Merge tag 'r8169-upstream-20061204-00' of git://electric-eye.fr.zoreil.com/home/romie...
[deliverable/linux.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87
88 #include <asm/uaccess.h>
89 #include <asm/unistd.h>
90
91 #include <net/compat.h>
92
93 #include <net/sock.h>
94 #include <linux/netfilter.h>
95
96 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
97 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
98 unsigned long nr_segs, loff_t pos);
99 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
100 unsigned long nr_segs, loff_t pos);
101 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
102
103 static int sock_close(struct inode *inode, struct file *file);
104 static unsigned int sock_poll(struct file *file,
105 struct poll_table_struct *wait);
106 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
107 #ifdef CONFIG_COMPAT
108 static long compat_sock_ioctl(struct file *file,
109 unsigned int cmd, unsigned long arg);
110 #endif
111 static int sock_fasync(int fd, struct file *filp, int on);
112 static ssize_t sock_sendpage(struct file *file, struct page *page,
113 int offset, size_t size, loff_t *ppos, int more);
114
115 /*
116 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
117 * in the operation structures but are done directly via the socketcall() multiplexor.
118 */
119
120 static struct file_operations socket_file_ops = {
121 .owner = THIS_MODULE,
122 .llseek = no_llseek,
123 .aio_read = sock_aio_read,
124 .aio_write = sock_aio_write,
125 .poll = sock_poll,
126 .unlocked_ioctl = sock_ioctl,
127 #ifdef CONFIG_COMPAT
128 .compat_ioctl = compat_sock_ioctl,
129 #endif
130 .mmap = sock_mmap,
131 .open = sock_no_open, /* special open code to disallow open via /proc */
132 .release = sock_close,
133 .fasync = sock_fasync,
134 .sendpage = sock_sendpage,
135 .splice_write = generic_splice_sendpage,
136 };
137
138 /*
139 * The protocol list. Each protocol is registered in here.
140 */
141
142 static DEFINE_SPINLOCK(net_family_lock);
143 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
144
145 /*
146 * Statistics counters of the socket lists
147 */
148
149 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
150
151 /*
152 * Support routines.
153 * Move socket addresses back and forth across the kernel/user
154 * divide and look after the messy bits.
155 */
156
157 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
158 16 for IP, 16 for IPX,
159 24 for IPv6,
160 about 80 for AX.25
161 must be at least one bigger than
162 the AF_UNIX size (see net/unix/af_unix.c
163 :unix_mkname()).
164 */
165
166 /**
167 * move_addr_to_kernel - copy a socket address into kernel space
168 * @uaddr: Address in user space
169 * @kaddr: Address in kernel space
170 * @ulen: Length in user space
171 *
172 * The address is copied into kernel space. If the provided address is
173 * too long an error code of -EINVAL is returned. If the copy gives
174 * invalid addresses -EFAULT is returned. On a success 0 is returned.
175 */
176
177 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
178 {
179 if (ulen < 0 || ulen > MAX_SOCK_ADDR)
180 return -EINVAL;
181 if (ulen == 0)
182 return 0;
183 if (copy_from_user(kaddr, uaddr, ulen))
184 return -EFAULT;
185 return audit_sockaddr(ulen, kaddr);
186 }
187
188 /**
189 * move_addr_to_user - copy an address to user space
190 * @kaddr: kernel space address
191 * @klen: length of address in kernel
192 * @uaddr: user space address
193 * @ulen: pointer to user length field
194 *
195 * The value pointed to by ulen on entry is the buffer length available.
196 * This is overwritten with the buffer space used. -EINVAL is returned
197 * if an overlong buffer is specified or a negative buffer size. -EFAULT
198 * is returned if either the buffer or the length field are not
199 * accessible.
200 * After copying the data up to the limit the user specifies, the true
201 * length of the data is written over the length limit the user
202 * specified. Zero is returned for a success.
203 */
204
205 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
206 int __user *ulen)
207 {
208 int err;
209 int len;
210
211 err = get_user(len, ulen);
212 if (err)
213 return err;
214 if (len > klen)
215 len = klen;
216 if (len < 0 || len > MAX_SOCK_ADDR)
217 return -EINVAL;
218 if (len) {
219 if (audit_sockaddr(klen, kaddr))
220 return -ENOMEM;
221 if (copy_to_user(uaddr, kaddr, len))
222 return -EFAULT;
223 }
224 /*
225 * "fromlen shall refer to the value before truncation.."
226 * 1003.1g
227 */
228 return __put_user(klen, ulen);
229 }
230
231 #define SOCKFS_MAGIC 0x534F434B
232
233 static kmem_cache_t *sock_inode_cachep __read_mostly;
234
235 static struct inode *sock_alloc_inode(struct super_block *sb)
236 {
237 struct socket_alloc *ei;
238
239 ei = kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL);
240 if (!ei)
241 return NULL;
242 init_waitqueue_head(&ei->socket.wait);
243
244 ei->socket.fasync_list = NULL;
245 ei->socket.state = SS_UNCONNECTED;
246 ei->socket.flags = 0;
247 ei->socket.ops = NULL;
248 ei->socket.sk = NULL;
249 ei->socket.file = NULL;
250
251 return &ei->vfs_inode;
252 }
253
254 static void sock_destroy_inode(struct inode *inode)
255 {
256 kmem_cache_free(sock_inode_cachep,
257 container_of(inode, struct socket_alloc, vfs_inode));
258 }
259
260 static void init_once(void *foo, kmem_cache_t *cachep, unsigned long flags)
261 {
262 struct socket_alloc *ei = (struct socket_alloc *)foo;
263
264 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR))
265 == SLAB_CTOR_CONSTRUCTOR)
266 inode_init_once(&ei->vfs_inode);
267 }
268
269 static int init_inodecache(void)
270 {
271 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
272 sizeof(struct socket_alloc),
273 0,
274 (SLAB_HWCACHE_ALIGN |
275 SLAB_RECLAIM_ACCOUNT |
276 SLAB_MEM_SPREAD),
277 init_once,
278 NULL);
279 if (sock_inode_cachep == NULL)
280 return -ENOMEM;
281 return 0;
282 }
283
284 static struct super_operations sockfs_ops = {
285 .alloc_inode = sock_alloc_inode,
286 .destroy_inode =sock_destroy_inode,
287 .statfs = simple_statfs,
288 };
289
290 static int sockfs_get_sb(struct file_system_type *fs_type,
291 int flags, const char *dev_name, void *data,
292 struct vfsmount *mnt)
293 {
294 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
295 mnt);
296 }
297
298 static struct vfsmount *sock_mnt __read_mostly;
299
300 static struct file_system_type sock_fs_type = {
301 .name = "sockfs",
302 .get_sb = sockfs_get_sb,
303 .kill_sb = kill_anon_super,
304 };
305
306 static int sockfs_delete_dentry(struct dentry *dentry)
307 {
308 return 1;
309 }
310 static struct dentry_operations sockfs_dentry_operations = {
311 .d_delete = sockfs_delete_dentry,
312 };
313
314 /*
315 * Obtains the first available file descriptor and sets it up for use.
