Merge tag 'dm-4.4-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/device...
[deliverable/linux.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156 };
157
158 /*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166 * Statistics counters of the socket lists
167 */
168
169 static DEFINE_PER_CPU(int, sockets_in_use);
170
171 /*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177 /**
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
182 *
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
197 }
198
199 /**
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
205 *
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
214 */
215
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
218 {
219 int err;
220 int len;
221
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241 }
242
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 RCU_INIT_POINTER(ei->socket.wq, wq);
261
262 ei->socket.state = SS_UNCONNECTED;
263 ei->socket.flags = 0;
264 ei->socket.ops = NULL;
265 ei->socket.sk = NULL;
266 ei->socket.file = NULL;
267
268 return &ei->vfs_inode;
269 }
270
271 static void sock_destroy_inode(struct inode *inode)
272 {
273 struct socket_alloc *ei;
274 struct socket_wq *wq;
275
276 ei = container_of(inode, struct socket_alloc, vfs_inode);
277 wq = rcu_dereference_protected(ei->socket.wq, 1);
278 kfree_rcu(wq, rcu);
279 kmem_cache_free(sock_inode_cachep, ei);
280 }
281
282 static void init_once(void *foo)
283 {
284 struct socket_alloc *ei = (struct socket_alloc *)foo;
285
286 inode_init_once(&ei->vfs_inode);
287 }
288
289 static int init_inodecache(void)
290 {
291 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
292 sizeof(struct socket_alloc),
293 0,
294 (SLAB_HWCACHE_ALIGN |
295 SLAB_RECLAIM_ACCOUNT |
296 SLAB_MEM_SPREAD),
297 init_once);
298 if (sock_inode_cachep == NULL)
299 return -ENOMEM;
300 return 0;
301 }
302
303 static const struct super_operations sockfs_ops = {
304 .alloc_inode = sock_alloc_inode,
305 .destroy_inode = sock_destroy_inode,
306 .statfs = simple_statfs,
307 };
308
309 /*
310 * sockfs_dname() is called from d_path().
311 */
312 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
313 {
314 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
315 d_inode(dentry)->i_ino);
316 }
317
318 static const struct dentry_operations sockfs_dentry_operations = {
319 .d_dname = sockfs_dname,
320 };
321
322 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
323 int flags, const char *dev_name, void *data)
324 {
325 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
326 &sockfs_dentry_operations, SOCKFS_MAGIC);
327 }
328
329 static struct vfsmount *sock_mnt __read_mostly;
330
331 static struct file_system_type sock_fs_type = {
332 .name = "sockfs",
333 .mount = sockfs_mount,
334 .kill_sb = kill_anon_super,
335 };
336
337 /*
338 * Obtains the first available file descriptor and sets it up for use.
339 *
340 * These functions create file structures and maps them to fd space
341 * of the current process. On success it returns file descriptor
342 * and file struct implicitly stored in sock->file.
343 * Note that another thread may close file descriptor before we return
344 * from this function. We use the fact that now we do not refer
345 * to socket after mapping. If one day we will need it, this
346 * function will increment ref. count on file by 1.
347 *
348 * In any case returned fd MAY BE not valid!
349 * This race condition is unavoidable
350 * with shared fd spaces, we cannot solve it inside kernel,
351 * but we take care of internal coherence yet.
352 */
353
354 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
355 {
356 struct qstr name = { .name = "" };
357 struct path path;
358 struct file *file;
359
360 if (dname) {
361 name.name = dname;
362 name.len = strlen(name.name);
363 } else if (sock->sk) {
364 name.name = sock->sk->sk_prot_creator->name;
365 name.len = strlen(name.name);
366 }
367 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
368 if (unlikely(!path.dentry))
369 return ERR_PTR(-ENOMEM);
370 path.mnt = mntget(sock_mnt);
371
372 d_instantiate(path.dentry, SOCK_INODE(sock));
373
374 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
375 &socket_file_ops);
376 if (IS_ERR(file)) {
377 /* drop dentry, keep inode */
378 ihold(d_inode(path.dentry));
379 path_put(&path);
380 return file;
381 }
382
383 sock->file = file;
384 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
385 file->private_data = sock;
386 return file;
387 }
388 EXPORT_SYMBOL(sock_alloc_file);
389
390 static int sock_map_fd(struct socket *sock, int flags)
391 {
392 struct file *newfile;
393 int fd = get_unused_fd_flags(flags);
394 if (unlikely(fd < 0))
395 return fd;
396
397 newfile = sock_alloc_file(sock, flags, NULL);
398 if (likely(!IS_ERR(newfile))) {
399 fd_install(fd, newfile);
400 return fd;
401 }
402
403 put_unused_fd(fd);
404 return PTR_ERR(newfile);
405 }
406
407 struct socket *sock_from_file(struct file *file, int *err)
408 {
409 if (file->f_op == &socket_file_ops)
410 return file->private_data; /* set in sock_map_fd */
411
412 *err = -ENOTSOCK;
413 return NULL;
414 }
415 EXPORT_SYMBOL(sock_from_file);
416
417 /**
418 * sockfd_lookup - Go from a file number to its socket slot
419 * @fd: file handle
420 * @err: pointer to an error code return
421 *
422 * The file handle passed in is locked and the socket it is bound
423 * too is returned. If an error occurs the err pointer is overwritten
424 * with a negative errno code and NULL is returned. The function checks
425 * for both invalid handles and passing a handle which is not a socket.
426 *
427 * On a success the socket object pointer is returned.
428 */
429
430 struct socket *sockfd_lookup(int fd, int *err)
431 {
432 struct file *file;
433 struct socket *sock;
434
435 file = fget(fd);
436 if (!file) {
437 *err = -EBADF;
438 return NULL;
439 }
440
441 sock = sock_from_file(file, err);
442 if (!sock)
443 fput(file);
444 return sock;
445 }
446 EXPORT_SYMBOL(sockfd_lookup);
447
448 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
449 {
450 struct fd f = fdget(fd);
451 struct socket *sock;
452
453 *err = -EBADF;
454 if (f.file) {
455 sock = sock_from_file(f.file, err);
456 if (likely(sock)) {
457 *fput_needed = f.flags;
458 return sock;
459 }
460 fdput(f);
461 }
462 return NULL;
463 }
464
465 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
466 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
467 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
468 static ssize_t sockfs_getxattr(struct dentry *dentry,
469 const char *name, void *value, size_t size)
470 {
471 const char *proto_name;
472 size_t proto_size;
473 int error;
474
475 error = -ENODATA;
476 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
477 proto_name = dentry->d_name.name;
478 proto_size = strlen(proto_name);
479
480 if (value) {
481 error = -ERANGE;
482 if (proto_size + 1 > size)
483 goto out;
484
485 strncpy(value, proto_name, proto_size + 1);
486 }
487 error = proto_size + 1;
488 }
489
490 out:
491 return error;
492 }
493
494 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
495 size_t size)
496 {
497 ssize_t len;
498 ssize_t used = 0;
499
500 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
501 if (len < 0)
502 return len;
503 used += len;
504 if (buffer) {
505 if (size < used)
506 return -ERANGE;
507 buffer += len;
508 }
509
510 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
511 used += len;
512 if (buffer) {
513 if (size < used)
514 return -ERANGE;
515 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
516 buffer += len;
517 }
518
519 return used;
520 }
521
522 static const struct inode_operations sockfs_inode_ops = {
523 .getxattr = sockfs_getxattr,
524 .listxattr = sockfs_listxattr,
525 };
526
527 /**
528 * sock_alloc - allocate a socket
529 *
530 * Allocate a new inode and socket object. The two are bound together
531 * and initialised. The socket is then returned. If we are out of inodes
532 * NULL is returned.
533 */
534
535 static struct socket *sock_alloc(void)
536 {
537 struct inode *inode;
538 struct socket *sock;
539
540 inode = new_inode_pseudo(sock_mnt->mnt_sb);
541 if (!inode)
542 return NULL;
543
544 sock = SOCKET_I(inode);
545
546 kmemcheck_annotate_bitfield(sock, type);
547 inode->i_ino = get_next_ino();
548 inode->i_mode = S_IFSOCK | S_IRWXUGO;
549 inode->i_uid = current_fsuid();
550 inode->i_gid = current_fsgid();
551 inode->i_op = &sockfs_inode_ops;
552
553 this_cpu_add(sockets_in_use, 1);
554 return sock;
555 }
556
557 /**
558 * sock_release - close a socket
559 * @sock: socket to close
560 *
561 * The socket is released from the protocol stack if it has a release
562 * callback, and the inode is then released if the socket is bound to
563 * an inode not a file.
