Merge branch 'iov_iter' into for-davem-2
[deliverable/linux.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
117 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
118 unsigned long nr_segs, loff_t pos);
119 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
120 unsigned long nr_segs, loff_t pos);
121 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
122
123 static int sock_close(struct inode *inode, struct file *file);
124 static unsigned int sock_poll(struct file *file,
125 struct poll_table_struct *wait);
126 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
127 #ifdef CONFIG_COMPAT
128 static long compat_sock_ioctl(struct file *file,
129 unsigned int cmd, unsigned long arg);
130 #endif
131 static int sock_fasync(int fd, struct file *filp, int on);
132 static ssize_t sock_sendpage(struct file *file, struct page *page,
133 int offset, size_t size, loff_t *ppos, int more);
134 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
135 struct pipe_inode_info *pipe, size_t len,
136 unsigned int flags);
137
138 /*
139 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
140 * in the operation structures but are done directly via the socketcall() multiplexor.
141 */
142
143 static const struct file_operations socket_file_ops = {
144 .owner = THIS_MODULE,
145 .llseek = no_llseek,
146 .aio_read = sock_aio_read,
147 .aio_write = sock_aio_write,
148 .poll = sock_poll,
149 .unlocked_ioctl = sock_ioctl,
150 #ifdef CONFIG_COMPAT
151 .compat_ioctl = compat_sock_ioctl,
152 #endif
153 .mmap = sock_mmap,
154 .open = sock_no_open, /* special open code to disallow open via /proc */
155 .release = sock_close,
156 .fasync = sock_fasync,
157 .sendpage = sock_sendpage,
158 .splice_write = generic_splice_sendpage,
159 .splice_read = sock_splice_read,
160 };
161
162 /*
163 * The protocol list. Each protocol is registered in here.
164 */
165
166 static DEFINE_SPINLOCK(net_family_lock);
167 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
168
169 /*
170 * Statistics counters of the socket lists
171 */
172
173 static DEFINE_PER_CPU(int, sockets_in_use);
174
175 /*
176 * Support routines.
177 * Move socket addresses back and forth across the kernel/user
178 * divide and look after the messy bits.
179 */
180
181 /**
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
186 *
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 */
191
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 return -EINVAL;
196 if (ulen == 0)
197 return 0;
198 if (copy_from_user(kaddr, uaddr, ulen))
199 return -EFAULT;
200 return audit_sockaddr(ulen, kaddr);
201 }
202
203 /**
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
209 *
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
214 * accessible.
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
218 */
219
220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 void __user *uaddr, int __user *ulen)
222 {
223 int err;
224 int len;
225
226 BUG_ON(klen > sizeof(struct sockaddr_storage));
227 err = get_user(len, ulen);
228 if (err)
229 return err;
230 if (len > klen)
231 len = klen;
232 if (len < 0)
233 return -EINVAL;
234 if (len) {
235 if (audit_sockaddr(klen, kaddr))
236 return -ENOMEM;
237 if (copy_to_user(uaddr, kaddr, len))
238 return -EFAULT;
239 }
240 /*
241 * "fromlen shall refer to the value before truncation.."
242 * 1003.1g
243 */
244 return __put_user(klen, ulen);
245 }
246
247 static struct kmem_cache *sock_inode_cachep __read_mostly;
248
249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 struct socket_alloc *ei;
252 struct socket_wq *wq;
253
254 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
255 if (!ei)
256 return NULL;
257 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
258 if (!wq) {
259 kmem_cache_free(sock_inode_cachep, ei);
260 return NULL;
261 }
262 init_waitqueue_head(&wq->wait);
263 wq->fasync_list = NULL;
264 RCU_INIT_POINTER(ei->socket.wq, wq);
265
266 ei->socket.state = SS_UNCONNECTED;
267 ei->socket.flags = 0;
268 ei->socket.ops = NULL;
269 ei->socket.sk = NULL;
270 ei->socket.file = NULL;
271
272 return &ei->vfs_inode;
273 }
274
275 static void sock_destroy_inode(struct inode *inode)
276 {
277 struct socket_alloc *ei;
278 struct socket_wq *wq;
279
280 ei = container_of(inode, struct socket_alloc, vfs_inode);
281 wq = rcu_dereference_protected(ei->socket.wq, 1);
282 kfree_rcu(wq, rcu);
283 kmem_cache_free(sock_inode_cachep, ei);
284 }
285
286 static void init_once(void *foo)
287 {
288 struct socket_alloc *ei = (struct socket_alloc *)foo;
289
290 inode_init_once(&ei->vfs_inode);
291 }
292
293 static int init_inodecache(void)
294 {
295 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
296 sizeof(struct socket_alloc),
297 0,
298 (SLAB_HWCACHE_ALIGN |
299 SLAB_RECLAIM_ACCOUNT |
300 SLAB_MEM_SPREAD),
301 init_once);
302 if (sock_inode_cachep == NULL)
303 return -ENOMEM;
304 return 0;
305 }
306
307 static const struct super_operations sockfs_ops = {
308 .alloc_inode = sock_alloc_inode,
309 .destroy_inode = sock_destroy_inode,
310 .statfs = simple_statfs,
311 };
312
313 /*
314 * sockfs_dname() is called from d_path().
315 */
316 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
317 {
318 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
319 dentry->d_inode->i_ino);
320 }
321
322 static const struct dentry_operations sockfs_dentry_operations = {
323 .d_dname = sockfs_dname,
324 };
325
326 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
327 int flags, const char *dev_name, void *data)
328 {
329 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
330 &sockfs_dentry_operations, SOCKFS_MAGIC);
331 }
332
333 static struct vfsmount *sock_mnt __read_mostly;
334
335 static struct file_system_type sock_fs_type = {
336 .name = "sockfs",
337 .mount = sockfs_mount,
338 .kill_sb = kill_anon_super,
339 };
340
341 /*
342 * Obtains the first available file descriptor and sets it up for use.
343 *
344 * These functions create file structures and maps them to fd space
345 * of the current process. On success it returns file descriptor
346 * and file struct implicitly stored in sock->file.
347 * Note that another thread may close file descriptor before we return
348 * from this function. We use the fact that now we do not refer
349 * to socket after mapping. If one day we will need it, this
350 * function will increment ref. count on file by 1.
351 *
352 * In any case returned fd MAY BE not valid!
353 * This race condition is unavoidable
354 * with shared fd spaces, we cannot solve it inside kernel,
355 * but we take care of internal coherence yet.
356 */
357
358 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
359 {
360 struct qstr name = { .name = "" };
361 struct path path;
362 struct file *file;
363
364 if (dname) {
365 name.name = dname;
366 name.len = strlen(name.name);
367 } else if (sock->sk) {
368 name.name = sock->sk->sk_prot_creator->name;
369 name.len = strlen(name.name);
370 }
371 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
372 if (unlikely(!path.dentry))
373 return ERR_PTR(-ENOMEM);
374 path.mnt = mntget(sock_mnt);
375
376 d_instantiate(path.dentry, SOCK_INODE(sock));
377 SOCK_INODE(sock)->i_fop = &socket_file_ops;
378
379 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
380 &socket_file_ops);
381 if (unlikely(IS_ERR(file))) {
382 /* drop dentry, keep inode */
383 ihold(path.dentry->d_inode);
384 path_put(&path);
385 return file;
386 }
387
388 sock->file = file;
389 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
390 file->private_data = sock;
391 return file;
392 }
393 EXPORT_SYMBOL(sock_alloc_file);
394
395 static int sock_map_fd(struct socket *sock, int flags)
396 {
397 struct file *newfile;
398 int fd = get_unused_fd_flags(flags);
399 if (unlikely(fd < 0))
400 return fd;
401
402 newfile = sock_alloc_file(sock, flags, NULL);
403 if (likely(!IS_ERR(newfile))) {
404 fd_install(fd, newfile);
405 return fd;
406 }
407
408 put_unused_fd(fd);
409 return PTR_ERR(newfile);
410 }
411
412 struct socket *sock_from_file(struct file *file, int *err)
413 {
414 if (file->f_op == &socket_file_ops)
415 return file->private_data; /* set in sock_map_fd */
416
417 *err = -ENOTSOCK;
418 return NULL;
419 }
420 EXPORT_SYMBOL(sock_from_file);
421
422 /**
423 * sockfd_lookup - Go from a file number to its socket slot
424 * @fd: file handle
425 * @err: pointer to an error code return
426 *
427 * The file handle passed in is locked and the socket it is bound
428 * too is returned. If an error occurs the err pointer is overwritten
429 * with a negative errno code and NULL is returned. The function checks
430 * for both invalid handles and passing a handle which is not a socket.
431 *
432 * On a success the socket object pointer is returned.
433 */
434
435 struct socket *sockfd_lookup(int fd, int *err)
436 {
437 struct file *file;
438 struct socket *sock;
439
440 file = fget(fd);
441 if (!file) {
442 *err = -EBADF;
443 return NULL;
444 }
445
446 sock = sock_from_file(file, err);
447 if (!sock)
448 fput(file);
449 return sock;
450 }
451 EXPORT_SYMBOL(sockfd_lookup);
452
453 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
454 {
455 struct fd f = fdget(fd);
456 struct socket *sock;
457
458 *err = -EBADF;
459 if (f.file) {
460 sock = sock_from_file(f.file, err);
461 if (likely(sock)) {
462 *fput_needed = f.flags;
463 return sock;
464 }
465 fdput(f);
466 }
467 return NULL;
468 }
469
470 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
471 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
472 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
473 static ssize_t sockfs_getxattr(struct dentry *dentry,
474 const char *name, void *value, size_t size)
475 {
476 const char *proto_name;
477 size_t proto_size;
478 int error;
479
480 error = -ENODATA;
481 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
482 proto_name = dentry->d_name.name;
483 proto_size = strlen(proto_name);
484
485 if (value) {
486 error = -ERANGE;
487 if (proto_size + 1 > size)
488 goto out;
489
490 strncpy(value, proto_name, proto_size + 1);
491 }
492 error = proto_size + 1;
493 }
494
495 out:
496 return error;
497 }
498
499 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
500 size_t size)
501 {
502 ssize_t len;
503 ssize_t used = 0;
504
505 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
506 if (len < 0)
507 return len;
508 used += len;
509 if (buffer) {
510 if (size < used)
511 return -ERANGE;
512 buffer += len;
513 }
514
515 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
516 used += len;
517 if (buffer) {
518 if (size < used)
519 return -ERANGE;
520 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
521 buffer += len;
522 }
523
524 return used;
525 }
526
527 static const struct inode_operations sockfs_inode_ops = {
528 .getxattr = sockfs_getxattr,
529 .listxattr = sockfs_listxattr,
530 };
531
532 /**
533 * sock_alloc - allocate a socket
534 *
535 * Allocate a new inode and socket object. The two are bound together
536 * and initialised. The socket is then returned. If we are out of inodes
537 * NULL is returned.
538 */
539
540 static struct socket *sock_alloc(void)
541 {
542 struct inode *inode;
543 struct socket *sock;
544
545 inode = new_inode_pseudo(sock_mnt->mnt_sb);
546 if (!inode)
547 return NULL;
548
549 sock = SOCKET_I(inode);
550
551 kmemcheck_annotate_bitfield(sock, type);
552 inode->i_ino = get_next_ino();
553 inode->i_mode = S_IFSOCK | S_IRWXUGO;
554 inode->i_uid = current_fsuid();
555 inode->i_gid = current_fsgid();
556 inode->i_op = &sockfs_inode_ops;
557
558 this_cpu_add(sockets_in_use, 1);
559 return sock;
560 }
561
562 /*
563 * In theory you can't get an open on this inode, but /proc provides
564 * a back door. Remember to keep it shut otherwise you'll let the
565 * creepy crawlies in.