316 *
317 * These functions create file structures and maps them to fd space
318 * of the current process. On success it returns file descriptor
319 * and file struct implicitly stored in sock->file.
320 * Note that another thread may close file descriptor before we return
321 * from this function. We use the fact that now we do not refer
322 * to socket after mapping. If one day we will need it, this
323 * function will increment ref. count on file by 1.
324 *
325 * In any case returned fd MAY BE not valid!
326 * This race condition is unavoidable
327 * with shared fd spaces, we cannot solve it inside kernel,
328 * but we take care of internal coherence yet.
329 */
330
331 static int sock_alloc_fd(struct file **filep)
332 {
333 int fd;
334
335 fd = get_unused_fd();
336 if (likely(fd >= 0)) {
337 struct file *file = get_empty_filp();
338
339 *filep = file;
340 if (unlikely(!file)) {
341 put_unused_fd(fd);
342 return -ENFILE;
343 }
344 } else
345 *filep = NULL;
346 return fd;
347 }
348
349 static int sock_attach_fd(struct socket *sock, struct file *file)
350 {
351 struct qstr this;
352 char name[32];
353
354 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
355 this.name = name;
356 this.hash = SOCK_INODE(sock)->i_ino;
357
358 file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
359 if (unlikely(!file->f_dentry))
360 return -ENOMEM;
361
362 file->f_dentry->d_op = &sockfs_dentry_operations;
363 d_add(file->f_dentry, SOCK_INODE(sock));
364 file->f_vfsmnt = mntget(sock_mnt);
365 file->f_mapping = file->f_dentry->d_inode->i_mapping;
366
367 sock->file = file;
368 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
369 file->f_mode = FMODE_READ | FMODE_WRITE;
370 file->f_flags = O_RDWR;
371 file->f_pos = 0;
372 file->private_data = sock;
373
374 return 0;
375 }
376
377 int sock_map_fd(struct socket *sock)
378 {
379 struct file *newfile;
380 int fd = sock_alloc_fd(&newfile);
381
382 if (likely(fd >= 0)) {
383 int err = sock_attach_fd(sock, newfile);
384
385 if (unlikely(err < 0)) {
386 put_filp(newfile);
387 put_unused_fd(fd);
388 return err;
389 }
390 fd_install(fd, newfile);
391 }
392 return fd;
393 }
394
395 static struct socket *sock_from_file(struct file *file, int *err)
396 {
397 struct inode *inode;
398 struct socket *sock;
399
400 if (file->f_op == &socket_file_ops)
401 return file->private_data; /* set in sock_map_fd */
402
403 inode = file->f_dentry->d_inode;
404 if (!S_ISSOCK(inode->i_mode)) {
405 *err = -ENOTSOCK;
406 return NULL;
407 }
408
409 sock = SOCKET_I(inode);
410 if (sock->file != file) {
411 printk(KERN_ERR "socki_lookup: socket file changed!\n");
412 sock->file = file;
413 }
414 return sock;
415 }
416
417 /**
418 * sockfd_lookup - Go from a file number to its socket slot
419 * @fd: file handle
420 * @err: pointer to an error code return
421 *
422 * The file handle passed in is locked and the socket it is bound
423 * too is returned. If an error occurs the err pointer is overwritten
424 * with a negative errno code and NULL is returned. The function checks
425 * for both invalid handles and passing a handle which is not a socket.
426 *
427 * On a success the socket object pointer is returned.
428 */
429
430 struct socket *sockfd_lookup(int fd, int *err)
431 {
432 struct file *file;
433 struct socket *sock;
434
435 file = fget(fd);
436 if (!file) {
437 *err = -EBADF;
438 return NULL;
439 }
440
441 sock = sock_from_file(file, err);
442 if (!sock)
443 fput(file);
444 return sock;
445 }
446
447 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
448 {
449 struct file *file;
450 struct socket *sock;
451
452 *err = -EBADF;
453 file = fget_light(fd, fput_needed);
454 if (file) {
455 sock = sock_from_file(file, err);
456 if (sock)
457 return sock;
458 fput_light(file, *fput_needed);
459 }
460 return NULL;
461 }
462
463 /**
464 * sock_alloc - allocate a socket
465 *
466 * Allocate a new inode and socket object. The two are bound together
467 * and initialised. The socket is then returned. If we are out of inodes
468 * NULL is returned.