564 */
565
566 void sock_release(struct socket *sock)
567 {
568 if (sock->ops) {
569 struct module *owner = sock->ops->owner;
570
571 sock->ops->release(sock);
572 sock->ops = NULL;
573 module_put(owner);
574 }
575
576 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
577 pr_err("%s: fasync list not empty!\n", __func__);
578
579 this_cpu_sub(sockets_in_use, 1);
580 if (!sock->file) {
581 iput(SOCK_INODE(sock));
582 return;
583 }
584 sock->file = NULL;
585 }
586 EXPORT_SYMBOL(sock_release);
587
588 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
589 {
590 u8 flags = *tx_flags;
591
592 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
593 flags |= SKBTX_HW_TSTAMP;
594
595 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
596 flags |= SKBTX_SW_TSTAMP;
597
598 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
599 flags |= SKBTX_SCHED_TSTAMP;
600
601 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
602 flags |= SKBTX_ACK_TSTAMP;
603
604 *tx_flags = flags;
605 }
606 EXPORT_SYMBOL(__sock_tx_timestamp);
607
608 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
609 {
610 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
611 BUG_ON(ret == -EIOCBQUEUED);
612 return ret;
613 }
614
615 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
616 {
617 int err = security_socket_sendmsg(sock, msg,
618 msg_data_left(msg));
619
620 return err ?: sock_sendmsg_nosec(sock, msg);
621 }
622 EXPORT_SYMBOL(sock_sendmsg);
623
624 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
625 struct kvec *vec, size_t num, size_t size)
626 {
627 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
628 return sock_sendmsg(sock, msg);
629 }
630 EXPORT_SYMBOL(kernel_sendmsg);
631
632 /*
633 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
634 */
635 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
636 struct sk_buff *skb)
637 {
638 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
639 struct scm_timestamping tss;
640 int empty = 1;
641 struct skb_shared_hwtstamps *shhwtstamps =
642 skb_hwtstamps(skb);
643
644 /* Race occurred between timestamp enabling and packet
645 receiving. Fill in the current time for now. */
646 if (need_software_tstamp && skb->tstamp.tv64 == 0)
647 __net_timestamp(skb);
648
649 if (need_software_tstamp) {
650 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
651 struct timeval tv;
652 skb_get_timestamp(skb, &tv);
653 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
654 sizeof(tv), &tv);
655 } else {
656 struct timespec ts;
657 skb_get_timestampns(skb, &ts);
658 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
659 sizeof(ts), &ts);
660 }
661 }
662
663 memset(&tss, 0, sizeof(tss));
664 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
665 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
666 empty = 0;
667 if (shhwtstamps &&
668 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
669 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
670 empty = 0;
671 if (!empty)
672 put_cmsg(msg, SOL_SOCKET,
673 SCM_TIMESTAMPING, sizeof(tss), &tss);
674 }
675 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
676
677 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
678 struct sk_buff *skb)
679 {
680 int ack;
681
682 if (!sock_flag(sk, SOCK_WIFI_STATUS))
683 return;
684 if (!skb->wifi_acked_valid)
685 return;
686
687 ack = skb->wifi_acked;
688
689 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
690 }
691 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
692
693 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
694 struct sk_buff *skb)
695 {
696 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
697 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
698 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
699 }
700
701 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
702 struct sk_buff *skb)
703 {
704 sock_recv_timestamp(msg, sk, skb);
705 sock_recv_drops(msg, sk, skb);
706 }
707 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
708
709 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
710 size_t size, int flags)
711 {
712 return sock->ops->recvmsg(sock, msg, size, flags);
713 }
714
715 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
716 int flags)
717 {
718 int err = security_socket_recvmsg(sock, msg, size, flags);
719
720 return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
721 }
722 EXPORT_SYMBOL(sock_recvmsg);
723
724 /**
725 * kernel_recvmsg - Receive a message from a socket (kernel space)
726 * @sock: The socket to receive the message from
727 * @msg: Received message
728 * @vec: Input s/g array for message data
729 * @num: Size of input s/g array
730 * @size: Number of bytes to read
731 * @flags: Message flags (MSG_DONTWAIT, etc...)
732 *
733 * On return the msg structure contains the scatter/gather array passed in the
734 * vec argument. The array is modified so that it consists of the unfilled
735 * portion of the original array.
736 *
737 * The returned value is the total number of bytes received, or an error.
738 */
739 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
740 struct kvec *vec, size_t num, size_t size, int flags)
741 {
742 mm_segment_t oldfs = get_fs();
743 int result;
744
745 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
746 set_fs(KERNEL_DS);
747 result = sock_recvmsg(sock, msg, size, flags);
748 set_fs(oldfs);
749 return result;
750 }
751 EXPORT_SYMBOL(kernel_recvmsg);
752
753 static ssize_t sock_sendpage(struct file *file, struct page *page,
754 int offset, size_t size, loff_t *ppos, int more)
755 {
756 struct socket *sock;
757 int flags;
758
759 sock = file->private_data;
760
761 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
762 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
763 flags |= more;
764
765 return kernel_sendpage(sock, page, offset, size, flags);
766 }
767
768 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
769 struct pipe_inode_info *pipe, size_t len,
770 unsigned int flags)
771 {
772 struct socket *sock = file->private_data;
773
774 if (unlikely(!sock->ops->splice_read))
775 return -EINVAL;
776
777 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
778 }
779
780 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
781 {
782 struct file *file = iocb->ki_filp;
783 struct socket *sock = file->private_data;
784 struct msghdr msg = {.msg_iter = *to,
785 .msg_iocb = iocb};
786 ssize_t res;
787
788 if (file->f_flags & O_NONBLOCK)
789 msg.msg_flags = MSG_DONTWAIT;
790
791 if (iocb->ki_pos != 0)
792 return -ESPIPE;
793
794 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
795 return 0;
796
797 res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
798 *to = msg.msg_iter;
799 return res;
800 }
801
802 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
803 {
804 struct file *file = iocb->ki_filp;
805 struct socket *sock = file->private_data;
806 struct msghdr msg = {.msg_iter = *from,
807 .msg_iocb = iocb};
808 ssize_t res;
809
810 if (iocb->ki_pos != 0)
811 return -ESPIPE;
812
813 if (file->f_flags & O_NONBLOCK)
814 msg.msg_flags = MSG_DONTWAIT;
815
816 if (sock->type == SOCK_SEQPACKET)
817 msg.msg_flags |= MSG_EOR;
818
819 res = sock_sendmsg(sock, &msg);
820 *from = msg.msg_iter;
821 return res;
822 }
823
824 /*
825 * Atomic setting of ioctl hooks to avoid race
826 * with module unload.
827 */
828
829 static DEFINE_MUTEX(br_ioctl_mutex);
830 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
831
832 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
833 {
834 mutex_lock(&br_ioctl_mutex);
835 br_ioctl_hook = hook;
836 mutex_unlock(&br_ioctl_mutex);
837 }
838 EXPORT_SYMBOL(brioctl_set);
839
840 static DEFINE_MUTEX(vlan_ioctl_mutex);
841 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
842
843 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
844 {
845 mutex_lock(&vlan_ioctl_mutex);
846 vlan_ioctl_hook = hook;
847 mutex_unlock(&vlan_ioctl_mutex);
848 }
849 EXPORT_SYMBOL(vlan_ioctl_set);
850
851 static DEFINE_MUTEX(dlci_ioctl_mutex);
852 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
853
854 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
855 {
856 mutex_lock(&dlci_ioctl_mutex);
857 dlci_ioctl_hook = hook;
858 mutex_unlock(&dlci_ioctl_mutex);
859 }
860 EXPORT_SYMBOL(dlci_ioctl_set);
861
862 static long sock_do_ioctl(struct net *net, struct socket *sock,
863 unsigned int cmd, unsigned long arg)
864 {
865 int err;
866 void __user *argp = (void __user *)arg;
867
868 err = sock->ops->ioctl(sock, cmd, arg);
869
870 /*
871 * If this ioctl is unknown try to hand it down
872 * to the NIC driver.
873 */
874 if (err == -ENOIOCTLCMD)
875 err = dev_ioctl(net, cmd, argp);
876
877 return err;
878 }
879
880 /*
881 * With an ioctl, arg may well be a user mode pointer, but we don't know
882 * what to do with it - that's up to the protocol still.
883 */
884
885 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
886 {
887 struct socket *sock;
888 struct sock *sk;
889 void __user *argp = (void __user *)arg;
890 int pid, err;
891 struct net *net;
892
893 sock = file->private_data;
894 sk = sock->sk;
895 net = sock_net(sk);
896 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
897 err = dev_ioctl(net, cmd, argp);
898 } else
899 #ifdef CONFIG_WEXT_CORE
900 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
901 err = dev_ioctl(net, cmd, argp);
902 } else
903 #endif
904 switch (cmd) {
905 case FIOSETOWN:
906 case SIOCSPGRP:
907 err = -EFAULT;
908 if (get_user(pid, (int __user *)argp))
909 break;
910 f_setown(sock->file, pid, 1);
911 err = 0;
912 break;
913 case FIOGETOWN:
914 case SIOCGPGRP:
915 err = put_user(f_getown(sock->file),
916 (int __user *)argp);
917 break;
918 case SIOCGIFBR:
919 case SIOCSIFBR:
920 case SIOCBRADDBR:
921 case SIOCBRDELBR:
922 err = -ENOPKG;
923 if (!br_ioctl_hook)
924 request_module("bridge");
925
926 mutex_lock(&br_ioctl_mutex);
927 if (br_ioctl_hook)
928 err = br_ioctl_hook(net, cmd, argp);
929 mutex_unlock(&br_ioctl_mutex);
930 break;
931 case SIOCGIFVLAN:
932 case SIOCSIFVLAN:
933 err = -ENOPKG;
934 if (!vlan_ioctl_hook)
935 request_module("8021q");
936
937 mutex_lock(&vlan_ioctl_mutex);
938 if (vlan_ioctl_hook)
939 err = vlan_ioctl_hook(net, argp);
940 mutex_unlock(&vlan_ioctl_mutex);
941 break;
942 case SIOCADDDLCI:
943 case SIOCDELDLCI:
944 err = -ENOPKG;
945 if (!dlci_ioctl_hook)
946 request_module("dlci");
947
948 mutex_lock(&dlci_ioctl_mutex);
949 if (dlci_ioctl_hook)
950 err = dlci_ioctl_hook(cmd, argp);
951 mutex_unlock(&dlci_ioctl_mutex);
952 break;
953 default:
954 err = sock_do_ioctl(net, sock, cmd, arg);
955 break;
956 }
957 return err;
958 }
959
960 int sock_create_lite(int family, int type, int protocol, struct socket **res)
961 {
962 int err;
963 struct socket *sock = NULL;
964
965 err = security_socket_create(family, type, protocol, 1);
966 if (err)
967 goto out;
968
969 sock = sock_alloc();
970 if (!sock) {
971 err = -ENOMEM;
972 goto out;
973 }
974
975 sock->type = type;
976 err = security_socket_post_create(sock, family, type, protocol, 1);
977 if (err)
978 goto out_release;
979
980 out:
981 *res = sock;
982 return err;
983 out_release:
984 sock_release(sock);
985 sock = NULL;
986 goto out;
987 }
988 EXPORT_SYMBOL(sock_create_lite);
989
990 /* No kernel lock held - perfect */
991 static unsigned int sock_poll(struct file *file, poll_table *wait)
992 {
993 unsigned int busy_flag = 0;
994 struct socket *sock;
995
996 /*
997 * We can't return errors to poll, so it's either yes or no.
998 */
999 sock = file->private_data;
1000
1001 if (sk_can_busy_loop(sock->sk)) {
1002 /* this socket can poll_ll so tell the system call */
1003 busy_flag = POLL_BUSY_LOOP;
1004
1005 /* once, only if requested by syscall */
1006 if (wait && (wait->_key & POLL_BUSY_LOOP))
1007 sk_busy_loop(sock->sk, 1);
1008 }
1009
1010 return busy_flag | sock->ops->poll(file, sock, wait);
1011 }
1012
1013 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1014 {
1015 struct socket *sock = file->private_data;
1016
1017 return sock->ops->mmap(file, sock, vma);
1018 }
1019
1020 static int sock_close(struct inode *inode, struct file *filp)
1021 {
1022 sock_release(SOCKET_I(inode));
1023 return 0;
1024 }
1025
1026 /*
1027 * Update the socket async list
1028 *
1029 * Fasync_list locking strategy.