566 */
567
568 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
569 {
570 return -ENXIO;
571 }
572
573 const struct file_operations bad_sock_fops = {
574 .owner = THIS_MODULE,
575 .open = sock_no_open,
576 .llseek = noop_llseek,
577 };
578
579 /**
580 * sock_release - close a socket
581 * @sock: socket to close
582 *
583 * The socket is released from the protocol stack if it has a release
584 * callback, and the inode is then released if the socket is bound to
585 * an inode not a file.
586 */
587
588 void sock_release(struct socket *sock)
589 {
590 if (sock->ops) {
591 struct module *owner = sock->ops->owner;
592
593 sock->ops->release(sock);
594 sock->ops = NULL;
595 module_put(owner);
596 }
597
598 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
599 pr_err("%s: fasync list not empty!\n", __func__);
600
601 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
602 return;
603
604 this_cpu_sub(sockets_in_use, 1);
605 if (!sock->file) {
606 iput(SOCK_INODE(sock));
607 return;
608 }
609 sock->file = NULL;
610 }
611 EXPORT_SYMBOL(sock_release);
612
613 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
614 {
615 u8 flags = *tx_flags;
616
617 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
618 flags |= SKBTX_HW_TSTAMP;
619
620 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
621 flags |= SKBTX_SW_TSTAMP;
622
623 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
624 flags |= SKBTX_SCHED_TSTAMP;
625
626 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
627 flags |= SKBTX_ACK_TSTAMP;
628
629 *tx_flags = flags;
630 }
631 EXPORT_SYMBOL(__sock_tx_timestamp);
632
633 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
634 struct msghdr *msg, size_t size)
635 {
636 struct sock_iocb *si = kiocb_to_siocb(iocb);
637
638 si->sock = sock;
639 si->scm = NULL;
640 si->msg = msg;
641 si->size = size;
642
643 return sock->ops->sendmsg(iocb, sock, msg, size);
644 }
645
646 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
647 struct msghdr *msg, size_t size)
648 {
649 int err = security_socket_sendmsg(sock, msg, size);
650
651 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
652 }
653
654 static int do_sock_sendmsg(struct socket *sock, struct msghdr *msg,
655 size_t size, bool nosec)
656 {
657 struct kiocb iocb;
658 struct sock_iocb siocb;
659 int ret;
660
661 init_sync_kiocb(&iocb, NULL);
662 iocb.private = &siocb;
663 ret = nosec ? __sock_sendmsg_nosec(&iocb, sock, msg, size) :
664 __sock_sendmsg(&iocb, sock, msg, size);
665 if (-EIOCBQUEUED == ret)
666 ret = wait_on_sync_kiocb(&iocb);
667 return ret;
668 }
669
670 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
671 {
672 return do_sock_sendmsg(sock, msg, size, false);
673 }
674 EXPORT_SYMBOL(sock_sendmsg);
675
676 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
677 {
678 return do_sock_sendmsg(sock, msg, size, true);
679 }
680
681 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
682 struct kvec *vec, size_t num, size_t size)
683 {
684 mm_segment_t oldfs = get_fs();
685 int result;
686
687 set_fs(KERNEL_DS);
688 /*
689 * the following is safe, since for compiler definitions of kvec and
690 * iovec are identical, yielding the same in-core layout and alignment
691 */
692 msg->msg_iov = (struct iovec *)vec;
693 msg->msg_iovlen = num;
694 result = sock_sendmsg(sock, msg, size);
695 set_fs(oldfs);
696 return result;
697 }
698 EXPORT_SYMBOL(kernel_sendmsg);
699
700 /*
701 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
702 */
703 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
704 struct sk_buff *skb)
705 {
706 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
707 struct scm_timestamping tss;
708 int empty = 1;
709 struct skb_shared_hwtstamps *shhwtstamps =
710 skb_hwtstamps(skb);
711
712 /* Race occurred between timestamp enabling and packet
713 receiving. Fill in the current time for now. */
714 if (need_software_tstamp && skb->tstamp.tv64 == 0)
715 __net_timestamp(skb);
716
717 if (need_software_tstamp) {
718 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
719 struct timeval tv;
720 skb_get_timestamp(skb, &tv);
721 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
722 sizeof(tv), &tv);
723 } else {
724 struct timespec ts;
725 skb_get_timestampns(skb, &ts);
726 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
727 sizeof(ts), &ts);
728 }
729 }
730
731 memset(&tss, 0, sizeof(tss));
732 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
733 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
734 empty = 0;
735 if (shhwtstamps &&
736 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
737 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
738 empty = 0;
739 if (!empty)
740 put_cmsg(msg, SOL_SOCKET,
741 SCM_TIMESTAMPING, sizeof(tss), &tss);
742 }
743 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
744
745 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
746 struct sk_buff *skb)
747 {
748 int ack;
749
750 if (!sock_flag(sk, SOCK_WIFI_STATUS))
751 return;
752 if (!skb->wifi_acked_valid)
753 return;
754
755 ack = skb->wifi_acked;
756
757 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
758 }
759 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
760
761 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
762 struct sk_buff *skb)
763 {
764 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
765 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
766 sizeof(__u32), &skb->dropcount);
767 }
768
769 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
770 struct sk_buff *skb)
771 {
772 sock_recv_timestamp(msg, sk, skb);
773 sock_recv_drops(msg, sk, skb);
774 }
775 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
776
777 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
778 struct msghdr *msg, size_t size, int flags)
779 {
780 struct sock_iocb *si = kiocb_to_siocb(iocb);
781
782 si->sock = sock;
783 si->scm = NULL;
784 si->msg = msg;
785 si->size = size;
786 si->flags = flags;
787
788 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
789 }
790
791 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
792 struct msghdr *msg, size_t size, int flags)
793 {
794 int err = security_socket_recvmsg(sock, msg, size, flags);
795
796 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
797 }
798
799 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
800 size_t size, int flags)
801 {
802 struct kiocb iocb;
803 struct sock_iocb siocb;
804 int ret;
805
806 init_sync_kiocb(&iocb, NULL);
807 iocb.private = &siocb;
808 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
809 if (-EIOCBQUEUED == ret)
810 ret = wait_on_sync_kiocb(&iocb);
811 return ret;
812 }
813 EXPORT_SYMBOL(sock_recvmsg);
814
815 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
816 size_t size, int flags)
817 {
818 struct kiocb iocb;
819 struct sock_iocb siocb;
820 int ret;
821
822 init_sync_kiocb(&iocb, NULL);
823 iocb.private = &siocb;
824 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
825 if (-EIOCBQUEUED == ret)
826 ret = wait_on_sync_kiocb(&iocb);
827 return ret;
828 }
829
830 /**
831 * kernel_recvmsg - Receive a message from a socket (kernel space)
832 * @sock: The socket to receive the message from
833 * @msg: Received message
834 * @vec: Input s/g array for message data
835 * @num: Size of input s/g array
836 * @size: Number of bytes to read
837 * @flags: Message flags (MSG_DONTWAIT, etc...)
838 *
839 * On return the msg structure contains the scatter/gather array passed in the
840 * vec argument. The array is modified so that it consists of the unfilled
841 * portion of the original array.
842 *
843 * The returned value is the total number of bytes received, or an error.
844 */
845 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
846 struct kvec *vec, size_t num, size_t size, int flags)
847 {
848 mm_segment_t oldfs = get_fs();
849 int result;
850
851 set_fs(KERNEL_DS);
852 /*
853 * the following is safe, since for compiler definitions of kvec and
854 * iovec are identical, yielding the same in-core layout and alignment
855 */
856 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
857 result = sock_recvmsg(sock, msg, size, flags);
858 set_fs(oldfs);
859 return result;
860 }
861 EXPORT_SYMBOL(kernel_recvmsg);
862
863 static ssize_t sock_sendpage(struct file *file, struct page *page,
864 int offset, size_t size, loff_t *ppos, int more)
865 {
866 struct socket *sock;
867 int flags;
868
869 sock = file->private_data;
870
871 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
872 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
873 flags |= more;
874
875 return kernel_sendpage(sock, page, offset, size, flags);
876 }
877
878 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
879 struct pipe_inode_info *pipe, size_t len,
880 unsigned int flags)
881 {
882 struct socket *sock = file->private_data;
883
884 if (unlikely(!sock->ops->splice_read))
885 return -EINVAL;
886
887 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
888 }
889
890 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
891 struct sock_iocb *siocb)
892 {
893 if (!is_sync_kiocb(iocb))
894 BUG();
895
896 siocb->kiocb = iocb;
897 iocb->private = siocb;
898 return siocb;
899 }
900
901 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
902 struct file *file, const struct iovec *iov,
903 unsigned long nr_segs)
904 {
905 struct socket *sock = file->private_data;
906 size_t size = 0;
907 int i;
908
909 for (i = 0; i < nr_segs; i++)
910 size += iov[i].iov_len;
911
912 msg->msg_name = NULL;
913 msg->msg_namelen = 0;
914 msg->msg_control = NULL;
915 msg->msg_controllen = 0;
916 msg->msg_iov = (struct iovec *)iov;
917 msg->msg_iovlen = nr_segs;
918 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
919
920 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
921 }
922
923 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
924 unsigned long nr_segs, loff_t pos)
925 {
926 struct sock_iocb siocb, *x;
927
928 if (pos != 0)
929 return -ESPIPE;
930
931 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
932 return 0;
933
934
935 x = alloc_sock_iocb(iocb, &siocb);
936 if (!x)
937 return -ENOMEM;
938 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
939 }
940
941 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
942 struct file *file, const struct iovec *iov,
943 unsigned long nr_segs)
944 {
945 struct socket *sock = file->private_data;
946 size_t size = 0;
947 int i;
948
949 for (i = 0; i < nr_segs; i++)
950 size += iov[i].iov_len;
951
952 msg->msg_name = NULL;
953 msg->msg_namelen = 0;
954 msg->msg_control = NULL;
955 msg->msg_controllen = 0;
956 msg->msg_iov = (struct iovec *)iov;
957 msg->msg_iovlen = nr_segs;
958 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
959 if (sock->type == SOCK_SEQPACKET)
960 msg->msg_flags |= MSG_EOR;
961
962 return __sock_sendmsg(iocb, sock, msg, size);
963 }
964
965 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
966 unsigned long nr_segs, loff_t pos)
967 {
968 struct sock_iocb siocb, *x;
969
970 if (pos != 0)
971 return -ESPIPE;
972
973 x = alloc_sock_iocb(iocb, &siocb);
974 if (!x)
975 return -ENOMEM;
976
977 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
978 }
979
980 /*
981 * Atomic setting of ioctl hooks to avoid race
982 * with module unload.
983 */
984
985 static DEFINE_MUTEX(br_ioctl_mutex);
986 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
987
988 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
989 {
990 mutex_lock(&br_ioctl_mutex);
991 br_ioctl_hook = hook;
992 mutex_unlock(&br_ioctl_mutex);
993 }
994 EXPORT_SYMBOL(brioctl_set);
995
996 static DEFINE_MUTEX(vlan_ioctl_mutex);
997 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
998
999 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1000 {
1001 mutex_lock(&vlan_ioctl_mutex);
1002 vlan_ioctl_hook = hook;
1003 mutex_unlock(&vlan_ioctl_mutex);
1004 }
1005 EXPORT_SYMBOL(vlan_ioctl_set);
1006
1007 static DEFINE_MUTEX(dlci_ioctl_mutex);
1008 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1009
1010 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1011 {
1012 mutex_lock(&dlci_ioctl_mutex);
1013 dlci_ioctl_hook = hook;
1014 mutex_unlock(&dlci_ioctl_mutex);
1015 }
1016 EXPORT_SYMBOL(dlci_ioctl_set);
1017
1018 static long sock_do_ioctl(struct net *net, struct socket *sock,
1019 unsigned int cmd, unsigned long arg)
1020 {
1021 int err;
1022 void __user *argp = (void __user *)arg;
1023
1024 err = sock->ops->ioctl(sock, cmd, arg);
1025
1026 /*
1027 * If this ioctl is unknown try to hand it down
1028 * to the NIC driver.