469 */
470
471 static struct socket *sock_alloc(void)
472 {
473 struct inode *inode;
474 struct socket *sock;
475
476 inode = new_inode(sock_mnt->mnt_sb);
477 if (!inode)
478 return NULL;
479
480 sock = SOCKET_I(inode);
481
482 inode->i_mode = S_IFSOCK | S_IRWXUGO;
483 inode->i_uid = current->fsuid;
484 inode->i_gid = current->fsgid;
485
486 get_cpu_var(sockets_in_use)++;
487 put_cpu_var(sockets_in_use);
488 return sock;
489 }
490
491 /*
492 * In theory you can't get an open on this inode, but /proc provides
493 * a back door. Remember to keep it shut otherwise you'll let the
494 * creepy crawlies in.
495 */
496
497 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
498 {
499 return -ENXIO;
500 }
501
502 const struct file_operations bad_sock_fops = {
503 .owner = THIS_MODULE,
504 .open = sock_no_open,
505 };
506
507 /**
508 * sock_release - close a socket
509 * @sock: socket to close
510 *
511 * The socket is released from the protocol stack if it has a release
512 * callback, and the inode is then released if the socket is bound to
513 * an inode not a file.
514 */
515
516 void sock_release(struct socket *sock)
517 {
518 if (sock->ops) {
519 struct module *owner = sock->ops->owner;
520
521 sock->ops->release(sock);
522 sock->ops = NULL;
523 module_put(owner);
524 }
525
526 if (sock->fasync_list)
527 printk(KERN_ERR "sock_release: fasync list not empty!\n");
528
529 get_cpu_var(sockets_in_use)--;
530 put_cpu_var(sockets_in_use);
531 if (!sock->file) {
532 iput(SOCK_INODE(sock));
533 return;
534 }
535 sock->file = NULL;
536 }
537
538 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
539 struct msghdr *msg, size_t size)
540 {
541 struct sock_iocb *si = kiocb_to_siocb(iocb);
542 int err;
543
544 si->sock = sock;
545 si->scm = NULL;
546 si->msg = msg;
547 si->size = size;
548
549 err = security_socket_sendmsg(sock, msg, size);
550 if (err)
551 return err;
552
553 return sock->ops->sendmsg(iocb, sock, msg, size);
554 }
555
556 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
557 {
558 struct kiocb iocb;
559 struct sock_iocb siocb;
560 int ret;
561
562 init_sync_kiocb(&iocb, NULL);
563 iocb.private = &siocb;
564 ret = __sock_sendmsg(&iocb, sock, msg, size);
565 if (-EIOCBQUEUED == ret)
566 ret = wait_on_sync_kiocb(&iocb);
567 return ret;
568 }
569
570 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
571 struct kvec *vec, size_t num, size_t size)
572 {
573 mm_segment_t oldfs = get_fs();
574 int result;
575
576 set_fs(KERNEL_DS);
577 /*
578 * the following is safe, since for compiler definitions of kvec and
579 * iovec are identical, yielding the same in-core layout and alignment
580 */
581 msg->msg_iov = (struct iovec *)vec;
582 msg->msg_iovlen = num;
583 result = sock_sendmsg(sock, msg, size);
584 set_fs(oldfs);
585 return result;
586 }
587
588 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
589 struct msghdr *msg, size_t size, int flags)
590 {
591 int err;
592 struct sock_iocb *si = kiocb_to_siocb(iocb);
593
594 si->sock = sock;
595 si->scm = NULL;
596 si->msg = msg;
597 si->size = size;
598 si->flags = flags;
599
600 err = security_socket_recvmsg(sock, msg, size, flags);
601 if (err)
602 return err;
603
604 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
605 }
606
607 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
608 size_t size, int flags)
609 {
610 struct kiocb iocb;
611 struct sock_iocb siocb;
612 int ret;
613
614 init_sync_kiocb(&iocb, NULL);
615 iocb.private = &siocb;
616 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
617 if (-EIOCBQUEUED == ret)
618 ret = wait_on_sync_kiocb(&iocb);
619 return ret;
620 }
621
622 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
623 struct kvec *vec, size_t num, size_t size, int flags)
624 {
625 mm_segment_t oldfs = get_fs();
626 int result;
627
628 set_fs(KERNEL_DS);
629 /*
630 * the following is safe, since for compiler definitions of kvec and
631 * iovec are identical, yielding the same in-core layout and alignment
632 */
633 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
634 result = sock_recvmsg(sock, msg, size, flags);
635 set_fs(oldfs);
636 return result;
637 }
638
639 static void sock_aio_dtor(struct kiocb *iocb)
640 {
641 kfree(iocb->private);
642 }
643
644 static ssize_t sock_sendpage(struct file *file, struct page *page,
645 int offset, size_t size, loff_t *ppos, int more)
646 {
647 struct socket *sock;
648 int flags;
649
650 sock = file->private_data;
651
652 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
653 if (more)
654 flags |= MSG_MORE;
655
656 return sock->ops->sendpage(sock, page, offset, size, flags);
657 }
658
659 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
660 struct sock_iocb *siocb)
661 {
662 if (!is_sync_kiocb(iocb)) {
663 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
664 if (!siocb)
665 return NULL;
666 iocb->ki_dtor = sock_aio_dtor;
667 }
668
669 siocb->kiocb = iocb;
670 iocb->private = siocb;
671 return siocb;
672 }
673
674 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
675 struct file *file, const struct iovec *iov,
676 unsigned long nr_segs)
677 {
678 struct socket *sock = file->private_data;
679 size_t size = 0;
680 int i;
681
682 for (i = 0; i < nr_segs; i++)
683 size += iov[i].iov_len;
684
685 msg->msg_name = NULL;
686 msg->msg_namelen = 0;
687 msg->msg_control = NULL;
688 msg->msg_controllen = 0;
689 msg->msg_iov = (struct iovec *)iov;
690 msg->msg_iovlen = nr_segs;
691 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
692
693 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
694 }
695
696 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
697 unsigned long nr_segs, loff_t pos)
698 {
699 struct sock_iocb siocb, *x;
700
701 if (pos != 0)
702 return -ESPIPE;
703
704 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
705 return 0;
706
707
708 x = alloc_sock_iocb(iocb, &siocb);
709 if (!x)
710 return -ENOMEM;
711 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
712 }
713
714 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
715 struct file *file, const struct iovec *iov,
716 unsigned long nr_segs)
717 {
718 struct socket *sock = file->private_data;
719 size_t size = 0;
720 int i;
721
722 for (i = 0; i < nr_segs; i++)
723 size += iov[i].iov_len;
724
725 msg->msg_name = NULL;
726 msg->msg_namelen = 0;
727 msg->msg_control = NULL;
728 msg->msg_controllen = 0;
729 msg->msg_iov = (struct iovec *)iov;
730 msg->msg_iovlen = nr_segs;
731 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
732 if (sock->type == SOCK_SEQPACKET)
733 msg->msg_flags |= MSG_EOR;
734
735 return __sock_sendmsg(iocb, sock, msg, size);
736 }
737
738 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
739 unsigned long nr_segs, loff_t pos)
740 {
741 struct sock_iocb siocb, *x;
742
743 if (pos != 0)
744 return -ESPIPE;
745
746 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
747 return 0;
748
749 x = alloc_sock_iocb(iocb, &siocb);
750 if (!x)
751 return -ENOMEM;
752
753 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
754 }
755
756 /*
757 * Atomic setting of ioctl hooks to avoid race
758 * with module unload.