1030 *
1031 * 1. fasync_list is modified only under process context socket lock
1032 * i.e. under semaphore.
1033 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1034 * or under socket lock
1035 */
1036
1037 static int sock_fasync(int fd, struct file *filp, int on)
1038 {
1039 struct socket *sock = filp->private_data;
1040 struct sock *sk = sock->sk;
1041 struct socket_wq *wq;
1042
1043 if (sk == NULL)
1044 return -EINVAL;
1045
1046 lock_sock(sk);
1047 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1048 fasync_helper(fd, filp, on, &wq->fasync_list);
1049
1050 if (!wq->fasync_list)
1051 sock_reset_flag(sk, SOCK_FASYNC);
1052 else
1053 sock_set_flag(sk, SOCK_FASYNC);
1054
1055 release_sock(sk);
1056 return 0;
1057 }
1058
1059 /* This function may be called only under rcu_lock */
1060
1061 int sock_wake_async(struct socket_wq *wq, int how, int band)
1062 {
1063 if (!wq || !wq->fasync_list)
1064 return -1;
1065
1066 switch (how) {
1067 case SOCK_WAKE_WAITD:
1068 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1069 break;
1070 goto call_kill;
1071 case SOCK_WAKE_SPACE:
1072 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1073 break;
1074 /* fall through */
1075 case SOCK_WAKE_IO:
1076 call_kill:
1077 kill_fasync(&wq->fasync_list, SIGIO, band);
1078 break;
1079 case SOCK_WAKE_URG:
1080 kill_fasync(&wq->fasync_list, SIGURG, band);
1081 }
1082
1083 return 0;
1084 }
1085 EXPORT_SYMBOL(sock_wake_async);
1086
1087 int __sock_create(struct net *net, int family, int type, int protocol,
1088 struct socket **res, int kern)
1089 {
1090 int err;
1091 struct socket *sock;
1092 const struct net_proto_family *pf;
1093
1094 /*
1095 * Check protocol is in range
1096 */
1097 if (family < 0 || family >= NPROTO)
1098 return -EAFNOSUPPORT;
1099 if (type < 0 || type >= SOCK_MAX)
1100 return -EINVAL;
1101
1102 /* Compatibility.
1103
1104 This uglymoron is moved from INET layer to here to avoid
1105 deadlock in module load.
1106 */
1107 if (family == PF_INET && type == SOCK_PACKET) {
1108 static int warned;
1109 if (!warned) {
1110 warned = 1;
1111 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1112 current->comm);
1113 }
1114 family = PF_PACKET;
1115 }
1116
1117 err = security_socket_create(family, type, protocol, kern);
1118 if (err)
1119 return err;
1120
1121 /*
1122 * Allocate the socket and allow the family to set things up. if
1123 * the protocol is 0, the family is instructed to select an appropriate
1124 * default.
1125 */
1126 sock = sock_alloc();
1127 if (!sock) {
1128 net_warn_ratelimited("socket: no more sockets\n");
1129 return -ENFILE; /* Not exactly a match, but its the
1130 closest posix thing */
1131 }
1132
1133 sock->type = type;
1134
1135 #ifdef CONFIG_MODULES
1136 /* Attempt to load a protocol module if the find failed.
1137 *
1138 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1139 * requested real, full-featured networking support upon configuration.
1140 * Otherwise module support will break!
1141 */
1142 if (rcu_access_pointer(net_families[family]) == NULL)
1143 request_module("net-pf-%d", family);
1144 #endif
1145
1146 rcu_read_lock();
1147 pf = rcu_dereference(net_families[family]);
1148 err = -EAFNOSUPPORT;
1149 if (!pf)
1150 goto out_release;
1151
1152 /*
1153 * We will call the ->create function, that possibly is in a loadable
1154 * module, so we have to bump that loadable module refcnt first.
1155 */
1156 if (!try_module_get(pf->owner))
1157 goto out_release;
1158
1159 /* Now protected by module ref count */
1160 rcu_read_unlock();
1161
1162 err = pf->create(net, sock, protocol, kern);
1163 if (err < 0)
1164 goto out_module_put;
1165
1166 /*
1167 * Now to bump the refcnt of the [loadable] module that owns this
1168 * socket at sock_release time we decrement its refcnt.
1169 */
1170 if (!try_module_get(sock->ops->owner))
1171 goto out_module_busy;
1172
1173 /*
1174 * Now that we're done with the ->create function, the [loadable]
1175 * module can have its refcnt decremented
1176 */
1177 module_put(pf->owner);
1178 err = security_socket_post_create(sock, family, type, protocol, kern);
1179 if (err)
1180 goto out_sock_release;
1181 *res = sock;
1182
1183 return 0;
1184
1185 out_module_busy:
1186 err = -EAFNOSUPPORT;
1187 out_module_put:
1188 sock->ops = NULL;
1189 module_put(pf->owner);
1190 out_sock_release:
1191 sock_release(sock);
1192 return err;
1193
1194 out_release:
1195 rcu_read_unlock();
1196 goto out_sock_release;
1197 }
1198 EXPORT_SYMBOL(__sock_create);
1199
1200 int sock_create(int family, int type, int protocol, struct socket **res)
1201 {
1202 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1203 }
1204 EXPORT_SYMBOL(sock_create);
1205
1206 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1207 {
1208 return __sock_create(net, family, type, protocol, res, 1);
1209 }
1210 EXPORT_SYMBOL(sock_create_kern);
1211
1212 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1213 {
1214 int retval;
1215 struct socket *sock;
1216 int flags;
1217
1218 /* Check the SOCK_* constants for consistency. */
1219 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1220 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1221 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1222 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1223
1224 flags = type & ~SOCK_TYPE_MASK;
1225 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1226 return -EINVAL;
1227 type &= SOCK_TYPE_MASK;
1228
1229 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1230 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1231
1232 retval = sock_create(family, type, protocol, &sock);
1233 if (retval < 0)
1234 goto out;
1235
1236 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1237 if (retval < 0)
1238 goto out_release;
1239
1240 out:
1241 /* It may be already another descriptor 8) Not kernel problem. */
1242 return retval;
1243
1244 out_release:
1245 sock_release(sock);
1246 return retval;
1247 }
1248
1249 /*
1250 * Create a pair of connected sockets.
1251 */
1252
1253 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1254 int __user *, usockvec)
1255 {
1256 struct socket *sock1, *sock2;
1257 int fd1, fd2, err;
1258 struct file *newfile1, *newfile2;
1259 int flags;
1260
1261 flags = type & ~SOCK_TYPE_MASK;
1262 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1263 return -EINVAL;
1264 type &= SOCK_TYPE_MASK;
1265
1266 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1267 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1268
1269 /*
1270 * Obtain the first socket and check if the underlying protocol
1271 * supports the socketpair call.
1272 */
1273
1274 err = sock_create(family, type, protocol, &sock1);
1275 if (err < 0)
1276 goto out;
1277
1278 err = sock_create(family, type, protocol, &sock2);
1279 if (err < 0)
1280 goto out_release_1;
1281
1282 err = sock1->ops->socketpair(sock1, sock2);
1283 if (err < 0)
1284 goto out_release_both;
1285
1286 fd1 = get_unused_fd_flags(flags);
1287 if (unlikely(fd1 < 0)) {
1288 err = fd1;
1289 goto out_release_both;
1290 }
1291
1292 fd2 = get_unused_fd_flags(flags);
1293 if (unlikely(fd2 < 0)) {
1294 err = fd2;
1295 goto out_put_unused_1;
1296 }
1297
1298 newfile1 = sock_alloc_file(sock1, flags, NULL);
1299 if (IS_ERR(newfile1)) {
1300 err = PTR_ERR(newfile1);
1301 goto out_put_unused_both;
1302 }
1303
1304 newfile2 = sock_alloc_file(sock2, flags, NULL);
1305 if (IS_ERR(newfile2)) {
1306 err = PTR_ERR(newfile2);
1307 goto out_fput_1;
1308 }
1309
1310 err = put_user(fd1, &usockvec[0]);
1311 if (err)
1312 goto out_fput_both;
1313
1314 err = put_user(fd2, &usockvec[1]);
1315 if (err)
1316 goto out_fput_both;
1317
1318 audit_fd_pair(fd1, fd2);
1319
1320 fd_install(fd1, newfile1);
1321 fd_install(fd2, newfile2);
1322 /* fd1 and fd2 may be already another descriptors.
1323 * Not kernel problem.
1324 */
1325
1326 return 0;
1327
1328 out_fput_both:
1329 fput(newfile2);
1330 fput(newfile1);
1331 put_unused_fd(fd2);
1332 put_unused_fd(fd1);
1333 goto out;
1334
1335 out_fput_1:
1336 fput(newfile1);
1337 put_unused_fd(fd2);
1338 put_unused_fd(fd1);
1339 sock_release(sock2);
1340 goto out;
1341
1342 out_put_unused_both:
1343 put_unused_fd(fd2);
1344 out_put_unused_1:
1345 put_unused_fd(fd1);
1346 out_release_both:
1347 sock_release(sock2);
1348 out_release_1:
1349 sock_release(sock1);
1350 out:
1351 return err;
1352 }
1353
1354 /*
1355 * Bind a name to a socket. Nothing much to do here since it's
1356 * the protocol's responsibility to handle the local address.
1357 *
1358 * We move the socket address to kernel space before we call
1359 * the protocol layer (having also checked the address is ok).
1360 */
1361
1362 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1363 {
1364 struct socket *sock;
1365 struct sockaddr_storage address;
1366 int err, fput_needed;
1367
1368 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1369 if (sock) {
1370 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1371 if (err >= 0) {
1372 err = security_socket_bind(sock,
1373 (struct sockaddr *)&address,
1374 addrlen);
1375 if (!err)
1376 err = sock->ops->bind(sock,
1377 (struct sockaddr *)
1378 &address, addrlen);
1379 }
1380 fput_light(sock->file, fput_needed);
1381 }
1382 return err;
1383 }
1384
1385 /*
1386 * Perform a listen. Basically, we allow the protocol to do anything
1387 * necessary for a listen, and if that works, we mark the socket as
1388 * ready for listening.
1389 */
1390
1391 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1392 {
1393 struct socket *sock;
1394 int err, fput_needed;
1395 int somaxconn;
1396
1397 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1398 if (sock) {
1399 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1400 if ((unsigned int)backlog > somaxconn)
1401 backlog = somaxconn;
1402
1403 err = security_socket_listen(sock, backlog);
1404 if (!err)
1405 err = sock->ops->listen(sock, backlog);
1406
1407 fput_light(sock->file, fput_needed);
1408 }
1409 return err;
1410 }
1411
1412 /*
1413 * For accept, we attempt to create a new socket, set up the link
1414 * with the client, wake up the client, then return the new
1415 * connected fd. We collect the address of the connector in kernel
1416 * space and move it to user at the very end. This is unclean because
1417 * we open the socket then return an error.