1029 */
1030 if (err == -ENOIOCTLCMD)
1031 err = dev_ioctl(net, cmd, argp);
1032
1033 return err;
1034 }
1035
1036 /*
1037 * With an ioctl, arg may well be a user mode pointer, but we don't know
1038 * what to do with it - that's up to the protocol still.
1039 */
1040
1041 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1042 {
1043 struct socket *sock;
1044 struct sock *sk;
1045 void __user *argp = (void __user *)arg;
1046 int pid, err;
1047 struct net *net;
1048
1049 sock = file->private_data;
1050 sk = sock->sk;
1051 net = sock_net(sk);
1052 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1053 err = dev_ioctl(net, cmd, argp);
1054 } else
1055 #ifdef CONFIG_WEXT_CORE
1056 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1057 err = dev_ioctl(net, cmd, argp);
1058 } else
1059 #endif
1060 switch (cmd) {
1061 case FIOSETOWN:
1062 case SIOCSPGRP:
1063 err = -EFAULT;
1064 if (get_user(pid, (int __user *)argp))
1065 break;
1066 f_setown(sock->file, pid, 1);
1067 err = 0;
1068 break;
1069 case FIOGETOWN:
1070 case SIOCGPGRP:
1071 err = put_user(f_getown(sock->file),
1072 (int __user *)argp);
1073 break;
1074 case SIOCGIFBR:
1075 case SIOCSIFBR:
1076 case SIOCBRADDBR:
1077 case SIOCBRDELBR:
1078 err = -ENOPKG;
1079 if (!br_ioctl_hook)
1080 request_module("bridge");
1081
1082 mutex_lock(&br_ioctl_mutex);
1083 if (br_ioctl_hook)
1084 err = br_ioctl_hook(net, cmd, argp);
1085 mutex_unlock(&br_ioctl_mutex);
1086 break;
1087 case SIOCGIFVLAN:
1088 case SIOCSIFVLAN:
1089 err = -ENOPKG;
1090 if (!vlan_ioctl_hook)
1091 request_module("8021q");
1092
1093 mutex_lock(&vlan_ioctl_mutex);
1094 if (vlan_ioctl_hook)
1095 err = vlan_ioctl_hook(net, argp);
1096 mutex_unlock(&vlan_ioctl_mutex);
1097 break;
1098 case SIOCADDDLCI:
1099 case SIOCDELDLCI:
1100 err = -ENOPKG;
1101 if (!dlci_ioctl_hook)
1102 request_module("dlci");
1103
1104 mutex_lock(&dlci_ioctl_mutex);
1105 if (dlci_ioctl_hook)
1106 err = dlci_ioctl_hook(cmd, argp);
1107 mutex_unlock(&dlci_ioctl_mutex);
1108 break;
1109 default:
1110 err = sock_do_ioctl(net, sock, cmd, arg);
1111 break;
1112 }
1113 return err;
1114 }
1115
1116 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1117 {
1118 int err;
1119 struct socket *sock = NULL;
1120
1121 err = security_socket_create(family, type, protocol, 1);
1122 if (err)
1123 goto out;
1124
1125 sock = sock_alloc();
1126 if (!sock) {
1127 err = -ENOMEM;
1128 goto out;
1129 }
1130
1131 sock->type = type;
1132 err = security_socket_post_create(sock, family, type, protocol, 1);
1133 if (err)
1134 goto out_release;
1135
1136 out:
1137 *res = sock;
1138 return err;
1139 out_release:
1140 sock_release(sock);
1141 sock = NULL;
1142 goto out;
1143 }
1144 EXPORT_SYMBOL(sock_create_lite);
1145
1146 /* No kernel lock held - perfect */
1147 static unsigned int sock_poll(struct file *file, poll_table *wait)
1148 {
1149 unsigned int busy_flag = 0;
1150 struct socket *sock;
1151
1152 /*
1153 * We can't return errors to poll, so it's either yes or no.
1154 */
1155 sock = file->private_data;
1156
1157 if (sk_can_busy_loop(sock->sk)) {
1158 /* this socket can poll_ll so tell the system call */
1159 busy_flag = POLL_BUSY_LOOP;
1160
1161 /* once, only if requested by syscall */
1162 if (wait && (wait->_key & POLL_BUSY_LOOP))
1163 sk_busy_loop(sock->sk, 1);
1164 }
1165
1166 return busy_flag | sock->ops->poll(file, sock, wait);
1167 }
1168
1169 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1170 {
1171 struct socket *sock = file->private_data;
1172
1173 return sock->ops->mmap(file, sock, vma);
1174 }
1175
1176 static int sock_close(struct inode *inode, struct file *filp)
1177 {
1178 sock_release(SOCKET_I(inode));
1179 return 0;
1180 }
1181
1182 /*
1183 * Update the socket async list
1184 *
1185 * Fasync_list locking strategy.
1186 *
1187 * 1. fasync_list is modified only under process context socket lock
1188 * i.e. under semaphore.
1189 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1190 * or under socket lock
1191 */
1192
1193 static int sock_fasync(int fd, struct file *filp, int on)
1194 {
1195 struct socket *sock = filp->private_data;
1196 struct sock *sk = sock->sk;
1197 struct socket_wq *wq;
1198
1199 if (sk == NULL)
1200 return -EINVAL;
1201
1202 lock_sock(sk);
1203 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1204 fasync_helper(fd, filp, on, &wq->fasync_list);
1205
1206 if (!wq->fasync_list)
1207 sock_reset_flag(sk, SOCK_FASYNC);
1208 else
1209 sock_set_flag(sk, SOCK_FASYNC);
1210
1211 release_sock(sk);
1212 return 0;
1213 }
1214
1215 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1216
1217 int sock_wake_async(struct socket *sock, int how, int band)
1218 {
1219 struct socket_wq *wq;
1220
1221 if (!sock)
1222 return -1;
1223 rcu_read_lock();
1224 wq = rcu_dereference(sock->wq);
1225 if (!wq || !wq->fasync_list) {
1226 rcu_read_unlock();
1227 return -1;
1228 }
1229 switch (how) {
1230 case SOCK_WAKE_WAITD:
1231 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1232 break;
1233 goto call_kill;
1234 case SOCK_WAKE_SPACE:
1235 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1236 break;
1237 /* fall through */
1238 case SOCK_WAKE_IO:
1239 call_kill:
1240 kill_fasync(&wq->fasync_list, SIGIO, band);
1241 break;
1242 case SOCK_WAKE_URG:
1243 kill_fasync(&wq->fasync_list, SIGURG, band);
1244 }
1245 rcu_read_unlock();
1246 return 0;
1247 }
1248 EXPORT_SYMBOL(sock_wake_async);
1249
1250 int __sock_create(struct net *net, int family, int type, int protocol,
1251 struct socket **res, int kern)
1252 {
1253 int err;
1254 struct socket *sock;
1255 const struct net_proto_family *pf;
1256
1257 /*
1258 * Check protocol is in range
1259 */
1260 if (family < 0 || family >= NPROTO)
1261 return -EAFNOSUPPORT;
1262 if (type < 0 || type >= SOCK_MAX)
1263 return -EINVAL;
1264
1265 /* Compatibility.
1266
1267 This uglymoron is moved from INET layer to here to avoid
1268 deadlock in module load.
1269 */
1270 if (family == PF_INET && type == SOCK_PACKET) {
1271 static int warned;
1272 if (!warned) {
1273 warned = 1;
1274 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1275 current->comm);
1276 }
1277 family = PF_PACKET;
1278 }
1279
1280 err = security_socket_create(family, type, protocol, kern);
1281 if (err)
1282 return err;
1283
1284 /*
1285 * Allocate the socket and allow the family to set things up. if
1286 * the protocol is 0, the family is instructed to select an appropriate
1287 * default.
1288 */
1289 sock = sock_alloc();
1290 if (!sock) {
1291 net_warn_ratelimited("socket: no more sockets\n");
1292 return -ENFILE; /* Not exactly a match, but its the
1293 closest posix thing */
1294 }
1295
1296 sock->type = type;
1297
1298 #ifdef CONFIG_MODULES
1299 /* Attempt to load a protocol module if the find failed.
1300 *
1301 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1302 * requested real, full-featured networking support upon configuration.
1303 * Otherwise module support will break!
1304 */
1305 if (rcu_access_pointer(net_families[family]) == NULL)
1306 request_module("net-pf-%d", family);
1307 #endif
1308
1309 rcu_read_lock();
1310 pf = rcu_dereference(net_families[family]);
1311 err = -EAFNOSUPPORT;
1312 if (!pf)
1313 goto out_release;
1314
1315 /*
1316 * We will call the ->create function, that possibly is in a loadable
1317 * module, so we have to bump that loadable module refcnt first.
1318 */
1319 if (!try_module_get(pf->owner))
1320 goto out_release;
1321
1322 /* Now protected by module ref count */
1323 rcu_read_unlock();
1324
1325 err = pf->create(net, sock, protocol, kern);
1326 if (err < 0)
1327 goto out_module_put;
1328
1329 /*
1330 * Now to bump the refcnt of the [loadable] module that owns this
1331 * socket at sock_release time we decrement its refcnt.
1332 */
1333 if (!try_module_get(sock->ops->owner))
1334 goto out_module_busy;
1335
1336 /*
1337 * Now that we're done with the ->create function, the [loadable]
1338 * module can have its refcnt decremented
1339 */
1340 module_put(pf->owner);
1341 err = security_socket_post_create(sock, family, type, protocol, kern);
1342 if (err)
1343 goto out_sock_release;
1344 *res = sock;
1345
1346 return 0;
1347
1348 out_module_busy:
1349 err = -EAFNOSUPPORT;
1350 out_module_put:
1351 sock->ops = NULL;
1352 module_put(pf->owner);
1353 out_sock_release:
1354 sock_release(sock);
1355 return err;
1356
1357 out_release:
1358 rcu_read_unlock();
1359 goto out_sock_release;
1360 }
1361 EXPORT_SYMBOL(__sock_create);
1362
1363 int sock_create(int family, int type, int protocol, struct socket **res)
1364 {
1365 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1366 }
1367 EXPORT_SYMBOL(sock_create);
1368
1369 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1370 {
1371 return __sock_create(&init_net, family, type, protocol, res, 1);
1372 }
1373 EXPORT_SYMBOL(sock_create_kern);
1374
1375 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1376 {
1377 int retval;
1378 struct socket *sock;
1379 int flags;
1380
1381 /* Check the SOCK_* constants for consistency. */
1382 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1383 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1384 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1385 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1386
1387 flags = type & ~SOCK_TYPE_MASK;
1388 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1389 return -EINVAL;
1390 type &= SOCK_TYPE_MASK;
1391
1392 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1393 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1394
1395 retval = sock_create(family, type, protocol, &sock);
1396 if (retval < 0)
1397 goto out;
1398
1399 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1400 if (retval < 0)
1401 goto out_release;
1402
1403 out:
1404 /* It may be already another descriptor 8) Not kernel problem. */
1405 return retval;
1406
1407 out_release:
1408 sock_release(sock);
1409 return retval;
1410 }
1411
1412 /*
1413 * Create a pair of connected sockets.