759 */
760
761 static DEFINE_MUTEX(br_ioctl_mutex);
762 static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL;
763
764 void brioctl_set(int (*hook) (unsigned int, void __user *))
765 {
766 mutex_lock(&br_ioctl_mutex);
767 br_ioctl_hook = hook;
768 mutex_unlock(&br_ioctl_mutex);
769 }
770
771 EXPORT_SYMBOL(brioctl_set);
772
773 static DEFINE_MUTEX(vlan_ioctl_mutex);
774 static int (*vlan_ioctl_hook) (void __user *arg);
775
776 void vlan_ioctl_set(int (*hook) (void __user *))
777 {
778 mutex_lock(&vlan_ioctl_mutex);
779 vlan_ioctl_hook = hook;
780 mutex_unlock(&vlan_ioctl_mutex);
781 }
782
783 EXPORT_SYMBOL(vlan_ioctl_set);
784
785 static DEFINE_MUTEX(dlci_ioctl_mutex);
786 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
787
788 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
789 {
790 mutex_lock(&dlci_ioctl_mutex);
791 dlci_ioctl_hook = hook;
792 mutex_unlock(&dlci_ioctl_mutex);
793 }
794
795 EXPORT_SYMBOL(dlci_ioctl_set);
796
797 /*
798 * With an ioctl, arg may well be a user mode pointer, but we don't know
799 * what to do with it - that's up to the protocol still.
800 */
801
802 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
803 {
804 struct socket *sock;
805 void __user *argp = (void __user *)arg;
806 int pid, err;
807
808 sock = file->private_data;
809 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
810 err = dev_ioctl(cmd, argp);
811 } else
812 #ifdef CONFIG_WIRELESS_EXT
813 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
814 err = dev_ioctl(cmd, argp);
815 } else
816 #endif /* CONFIG_WIRELESS_EXT */
817 switch (cmd) {
818 case FIOSETOWN:
819 case SIOCSPGRP:
820 err = -EFAULT;
821 if (get_user(pid, (int __user *)argp))
822 break;
823 err = f_setown(sock->file, pid, 1);
824 break;
825 case FIOGETOWN:
826 case SIOCGPGRP:
827 err = put_user(f_getown(sock->file),
828 (int __user *)argp);
829 break;
830 case SIOCGIFBR:
831 case SIOCSIFBR:
832 case SIOCBRADDBR:
833 case SIOCBRDELBR:
834 err = -ENOPKG;
835 if (!br_ioctl_hook)
836 request_module("bridge");
837
838 mutex_lock(&br_ioctl_mutex);
839 if (br_ioctl_hook)
840 err = br_ioctl_hook(cmd, argp);
841 mutex_unlock(&br_ioctl_mutex);
842 break;
843 case SIOCGIFVLAN:
844 case SIOCSIFVLAN:
845 err = -ENOPKG;
846 if (!vlan_ioctl_hook)
847 request_module("8021q");
848
849 mutex_lock(&vlan_ioctl_mutex);
850 if (vlan_ioctl_hook)
851 err = vlan_ioctl_hook(argp);
852 mutex_unlock(&vlan_ioctl_mutex);
853 break;
854 case SIOCADDDLCI:
855 case SIOCDELDLCI:
856 err = -ENOPKG;
857 if (!dlci_ioctl_hook)
858 request_module("dlci");
859
860 if (dlci_ioctl_hook) {
861 mutex_lock(&dlci_ioctl_mutex);
862 err = dlci_ioctl_hook(cmd, argp);
863 mutex_unlock(&dlci_ioctl_mutex);
864 }
865 break;
866 default:
867 err = sock->ops->ioctl(sock, cmd, arg);
868
869 /*
870 * If this ioctl is unknown try to hand it down
871 * to the NIC driver.
872 */
873 if (err == -ENOIOCTLCMD)
874 err = dev_ioctl(cmd, argp);
875 break;
876 }
877 return err;
878 }
879
880 int sock_create_lite(int family, int type, int protocol, struct socket **res)
881 {
882 int err;
883 struct socket *sock = NULL;
884
885 err = security_socket_create(family, type, protocol, 1);
886 if (err)
887 goto out;
888
889 sock = sock_alloc();
890 if (!sock) {
891 err = -ENOMEM;
892 goto out;
893 }
894
895 sock->type = type;
896 err = security_socket_post_create(sock, family, type, protocol, 1);
897 if (err)
898 goto out_release;
899
900 out:
901 *res = sock;
902 return err;
903 out_release:
904 sock_release(sock);
905 sock = NULL;
906 goto out;
907 }
908
909 /* No kernel lock held - perfect */
910 static unsigned int sock_poll(struct file *file, poll_table *wait)
911 {
912 struct socket *sock;
913
914 /*
915 * We can't return errors to poll, so it's either yes or no.