1418 *
1419 * 1003.1g adds the ability to recvmsg() to query connection pending
1420 * status to recvmsg. We need to add that support in a way thats
1421 * clean when we restucture accept also.
1422 */
1423
1424 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1425 int __user *, upeer_addrlen, int, flags)
1426 {
1427 struct socket *sock, *newsock;
1428 struct file *newfile;
1429 int err, len, newfd, fput_needed;
1430 struct sockaddr_storage address;
1431
1432 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1433 return -EINVAL;
1434
1435 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1436 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1437
1438 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1439 if (!sock)
1440 goto out;
1441
1442 err = -ENFILE;
1443 newsock = sock_alloc();
1444 if (!newsock)
1445 goto out_put;
1446
1447 newsock->type = sock->type;
1448 newsock->ops = sock->ops;
1449
1450 /*
1451 * We don't need try_module_get here, as the listening socket (sock)
1452 * has the protocol module (sock->ops->owner) held.
1453 */
1454 __module_get(newsock->ops->owner);
1455
1456 newfd = get_unused_fd_flags(flags);
1457 if (unlikely(newfd < 0)) {
1458 err = newfd;
1459 sock_release(newsock);
1460 goto out_put;
1461 }
1462 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1463 if (IS_ERR(newfile)) {
1464 err = PTR_ERR(newfile);
1465 put_unused_fd(newfd);
1466 sock_release(newsock);
1467 goto out_put;
1468 }
1469
1470 err = security_socket_accept(sock, newsock);
1471 if (err)
1472 goto out_fd;
1473
1474 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1475 if (err < 0)
1476 goto out_fd;
1477
1478 if (upeer_sockaddr) {
1479 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1480 &len, 2) < 0) {
1481 err = -ECONNABORTED;
1482 goto out_fd;
1483 }
1484 err = move_addr_to_user(&address,
1485 len, upeer_sockaddr, upeer_addrlen);
1486 if (err < 0)
1487 goto out_fd;
1488 }
1489
1490 /* File flags are not inherited via accept() unlike another OSes. */
1491
1492 fd_install(newfd, newfile);
1493 err = newfd;
1494
1495 out_put:
1496 fput_light(sock->file, fput_needed);
1497 out:
1498 return err;
1499 out_fd:
1500 fput(newfile);
1501 put_unused_fd(newfd);
1502 goto out_put;
1503 }
1504
1505 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1506 int __user *, upeer_addrlen)
1507 {
1508 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1509 }
1510
1511 /*
1512 * Attempt to connect to a socket with the server address. The address
1513 * is in user space so we verify it is OK and move it to kernel space.
1514 *
1515 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1516 * break bindings
1517 *
1518 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1519 * other SEQPACKET protocols that take time to connect() as it doesn't
1520 * include the -EINPROGRESS status for such sockets.
1521 */
1522
1523 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1524 int, addrlen)
1525 {
1526 struct socket *sock;
1527 struct sockaddr_storage address;
1528 int err, fput_needed;
1529
1530 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1531 if (!sock)
1532 goto out;
1533 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1534 if (err < 0)
1535 goto out_put;
1536
1537 err =
1538 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1539 if (err)
1540 goto out_put;
1541
1542 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1543 sock->file->f_flags);
1544 out_put:
1545 fput_light(sock->file, fput_needed);
1546 out:
1547 return err;
1548 }
1549
1550 /*
1551 * Get the local address ('name') of a socket object. Move the obtained
1552 * name to user space.
1553 */
1554
1555 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1556 int __user *, usockaddr_len)
1557 {
1558 struct socket *sock;
1559 struct sockaddr_storage address;
1560 int len, err, fput_needed;
1561
1562 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1563 if (!sock)
1564 goto out;
1565
1566 err = security_socket_getsockname(sock);
1567 if (err)
1568 goto out_put;
1569
1570 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1571 if (err)
1572 goto out_put;
1573 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1574
1575 out_put:
1576 fput_light(sock->file, fput_needed);
1577 out:
1578 return err;
1579 }
1580
1581 /*
1582 * Get the remote address ('name') of a socket object. Move the obtained
1583 * name to user space.
1584 */
1585
1586 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1587 int __user *, usockaddr_len)
1588 {
1589 struct socket *sock;
1590 struct sockaddr_storage address;
1591 int len, err, fput_needed;
1592
1593 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1594 if (sock != NULL) {
1595 err = security_socket_getpeername(sock);
1596 if (err) {
1597 fput_light(sock->file, fput_needed);
1598 return err;
1599 }
1600
1601 err =
1602 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1603 1);
1604 if (!err)
1605 err = move_addr_to_user(&address, len, usockaddr,
1606 usockaddr_len);
1607 fput_light(sock->file, fput_needed);
1608 }
1609 return err;
1610 }
1611
1612 /*
1613 * Send a datagram to a given address. We move the address into kernel
1614 * space and check the user space data area is readable before invoking
1615 * the protocol.
1616 */
1617
1618 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1619 unsigned int, flags, struct sockaddr __user *, addr,
1620 int, addr_len)
1621 {
1622 struct socket *sock;
1623 struct sockaddr_storage address;
1624 int err;
1625 struct msghdr msg;
1626 struct iovec iov;
1627 int fput_needed;
1628
1629 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1630 if (unlikely(err))
1631 return err;
1632 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1633 if (!sock)
1634 goto out;
1635
1636 msg.msg_name = NULL;
1637 msg.msg_control = NULL;
1638 msg.msg_controllen = 0;
1639 msg.msg_namelen = 0;
1640 if (addr) {
1641 err = move_addr_to_kernel(addr, addr_len, &address);
1642 if (err < 0)
1643 goto out_put;
1644 msg.msg_name = (struct sockaddr *)&address;
1645 msg.msg_namelen = addr_len;
1646 }
1647 if (sock->file->f_flags & O_NONBLOCK)
1648 flags |= MSG_DONTWAIT;
1649 msg.msg_flags = flags;
1650 err = sock_sendmsg(sock, &msg);
1651
1652 out_put:
1653 fput_light(sock->file, fput_needed);
1654 out:
1655 return err;
1656 }
1657
1658 /*
1659 * Send a datagram down a socket.
1660 */
1661
1662 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1663 unsigned int, flags)
1664 {
1665 return sys_sendto(fd, buff, len, flags, NULL, 0);
1666 }
1667
1668 /*
1669 * Receive a frame from the socket and optionally record the address of the
1670 * sender. We verify the buffers are writable and if needed move the
1671 * sender address from kernel to user space.
1672 */
1673
1674 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1675 unsigned int, flags, struct sockaddr __user *, addr,
1676 int __user *, addr_len)
1677 {
1678 struct socket *sock;
1679 struct iovec iov;
1680 struct msghdr msg;
1681 struct sockaddr_storage address;
1682 int err, err2;
1683 int fput_needed;
1684
1685 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1686 if (unlikely(err))
1687 return err;
1688 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1689 if (!sock)
1690 goto out;
1691
1692 msg.msg_control = NULL;
1693 msg.msg_controllen = 0;
1694 /* Save some cycles and don't copy the address if not needed */
1695 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1696 /* We assume all kernel code knows the size of sockaddr_storage */
1697 msg.msg_namelen = 0;
1698 if (sock->file->f_flags & O_NONBLOCK)
1699 flags |= MSG_DONTWAIT;
1700 err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1701
1702 if (err >= 0 && addr != NULL) {
1703 err2 = move_addr_to_user(&address,
1704 msg.msg_namelen, addr, addr_len);
1705 if (err2 < 0)
1706 err = err2;
1707 }
1708
1709 fput_light(sock->file, fput_needed);
1710 out:
1711 return err;
1712 }
1713
1714 /*
1715 * Receive a datagram from a socket.
1716 */
1717
1718 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1719 unsigned int, flags)
1720 {
1721 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1722 }
1723
1724 /*
1725 * Set a socket option. Because we don't know the option lengths we have
1726 * to pass the user mode parameter for the protocols to sort out.
1727 */
1728
1729 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1730 char __user *, optval, int, optlen)
1731 {
1732 int err, fput_needed;
1733 struct socket *sock;
1734
1735 if (optlen < 0)
1736 return -EINVAL;
1737
1738 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1739 if (sock != NULL) {
1740 err = security_socket_setsockopt(sock, level, optname);
1741 if (err)
1742 goto out_put;
1743
1744 if (level == SOL_SOCKET)
1745 err =
1746 sock_setsockopt(sock, level, optname, optval,
1747 optlen);
1748 else
1749 err =
1750 sock->ops->setsockopt(sock, level, optname, optval,
1751 optlen);
1752 out_put:
1753 fput_light(sock->file, fput_needed);
1754 }
1755 return err;
1756 }
1757
1758 /*
1759 * Get a socket option. Because we don't know the option lengths we have
1760 * to pass a user mode parameter for the protocols to sort out.
1761 */
1762
1763 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1764 char __user *, optval, int __user *, optlen)
1765 {
1766 int err, fput_needed;
1767 struct socket *sock;
1768
1769 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1770 if (sock != NULL) {
1771 err = security_socket_getsockopt(sock, level, optname);
1772 if (err)
1773 goto out_put;
1774
1775 if (level == SOL_SOCKET)
1776 err =
1777 sock_getsockopt(sock, level, optname, optval,
1778 optlen);
1779 else
1780 err =
1781 sock->ops->getsockopt(sock, level, optname, optval,
1782 optlen);
1783 out_put:
1784 fput_light(sock->file, fput_needed);
1785 }
1786 return err;
1787 }
1788
1789 /*
1790 * Shutdown a socket.
1791 */
1792
1793 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1794 {
1795 int err, fput_needed;
1796 struct socket *sock;
1797
1798 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1799 if (sock != NULL) {
1800 err = security_socket_shutdown(sock, how);
1801 if (!err)
1802 err = sock->ops->shutdown(sock, how);
1803 fput_light(sock->file, fput_needed);
1804 }
1805 return err;
1806 }
1807
1808 /* A couple of helpful macros for getting the address of the 32/64 bit
1809 * fields which are the same type (int / unsigned) on our platforms.