1414 */
1415
1416 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1417 int __user *, usockvec)
1418 {
1419 struct socket *sock1, *sock2;
1420 int fd1, fd2, err;
1421 struct file *newfile1, *newfile2;
1422 int flags;
1423
1424 flags = type & ~SOCK_TYPE_MASK;
1425 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1426 return -EINVAL;
1427 type &= SOCK_TYPE_MASK;
1428
1429 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1430 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1431
1432 /*
1433 * Obtain the first socket and check if the underlying protocol
1434 * supports the socketpair call.
1435 */
1436
1437 err = sock_create(family, type, protocol, &sock1);
1438 if (err < 0)
1439 goto out;
1440
1441 err = sock_create(family, type, protocol, &sock2);
1442 if (err < 0)
1443 goto out_release_1;
1444
1445 err = sock1->ops->socketpair(sock1, sock2);
1446 if (err < 0)
1447 goto out_release_both;
1448
1449 fd1 = get_unused_fd_flags(flags);
1450 if (unlikely(fd1 < 0)) {
1451 err = fd1;
1452 goto out_release_both;
1453 }
1454
1455 fd2 = get_unused_fd_flags(flags);
1456 if (unlikely(fd2 < 0)) {
1457 err = fd2;
1458 goto out_put_unused_1;
1459 }
1460
1461 newfile1 = sock_alloc_file(sock1, flags, NULL);
1462 if (unlikely(IS_ERR(newfile1))) {
1463 err = PTR_ERR(newfile1);
1464 goto out_put_unused_both;
1465 }
1466
1467 newfile2 = sock_alloc_file(sock2, flags, NULL);
1468 if (IS_ERR(newfile2)) {
1469 err = PTR_ERR(newfile2);
1470 goto out_fput_1;
1471 }
1472
1473 err = put_user(fd1, &usockvec[0]);
1474 if (err)
1475 goto out_fput_both;
1476
1477 err = put_user(fd2, &usockvec[1]);
1478 if (err)
1479 goto out_fput_both;
1480
1481 audit_fd_pair(fd1, fd2);
1482
1483 fd_install(fd1, newfile1);
1484 fd_install(fd2, newfile2);
1485 /* fd1 and fd2 may be already another descriptors.
1486 * Not kernel problem.
1487 */
1488
1489 return 0;
1490
1491 out_fput_both:
1492 fput(newfile2);
1493 fput(newfile1);
1494 put_unused_fd(fd2);
1495 put_unused_fd(fd1);
1496 goto out;
1497
1498 out_fput_1:
1499 fput(newfile1);
1500 put_unused_fd(fd2);
1501 put_unused_fd(fd1);
1502 sock_release(sock2);
1503 goto out;
1504
1505 out_put_unused_both:
1506 put_unused_fd(fd2);
1507 out_put_unused_1:
1508 put_unused_fd(fd1);
1509 out_release_both:
1510 sock_release(sock2);
1511 out_release_1:
1512 sock_release(sock1);
1513 out:
1514 return err;
1515 }
1516
1517 /*
1518 * Bind a name to a socket. Nothing much to do here since it's
1519 * the protocol's responsibility to handle the local address.
1520 *
1521 * We move the socket address to kernel space before we call
1522 * the protocol layer (having also checked the address is ok).
1523 */
1524
1525 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1526 {
1527 struct socket *sock;
1528 struct sockaddr_storage address;
1529 int err, fput_needed;
1530
1531 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1532 if (sock) {
1533 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1534 if (err >= 0) {
1535 err = security_socket_bind(sock,
1536 (struct sockaddr *)&address,
1537 addrlen);
1538 if (!err)
1539 err = sock->ops->bind(sock,
1540 (struct sockaddr *)
1541 &address, addrlen);
1542 }
1543 fput_light(sock->file, fput_needed);
1544 }
1545 return err;
1546 }
1547
1548 /*
1549 * Perform a listen. Basically, we allow the protocol to do anything
1550 * necessary for a listen, and if that works, we mark the socket as
1551 * ready for listening.
1552 */
1553
1554 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1555 {
1556 struct socket *sock;
1557 int err, fput_needed;
1558 int somaxconn;
1559
1560 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1561 if (sock) {
1562 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1563 if ((unsigned int)backlog > somaxconn)
1564 backlog = somaxconn;
1565
1566 err = security_socket_listen(sock, backlog);
1567 if (!err)
1568 err = sock->ops->listen(sock, backlog);
1569
1570 fput_light(sock->file, fput_needed);
1571 }
1572 return err;
1573 }
1574
1575 /*
1576 * For accept, we attempt to create a new socket, set up the link
1577 * with the client, wake up the client, then return the new
1578 * connected fd. We collect the address of the connector in kernel
1579 * space and move it to user at the very end. This is unclean because
1580 * we open the socket then return an error.
1581 *
1582 * 1003.1g adds the ability to recvmsg() to query connection pending
1583 * status to recvmsg. We need to add that support in a way thats
1584 * clean when we restucture accept also.
1585 */
1586
1587 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1588 int __user *, upeer_addrlen, int, flags)
1589 {
1590 struct socket *sock, *newsock;
1591 struct file *newfile;
1592 int err, len, newfd, fput_needed;
1593 struct sockaddr_storage address;
1594
1595 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1596 return -EINVAL;
1597
1598 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1599 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1600
1601 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1602 if (!sock)
1603 goto out;
1604
1605 err = -ENFILE;
1606 newsock = sock_alloc();
1607 if (!newsock)
1608 goto out_put;
1609
1610 newsock->type = sock->type;
1611 newsock->ops = sock->ops;
1612
1613 /*
1614 * We don't need try_module_get here, as the listening socket (sock)
1615 * has the protocol module (sock->ops->owner) held.
1616 */
1617 __module_get(newsock->ops->owner);
1618
1619 newfd = get_unused_fd_flags(flags);
1620 if (unlikely(newfd < 0)) {
1621 err = newfd;
1622 sock_release(newsock);
1623 goto out_put;
1624 }
1625 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1626 if (unlikely(IS_ERR(newfile))) {
1627 err = PTR_ERR(newfile);
1628 put_unused_fd(newfd);
1629 sock_release(newsock);
1630 goto out_put;
1631 }
1632
1633 err = security_socket_accept(sock, newsock);
1634 if (err)
1635 goto out_fd;
1636
1637 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1638 if (err < 0)
1639 goto out_fd;
1640
1641 if (upeer_sockaddr) {
1642 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1643 &len, 2) < 0) {
1644 err = -ECONNABORTED;
1645 goto out_fd;
1646 }
1647 err = move_addr_to_user(&address,
1648 len, upeer_sockaddr, upeer_addrlen);
1649 if (err < 0)
1650 goto out_fd;
1651 }
1652
1653 /* File flags are not inherited via accept() unlike another OSes. */
1654
1655 fd_install(newfd, newfile);
1656 err = newfd;
1657
1658 out_put:
1659 fput_light(sock->file, fput_needed);
1660 out:
1661 return err;
1662 out_fd:
1663 fput(newfile);
1664 put_unused_fd(newfd);
1665 goto out_put;
1666 }
1667
1668 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1669 int __user *, upeer_addrlen)
1670 {
1671 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1672 }
1673
1674 /*
1675 * Attempt to connect to a socket with the server address. The address
1676 * is in user space so we verify it is OK and move it to kernel space.
1677 *
1678 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1679 * break bindings
1680 *
1681 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1682 * other SEQPACKET protocols that take time to connect() as it doesn't
1683 * include the -EINPROGRESS status for such sockets.
1684 */
1685
1686 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1687 int, addrlen)
1688 {
1689 struct socket *sock;
1690 struct sockaddr_storage address;
1691 int err, fput_needed;
1692
1693 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1694 if (!sock)
1695 goto out;
1696 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1697 if (err < 0)
1698 goto out_put;
1699
1700 err =
1701 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1702 if (err)
1703 goto out_put;
1704
1705 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1706 sock->file->f_flags);
1707 out_put:
1708 fput_light(sock->file, fput_needed);
1709 out:
1710 return err;
1711 }
1712
1713 /*
1714 * Get the local address ('name') of a socket object. Move the obtained
1715 * name to user space.
1716 */
1717
1718 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1719 int __user *, usockaddr_len)
1720 {
1721 struct socket *sock;
1722 struct sockaddr_storage address;
1723 int len, err, fput_needed;
1724
1725 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1726 if (!sock)
1727 goto out;
1728
1729 err = security_socket_getsockname(sock);
1730 if (err)
1731 goto out_put;
1732
1733 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1734 if (err)
1735 goto out_put;
1736 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1737
1738 out_put:
1739 fput_light(sock->file, fput_needed);
1740 out:
1741 return err;
1742 }
1743
1744 /*
1745 * Get the remote address ('name') of a socket object. Move the obtained
1746 * name to user space.
1747 */
1748
1749 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1750 int __user *, usockaddr_len)
1751 {
1752 struct socket *sock;
1753 struct sockaddr_storage address;
1754 int len, err, fput_needed;
1755
1756 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1757 if (sock != NULL) {
1758 err = security_socket_getpeername(sock);
1759 if (err) {
1760 fput_light(sock->file, fput_needed);
1761 return err;
1762 }
1763
1764 err =
1765 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1766 1);
1767 if (!err)
1768 err = move_addr_to_user(&address, len, usockaddr,
1769 usockaddr_len);
1770 fput_light(sock->file, fput_needed);
1771 }
1772 return err;
1773 }
1774
1775 /*
1776 * Send a datagram to a given address. We move the address into kernel
1777 * space and check the user space data area is readable before invoking
1778 * the protocol.
1779 */
1780
1781 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1782 unsigned int, flags, struct sockaddr __user *, addr,
1783 int, addr_len)
1784 {
1785 struct socket *sock;
1786 struct sockaddr_storage address;
1787 int err;
1788 struct msghdr msg;
1789 struct iovec iov;
1790 int fput_needed;
1791
1792 if (len > INT_MAX)
1793 len = INT_MAX;
1794 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1795 if (!sock)
1796 goto out;
1797
1798 iov.iov_base = buff;
1799 iov.iov_len = len;
1800 msg.msg_name = NULL;
1801 msg.msg_iov = &iov;
1802 msg.msg_iovlen = 1;
1803 msg.msg_control = NULL;
1804 msg.msg_controllen = 0;
1805 msg.msg_namelen = 0;
1806 if (addr) {
1807 err = move_addr_to_kernel(addr, addr_len, &address);
1808 if (err < 0)
1809 goto out_put;
1810 msg.msg_name = (struct sockaddr *)&address;
1811 msg.msg_namelen = addr_len;
1812 }
1813 if (sock->file->f_flags & O_NONBLOCK)
1814 flags |= MSG_DONTWAIT;
1815 msg.msg_flags = flags;
1816 err = sock_sendmsg(sock, &msg, len);
1817
1818 out_put:
1819 fput_light(sock->file, fput_needed);
1820 out:
1821 return err;
1822 }
1823
1824 /*
1825 * Send a datagram down a socket.
1826 */
1827
1828 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1829 unsigned int, flags)
1830 {
1831 return sys_sendto(fd, buff, len, flags, NULL, 0);
1832 }
1833
1834 /*
1835 * Receive a frame from the socket and optionally record the address of the
1836 * sender. We verify the buffers are writable and if needed move the
1837 * sender address from kernel to user space.
