ops->listen(sock, backlog);
3351 }
3352 EXPORT_SYMBOL(kernel_listen);
3353
3354 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3355 {
3356 struct sock *sk = sock->sk;
3357 int err;
3358
3359 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3360 newsock);
3361 if (err < 0)
3362 goto done;
3363
3364 err = sock->ops->accept(sock, *newsock, flags);
3365 if (err < 0) {
3366 sock_release(*newsock);
3367 *newsock = NULL;
3368 goto done;
3369 }
3370
3371 (*newsock)->ops = sock->ops;
3372 __module_get((*newsock)->ops->owner);
3373
3374 done:
3375 return err;
3376 }
3377 EXPORT_SYMBOL(kernel_accept);
3378
3379 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3380 int flags)
3381 {
3382 return sock->ops->connect(sock, addr, addrlen, flags);
3383 }
3384 EXPORT_SYMBOL(kernel_connect);
3385
3386 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3387 int *addrlen)
3388 {
3389 return sock->ops->getname(sock, addr, addrlen, 0);
3390 }
3391 EXPORT_SYMBOL(kernel_getsockname);
3392
3393 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3394 int *addrlen)
3395 {
3396 return sock->ops->getname(sock, addr, addrlen, 1);
3397 }
3398 EXPORT_SYMBOL(kernel_getpeername);
3399
3400 int kernel_getsockopt(struct socket *sock, int level, int optname,
3401 char *optval, int *optlen)
3402 {
3403 mm_segment_t oldfs = get_fs();
3404 char __user *uoptval;
3405 int __user *uoptlen;
3406 int err;
3407
3408 uoptval = (char __user __force *) optval;
3409 uoptlen = (int __user __force *) optlen;
3410
3411 set_fs(KERNEL_DS);
3412 if (level == SOL_SOCKET)
3413 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3414 else
3415 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3416 uoptlen);
3417 set_fs(oldfs);
3418 return err;
3419 }
3420 EXPORT_SYMBOL(kernel_getsockopt);
3421
3422 int kernel_setsockopt(struct socket *sock, int level, int optname,
3423 char *optval, unsigned int optlen)
3424 {
3425 mm_segment_t oldfs = get_fs();
3426 char __user *uoptval;
3427 int err;
3428
3429 uoptval = (char __user __force *) optval;
3430
3431 set_fs(KERNEL_DS);
3432 if (level == SOL_SOCKET)
3433 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3434 else
3435 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3436 optlen);
3437 set_fs(oldfs);
3438 return err;
3439 }
3440 EXPORT_SYMBOL(kernel_setsockopt);
3441
3442 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3443 size_t size, int flags)
3444 {
3445 if (sock->ops->sendpage)
3446 return sock->ops->sendpage(sock, page, offset, size, flags);
3447
3448 return sock_no_sendpage(sock, page, offset, size, flags);
3449 }
3450 EXPORT_SYMBOL(kernel_sendpage);
3451
3452 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3453 {
3454 mm_segment_t oldfs = get_fs();
3455 int err;
3456
3457 set_fs(KERNEL_DS);
3458 err = sock->ops->ioctl(sock, cmd, arg);
3459 set_fs(oldfs);
3460
3461 return err;
3462 }
3463 EXPORT_SYMBOL(kernel_sock_ioctl);
3464
3465 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3466 {
3467 return sock->ops->shutdown(sock, how);
3468 }
3469 EXPORT_SYMBOL(kernel_sock_shutdown);
This page took 0.216864 seconds and 6 git commands to generate.