1810 */
1811 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1812 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1813 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1814
1815 struct used_address {
1816 struct sockaddr_storage name;
1817 unsigned int name_len;
1818 };
1819
1820 static int copy_msghdr_from_user(struct msghdr *kmsg,
1821 struct user_msghdr __user *umsg,
1822 struct sockaddr __user **save_addr,
1823 struct iovec **iov)
1824 {
1825 struct sockaddr __user *uaddr;
1826 struct iovec __user *uiov;
1827 size_t nr_segs;
1828 ssize_t err;
1829
1830 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1831 __get_user(uaddr, &umsg->msg_name) ||
1832 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1833 __get_user(uiov, &umsg->msg_iov) ||
1834 __get_user(nr_segs, &umsg->msg_iovlen) ||
1835 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1836 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1837 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1838 return -EFAULT;
1839
1840 if (!uaddr)
1841 kmsg->msg_namelen = 0;
1842
1843 if (kmsg->msg_namelen < 0)
1844 return -EINVAL;
1845
1846 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1847 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1848
1849 if (save_addr)
1850 *save_addr = uaddr;
1851
1852 if (uaddr && kmsg->msg_namelen) {
1853 if (!save_addr) {
1854 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1855 kmsg->msg_name);
1856 if (err < 0)
1857 return err;
1858 }
1859 } else {
1860 kmsg->msg_name = NULL;
1861 kmsg->msg_namelen = 0;
1862 }
1863
1864 if (nr_segs > UIO_MAXIOV)
1865 return -EMSGSIZE;
1866
1867 kmsg->msg_iocb = NULL;
1868
1869 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1870 UIO_FASTIOV, iov, &kmsg->msg_iter);
1871 }
1872
1873 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1874 struct msghdr *msg_sys, unsigned int flags,
1875 struct used_address *used_address)
1876 {
1877 struct compat_msghdr __user *msg_compat =
1878 (struct compat_msghdr __user *)msg;
1879 struct sockaddr_storage address;
1880 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1881 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1882 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1883 /* 20 is size of ipv6_pktinfo */
1884 unsigned char *ctl_buf = ctl;
1885 int ctl_len;
1886 ssize_t err;
1887
1888 msg_sys->msg_name = &address;
1889
1890 if (MSG_CMSG_COMPAT & flags)
1891 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1892 else
1893 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1894 if (err < 0)
1895 return err;
1896
1897 err = -ENOBUFS;
1898
1899 if (msg_sys->msg_controllen > INT_MAX)
1900 goto out_freeiov;
1901 ctl_len = msg_sys->msg_controllen;
1902 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1903 err =
1904 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1905 sizeof(ctl));
1906 if (err)
1907 goto out_freeiov;
1908 ctl_buf = msg_sys->msg_control;
1909 ctl_len = msg_sys->msg_controllen;
1910 } else if (ctl_len) {
1911 if (ctl_len > sizeof(ctl)) {
1912 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1913 if (ctl_buf == NULL)
1914 goto out_freeiov;
1915 }
1916 err = -EFAULT;
1917 /*
1918 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1919 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1920 * checking falls down on this.
1921 */
1922 if (copy_from_user(ctl_buf,
1923 (void __user __force *)msg_sys->msg_control,
1924 ctl_len))
1925 goto out_freectl;
1926 msg_sys->msg_control = ctl_buf;
1927 }
1928 msg_sys->msg_flags = flags;
1929
1930 if (sock->file->f_flags & O_NONBLOCK)
1931 msg_sys->msg_flags |= MSG_DONTWAIT;
1932 /*
1933 * If this is sendmmsg() and current destination address is same as
1934 * previously succeeded address, omit asking LSM's decision.
1935 * used_address->name_len is initialized to UINT_MAX so that the first
1936 * destination address never matches.
1937 */
1938 if (used_address && msg_sys->msg_name &&
1939 used_address->name_len == msg_sys->msg_namelen &&
1940 !memcmp(&used_address->name, msg_sys->msg_name,
1941 used_address->name_len)) {
1942 err = sock_sendmsg_nosec(sock, msg_sys);
1943 goto out_freectl;
1944 }
1945 err = sock_sendmsg(sock, msg_sys);
1946 /*
1947 * If this is sendmmsg() and sending to current destination address was
1948 * successful, remember it.
1949 */
1950 if (used_address && err >= 0) {
1951 used_address->name_len = msg_sys->msg_namelen;
1952 if (msg_sys->msg_name)
1953 memcpy(&used_address->name, msg_sys->msg_name,
1954 used_address->name_len);
1955 }
1956
1957 out_freectl:
1958 if (ctl_buf != ctl)
1959 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1960 out_freeiov:
1961 kfree(iov);
1962 return err;
1963 }
1964
1965 /*
1966 * BSD sendmsg interface
1967 */
1968
1969 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1970 {
1971 int fput_needed, err;
1972 struct msghdr msg_sys;
1973 struct socket *sock;
1974
1975 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1976 if (!sock)
1977 goto out;
1978
1979 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
1980
1981 fput_light(sock->file, fput_needed);
1982 out:
1983 return err;
1984 }
1985
1986 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1987 {
1988 if (flags & MSG_CMSG_COMPAT)
1989 return -EINVAL;
1990 return __sys_sendmsg(fd, msg, flags);
1991 }
1992
1993 /*
1994 * Linux sendmmsg interface
1995 */
1996
1997 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
1998 unsigned int flags)
1999 {
2000 int fput_needed, err, datagrams;
2001 struct socket *sock;
2002 struct mmsghdr __user *entry;
2003 struct compat_mmsghdr __user *compat_entry;
2004 struct msghdr msg_sys;
2005 struct used_address used_address;
2006
2007 if (vlen > UIO_MAXIOV)
2008 vlen = UIO_MAXIOV;
2009
2010 datagrams = 0;
2011
2012 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2013 if (!sock)
2014 return err;
2015
2016 used_address.name_len = UINT_MAX;
2017 entry = mmsg;
2018 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2019 err = 0;
2020
2021 while (datagrams < vlen) {
2022 if (MSG_CMSG_COMPAT & flags) {
2023 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2024 &msg_sys, flags, &used_address);
2025 if (err < 0)
2026 break;
2027 err = __put_user(err, &compat_entry->msg_len);
2028 ++compat_entry;
2029 } else {
2030 err = ___sys_sendmsg(sock,
2031 (struct user_msghdr __user *)entry,
2032 &msg_sys, flags, &used_address);
2033 if (err < 0)
2034 break;
2035 err = put_user(err, &entry->msg_len);
2036 ++entry;
2037 }
2038
2039 if (err)
2040 break;
2041 ++datagrams;
2042 }
2043
2044 fput_light(sock->file, fput_needed);
2045
2046 /* We only return an error if no datagrams were able to be sent */
2047 if (datagrams != 0)
2048 return datagrams;
2049
2050 return err;
2051 }
2052
2053 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2054 unsigned int, vlen, unsigned int, flags)
2055 {
2056 if (flags & MSG_CMSG_COMPAT)
2057 return -EINVAL;
2058 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2059 }
2060
2061 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2062 struct msghdr *msg_sys, unsigned int flags, int nosec)
2063 {
2064 struct compat_msghdr __user *msg_compat =
2065 (struct compat_msghdr __user *)msg;
2066 struct iovec iovstack[UIO_FASTIOV];
2067 struct iovec *iov = iovstack;
2068 unsigned long cmsg_ptr;
2069 int total_len, len;
2070 ssize_t err;
2071
2072 /* kernel mode address */
2073 struct sockaddr_storage addr;
2074
2075 /* user mode address pointers */
2076 struct sockaddr __user *uaddr;
2077 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2078
2079 msg_sys->msg_name = &addr;
2080
2081 if (MSG_CMSG_COMPAT & flags)
2082 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2083 else
2084 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2085 if (err < 0)
2086 return err;
2087 total_len = iov_iter_count(&msg_sys->msg_iter);
2088
2089 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2090 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2091
2092 /* We assume all kernel code knows the size of sockaddr_storage */
2093 msg_sys->msg_namelen = 0;
2094
2095 if (sock->file->f_flags & O_NONBLOCK)
2096 flags |= MSG_DONTWAIT;
2097 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2098 total_len, flags);
2099 if (err < 0)
2100 goto out_freeiov;
2101 len = err;
2102
2103 if (uaddr != NULL) {
2104 err = move_addr_to_user(&addr,
2105 msg_sys->msg_namelen, uaddr,
2106 uaddr_len);
2107 if (err < 0)
2108 goto out_freeiov;
2109 }
2110 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2111 COMPAT_FLAGS(msg));
2112 if (err)
2113 goto out_freeiov;
2114 if (MSG_CMSG_COMPAT & flags)
2115 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2116 &msg_compat->msg_controllen);
2117 else
2118 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2119 &msg->msg_controllen);
2120 if (err)
2121 goto out_freeiov;
2122 err = len;
2123
2124 out_freeiov:
2125 kfree(iov);
2126 return err;
2127 }
2128
2129 /*
2130 * BSD recvmsg interface
2131 */
2132
2133 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2134 {
2135 int fput_needed, err;
2136 struct msghdr msg_sys;
2137 struct socket *sock;
2138
2139 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2140 if (!sock)
2141 goto out;
2142
2143 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2144
2145 fput_light(sock->file, fput_needed);
2146 out:
2147 return err;
2148 }
2149
2150 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2151 unsigned int, flags)
2152 {
2153 if (flags & MSG_CMSG_COMPAT)
2154 return -EINVAL;
2155 return __sys_recvmsg(fd, msg, flags);
2156 }
2157
2158 /*
2159 * Linux recvmmsg interface
2160 */
2161
2162 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2163 unsigned int flags, struct timespec *timeout)
2164 {
2165 int fput_needed, err, datagrams;
2166 struct socket *sock;
2167 struct mmsghdr __user *entry;
2168 struct compat_mmsghdr __user *compat_entry;
2169 struct msghdr msg_sys;
2170 struct timespec end_time;
2171
2172 if (timeout &&
2173 poll_select_set_timeout(&end_time, timeout->tv_sec,
2174 timeout->tv_nsec))
2175 return -EINVAL;
2176
2177 datagrams = 0;
2178
2179 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2180 if (!sock)
2181 return err;
2182
2183 err = sock_error(sock->sk);
2184 if (err)
2185 goto out_put;
2186
2187 entry = mmsg;
2188 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2189
2190 while (datagrams < vlen) {
2191 /*
2192 * No need to ask LSM for more than the first datagram.