1838 */
1839
1840 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1841 unsigned int, flags, struct sockaddr __user *, addr,
1842 int __user *, addr_len)
1843 {
1844 struct socket *sock;
1845 struct iovec iov;
1846 struct msghdr msg;
1847 struct sockaddr_storage address;
1848 int err, err2;
1849 int fput_needed;
1850
1851 if (size > INT_MAX)
1852 size = INT_MAX;
1853 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1854 if (!sock)
1855 goto out;
1856
1857 msg.msg_control = NULL;
1858 msg.msg_controllen = 0;
1859 msg.msg_iovlen = 1;
1860 msg.msg_iov = &iov;
1861 iov.iov_len = size;
1862 iov.iov_base = ubuf;
1863 /* Save some cycles and don't copy the address if not needed */
1864 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1865 /* We assume all kernel code knows the size of sockaddr_storage */
1866 msg.msg_namelen = 0;
1867 if (sock->file->f_flags & O_NONBLOCK)
1868 flags |= MSG_DONTWAIT;
1869 err = sock_recvmsg(sock, &msg, size, flags);
1870
1871 if (err >= 0 && addr != NULL) {
1872 err2 = move_addr_to_user(&address,
1873 msg.msg_namelen, addr, addr_len);
1874 if (err2 < 0)
1875 err = err2;
1876 }
1877
1878 fput_light(sock->file, fput_needed);
1879 out:
1880 return err;
1881 }
1882
1883 /*
1884 * Receive a datagram from a socket.
1885 */
1886
1887 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1888 unsigned int, flags)
1889 {
1890 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1891 }
1892
1893 /*
1894 * Set a socket option. Because we don't know the option lengths we have
1895 * to pass the user mode parameter for the protocols to sort out.
1896 */
1897
1898 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1899 char __user *, optval, int, optlen)
1900 {
1901 int err, fput_needed;
1902 struct socket *sock;
1903
1904 if (optlen < 0)
1905 return -EINVAL;
1906
1907 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1908 if (sock != NULL) {
1909 err = security_socket_setsockopt(sock, level, optname);
1910 if (err)
1911 goto out_put;
1912
1913 if (level == SOL_SOCKET)
1914 err =
1915 sock_setsockopt(sock, level, optname, optval,
1916 optlen);
1917 else
1918 err =
1919 sock->ops->setsockopt(sock, level, optname, optval,
1920 optlen);
1921 out_put:
1922 fput_light(sock->file, fput_needed);
1923 }
1924 return err;
1925 }
1926
1927 /*
1928 * Get a socket option. Because we don't know the option lengths we have
1929 * to pass a user mode parameter for the protocols to sort out.
1930 */
1931
1932 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1933 char __user *, optval, int __user *, optlen)
1934 {
1935 int err, fput_needed;
1936 struct socket *sock;
1937
1938 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1939 if (sock != NULL) {
1940 err = security_socket_getsockopt(sock, level, optname);
1941 if (err)
1942 goto out_put;
1943
1944 if (level == SOL_SOCKET)
1945 err =
1946 sock_getsockopt(sock, level, optname, optval,
1947 optlen);
1948 else
1949 err =
1950 sock->ops->getsockopt(sock, level, optname, optval,
1951 optlen);
1952 out_put:
1953 fput_light(sock->file, fput_needed);
1954 }
1955 return err;
1956 }
1957
1958 /*
1959 * Shutdown a socket.
1960 */
1961
1962 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1963 {
1964 int err, fput_needed;
1965 struct socket *sock;
1966
1967 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1968 if (sock != NULL) {
1969 err = security_socket_shutdown(sock, how);
1970 if (!err)
1971 err = sock->ops->shutdown(sock, how);
1972 fput_light(sock->file, fput_needed);
1973 }
1974 return err;
1975 }
1976
1977 /* A couple of helpful macros for getting the address of the 32/64 bit
1978 * fields which are the same type (int / unsigned) on our platforms.
1979 */
1980 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1981 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1982 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1983
1984 struct used_address {
1985 struct sockaddr_storage name;
1986 unsigned int name_len;
1987 };
1988
1989 static ssize_t copy_msghdr_from_user(struct msghdr *kmsg,
1990 struct user_msghdr __user *umsg,
1991 struct sockaddr __user **save_addr,
1992 struct iovec **iov)
1993 {
1994 struct sockaddr __user *uaddr;
1995 struct iovec __user *uiov;
1996 ssize_t err;
1997
1998 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1999 __get_user(uaddr, &umsg->msg_name) ||
2000 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
2001 __get_user(uiov, &umsg->msg_iov) ||
2002 __get_user(kmsg->msg_iovlen, &umsg->msg_iovlen) ||
2003 __get_user(kmsg->msg_control, &umsg->msg_control) ||
2004 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
2005 __get_user(kmsg->msg_flags, &umsg->msg_flags))
2006 return -EFAULT;
2007
2008 if (!uaddr)
2009 kmsg->msg_namelen = 0;
2010
2011 if (kmsg->msg_namelen < 0)
2012 return -EINVAL;
2013
2014 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2015 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2016
2017 if (save_addr)
2018 *save_addr = uaddr;
2019
2020 if (uaddr && kmsg->msg_namelen) {
2021 if (!save_addr) {
2022 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
2023 kmsg->msg_name);
2024 if (err < 0)
2025 return err;
2026 }
2027 } else {
2028 kmsg->msg_name = NULL;
2029 kmsg->msg_namelen = 0;
2030 }
2031
2032 if (kmsg->msg_iovlen > UIO_MAXIOV)
2033 return -EMSGSIZE;
2034
2035 err = rw_copy_check_uvector(save_addr ? READ : WRITE,
2036 uiov, kmsg->msg_iovlen,
2037 UIO_FASTIOV, *iov, iov);
2038 if (err >= 0)
2039 kmsg->msg_iov = *iov;
2040 return err;
2041 }
2042
2043 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2044 struct msghdr *msg_sys, unsigned int flags,
2045 struct used_address *used_address)
2046 {
2047 struct compat_msghdr __user *msg_compat =
2048 (struct compat_msghdr __user *)msg;
2049 struct sockaddr_storage address;
2050 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2051 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2052 __attribute__ ((aligned(sizeof(__kernel_size_t))));
2053 /* 20 is size of ipv6_pktinfo */
2054 unsigned char *ctl_buf = ctl;
2055 int ctl_len, total_len;
2056 ssize_t err;
2057
2058 msg_sys->msg_name = &address;
2059
2060 if (MSG_CMSG_COMPAT & flags)
2061 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2062 else
2063 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2064 if (err < 0)
2065 goto out_freeiov;
2066 total_len = err;
2067
2068 err = -ENOBUFS;
2069
2070 if (msg_sys->msg_controllen > INT_MAX)
2071 goto out_freeiov;
2072 ctl_len = msg_sys->msg_controllen;
2073 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2074 err =
2075 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2076 sizeof(ctl));
2077 if (err)
2078 goto out_freeiov;
2079 ctl_buf = msg_sys->msg_control;
2080 ctl_len = msg_sys->msg_controllen;
2081 } else if (ctl_len) {
2082 if (ctl_len > sizeof(ctl)) {
2083 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2084 if (ctl_buf == NULL)
2085 goto out_freeiov;
2086 }
2087 err = -EFAULT;
2088 /*
2089 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2090 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2091 * checking falls down on this.
2092 */
2093 if (copy_from_user(ctl_buf,
2094 (void __user __force *)msg_sys->msg_control,
2095 ctl_len))
2096 goto out_freectl;
2097 msg_sys->msg_control = ctl_buf;
2098 }
2099 msg_sys->msg_flags = flags;
2100
2101 if (sock->file->f_flags & O_NONBLOCK)
2102 msg_sys->msg_flags |= MSG_DONTWAIT;
2103 /*
2104 * If this is sendmmsg() and current destination address is same as
2105 * previously succeeded address, omit asking LSM's decision.
2106 * used_address->name_len is initialized to UINT_MAX so that the first
2107 * destination address never matches.
2108 */
2109 if (used_address && msg_sys->msg_name &&
2110 used_address->name_len == msg_sys->msg_namelen &&
2111 !memcmp(&used_address->name, msg_sys->msg_name,
2112 used_address->name_len)) {
2113 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2114 goto out_freectl;
2115 }
2116 err = sock_sendmsg(sock, msg_sys, total_len);
2117 /*
2118 * If this is sendmmsg() and sending to current destination address was
2119 * successful, remember it.
2120 */
2121 if (used_address && err >= 0) {
2122 used_address->name_len = msg_sys->msg_namelen;
2123 if (msg_sys->msg_name)
2124 memcpy(&used_address->name, msg_sys->msg_name,
2125 used_address->name_len);
2126 }
2127
2128 out_freectl:
2129 if (ctl_buf != ctl)
2130 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2131 out_freeiov:
2132 if (iov != iovstack)
2133 kfree(iov);
2134 return err;
2135 }
2136
2137 /*
2138 * BSD sendmsg interface
2139 */
2140
2141 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2142 {
2143 int fput_needed, err;
2144 struct msghdr msg_sys;
2145 struct socket *sock;
2146
2147 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2148 if (!sock)
2149 goto out;
2150
2151 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2152
2153 fput_light(sock->file, fput_needed);
2154 out:
2155 return err;
2156 }
2157
2158 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2159 {
2160 if (flags & MSG_CMSG_COMPAT)
2161 return -EINVAL;
2162 return __sys_sendmsg(fd, msg, flags);
2163 }
2164
2165 /*
2166 * Linux sendmmsg interface
2167 */
2168
2169 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2170 unsigned int flags)
2171 {
2172 int fput_needed, err, datagrams;
2173 struct socket *sock;
2174 struct mmsghdr __user *entry;
2175 struct compat_mmsghdr __user *compat_entry;
2176 struct msghdr msg_sys;
2177 struct used_address used_address;
2178
2179 if (vlen > UIO_MAXIOV)
2180 vlen = UIO_MAXIOV;
2181
2182 datagrams = 0;
2183
2184 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2185 if (!sock)
2186 return err;
2187
2188 used_address.name_len = UINT_MAX;
2189 entry = mmsg;
2190 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2191 err = 0;
2192
2193 while (datagrams < vlen) {
2194 if (MSG_CMSG_COMPAT & flags) {
2195 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2196 &msg_sys, flags, &used_address);
2197 if (err < 0)
2198 break;
2199 err = __put_user(err, &compat_entry->msg_len);
2200 ++compat_entry;
2201 } else {
2202 err = ___sys_sendmsg(sock,
2203 (struct user_msghdr __user *)entry,
2204 &msg_sys, flags, &used_address);
2205 if (err < 0)
2206 break;
2207 err = put_user(err, &entry->msg_len);
2208 ++entry;
2209 }
2210
2211 if (err)
2212 break;
2213 ++datagrams;
2214 }
2215
2216 fput_light(sock->file, fput_needed);
2217
2218 /* We only return an error if no datagrams were able to be sent */
2219 if (datagrams != 0)
2220 return datagrams;
2221
2222 return err;
2223 }
2224
2225 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2226 unsigned int, vlen, unsigned int, flags)
2227 {
2228 if (flags & MSG_CMSG_COMPAT)
2229 return -EINVAL;
2230 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2231 }
2232
2233 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2234 struct msghdr *msg_sys, unsigned int flags, int nosec)
2235 {
2236 struct compat_msghdr __user *msg_compat =
2237 (struct compat_msghdr __user *)msg;
2238 struct iovec iovstack[UIO_FASTIOV];
2239 struct iovec *iov = iovstack;
2240 unsigned long cmsg_ptr;
2241 int total_len, len;
2242 ssize_t err;
2243
2244 /* kernel mode address */
2245 struct sockaddr_storage addr;
2246
2247 /* user mode address pointers */
2248 struct sockaddr __user *uaddr;
2249 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2250
2251 msg_sys->msg_name = &addr;
2252
2253 if (MSG_CMSG_COMPAT & flags)
2254 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2255 else
2256 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2257 if (err < 0)
2258 goto out_freeiov;
2259 total_len = err;
2260
2261 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2262 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2263
2264 /* We assume all kernel code knows the size of sockaddr_storage */
2265 msg_sys->msg_namelen = 0;
2266
2267 if (sock->file->f_flags & O_NONBLOCK)
2268 flags |= MSG_DONTWAIT;
2269 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2270 total_len, flags);
2271 if (err < 0)
2272 goto out_freeiov;
2273 len = err;
2274
2275 if (uaddr != NULL) {
2276 err = move_addr_to_user(&addr,
2277 msg_sys->msg_namelen, uaddr,
2278 uaddr_len);
2279 if (err < 0)
2280 goto out_freeiov;
2281 }
2282 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2283 COMPAT_FLAGS(msg));
2284 if (err)
2285 goto out_freeiov;
2286 if (MSG_CMSG_COMPAT & flags)
2287 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2288 &msg_compat->msg_controllen);
2289 else
2290 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2291 &msg->msg_controllen);
2292 if (err)
2293 goto out_freeiov;
2294 err = len;
2295
2296 out_freeiov:
2297 if (iov != iovstack)
2298 kfree(iov);
2299 return err;
2300 }
2301
2302 /*
2303 * BSD recvmsg interface
2304 */
2305
2306 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2307 {
2308 int fput_needed, err;
2309 struct msghdr msg_sys;
2310 struct socket *sock;
2311
2312 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2313 if (!sock)
2314 goto out;
2315
2316 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2317
2318 fput_light(sock->file, fput_needed);
2319 out:
2320 return err;
2321 }
2322
2323 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2324 unsigned int, flags)
2325 {
2326 if (flags & MSG_CMSG_COMPAT)
2327 return -EINVAL;
2328 return __sys_recvmsg(fd, msg, flags);
2329 }
2330
2331 /*
2332 * Linux recvmmsg interface
2333 */
2334
2335 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2336 unsigned int flags, struct timespec *timeout)
2337 {
2338 int fput_needed, err, datagrams;
2339 struct socket *sock;
2340 struct mmsghdr __user *entry;
2341 struct compat_mmsghdr __user *compat_entry;
2342 struct msghdr msg_sys;
2343 struct timespec end_time;
2344
2345 if (timeout &&
2346 poll_select_set_timeout(&end_time, timeout->tv_sec,
2347 timeout->tv_nsec))
2348 return -EINVAL;
2349
2350 datagrams = 0;
2351
2352 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2353 if (!sock)
2354 return err;
2355
2356 err = sock_error(sock->sk);
2357 if (err)
2358 goto out_put;
2359
2360 entry = mmsg;
2361 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2362
2363 while (datagrams < vlen) {
2364 /*
2365 * No need to ask LSM for more than the first datagram.