916 */
917 sock = file->private_data;
918 return sock->ops->poll(file, sock, wait);
919 }
920
921 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
922 {
923 struct socket *sock = file->private_data;
924
925 return sock->ops->mmap(file, sock, vma);
926 }
927
928 static int sock_close(struct inode *inode, struct file *filp)
929 {
930 /*
931 * It was possible the inode is NULL we were
932 * closing an unfinished socket.
933 */
934
935 if (!inode) {
936 printk(KERN_DEBUG "sock_close: NULL inode\n");
937 return 0;
938 }
939 sock_fasync(-1, filp, 0);
940 sock_release(SOCKET_I(inode));
941 return 0;
942 }
943
944 /*
945 * Update the socket async list
946 *
947 * Fasync_list locking strategy.
948 *
949 * 1. fasync_list is modified only under process context socket lock
950 * i.e. under semaphore.
951 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
952 * or under socket lock.
953 * 3. fasync_list can be used from softirq context, so that
954 * modification under socket lock have to be enhanced with
955 * write_lock_bh(&sk->sk_callback_lock).
956 * --ANK (990710)
957 */
958
959 static int sock_fasync(int fd, struct file *filp, int on)
960 {
961 struct fasync_struct *fa, *fna = NULL, **prev;
962 struct socket *sock;
963 struct sock *sk;
964
965 if (on) {
966 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
967 if (fna == NULL)
968 return -ENOMEM;
969 }
970
971 sock = filp->private_data;
972
973 sk = sock->sk;
974 if (sk == NULL) {
975 kfree(fna);
976 return -EINVAL;
977 }
978
979 lock_sock(sk);
980
981 prev = &(sock->fasync_list);
982
983 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
984 if (fa->fa_file == filp)
985 break;
986
987 if (on) {
988 if (fa != NULL) {
989 write_lock_bh(&sk->sk_callback_lock);
990 fa->fa_fd = fd;
991 write_unlock_bh(&sk->sk_callback_lock);
992
993 kfree(fna);
994 goto out;
995 }
996 fna->fa_file = filp;
997 fna->fa_fd = fd;
998 fna->magic = FASYNC_MAGIC;
999 fna->fa_next = sock->fasync_list;
1000 write_lock_bh(&sk->sk_callback_lock);
1001 sock->fasync_list = fna;
1002 write_unlock_bh(&sk->sk_callback_lock);
1003 } else {
1004 if (fa != NULL) {
1005 write_lock_bh(&sk->sk_callback_lock);
1006 *prev = fa->fa_next;
1007 write_unlock_bh(&sk->sk_callback_lock);
1008 kfree(fa);
1009 }
1010 }
1011
1012 out:
1013 release_sock(sock->sk);
1014 return 0;
1015 }
1016
1017 /* This function may be called only under socket lock or callback_lock */
1018
1019 int sock_wake_async(struct socket *sock, int how, int band)
1020 {
1021 if (!sock || !sock->fasync_list)
1022 return -1;
1023 switch (how) {
1024 case 1:
1025
1026 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1027 break;
1028 goto call_kill;
1029 case 2:
1030 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1031 break;
1032 /* fall through */
1033 case 0:
1034 call_kill:
1035 __kill_fasync(sock->fasync_list, SIGIO, band);
1036 break;
1037 case 3:
1038 __kill_fasync(sock->fasync_list, SIGURG, band);
1039 }
1040 return 0;
1041 }
1042
1043 static int __sock_create(int family, int type, int protocol,
1044 struct socket **res, int kern)
1045 {
1046 int err;
1047 struct socket *sock;
1048 const struct net_proto_family *pf;
1049
1050 /*
1051 * Check protocol is in range
1052 */
1053 if (family < 0 || family >= NPROTO)
1054 return -EAFNOSUPPORT;
1055 if (type < 0 || type >= SOCK_MAX)
1056 return -EINVAL;
1057
1058 /* Compatibility.
1059
1060 This uglymoron is moved from INET layer to here to avoid
1061 deadlock in module load.
1062 */
1063 if (family == PF_INET && type == SOCK_PACKET) {
1064 static int warned;
1065 if (!warned) {
1066 warned = 1;
1067 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1068 current->comm);
1069 }
1070 family = PF_PACKET;
1071 }
1072
1073 err = security_socket_create(family, type, protocol, kern);
1074 if (err)
1075 return err;
1076
1077 /*
1078 * Allocate the socket and allow the family to set things up. if
1079 * the protocol is 0, the family is instructed to select an appropriate
1080 * default.
1081 */
1082 sock = sock_alloc();
1083 if (!sock) {
1084 if (net_ratelimit())
1085 printk(KERN_WARNING "socket: no more sockets\n");
1086 return -ENFILE; /* Not exactly a match, but its the
1087 closest posix thing */
1088 }
1089
1090 sock->type = type;
1091
1092 #if defined(CONFIG_KMOD)
1093 /* Attempt to load a protocol module if the find failed.
1094 *
1095 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1096 * requested real, full-featured networking support upon configuration.
1097 * Otherwise module support will break!
1098 */
1099 if (net_families[family] == NULL)
1100 request_module("net-pf-%d", family);
1101 #endif
1102
1103 rcu_read_lock();
1104 pf = rcu_dereference(net_families[family]);
1105 err = -EAFNOSUPPORT;
1106 if (!pf)
1107 goto out_release;
1108
1109 /*
1110 * We will call the ->create function, that possibly is in a loadable
1111 * module, so we have to bump that loadable module refcnt first.
1112 */
1113 if (!try_module_get(pf->owner))
1114 goto out_release;
1115
1116 /* Now protected by module ref count */
1117 rcu_read_unlock();
1118
1119 err = pf->create(sock, protocol);
1120 if (err < 0)
1121 goto out_module_put;
1122
1123 /*
1124 * Now to bump the refcnt of the [loadable] module that owns this
1125 * socket at sock_release time we decrement its refcnt.