2193 */
2194 if (MSG_CMSG_COMPAT & flags) {
2195 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2196 &msg_sys, flags & ~MSG_WAITFORONE,
2197 datagrams);
2198 if (err < 0)
2199 break;
2200 err = __put_user(err, &compat_entry->msg_len);
2201 ++compat_entry;
2202 } else {
2203 err = ___sys_recvmsg(sock,
2204 (struct user_msghdr __user *)entry,
2205 &msg_sys, flags & ~MSG_WAITFORONE,
2206 datagrams);
2207 if (err < 0)
2208 break;
2209 err = put_user(err, &entry->msg_len);
2210 ++entry;
2211 }
2212
2213 if (err)
2214 break;
2215 ++datagrams;
2216
2217 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2218 if (flags & MSG_WAITFORONE)
2219 flags |= MSG_DONTWAIT;
2220
2221 if (timeout) {
2222 ktime_get_ts(timeout);
2223 *timeout = timespec_sub(end_time, *timeout);
2224 if (timeout->tv_sec < 0) {
2225 timeout->tv_sec = timeout->tv_nsec = 0;
2226 break;
2227 }
2228
2229 /* Timeout, return less than vlen datagrams */
2230 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2231 break;
2232 }
2233
2234 /* Out of band data, return right away */
2235 if (msg_sys.msg_flags & MSG_OOB)
2236 break;
2237 }
2238
2239 out_put:
2240 fput_light(sock->file, fput_needed);
2241
2242 if (err == 0)
2243 return datagrams;
2244
2245 if (datagrams != 0) {
2246 /*
2247 * We may return less entries than requested (vlen) if the
2248 * sock is non block and there aren't enough datagrams...
2249 */
2250 if (err != -EAGAIN) {
2251 /*
2252 * ... or if recvmsg returns an error after we
2253 * received some datagrams, where we record the
2254 * error to return on the next call or if the
2255 * app asks about it using getsockopt(SO_ERROR).
2256 */
2257 sock->sk->sk_err = -err;
2258 }
2259
2260 return datagrams;
2261 }
2262
2263 return err;
2264 }
2265
2266 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2267 unsigned int, vlen, unsigned int, flags,
2268 struct timespec __user *, timeout)
2269 {
2270 int datagrams;
2271 struct timespec timeout_sys;
2272
2273 if (flags & MSG_CMSG_COMPAT)
2274 return -EINVAL;
2275
2276 if (!timeout)
2277 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2278
2279 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2280 return -EFAULT;
2281
2282 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2283
2284 if (datagrams > 0 &&
2285 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2286 datagrams = -EFAULT;
2287
2288 return datagrams;
2289 }
2290
2291 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2292 /* Argument list sizes for sys_socketcall */
2293 #define AL(x) ((x) * sizeof(unsigned long))
2294 static const unsigned char nargs[21] = {
2295 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2296 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2297 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2298 AL(4), AL(5), AL(4)
2299 };
2300
2301 #undef AL
2302
2303 /*
2304 * System call vectors.
2305 *
2306 * Argument checking cleaned up. Saved 20% in size.
2307 * This function doesn't need to set the kernel lock because
2308 * it is set by the callees.
2309 */
2310
2311 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2312 {
2313 unsigned long a[AUDITSC_ARGS];
2314 unsigned long a0, a1;
2315 int err;
2316 unsigned int len;
2317
2318 if (call < 1 || call > SYS_SENDMMSG)
2319 return -EINVAL;
2320
2321 len = nargs[call];
2322 if (len > sizeof(a))
2323 return -EINVAL;
2324
2325 /* copy_from_user should be SMP safe. */
2326 if (copy_from_user(a, args, len))
2327 return -EFAULT;
2328
2329 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2330 if (err)
2331 return err;
2332
2333 a0 = a[0];
2334 a1 = a[1];
2335
2336 switch (call) {
2337 case SYS_SOCKET:
2338 err = sys_socket(a0, a1, a[2]);
2339 break;
2340 case SYS_BIND:
2341 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2342 break;
2343 case SYS_CONNECT:
2344 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2345 break;
2346 case SYS_LISTEN:
2347 err = sys_listen(a0, a1);
2348 break;
2349 case SYS_ACCEPT:
2350 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2351 (int __user *)a[2], 0);
2352 break;
2353 case SYS_GETSOCKNAME:
2354 err =
2355 sys_getsockname(a0, (struct sockaddr __user *)a1,
2356 (int __user *)a[2]);
2357 break;
2358 case SYS_GETPEERNAME:
2359 err =
2360 sys_getpeername(a0, (struct sockaddr __user *)a1,
2361 (int __user *)a[2]);
2362 break;
2363 case SYS_SOCKETPAIR:
2364 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2365 break;
2366 case SYS_SEND:
2367 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2368 break;
2369 case SYS_SENDTO:
2370 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2371 (struct sockaddr __user *)a[4], a[5]);
2372 break;
2373 case SYS_RECV:
2374 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2375 break;
2376 case SYS_RECVFROM:
2377 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2378 (struct sockaddr __user *)a[4],
2379 (int __user *)a[5]);
2380 break;
2381 case SYS_SHUTDOWN:
2382 err = sys_shutdown(a0, a1);
2383 break;
2384 case SYS_SETSOCKOPT:
2385 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2386 break;
2387 case SYS_GETSOCKOPT:
2388 err =
2389 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2390 (int __user *)a[4]);
2391 break;
2392 case SYS_SENDMSG:
2393 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2394 break;
2395 case SYS_SENDMMSG:
2396 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2397 break;
2398 case SYS_RECVMSG:
2399 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2400 break;
2401 case SYS_RECVMMSG:
2402 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2403 (struct timespec __user *)a[4]);
2404 break;
2405 case SYS_ACCEPT4:
2406 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2407 (int __user *)a[2], a[3]);
2408 break;
2409 default:
2410 err = -EINVAL;
2411 break;
2412 }
2413 return err;
2414 }
2415
2416 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2417
2418 /**
2419 * sock_register - add a socket protocol handler
2420 * @ops: description of protocol
2421 *
2422 * This function is called by a protocol handler that wants to
2423 * advertise its address family, and have it linked into the
2424 * socket interface. The value ops->family corresponds to the
2425 * socket system call protocol family.
2426 */
2427 int sock_register(const struct net_proto_family *ops)
2428 {
2429 int err;
2430
2431 if (ops->family >= NPROTO) {
2432 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2433 return -ENOBUFS;
2434 }
2435
2436 spin_lock(&net_family_lock);
2437 if (rcu_dereference_protected(net_families[ops->family],
2438 lockdep_is_held(&net_family_lock)))
2439 err = -EEXIST;
2440 else {
2441 rcu_assign_pointer(net_families[ops->family], ops);
2442 err = 0;
2443 }
2444 spin_unlock(&net_family_lock);
2445
2446 pr_info("NET: Registered protocol family %d\n", ops->family);
2447 return err;
2448 }
2449 EXPORT_SYMBOL(sock_register);
2450
2451 /**
2452 * sock_unregister - remove a protocol handler
2453 * @family: protocol family to remove
2454 *
2455 * This function is called by a protocol handler that wants to
2456 * remove its address family, and have it unlinked from the
2457 * new socket creation.
2458 *
2459 * If protocol handler is a module, then it can use module reference
2460 * counts to protect against new references. If protocol handler is not
2461 * a module then it needs to provide its own protection in
2462 * the ops->create routine.
2463 */
2464 void sock_unregister(int family)
2465 {
2466 BUG_ON(family < 0 || family >= NPROTO);
2467
2468 spin_lock(&net_family_lock);
2469 RCU_INIT_POINTER(net_families[family], NULL);
2470 spin_unlock(&net_family_lock);
2471
2472 synchronize_rcu();
2473
2474 pr_info("NET: Unregistered protocol family %d\n", family);
2475 }
2476 EXPORT_SYMBOL(sock_unregister);
2477
2478 static int __init sock_init(void)
2479 {
2480 int err;
2481 /*
2482 * Initialize the network sysctl infrastructure.
2483 */
2484 err = net_sysctl_init();
2485 if (err)
2486 goto out;
2487
2488 /*
2489 * Initialize skbuff SLAB cache
2490 */
2491 skb_init();
2492
2493 /*
2494 * Initialize the protocols module.
2495 */
2496
2497 init_inodecache();
2498
2499 err = register_filesystem(&sock_fs_type);
2500 if (err)
2501 goto out_fs;
2502 sock_mnt = kern_mount(&sock_fs_type);
2503 if (IS_ERR(sock_mnt)) {
2504 err = PTR_ERR(sock_mnt);
2505 goto out_mount;
2506 }
2507
2508 /* The real protocol initialization is performed in later initcalls.
2509 */
2510
2511 #ifdef CONFIG_NETFILTER
2512 err = netfilter_init();
2513 if (err)
2514 goto out;
2515 #endif
2516
2517 ptp_classifier_init();
2518
2519 out:
2520 return err;
2521
2522 out_mount:
2523 unregister_filesystem(&sock_fs_type);
2524 out_fs:
2525 goto out;
2526 }
2527
2528 core_initcall(sock_init); /* early initcall */
2529
2530 #ifdef CONFIG_PROC_FS
2531 void socket_seq_show(struct seq_file *seq)
2532 {
2533 int cpu;
2534 int counter = 0;
2535
2536 for_each_possible_cpu(cpu)
2537 counter += per_cpu(sockets_in_use, cpu);
2538
2539 /* It can be negative, by the way. 8) */
2540 if (counter < 0)
2541 counter = 0;
2542
2543 seq_printf(seq, "sockets: used %d\n", counter);
2544 }
2545 #endif /* CONFIG_PROC_FS */
2546
2547 #ifdef CONFIG_COMPAT
2548 static int do_siocgstamp(struct net *net, struct socket *sock,
2549 unsigned int cmd, void __user *up)
2550 {
2551 mm_segment_t old_fs = get_fs();
2552 struct timeval ktv;
2553 int err;
2554
2555 set_fs(KERNEL_DS);
2556 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2557 set_fs(old_fs);
2558 if (!err)
2559 err = compat_put_timeval(&ktv, up);
2560
2561 return err;
2562 }
2563
2564 static int do_siocgstampns(struct net *net, struct socket *sock,
2565 unsigned int cmd, void __user *up)
2566 {
2567 mm_segment_t old_fs = get_fs();
2568 struct timespec kts;
2569 int err;
2570
2571 set_fs(KERNEL_DS);
2572 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2573 set_fs(old_fs);
2574 if (!err)
2575 err = compat_put_timespec(&kts, up);
2576
2577 return err;
2578 }
2579
2580 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2581 {
2582 struct ifreq __user *uifr;
2583 int err;
2584
2585 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2586 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2587 return -EFAULT;
2588
2589 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2590 if (err)
2591 return err;
2592
2593 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2594 return -EFAULT;
2595
2596 return 0;
2597 }
2598
2599 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2600 {
2601 struct compat_ifconf ifc32;
2602 struct ifconf ifc;
2603 struct ifconf __user *uifc;
2604 struct compat_ifreq __user *ifr32;
2605 struct ifreq __user *ifr;
2606 unsigned int i, j;
2607 int err;
2608
2609 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2610 return -EFAULT;
2611
2612 memset(&ifc, 0, sizeof(ifc));
2613 if (ifc32.ifcbuf == 0) {
2614 ifc32.ifc_len = 0;
2615 ifc.ifc_len = 0;
2616 ifc.ifc_req = NULL;
2617 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2618 } else {
2619 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2620 sizeof(struct ifreq);
2621 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2622 ifc.ifc_len = len;
2623 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2624 ifr32 = compat_ptr(ifc32.ifcbuf);
2625 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2626 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2627 return -EFAULT;
2628 ifr++;
2629 ifr32++;
2630 }
2631 }
2632 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2633 return -EFAULT;
2634
2635 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2636 if (err)
2637 return err;
2638
2639 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2640 return -EFAULT;
2641
2642 ifr = ifc.ifc_req;
2643 ifr32 = compat_ptr(ifc32.ifcbuf);
2644 for (i = 0, j = 0;
2645 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2646 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2647 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2648 return -EFAULT;
2649 ifr32++;
2650 ifr++;
2651 }
2652
2653 if (ifc32.ifcbuf == 0) {
2654 /* Translate from 64-bit structure multiple to
2655 * a 32-bit one.