2366 */
2367 if (MSG_CMSG_COMPAT & flags) {
2368 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2369 &msg_sys, flags & ~MSG_WAITFORONE,
2370 datagrams);
2371 if (err < 0)
2372 break;
2373 err = __put_user(err, &compat_entry->msg_len);
2374 ++compat_entry;
2375 } else {
2376 err = ___sys_recvmsg(sock,
2377 (struct user_msghdr __user *)entry,
2378 &msg_sys, flags & ~MSG_WAITFORONE,
2379 datagrams);
2380 if (err < 0)
2381 break;
2382 err = put_user(err, &entry->msg_len);
2383 ++entry;
2384 }
2385
2386 if (err)
2387 break;
2388 ++datagrams;
2389
2390 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2391 if (flags & MSG_WAITFORONE)
2392 flags |= MSG_DONTWAIT;
2393
2394 if (timeout) {
2395 ktime_get_ts(timeout);
2396 *timeout = timespec_sub(end_time, *timeout);
2397 if (timeout->tv_sec < 0) {
2398 timeout->tv_sec = timeout->tv_nsec = 0;
2399 break;
2400 }
2401
2402 /* Timeout, return less than vlen datagrams */
2403 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2404 break;
2405 }
2406
2407 /* Out of band data, return right away */
2408 if (msg_sys.msg_flags & MSG_OOB)
2409 break;
2410 }
2411
2412 out_put:
2413 fput_light(sock->file, fput_needed);
2414
2415 if (err == 0)
2416 return datagrams;
2417
2418 if (datagrams != 0) {
2419 /*
2420 * We may return less entries than requested (vlen) if the
2421 * sock is non block and there aren't enough datagrams...
2422 */
2423 if (err != -EAGAIN) {
2424 /*
2425 * ... or if recvmsg returns an error after we
2426 * received some datagrams, where we record the
2427 * error to return on the next call or if the
2428 * app asks about it using getsockopt(SO_ERROR).
2429 */
2430 sock->sk->sk_err = -err;
2431 }
2432
2433 return datagrams;
2434 }
2435
2436 return err;
2437 }
2438
2439 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2440 unsigned int, vlen, unsigned int, flags,
2441 struct timespec __user *, timeout)
2442 {
2443 int datagrams;
2444 struct timespec timeout_sys;
2445
2446 if (flags & MSG_CMSG_COMPAT)
2447 return -EINVAL;
2448
2449 if (!timeout)
2450 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2451
2452 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2453 return -EFAULT;
2454
2455 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2456
2457 if (datagrams > 0 &&
2458 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2459 datagrams = -EFAULT;
2460
2461 return datagrams;
2462 }
2463
2464 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2465 /* Argument list sizes for sys_socketcall */
2466 #define AL(x) ((x) * sizeof(unsigned long))
2467 static const unsigned char nargs[21] = {
2468 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2469 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2470 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2471 AL(4), AL(5), AL(4)
2472 };
2473
2474 #undef AL
2475
2476 /*
2477 * System call vectors.
2478 *
2479 * Argument checking cleaned up. Saved 20% in size.
2480 * This function doesn't need to set the kernel lock because
2481 * it is set by the callees.
2482 */
2483
2484 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2485 {
2486 unsigned long a[AUDITSC_ARGS];
2487 unsigned long a0, a1;
2488 int err;
2489 unsigned int len;
2490
2491 if (call < 1 || call > SYS_SENDMMSG)
2492 return -EINVAL;
2493
2494 len = nargs[call];
2495 if (len > sizeof(a))
2496 return -EINVAL;
2497
2498 /* copy_from_user should be SMP safe. */
2499 if (copy_from_user(a, args, len))
2500 return -EFAULT;
2501
2502 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2503 if (err)
2504 return err;
2505
2506 a0 = a[0];
2507 a1 = a[1];
2508
2509 switch (call) {
2510 case SYS_SOCKET:
2511 err = sys_socket(a0, a1, a[2]);
2512 break;
2513 case SYS_BIND:
2514 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2515 break;
2516 case SYS_CONNECT:
2517 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2518 break;
2519 case SYS_LISTEN:
2520 err = sys_listen(a0, a1);
2521 break;
2522 case SYS_ACCEPT:
2523 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2524 (int __user *)a[2], 0);
2525 break;
2526 case SYS_GETSOCKNAME:
2527 err =
2528 sys_getsockname(a0, (struct sockaddr __user *)a1,
2529 (int __user *)a[2]);
2530 break;
2531 case SYS_GETPEERNAME:
2532 err =
2533 sys_getpeername(a0, (struct sockaddr __user *)a1,
2534 (int __user *)a[2]);
2535 break;
2536 case SYS_SOCKETPAIR:
2537 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2538 break;
2539 case SYS_SEND:
2540 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2541 break;
2542 case SYS_SENDTO:
2543 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2544 (struct sockaddr __user *)a[4], a[5]);
2545 break;
2546 case SYS_RECV:
2547 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2548 break;
2549 case SYS_RECVFROM:
2550 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2551 (struct sockaddr __user *)a[4],
2552 (int __user *)a[5]);
2553 break;
2554 case SYS_SHUTDOWN:
2555 err = sys_shutdown(a0, a1);
2556 break;
2557 case SYS_SETSOCKOPT:
2558 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2559 break;
2560 case SYS_GETSOCKOPT:
2561 err =
2562 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2563 (int __user *)a[4]);
2564 break;
2565 case SYS_SENDMSG:
2566 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2567 break;
2568 case SYS_SENDMMSG:
2569 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2570 break;
2571 case SYS_RECVMSG:
2572 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2573 break;
2574 case SYS_RECVMMSG:
2575 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2576 (struct timespec __user *)a[4]);
2577 break;
2578 case SYS_ACCEPT4:
2579 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2580 (int __user *)a[2], a[3]);
2581 break;
2582 default:
2583 err = -EINVAL;
2584 break;
2585 }
2586 return err;
2587 }
2588
2589 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2590
2591 /**
2592 * sock_register - add a socket protocol handler
2593 * @ops: description of protocol
2594 *
2595 * This function is called by a protocol handler that wants to
2596 * advertise its address family, and have it linked into the
2597 * socket interface. The value ops->family corresponds to the
2598 * socket system call protocol family.
2599 */
2600 int sock_register(const struct net_proto_family *ops)
2601 {
2602 int err;
2603
2604 if (ops->family >= NPROTO) {
2605 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2606 return -ENOBUFS;
2607 }
2608
2609 spin_lock(&net_family_lock);
2610 if (rcu_dereference_protected(net_families[ops->family],
2611 lockdep_is_held(&net_family_lock)))
2612 err = -EEXIST;
2613 else {
2614 rcu_assign_pointer(net_families[ops->family], ops);
2615 err = 0;
2616 }
2617 spin_unlock(&net_family_lock);
2618
2619 pr_info("NET: Registered protocol family %d\n", ops->family);
2620 return err;
2621 }
2622 EXPORT_SYMBOL(sock_register);
2623
2624 /**
2625 * sock_unregister - remove a protocol handler
2626 * @family: protocol family to remove
2627 *
2628 * This function is called by a protocol handler that wants to
2629 * remove its address family, and have it unlinked from the
2630 * new socket creation.
2631 *
2632 * If protocol handler is a module, then it can use module reference
2633 * counts to protect against new references. If protocol handler is not
2634 * a module then it needs to provide its own protection in
2635 * the ops->create routine.
2636 */
2637 void sock_unregister(int family)
2638 {
2639 BUG_ON(family < 0 || family >= NPROTO);
2640
2641 spin_lock(&net_family_lock);
2642 RCU_INIT_POINTER(net_families[family], NULL);
2643 spin_unlock(&net_family_lock);
2644
2645 synchronize_rcu();
2646
2647 pr_info("NET: Unregistered protocol family %d\n", family);
2648 }
2649 EXPORT_SYMBOL(sock_unregister);
2650
2651 static int __init sock_init(void)
2652 {
2653 int err;
2654 /*
2655 * Initialize the network sysctl infrastructure.
2656 */
2657 err = net_sysctl_init();
2658 if (err)
2659 goto out;
2660
2661 /*
2662 * Initialize skbuff SLAB cache
2663 */
2664 skb_init();
2665
2666 /*
2667 * Initialize the protocols module.
2668 */
2669
2670 init_inodecache();
2671
2672 err = register_filesystem(&sock_fs_type);
2673 if (err)
2674 goto out_fs;
2675 sock_mnt = kern_mount(&sock_fs_type);
2676 if (IS_ERR(sock_mnt)) {
2677 err = PTR_ERR(sock_mnt);
2678 goto out_mount;
2679 }
2680
2681 /* The real protocol initialization is performed in later initcalls.