1126 */
1127 if (!try_module_get(sock->ops->owner))
1128 goto out_module_busy;
1129
1130 /*
1131 * Now that we're done with the ->create function, the [loadable]
1132 * module can have its refcnt decremented
1133 */
1134 module_put(pf->owner);
1135 err = security_socket_post_create(sock, family, type, protocol, kern);
1136 if (err)
1137 goto out_release;
1138 *res = sock;
1139
1140 return 0;
1141
1142 out_module_busy:
1143 err = -EAFNOSUPPORT;
1144 out_module_put:
1145 sock->ops = NULL;
1146 module_put(pf->owner);
1147 out_sock_release:
1148 sock_release(sock);
1149 return err;
1150
1151 out_release:
1152 rcu_read_unlock();
1153 goto out_sock_release;
1154 }
1155
1156 int sock_create(int family, int type, int protocol, struct socket **res)
1157 {
1158 return __sock_create(family, type, protocol, res, 0);
1159 }
1160
1161 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1162 {
1163 return __sock_create(family, type, protocol, res, 1);
1164 }
1165
1166 asmlinkage long sys_socket(int family, int type, int protocol)
1167 {
1168 int retval;
1169 struct socket *sock;
1170
1171 retval = sock_create(family, type, protocol, &sock);
1172 if (retval < 0)
1173 goto out;
1174
1175 retval = sock_map_fd(sock);
1176 if (retval < 0)
1177 goto out_release;
1178
1179 out:
1180 /* It may be already another descriptor 8) Not kernel problem. */
1181 return retval;
1182
1183 out_release:
1184 sock_release(sock);
1185 return retval;
1186 }
1187
1188 /*
1189 * Create a pair of connected sockets.
1190 */
1191
1192 asmlinkage long sys_socketpair(int family, int type, int protocol,
1193 int __user *usockvec)
1194 {
1195 struct socket *sock1, *sock2;
1196 int fd1, fd2, err;
1197
1198 /*
1199 * Obtain the first socket and check if the underlying protocol
1200 * supports the socketpair call.
1201 */
1202
1203 err = sock_create(family, type, protocol, &sock1);
1204 if (err < 0)
1205 goto out;
1206
1207 err = sock_create(family, type, protocol, &sock2);
1208 if (err < 0)
1209 goto out_release_1;
1210
1211 err = sock1->ops->socketpair(sock1, sock2);
1212 if (err < 0)
1213 goto out_release_both;
1214
1215 fd1 = fd2 = -1;
1216
1217 err = sock_map_fd(sock1);
1218 if (err < 0)
1219 goto out_release_both;
1220 fd1 = err;
1221
1222 err = sock_map_fd(sock2);
1223 if (err < 0)
1224 goto out_close_1;
1225 fd2 = err;
1226
1227 /* fd1 and fd2 may be already another descriptors.
1228 * Not kernel problem.
1229 */
1230
1231 err = put_user(fd1, &usockvec[0]);
1232 if (!err)
1233 err = put_user(fd2, &usockvec[1]);
1234 if (!err)
1235 return 0;
1236
1237 sys_close(fd2);
1238 sys_close(fd1);
1239 return err;
1240
1241 out_close_1:
1242 sock_release(sock2);
1243 sys_close(fd1);
1244 return err;
1245
1246 out_release_both:
1247 sock_release(sock2);
1248 out_release_1:
1249 sock_release(sock1);
1250 out:
1251 return err;
1252 }
1253
1254 /*
1255 * Bind a name to a socket. Nothing much to do here since it's
1256 * the protocol's responsibility to handle the local address.
1257 *
1258 * We move the socket address to kernel space before we call
1259 * the protocol layer (having also checked the address is ok).
1260 */
1261
1262 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1263 {
1264 struct socket *sock;
1265 char address[MAX_SOCK_ADDR];
1266 int err, fput_needed;
1267
1268 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1269 if(sock) {
1270 err = move_addr_to_kernel(umyaddr, addrlen, address);
1271 if (err >= 0) {
1272 err = security_socket_bind(sock,
1273 (struct sockaddr *)address,
1274 addrlen);
1275 if (!err)
1276 err = sock->ops->bind(sock,
1277 (struct sockaddr *)
1278 address, addrlen);
1279 }
1280 fput_light(sock->file, fput_needed);
1281 }
1282 return err;
1283 }
1284
1285 /*
1286 * Perform a listen. Basically, we allow the protocol to do anything
1287 * necessary for a listen, and if that works, we mark the socket as
1288 * ready for listening.
1289 */
1290
1291 int sysctl_somaxconn __read_mostly = SOMAXCONN;
1292
1293 asmlinkage long sys_listen(int fd, int backlog)
1294 {
1295 struct socket *sock;
1296 int err, fput_needed;
1297
1298 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1299 if (sock) {
1300 if ((unsigned)backlog > sysctl_somaxconn)
1301 backlog = sysctl_somaxconn;
1302
1303 err = security_socket_listen(sock, backlog);
1304 if (!err)
1305 err = sock->ops->listen(sock, backlog);
1306
1307 fput_light(sock->file, fput_needed);
1308 }
1309 return err;
1310 }
1311
1312 /*
1313 * For accept, we attempt to create a new socket, set up the link
1314 * with the client, wake up the client, then return the new
1315 * connected fd. We collect the address of the connector in kernel
1316 * space and move it to user at the very end. This is unclean because
1317 * we open the socket then return an error.
1318 *
1319 * 1003.1g adds the ability to recvmsg() to query connection pending
1320 * status to recvmsg. We need to add that support in a way thats
1321 * clean when we restucture accept also.