2656 */
2657 i = ifc.ifc_len;
2658 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2659 ifc32.ifc_len = i;
2660 } else {
2661 ifc32.ifc_len = i;
2662 }
2663 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2664 return -EFAULT;
2665
2666 return 0;
2667 }
2668
2669 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2670 {
2671 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2672 bool convert_in = false, convert_out = false;
2673 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2674 struct ethtool_rxnfc __user *rxnfc;
2675 struct ifreq __user *ifr;
2676 u32 rule_cnt = 0, actual_rule_cnt;
2677 u32 ethcmd;
2678 u32 data;
2679 int ret;
2680
2681 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2682 return -EFAULT;
2683
2684 compat_rxnfc = compat_ptr(data);
2685
2686 if (get_user(ethcmd, &compat_rxnfc->cmd))
2687 return -EFAULT;
2688
2689 /* Most ethtool structures are defined without padding.
2690 * Unfortunately struct ethtool_rxnfc is an exception.
2691 */
2692 switch (ethcmd) {
2693 default:
2694 break;
2695 case ETHTOOL_GRXCLSRLALL:
2696 /* Buffer size is variable */
2697 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2698 return -EFAULT;
2699 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2700 return -ENOMEM;
2701 buf_size += rule_cnt * sizeof(u32);
2702 /* fall through */
2703 case ETHTOOL_GRXRINGS:
2704 case ETHTOOL_GRXCLSRLCNT:
2705 case ETHTOOL_GRXCLSRULE:
2706 case ETHTOOL_SRXCLSRLINS:
2707 convert_out = true;
2708 /* fall through */
2709 case ETHTOOL_SRXCLSRLDEL:
2710 buf_size += sizeof(struct ethtool_rxnfc);
2711 convert_in = true;
2712 break;
2713 }
2714
2715 ifr = compat_alloc_user_space(buf_size);
2716 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2717
2718 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2719 return -EFAULT;
2720
2721 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2722 &ifr->ifr_ifru.ifru_data))
2723 return -EFAULT;
2724
2725 if (convert_in) {
2726 /* We expect there to be holes between fs.m_ext and
2727 * fs.ring_cookie and at the end of fs, but nowhere else.
2728 */
2729 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2730 sizeof(compat_rxnfc->fs.m_ext) !=
2731 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2732 sizeof(rxnfc->fs.m_ext));
2733 BUILD_BUG_ON(
2734 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2735 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2736 offsetof(struct ethtool_rxnfc, fs.location) -
2737 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2738
2739 if (copy_in_user(rxnfc, compat_rxnfc,
2740 (void __user *)(&rxnfc->fs.m_ext + 1) -
2741 (void __user *)rxnfc) ||
2742 copy_in_user(&rxnfc->fs.ring_cookie,
2743 &compat_rxnfc->fs.ring_cookie,
2744 (void __user *)(&rxnfc->fs.location + 1) -
2745 (void __user *)&rxnfc->fs.ring_cookie) ||
2746 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2747 sizeof(rxnfc->rule_cnt)))
2748 return -EFAULT;
2749 }
2750
2751 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2752 if (ret)
2753 return ret;
2754
2755 if (convert_out) {
2756 if (copy_in_user(compat_rxnfc, rxnfc,
2757 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2758 (const void __user *)rxnfc) ||
2759 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2760 &rxnfc->fs.ring_cookie,
2761 (const void __user *)(&rxnfc->fs.location + 1) -
2762 (const void __user *)&rxnfc->fs.ring_cookie) ||
2763 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2764 sizeof(rxnfc->rule_cnt)))
2765 return -EFAULT;
2766
2767 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2768 /* As an optimisation, we only copy the actual
2769 * number of rules that the underlying
2770 * function returned. Since Mallory might
2771 * change the rule count in user memory, we
2772 * check that it is less than the rule count
2773 * originally given (as the user buffer size),
2774 * which has been range-checked.
2775 */
2776 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2777 return -EFAULT;
2778 if (actual_rule_cnt < rule_cnt)
2779 rule_cnt = actual_rule_cnt;
2780 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2781 &rxnfc->rule_locs[0],
2782 rule_cnt * sizeof(u32)))
2783 return -EFAULT;
2784 }
2785 }
2786
2787 return 0;
2788 }
2789
2790 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2791 {
2792 void __user *uptr;
2793 compat_uptr_t uptr32;
2794 struct ifreq __user *uifr;
2795
2796 uifr = compat_alloc_user_space(sizeof(*uifr));
2797 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2798 return -EFAULT;
2799
2800 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2801 return -EFAULT;
2802
2803 uptr = compat_ptr(uptr32);
2804
2805 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2806 return -EFAULT;
2807
2808 return dev_ioctl(net, SIOCWANDEV, uifr);
2809 }
2810
2811 static int bond_ioctl(struct net *net, unsigned int cmd,
2812 struct compat_ifreq __user *ifr32)
2813 {
2814 struct ifreq kifr;
2815 mm_segment_t old_fs;
2816 int err;
2817
2818 switch (cmd) {
2819 case SIOCBONDENSLAVE:
2820 case SIOCBONDRELEASE:
2821 case SIOCBONDSETHWADDR:
2822 case SIOCBONDCHANGEACTIVE:
2823 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2824 return -EFAULT;
2825
2826 old_fs = get_fs();
2827 set_fs(KERNEL_DS);
2828 err = dev_ioctl(net, cmd,
2829 (struct ifreq __user __force *) &kifr);
2830 set_fs(old_fs);
2831
2832 return err;
2833 default:
2834 return -ENOIOCTLCMD;
2835 }
2836 }
2837
2838 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2839 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2840 struct compat_ifreq __user *u_ifreq32)
2841 {
2842 struct ifreq __user *u_ifreq64;
2843 char tmp_buf[IFNAMSIZ];
2844 void __user *data64;
2845 u32 data32;
2846
2847 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2848 IFNAMSIZ))
2849 return -EFAULT;
2850 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2851 return -EFAULT;
2852 data64 = compat_ptr(data32);
2853
2854 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2855
2856 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2857 IFNAMSIZ))
2858 return -EFAULT;
2859 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2860 return -EFAULT;
2861
2862 return dev_ioctl(net, cmd, u_ifreq64);
2863 }
2864
2865 static int dev_ifsioc(struct net *net, struct socket *sock,
2866 unsigned int cmd, struct compat_ifreq __user *uifr32)
2867 {
2868 struct ifreq __user *uifr;
2869 int err;
2870
2871 uifr = compat_alloc_user_space(sizeof(*uifr));
2872 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2873 return -EFAULT;
2874
2875 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2876
2877 if (!err) {
2878 switch (cmd) {
2879 case SIOCGIFFLAGS:
2880 case SIOCGIFMETRIC:
2881 case SIOCGIFMTU:
2882 case SIOCGIFMEM:
2883 case SIOCGIFHWADDR:
2884 case SIOCGIFINDEX:
2885 case SIOCGIFADDR:
2886 case SIOCGIFBRDADDR:
2887 case SIOCGIFDSTADDR:
2888 case SIOCGIFNETMASK:
2889 case SIOCGIFPFLAGS:
2890 case SIOCGIFTXQLEN:
2891 case SIOCGMIIPHY:
2892 case SIOCGMIIREG:
2893 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2894 err = -EFAULT;
2895 break;
2896 }
2897 }
2898 return err;
2899 }
2900
2901 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2902 struct compat_ifreq __user *uifr32)
2903 {
2904 struct ifreq ifr;
2905 struct compat_ifmap __user *uifmap32;
2906 mm_segment_t old_fs;
2907 int err;
2908
2909 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2910 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2911 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2912 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2913 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2914 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2915 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2916 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2917 if (err)
2918 return -EFAULT;
2919
2920 old_fs = get_fs();
2921 set_fs(KERNEL_DS);
2922 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2923 set_fs(old_fs);
2924
2925 if (cmd == SIOCGIFMAP && !err) {
2926 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2927 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2928 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2929 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2930 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2931 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2932 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2933 if (err)
2934 err = -EFAULT;
2935 }
2936 return err;
2937 }
2938
2939 struct rtentry32 {
2940 u32 rt_pad1;
2941 struct sockaddr rt_dst; /* target address */
2942 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2943 struct sockaddr rt_genmask; /* target network mask (IP) */
2944 unsigned short rt_flags;
2945 short rt_pad2;
2946 u32 rt_pad3;
2947 unsigned char rt_tos;
2948 unsigned char rt_class;
2949 short rt_pad4;
2950 short rt_metric; /* +1 for binary compatibility! */
2951 /* char * */ u32 rt_dev; /* forcing the device at add */
2952 u32 rt_mtu; /* per route MTU/Window */
2953 u32 rt_window; /* Window clamping */
2954 unsigned short rt_irtt; /* Initial RTT */
2955 };
2956
2957 struct in6_rtmsg32 {
2958 struct in6_addr rtmsg_dst;