2682 */
2683
2684 #ifdef CONFIG_NETFILTER
2685 err = netfilter_init();
2686 if (err)
2687 goto out;
2688 #endif
2689
2690 ptp_classifier_init();
2691
2692 out:
2693 return err;
2694
2695 out_mount:
2696 unregister_filesystem(&sock_fs_type);
2697 out_fs:
2698 goto out;
2699 }
2700
2701 core_initcall(sock_init); /* early initcall */
2702
2703 #ifdef CONFIG_PROC_FS
2704 void socket_seq_show(struct seq_file *seq)
2705 {
2706 int cpu;
2707 int counter = 0;
2708
2709 for_each_possible_cpu(cpu)
2710 counter += per_cpu(sockets_in_use, cpu);
2711
2712 /* It can be negative, by the way. 8) */
2713 if (counter < 0)
2714 counter = 0;
2715
2716 seq_printf(seq, "sockets: used %d\n", counter);
2717 }
2718 #endif /* CONFIG_PROC_FS */
2719
2720 #ifdef CONFIG_COMPAT
2721 static int do_siocgstamp(struct net *net, struct socket *sock,
2722 unsigned int cmd, void __user *up)
2723 {
2724 mm_segment_t old_fs = get_fs();
2725 struct timeval ktv;
2726 int err;
2727
2728 set_fs(KERNEL_DS);
2729 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2730 set_fs(old_fs);
2731 if (!err)
2732 err = compat_put_timeval(&ktv, up);
2733
2734 return err;
2735 }
2736
2737 static int do_siocgstampns(struct net *net, struct socket *sock,
2738 unsigned int cmd, void __user *up)
2739 {
2740 mm_segment_t old_fs = get_fs();
2741 struct timespec kts;
2742 int err;
2743
2744 set_fs(KERNEL_DS);
2745 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2746 set_fs(old_fs);
2747 if (!err)
2748 err = compat_put_timespec(&kts, up);
2749
2750 return err;
2751 }
2752
2753 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2754 {
2755 struct ifreq __user *uifr;
2756 int err;
2757
2758 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2759 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2760 return -EFAULT;
2761
2762 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2763 if (err)
2764 return err;
2765
2766 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2767 return -EFAULT;
2768
2769 return 0;
2770 }
2771
2772 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2773 {
2774 struct compat_ifconf ifc32;
2775 struct ifconf ifc;
2776 struct ifconf __user *uifc;
2777 struct compat_ifreq __user *ifr32;
2778 struct ifreq __user *ifr;
2779 unsigned int i, j;
2780 int err;
2781
2782 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2783 return -EFAULT;
2784
2785 memset(&ifc, 0, sizeof(ifc));
2786 if (ifc32.ifcbuf == 0) {
2787 ifc32.ifc_len = 0;
2788 ifc.ifc_len = 0;
2789 ifc.ifc_req = NULL;
2790 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2791 } else {
2792 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2793 sizeof(struct ifreq);
2794 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2795 ifc.ifc_len = len;
2796 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2797 ifr32 = compat_ptr(ifc32.ifcbuf);
2798 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2799 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2800 return -EFAULT;
2801 ifr++;
2802 ifr32++;
2803 }
2804 }
2805 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2806 return -EFAULT;
2807
2808 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2809 if (err)
2810 return err;
2811
2812 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2813 return -EFAULT;
2814
2815 ifr = ifc.ifc_req;
2816 ifr32 = compat_ptr(ifc32.ifcbuf);
2817 for (i = 0, j = 0;
2818 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2819 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2820 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2821 return -EFAULT;
2822 ifr32++;
2823 ifr++;
2824 }
2825
2826 if (ifc32.ifcbuf == 0) {
2827 /* Translate from 64-bit structure multiple to
2828 * a 32-bit one.
2829 */
2830 i = ifc.ifc_len;
2831 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2832 ifc32.ifc_len = i;
2833 } else {
2834 ifc32.ifc_len = i;
2835 }
2836 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2837 return -EFAULT;
2838
2839 return 0;
2840 }
2841
2842 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2843 {
2844 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2845 bool convert_in = false, convert_out = false;
2846 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2847 struct ethtool_rxnfc __user *rxnfc;
2848 struct ifreq __user *ifr;
2849 u32 rule_cnt = 0, actual_rule_cnt;
2850 u32 ethcmd;
2851 u32 data;
2852 int ret;
2853
2854 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2855 return -EFAULT;
2856
2857 compat_rxnfc = compat_ptr(data);
2858
2859 if (get_user(ethcmd, &compat_rxnfc->cmd))
2860 return -EFAULT;
2861
2862 /* Most ethtool structures are defined without padding.
2863 * Unfortunately struct ethtool_rxnfc is an exception.
2864 */
2865 switch (ethcmd) {
2866 default:
2867 break;
2868 case ETHTOOL_GRXCLSRLALL:
2869 /* Buffer size is variable */
2870 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2871 return -EFAULT;
2872 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2873 return -ENOMEM;
2874 buf_size += rule_cnt * sizeof(u32);
2875 /* fall through */
2876 case ETHTOOL_GRXRINGS:
2877 case ETHTOOL_GRXCLSRLCNT:
2878 case ETHTOOL_GRXCLSRULE:
2879 case ETHTOOL_SRXCLSRLINS:
2880 convert_out = true;
2881 /* fall through */
2882 case ETHTOOL_SRXCLSRLDEL:
2883 buf_size += sizeof(struct ethtool_rxnfc);
2884 convert_in = true;
2885 break;
2886 }
2887
2888 ifr = compat_alloc_user_space(buf_size);
2889 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2890
2891 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2892 return -EFAULT;
2893
2894 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2895 &ifr->ifr_ifru.ifru_data))
2896 return -EFAULT;
2897
2898 if (convert_in) {
2899 /* We expect there to be holes between fs.m_ext and
2900 * fs.ring_cookie and at the end of fs, but nowhere else.
2901 */
2902 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2903 sizeof(compat_rxnfc->fs.m_ext) !=
2904 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2905 sizeof(rxnfc->fs.m_ext));
2906 BUILD_BUG_ON(
2907 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2908 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2909 offsetof(struct ethtool_rxnfc, fs.location) -
2910 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2911
2912 if (copy_in_user(rxnfc, compat_rxnfc,
2913 (void __user *)(&rxnfc->fs.m_ext + 1) -
2914 (void __user *)rxnfc) ||
2915 copy_in_user(&rxnfc->fs.ring_cookie,
2916 &compat_rxnfc->fs.ring_cookie,
2917 (void __user *)(&rxnfc->fs.location + 1) -
2918 (void __user *)&rxnfc->fs.ring_cookie) ||
2919 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2920 sizeof(rxnfc->rule_cnt)))
2921 return -EFAULT;
2922 }
2923
2924 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2925 if (ret)
2926 return ret;
2927
2928 if (convert_out) {
2929 if (copy_in_user(compat_rxnfc, rxnfc,
2930 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2931 (const void __user *)rxnfc) ||
2932 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2933 &rxnfc->fs.ring_cookie,
2934 (const void __user *)(&rxnfc->fs.location + 1) -
2935 (const void __user *)&rxnfc->fs.ring_cookie) ||
2936 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2937 sizeof(rxnfc->rule_cnt)))
2938 return -EFAULT;
2939
2940 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2941 /* As an optimisation, we only copy the actual
2942 * number of rules that the underlying
2943 * function returned. Since Mallory might
2944 * change the rule count in user memory, we
2945 * check that it is less than the rule count
2946 * originally given (as the user buffer size),
2947 * which has been range-checked.
2948 */
2949 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2950 return -EFAULT;
2951 if (actual_rule_cnt < rule_cnt)
2952 rule_cnt = actual_rule_cnt;
2953 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2954 &rxnfc->rule_locs[0],
2955 rule_cnt * sizeof(u32)))
2956 return -EFAULT;
2957 }
2958 }
2959
2960 return 0;
2961 }
2962
2963 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2964 {
2965 void __user *uptr;
2966 compat_uptr_t uptr32;
2967 struct ifreq __user *uifr;
2968
2969 uifr = compat_alloc_user_space(sizeof(*uifr));
2970 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2971 return -EFAULT;
2972
2973 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2974 return -EFAULT;
2975
2976 uptr = compat_ptr(uptr32);
2977
2978 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2979 return -EFAULT;
2980
2981 return dev_ioctl(net, SIOCWANDEV, uifr);
2982 }
2983
2984 static int bond_ioctl(struct net *net, unsigned int cmd,
2985 struct compat_ifreq __user *ifr32)
2986 {
2987 struct ifreq kifr;
2988 mm_segment_t old_fs;
2989 int err;
2990
2991 switch (cmd) {
2992 case SIOCBONDENSLAVE:
2993 case SIOCBONDRELEASE:
2994 case SIOCBONDSETHWADDR:
2995 case SIOCBONDCHANGEACTIVE:
2996 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2997 return -EFAULT;
2998
2999 old_fs = get_fs();
3000 set_fs(KERNEL_DS);
3001 err = dev_ioctl(net, cmd,
3002 (struct ifreq __user __force *) &kifr);
3003 set_fs(old_fs);
3004
3005 return err;
3006 default:
3007 return -ENOIOCTLCMD;
3008 }
3009 }
3010
3011 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3012 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3013 struct compat_ifreq __user *u_ifreq32)
3014 {
3015 struct ifreq __user *u_ifreq64;
3016 char tmp_buf[IFNAMSIZ];
3017 void __user *data64;
3018 u32 data32;
3019
3020 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3021 IFNAMSIZ))
3022 return -EFAULT;
3023 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3024 return -EFAULT;
3025 data64 = compat_ptr(data32);
3026
3027 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3028
3029 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3030 IFNAMSIZ))
3031 return -EFAULT;
3032 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3033 return -EFAULT;
3034
3035 return dev_ioctl(net, cmd, u_ifreq64);
3036 }
3037
3038 static int dev_ifsioc(struct net *net, struct socket *sock,
3039 unsigned int cmd, struct compat_ifreq __user *uifr32)
3040 {
3041 struct ifreq __user *uifr;
3042 int err;
3043
3044 uifr = compat_alloc_user_space(sizeof(*uifr));
3045 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3046 return -EFAULT;
3047
3048 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3049
3050 if (!err) {
3051 switch (cmd) {
3052 case SIOCGIFFLAGS:
3053 case SIOCGIFMETRIC:
3054 case SIOCGIFMTU:
3055 case SIOCGIFMEM:
3056 case SIOCGIFHWADDR:
3057 case SIOCGIFINDEX:
3058 case SIOCGIFADDR:
3059 case SIOCGIFBRDADDR:
3060 case SIOCGIFDSTADDR:
3061 case SIOCGIFNETMASK:
3062 case SIOCGIFPFLAGS:
3063 case SIOCGIFTXQLEN:
3064 case SIOCGMIIPHY:
3065 case SIOCGMIIREG:
3066 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3067 err = -EFAULT;
3068 break;
3069 }
3070 }
3071 return err;
3072 }
3073
3074 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3075 struct compat_ifreq __user *uifr32)
3076 {
3077 struct ifreq ifr;
3078 struct compat_ifmap __user *uifmap32;
3079 mm_segment_t old_fs;
3080 int err;