1322 */
1323
1324 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1325 int __user *upeer_addrlen)
1326 {
1327 struct socket *sock, *newsock;
1328 struct file *newfile;
1329 int err, len, newfd, fput_needed;
1330 char address[MAX_SOCK_ADDR];
1331
1332 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1333 if (!sock)
1334 goto out;
1335
1336 err = -ENFILE;
1337 if (!(newsock = sock_alloc()))
1338 goto out_put;
1339
1340 newsock->type = sock->type;
1341 newsock->ops = sock->ops;
1342
1343 /*
1344 * We don't need try_module_get here, as the listening socket (sock)
1345 * has the protocol module (sock->ops->owner) held.
1346 */
1347 __module_get(newsock->ops->owner);
1348
1349 newfd = sock_alloc_fd(&newfile);
1350 if (unlikely(newfd < 0)) {
1351 err = newfd;
1352 sock_release(newsock);
1353 goto out_put;
1354 }
1355
1356 err = sock_attach_fd(newsock, newfile);
1357 if (err < 0)
1358 goto out_fd;
1359
1360 err = security_socket_accept(sock, newsock);
1361 if (err)
1362 goto out_fd;
1363
1364 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1365 if (err < 0)
1366 goto out_fd;
1367
1368 if (upeer_sockaddr) {
1369 if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1370 &len, 2) < 0) {
1371 err = -ECONNABORTED;
1372 goto out_fd;
1373 }
1374 err = move_addr_to_user(address, len, upeer_sockaddr,
1375 upeer_addrlen);
1376 if (err < 0)
1377 goto out_fd;
1378 }
1379
1380 /* File flags are not inherited via accept() unlike another OSes. */
1381
1382 fd_install(newfd, newfile);
1383 err = newfd;
1384
1385 security_socket_post_accept(sock, newsock);
1386
1387 out_put:
1388 fput_light(sock->file, fput_needed);
1389 out:
1390 return err;
1391 out_fd:
1392 fput(newfile);
1393 put_unused_fd(newfd);
1394 goto out_put;
1395 }
1396
1397 /*
1398 * Attempt to connect to a socket with the server address. The address
1399 * is in user space so we verify it is OK and move it to kernel space.
1400 *
1401 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1402 * break bindings
1403 *
1404 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1405 * other SEQPACKET protocols that take time to connect() as it doesn't
1406 * include the -EINPROGRESS status for such sockets.
1407 */
1408
1409 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1410 int addrlen)
1411 {
1412 struct socket *sock;
1413 char address[MAX_SOCK_ADDR];
1414 int err, fput_needed;
1415
1416 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1417 if (!sock)
1418 goto out;
1419 err = move_addr_to_kernel(uservaddr, addrlen, address);
1420 if (err < 0)
1421 goto out_put;
1422
1423 err =
1424 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1425 if (err)
1426 goto out_put;
1427
1428 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1429 sock->file->f_flags);
1430 out_put:
1431 fput_light(sock->file, fput_needed);
1432 out:
1433 return err;
1434 }
1435
1436 /*
1437 * Get the local address ('name') of a socket object. Move the obtained
1438 * name to user space.
1439 */
1440
1441 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1442 int __user *usockaddr_len)
1443 {
1444 struct socket *sock;
1445 char address[MAX_SOCK_ADDR];
1446 int len, err, fput_needed;
1447
1448 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1449 if (!sock)
1450 goto out;
1451
1452 err = security_socket_getsockname(sock);
1453 if (err)
1454 goto out_put;
1455
1456 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1457 if (err)
1458 goto out_put;
1459 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1460
1461 out_put:
1462 fput_light(sock->file, fput_needed);
1463 out:
1464 return err;
1465 }
1466
1467 /*
1468 * Get the remote address ('name') of a socket object. Move the obtained
1469 * name to user space.
1470 */
1471
1472 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1473 int __user *usockaddr_len)
1474 {
1475 struct socket *sock;
1476 char address[MAX_SOCK_ADDR];
1477 int len, err, fput_needed;
1478
1479 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1480 if (sock != NULL) {
1481 err = security_socket_getpeername(sock);
1482 if (err) {
1483 fput_light(sock->file, fput_needed);
1484 return err;
1485 }
1486
1487 err =
1488 sock->ops->getname(sock, (struct sockaddr *)address, &len,
1489 1);
1490 if (!err)
1491 err = move_addr_to_user(address, len, usockaddr,
1492 usockaddr_len);
1493 fput_light(sock->file, fput_needed);
1494 }
1495 return err;
1496 }
1497
1498 /*
1499 * Send a datagram to a given address. We move the address into kernel
1500 * space and check the user space data area is readable before invoking
1501 * the protocol.
1502 */
1503
1504 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1505 unsigned flags, struct sockaddr __user *addr,
1506 int addr_len)
1507 {
1508 struct socket *sock;
1509 char address[MAX_SOCK_ADDR];
1510 int err;
1511 struct msghdr msg;
1512 struct iovec iov;
1513 int fput_needed;
1514 struct file *sock_file;
1515
1516 sock_file = fget_light(fd, &fput_needed);
1517 if (!sock_file)
1518 return -EBADF;
1519
1520 sock = sock_from_file(sock_file, &err);
1521 if (!sock)
1522 goto out_put;
1523 iov.iov_base = buff;
1524 iov.iov_len = len;
1525 msg.msg_name = NULL;
1526 msg.msg_iov = &iov;
1527 msg.msg_iovlen = 1;
1528 msg.msg_control = NULL;
1529 msg.msg_controllen = 0;
1530 msg.msg_namelen = 0;
1531 if (addr) {
1532 err = move_addr_to_kernel(addr, addr_len, address);
1533 if (err < 0)
1534 goto out_put;
1535 msg.msg_name = address;
1536 msg.msg_namelen = addr_len;
1537 }
1538 if (sock->file->f_flags & O_NONBLOCK)
1539 flags |= MSG_DONTWAIT;
1540 msg.msg_flags = flags;
1541 err = sock_sendmsg(sock, &msg, len);
1542
1543 out_put:
1544 fput_light(sock_file, fput_needed);
1545 return err;
1546 }
1547
1548 /*
1549 * Send a datagram down a socket.