2959 struct in6_addr rtmsg_src;
2960 struct in6_addr rtmsg_gateway;
2961 u32 rtmsg_type;
2962 u16 rtmsg_dst_len;
2963 u16 rtmsg_src_len;
2964 u32 rtmsg_metric;
2965 u32 rtmsg_info;
2966 u32 rtmsg_flags;
2967 s32 rtmsg_ifindex;
2968 };
2969
2970 static int routing_ioctl(struct net *net, struct socket *sock,
2971 unsigned int cmd, void __user *argp)
2972 {
2973 int ret;
2974 void *r = NULL;
2975 struct in6_rtmsg r6;
2976 struct rtentry r4;
2977 char devname[16];
2978 u32 rtdev;
2979 mm_segment_t old_fs = get_fs();
2980
2981 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2982 struct in6_rtmsg32 __user *ur6 = argp;
2983 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2984 3 * sizeof(struct in6_addr));
2985 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2986 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2987 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2988 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2989 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2990 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2991 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2992
2993 r = (void *) &r6;
2994 } else { /* ipv4 */
2995 struct rtentry32 __user *ur4 = argp;
2996 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2997 3 * sizeof(struct sockaddr));
2998 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
2999 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3000 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3001 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3002 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3003 ret |= get_user(rtdev, &(ur4->rt_dev));
3004 if (rtdev) {
3005 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3006 r4.rt_dev = (char __user __force *)devname;
3007 devname[15] = 0;
3008 } else
3009 r4.rt_dev = NULL;
3010
3011 r = (void *) &r4;
3012 }
3013
3014 if (ret) {
3015 ret = -EFAULT;
3016 goto out;
3017 }
3018
3019 set_fs(KERNEL_DS);
3020 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3021 set_fs(old_fs);
3022
3023 out:
3024 return ret;
3025 }
3026
3027 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3028 * for some operations; this forces use of the newer bridge-utils that
3029 * use compatible ioctls
3030 */
3031 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3032 {
3033 compat_ulong_t tmp;
3034
3035 if (get_user(tmp, argp))
3036 return -EFAULT;
3037 if (tmp == BRCTL_GET_VERSION)
3038 return BRCTL_VERSION + 1;
3039 return -EINVAL;
3040 }
3041
3042 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3043 unsigned int cmd, unsigned long arg)
3044 {
3045 void __user *argp = compat_ptr(arg);
3046 struct sock *sk = sock->sk;
3047 struct net *net = sock_net(sk);
3048
3049 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3050 return compat_ifr_data_ioctl(net, cmd, argp);
3051
3052 switch (cmd) {
3053 case SIOCSIFBR:
3054 case SIOCGIFBR:
3055 return old_bridge_ioctl(argp);
3056 case SIOCGIFNAME:
3057 return dev_ifname32(net, argp);
3058 case SIOCGIFCONF:
3059 return dev_ifconf(net, argp);
3060 case SIOCETHTOOL:
3061 return ethtool_ioctl(net, argp);
3062 case SIOCWANDEV:
3063 return compat_siocwandev(net, argp);
3064 case SIOCGIFMAP:
3065 case SIOCSIFMAP:
3066 return compat_sioc_ifmap(net, cmd, argp);
3067 case SIOCBONDENSLAVE:
3068 case SIOCBONDRELEASE:
3069 case SIOCBONDSETHWADDR:
3070 case SIOCBONDCHANGEACTIVE:
3071 return bond_ioctl(net, cmd, argp);
3072 case SIOCADDRT:
3073 case SIOCDELRT:
3074 return routing_ioctl(net, sock, cmd, argp);
3075 case SIOCGSTAMP:
3076 return do_siocgstamp(net, sock, cmd, argp);
3077 case SIOCGSTAMPNS:
3078 return do_siocgstampns(net, sock, cmd, argp);
3079 case SIOCBONDSLAVEINFOQUERY:
3080 case SIOCBONDINFOQUERY:
3081 case SIOCSHWTSTAMP:
3082 case SIOCGHWTSTAMP:
3083 return compat_ifr_data_ioctl(net, cmd, argp);
3084
3085 case FIOSETOWN:
3086 case SIOCSPGRP:
3087 case FIOGETOWN:
3088 case SIOCGPGRP:
3089 case SIOCBRADDBR:
3090 case SIOCBRDELBR:
3091 case SIOCGIFVLAN:
3092 case SIOCSIFVLAN:
3093 case SIOCADDDLCI:
3094 case SIOCDELDLCI:
3095 return sock_ioctl(file, cmd, arg);
3096
3097 case SIOCGIFFLAGS:
3098 case SIOCSIFFLAGS:
3099 case SIOCGIFMETRIC:
3100 case SIOCSIFMETRIC:
3101 case SIOCGIFMTU:
3102 case SIOCSIFMTU:
3103 case SIOCGIFMEM:
3104 case SIOCSIFMEM:
3105 case SIOCGIFHWADDR:
3106 case SIOCSIFHWADDR:
3107 case SIOCADDMULTI:
3108 case SIOCDELMULTI:
3109 case SIOCGIFINDEX:
3110 case SIOCGIFADDR:
3111 case SIOCSIFADDR:
3112 case SIOCSIFHWBROADCAST:
3113 case SIOCDIFADDR:
3114 case SIOCGIFBRDADDR:
3115 case SIOCSIFBRDADDR:
3116 case SIOCGIFDSTADDR:
3117 case SIOCSIFDSTADDR:
3118 case SIOCGIFNETMASK:
3119 case SIOCSIFNETMASK:
3120 case SIOCSIFPFLAGS:
3121 case SIOCGIFPFLAGS:
3122 case SIOCGIFTXQLEN:
3123 case SIOCSIFTXQLEN:
3124 case SIOCBRADDIF:
3125 case SIOCBRDELIF:
3126 case SIOCSIFNAME:
3127 case SIOCGMIIPHY:
3128 case SIOCGMIIREG:
3129 case SIOCSMIIREG:
3130 return dev_ifsioc(net, sock, cmd, argp);
3131
3132 case SIOCSARP:
3133 case SIOCGARP:
3134 case SIOCDARP:
3135 case SIOCATMARK:
3136 return sock_do_ioctl(net, sock, cmd, arg);
3137 }
3138
3139 return -ENOIOCTLCMD;
3140 }
3141
3142 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3143 unsigned long arg)
3144 {
3145 struct socket *sock = file->private_data;
3146 int ret = -ENOIOCTLCMD;
3147 struct sock *sk;
3148 struct net *net;
3149
3150 sk = sock->sk;
3151 net = sock_net(sk);
3152
3153 if (sock->ops->compat_ioctl)
3154 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3155
3156 if (ret == -ENOIOCTLCMD &&
3157 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3158 ret = compat_wext_handle_ioctl(net, cmd, arg);
3159
3160 if (ret == -ENOIOCTLCMD)
3161 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3162
3163 return ret;
3164 }
3165 #endif
3166
3167 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3168 {
3169 return sock->ops->bind(sock, addr, addrlen);
3170 }
3171 EXPORT_SYMBOL(kernel_bind);
3172
3173 int kernel_listen(struct socket *sock, int backlog)
3174 {
3175 return sock->ops->listen(sock, backlog);
3176 }
3177 EXPORT_SYMBOL(kernel_listen);
3178
3179 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3180 {
3181 struct sock *sk = sock->sk;
3182 int err;
3183
3184 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3185 newsock);
3186 if (err < 0)
3187 goto done;
3188
3189 err = sock->ops->accept(sock, *newsock, flags);
3190 if (err < 0) {
3191 sock_release(*newsock);
3192 *newsock = NULL;
3193 goto done;
3194 }
3195
3196 (*newsock)->ops = sock->ops;
3197 __module_get((*newsock)->ops->owner);
3198
3199 done:
3200 return err;
3201 }
3202 EXPORT_SYMBOL(kernel_accept);
3203
3204 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3205 int flags)
3206 {
3207 return sock->ops->connect(sock, addr, addrlen, flags);
3208 }
3209 EXPORT_SYMBOL(kernel_connect);
3210
3211 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3212 int *addrlen)
3213 {
3214 return sock->ops->getname(sock, addr, addrlen, 0);
3215 }
3216 EXPORT_SYMBOL(kernel_getsockname);
3217
3218 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3219 int *addrlen)
3220 {
3221 return sock->ops->getname(sock, addr, addrlen, 1);
3222 }
3223 EXPORT_SYMBOL(kernel_getpeername);
3224
3225 int kernel_getsockopt(struct socket *sock, int level, int optname,
3226 char *optval, int *optlen)
3227 {
3228 mm_segment_t oldfs = get_fs();
3229 char __user *uoptval;
3230 int __user *uoptlen;
3231 int err;
3232
3233 uoptval = (char __user __force *) optval;
3234 uoptlen = (int __user __force *) optlen;
3235
3236 set_fs(KERNEL_DS);
3237 if (level == SOL_SOCKET)
3238 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3239 else
3240 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3241 uoptlen);
3242 set_fs(oldfs);
3243 return err;
3244 }
3245 EXPORT_SYMBOL(kernel_getsockopt);
3246
3247 int kernel_setsockopt(struct socket *sock, int level, int optname,
3248 char *optval, unsigned int optlen)
3249 {
3250 mm_segment_t oldfs = get_fs();
3251 char __user *uoptval;
3252 int err;
3253
3254 uoptval = (char __user __force *) optval;
3255
3256 set_fs(KERNEL_DS);
3257 if (level == SOL_SOCKET)
3258 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3259 else
3260 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3261 optlen);
3262 set_fs(oldfs);
3263 return err;
3264 }
3265 EXPORT_SYMBOL(kernel_setsockopt);
3266
3267 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3268 size_t size, int flags)
3269 {
3270 if (sock->ops->sendpage)
3271 return sock->ops->sendpage(sock, page, offset, size, flags);
3272
3273 return sock_no_sendpage(sock, page, offset, size, flags);
3274 }
3275 EXPORT_SYMBOL(kernel_sendpage);
3276
3277 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3278 {
3279 mm_segment_t oldfs = get_fs();
3280 int err;
3281
3282 set_fs(KERNEL_DS);
3283 err = sock->ops->ioctl(sock, cmd, arg);
3284 set_fs(oldfs);
3285
3286 return err;
3287 }
3288 EXPORT_SYMBOL(kernel_sock_ioctl);
3289
3290 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3291 {
3292 return sock->ops->shutdown(sock, how);
3293 }
3294 EXPORT_SYMBOL(kernel_sock_shutdown);
This page took 0.13898 seconds and 6 git commands to generate.