3081
3082 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3083 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3084 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3085 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3086 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3087 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3088 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3089 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3090 if (err)
3091 return -EFAULT;
3092
3093 old_fs = get_fs();
3094 set_fs(KERNEL_DS);
3095 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3096 set_fs(old_fs);
3097
3098 if (cmd == SIOCGIFMAP && !err) {
3099 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3100 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3101 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3102 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3103 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3104 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3105 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3106 if (err)
3107 err = -EFAULT;
3108 }
3109 return err;
3110 }
3111
3112 struct rtentry32 {
3113 u32 rt_pad1;
3114 struct sockaddr rt_dst; /* target address */
3115 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3116 struct sockaddr rt_genmask; /* target network mask (IP) */
3117 unsigned short rt_flags;
3118 short rt_pad2;
3119 u32 rt_pad3;
3120 unsigned char rt_tos;
3121 unsigned char rt_class;
3122 short rt_pad4;
3123 short rt_metric; /* +1 for binary compatibility! */
3124 /* char * */ u32 rt_dev; /* forcing the device at add */
3125 u32 rt_mtu; /* per route MTU/Window */
3126 u32 rt_window; /* Window clamping */
3127 unsigned short rt_irtt; /* Initial RTT */
3128 };
3129
3130 struct in6_rtmsg32 {
3131 struct in6_addr rtmsg_dst;
3132 struct in6_addr rtmsg_src;
3133 struct in6_addr rtmsg_gateway;
3134 u32 rtmsg_type;
3135 u16 rtmsg_dst_len;
3136 u16 rtmsg_src_len;
3137 u32 rtmsg_metric;
3138 u32 rtmsg_info;
3139 u32 rtmsg_flags;
3140 s32 rtmsg_ifindex;
3141 };
3142
3143 static int routing_ioctl(struct net *net, struct socket *sock,
3144 unsigned int cmd, void __user *argp)
3145 {
3146 int ret;
3147 void *r = NULL;
3148 struct in6_rtmsg r6;
3149 struct rtentry r4;
3150 char devname[16];
3151 u32 rtdev;
3152 mm_segment_t old_fs = get_fs();
3153
3154 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3155 struct in6_rtmsg32 __user *ur6 = argp;
3156 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3157 3 * sizeof(struct in6_addr));
3158 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3159 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3160 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3161 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3162 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3163 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3164 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3165
3166 r = (void *) &r6;
3167 } else { /* ipv4 */
3168 struct rtentry32 __user *ur4 = argp;
3169 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3170 3 * sizeof(struct sockaddr));
3171 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3172 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3173 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3174 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3175 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3176 ret |= get_user(rtdev, &(ur4->rt_dev));
3177 if (rtdev) {
3178 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3179 r4.rt_dev = (char __user __force *)devname;
3180 devname[15] = 0;
3181 } else
3182 r4.rt_dev = NULL;
3183
3184 r = (void *) &r4;
3185 }
3186
3187 if (ret) {
3188 ret = -EFAULT;
3189 goto out;
3190 }
3191
3192 set_fs(KERNEL_DS);
3193 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3194 set_fs(old_fs);
3195
3196 out:
3197 return ret;
3198 }
3199
3200 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3201 * for some operations; this forces use of the newer bridge-utils that
3202 * use compatible ioctls
3203 */
3204 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3205 {
3206 compat_ulong_t tmp;
3207
3208 if (get_user(tmp, argp))
3209 return -EFAULT;
3210 if (tmp == BRCTL_GET_VERSION)
3211 return BRCTL_VERSION + 1;
3212 return -EINVAL;
3213 }
3214
3215 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3216 unsigned int cmd, unsigned long arg)
3217 {
3218 void __user *argp = compat_ptr(arg);
3219 struct sock *sk = sock->sk;
3220 struct net *net = sock_net(sk);
3221
3222 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3223 return compat_ifr_data_ioctl(net, cmd, argp);
3224
3225 switch (cmd) {
3226 case SIOCSIFBR:
3227 case SIOCGIFBR:
3228 return old_bridge_ioctl(argp);
3229 case SIOCGIFNAME:
3230 return dev_ifname32(net, argp);
3231 case SIOCGIFCONF:
3232 return dev_ifconf(net, argp);
3233 case SIOCETHTOOL:
3234 return ethtool_ioctl(net, argp);
3235 case SIOCWANDEV:
3236 return compat_siocwandev(net, argp);
3237 case SIOCGIFMAP:
3238 case SIOCSIFMAP:
3239 return compat_sioc_ifmap(net, cmd, argp);
3240 case SIOCBONDENSLAVE:
3241 case SIOCBONDRELEASE:
3242 case SIOCBONDSETHWADDR:
3243 case SIOCBONDCHANGEACTIVE:
3244 return bond_ioctl(net, cmd, argp);
3245 case SIOCADDRT:
3246 case SIOCDELRT:
3247 return routing_ioctl(net, sock, cmd, argp);
3248 case SIOCGSTAMP:
3249 return do_siocgstamp(net, sock, cmd, argp);
3250 case SIOCGSTAMPNS:
3251 return do_siocgstampns(net, sock, cmd, argp);
3252 case SIOCBONDSLAVEINFOQUERY:
3253 case SIOCBONDINFOQUERY:
3254 case SIOCSHWTSTAMP:
3255 case SIOCGHWTSTAMP:
3256 return compat_ifr_data_ioctl(net, cmd, argp);
3257
3258 case FIOSETOWN:
3259 case SIOCSPGRP:
3260 case FIOGETOWN:
3261 case SIOCGPGRP:
3262 case SIOCBRADDBR:
3263 case SIOCBRDELBR:
3264 case SIOCGIFVLAN:
3265 case SIOCSIFVLAN:
3266 case SIOCADDDLCI:
3267 case SIOCDELDLCI:
3268 return sock_ioctl(file, cmd, arg);
3269
3270 case SIOCGIFFLAGS:
3271 case SIOCSIFFLAGS:
3272 case SIOCGIFMETRIC:
3273 case SIOCSIFMETRIC:
3274 case SIOCGIFMTU:
3275 case SIOCSIFMTU:
3276 case SIOCGIFMEM:
3277 case SIOCSIFMEM:
3278 case SIOCGIFHWADDR:
3279 case SIOCSIFHWADDR:
3280 case SIOCADDMULTI:
3281 case SIOCDELMULTI:
3282 case SIOCGIFINDEX:
3283 case SIOCGIFADDR:
3284 case SIOCSIFADDR:
3285 case SIOCSIFHWBROADCAST:
3286 case SIOCDIFADDR:
3287 case SIOCGIFBRDADDR:
3288 case SIOCSIFBRDADDR:
3289 case SIOCGIFDSTADDR:
3290 case SIOCSIFDSTADDR:
3291 case SIOCGIFNETMASK:
3292 case SIOCSIFNETMASK:
3293 case SIOCSIFPFLAGS:
3294 case SIOCGIFPFLAGS:
3295 case SIOCGIFTXQLEN:
3296 case SIOCSIFTXQLEN:
3297 case SIOCBRADDIF:
3298 case SIOCBRDELIF:
3299 case SIOCSIFNAME:
3300 case SIOCGMIIPHY:
3301 case SIOCGMIIREG:
3302 case SIOCSMIIREG:
3303 return dev_ifsioc(net, sock, cmd, argp);
3304
3305 case SIOCSARP:
3306 case SIOCGARP:
3307 case SIOCDARP:
3308 case SIOCATMARK:
3309 return sock_do_ioctl(net, sock, cmd, arg);
3310 }
3311
3312 return -ENOIOCTLCMD;
3313 }
3314
3315 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3316 unsigned long arg)
3317 {
3318 struct socket *sock = file->private_data;
3319 int ret = -ENOIOCTLCMD;
3320 struct sock *sk;
3321 struct net *net;
3322
3323 sk = sock->sk;
3324 net = sock_net(sk);
3325
3326 if (sock->ops->compat_ioctl)
3327 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3328
3329 if (ret == -ENOIOCTLCMD &&
3330 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3331 ret = compat_wext_handle_ioctl(net, cmd, arg);
3332
3333 if (ret == -ENOIOCTLCMD)
3334 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3335
3336 return ret;
3337 }
3338 #endif
3339
3340 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3341 {
3342 return sock->ops->bind(sock, addr, addrlen);
3343 }
3344 EXPORT_SYMBOL(kernel_bind);
3345
3346 int kernel_listen(struct socket *sock, int backlog)
3347 {
3348 return sock->ops->listen(sock, backlog);
3349 }
3350 EXPORT_SYMBOL(kernel_listen);
3351
3352 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3353 {
3354 struct sock *sk = sock->sk;
3355 int err;
3356
3357 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3358 newsock);
3359 if (err < 0)
3360 goto done;
3361
3362 err = sock->ops->accept(sock, *newsock, flags);
3363 if (err < 0) {
3364 sock_release(*newsock);
3365 *newsock = NULL;
3366 goto done;
3367 }
3368
3369 (*newsock)->ops = sock->ops;
3370 __module_get((*newsock)->ops->owner);
3371
3372 done:
3373 return err;
3374 }
3375 EXPORT_SYMBOL(kernel_accept);
3376
3377 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3378 int flags)
3379 {
3380 return sock->ops->connect(sock, addr, addrlen, flags);
3381 }
3382 EXPORT_SYMBOL(kernel_connect);
3383
3384 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3385 int *addrlen)
3386 {
3387 return sock->ops->getname(sock, addr, addrlen, 0);
3388 }
3389 EXPORT_SYMBOL(kernel_getsockname);
3390
3391 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3392 int *addrlen)
3393 {
3394 return sock->ops->getname(sock, addr, addrlen, 1);
3395 }
3396 EXPORT_SYMBOL(kernel_getpeername);
3397
3398 int kernel_getsockopt(struct socket *sock, int level, int optname,
3399 char *optval, int *optlen)
3400 {
3401 mm_segment_t oldfs = get_fs();
3402 char __user *uoptval;
3403 int __user *uoptlen;
3404 int err;
3405
3406 uoptval = (char __user __force *) optval;
3407 uoptlen = (int __user __force *) optlen;
3408
3409 set_fs(KERNEL_DS);
3410 if (level == SOL_SOCKET)
3411 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3412 else
3413 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3414 uoptlen);
3415 set_fs(oldfs);
3416 return err;
3417 }
3418 EXPORT_SYMBOL(kernel_getsockopt);
3419
3420 int kernel_setsockopt(struct socket *sock, int level, int optname,
3421 char *optval, unsigned int optlen)
3422 {
3423 mm_segment_t oldfs = get_fs();
3424 char __user *uoptval;
3425 int err;
3426
3427 uoptval = (char __user __force *) optval;
3428
3429 set_fs(KERNEL_DS);
3430 if (level == SOL_SOCKET)
3431 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3432 else
3433 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3434 optlen);
3435 set_fs(oldfs);
3436 return err;
3437 }
3438 EXPORT_SYMBOL(kernel_setsockopt);
3439
3440 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3441 size_t size, int flags)
3442 {
3443 if (sock->ops->sendpage)
3444 return sock->ops->sendpage(sock, page, offset, size, flags);
3445
3446 return sock_no_sendpage(sock, page, offset, size, flags);
3447 }
3448 EXPORT_SYMBOL(kernel_sendpage);
3449
3450 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3451 {
3452 mm_segment_t oldfs = get_fs();
3453 int err;
3454
3455 set_fs(KERNEL_DS);
3456 err = sock->ops->ioctl(sock, cmd, arg);
3457 set_fs(oldfs);
3458
3459 return err;
3460 }
3461 EXPORT_SYMBOL(kernel_sock_ioctl);
3462
3463 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3464 {
3465 return sock->ops->shutdown(sock, how);
3466 }
3467 EXPORT_SYMBOL(kernel_sock_shutdown);
This page took 0.110319 seconds and 6 git commands to generate.