1550 */
1551
1552 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1553 {
1554 return sys_sendto(fd, buff, len, flags, NULL, 0);
1555 }
1556
1557 /*
1558 * Receive a frame from the socket and optionally record the address of the
1559 * sender. We verify the buffers are writable and if needed move the
1560 * sender address from kernel to user space.
1561 */
1562
1563 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1564 unsigned flags, struct sockaddr __user *addr,
1565 int __user *addr_len)
1566 {
1567 struct socket *sock;
1568 struct iovec iov;
1569 struct msghdr msg;
1570 char address[MAX_SOCK_ADDR];
1571 int err, err2;
1572 struct file *sock_file;
1573 int fput_needed;
1574
1575 sock_file = fget_light(fd, &fput_needed);
1576 if (!sock_file)
1577 return -EBADF;
1578
1579 sock = sock_from_file(sock_file, &err);
1580 if (!sock)
1581 goto out;
1582
1583 msg.msg_control = NULL;
1584 msg.msg_controllen = 0;
1585 msg.msg_iovlen = 1;
1586 msg.msg_iov = &iov;
1587 iov.iov_len = size;
1588 iov.iov_base = ubuf;
1589 msg.msg_name = address;
1590 msg.msg_namelen = MAX_SOCK_ADDR;
1591 if (sock->file->f_flags & O_NONBLOCK)
1592 flags |= MSG_DONTWAIT;
1593 err = sock_recvmsg(sock, &msg, size, flags);
1594
1595 if (err >= 0 && addr != NULL) {
1596 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1597 if (err2 < 0)
1598 err = err2;
1599 }
1600 out:
1601 fput_light(sock_file, fput_needed);
1602 return err;
1603 }
1604
1605 /*
1606 * Receive a datagram from a socket.
1607 */
1608
1609 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1610 unsigned flags)
1611 {
1612 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1613 }
1614
1615 /*
1616 * Set a socket option. Because we don't know the option lengths we have
1617 * to pass the user mode parameter for the protocols to sort out.
1618 */
1619
1620 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1621 char __user *optval, int optlen)
1622 {
1623 int err, fput_needed;
1624 struct socket *sock;
1625
1626 if (optlen < 0)
1627 return -EINVAL;
1628
1629 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1630 if (sock != NULL) {
1631 err = security_socket_setsockopt(sock, level, optname);
1632 if (err)
1633 goto out_put;
1634
1635 if (level == SOL_SOCKET)
1636 err =
1637 sock_setsockopt(sock, level, optname, optval,
1638 optlen);
1639 else
1640 err =
1641 sock->ops->setsockopt(sock, level, optname, optval,
1642 optlen);
1643 out_put:
1644 fput_light(sock->file, fput_needed);
1645 }
1646 return err;
1647 }
1648
1649 /*
1650 * Get a socket option. Because we don't know the option lengths we have
1651 * to pass a user mode parameter for the protocols to sort out.
1652 */
1653
1654 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1655 char __user *optval, int __user *optlen)
1656 {
1657 int err, fput_needed;
1658 struct socket *sock;
1659
1660 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1661 if (sock != NULL) {
1662 err = security_socket_getsockopt(sock, level, optname);
1663 if (err)
1664 goto out_put;
1665
1666 if (level == SOL_SOCKET)
1667 err =
1668 sock_getsockopt(sock, level, optname, optval,
1669 optlen);
1670 else
1671 err =
1672 sock->ops->getsockopt(sock, level, optname, optval,
1673 optlen);
1674 out_put:
1675 fput_light(sock->file, fput_needed);
1676 }
1677 return err;
1678 }
1679
1680 /*
1681 * Shutdown a socket.
1682 */
1683
1684 asmlinkage long sys_shutdown(int fd, int how)
1685 {
1686 int err, fput_needed;
1687 struct socket *sock;
1688
1689 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1690 if (sock != NULL) {
1691 err = security_socket_shutdown(sock, how);
1692 if (!err)
1693 err = sock->ops->shutdown(sock, how);
1694 fput_light(sock->file, fput_needed);
1695 }
1696 return err;
1697 }
1698
1699 /* A couple of helpful macros for getting the address of the 32/64 bit
1700 * fields which are the same type (int / unsigned) on our platforms.
1701 */
1702 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1703 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1704 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1705
1706 /*
1707 * BSD sendmsg interface
1708 */
1709
1710 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1711 {
1712 struct compat_msghdr __user *msg_compat =
1713 (struct compat_msghdr __user *)msg;
1714 struct socket *sock;
1715 char address[MAX_SOCK_ADDR];
1716 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1717 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1718 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1719 /* 20 is size of ipv6_pktinfo */
1720 unsigned char *ctl_buf = ctl;
1721 struct msghdr msg_sys;
1722 int err, ctl_len, iov_size, total_len;
1723 int fput_needed;
1724
1725 err = -EFAULT;
1726 if (MSG_CMSG_COMPAT & flags) {
1727 if (get_compat_msghdr(&msg_sys, msg_compat))
1728 return -EFAULT;
1729 }
1730 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1731 return -EFAULT;
1732
1733 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1734 if (!sock)
1735 goto out;
1736
1737 /* do not move before msg_sys is valid */
1738 err = -EMSGSIZE;
1739 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1740 goto out_put;
1741
1742 /* Check whether to allocate the iovec area */
1743 err = -ENOMEM;
1744 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1745 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1746 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1747 if (!iov)
1748 goto out_put;
1749 }
1750
1751 /* This will also move the address data into kernel space */
1752 if (MSG_CMSG_COMPAT & flags) {
1753 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1754 } else
1755 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1756 if (err < 0)
1757 goto out_freeiov;
1758 total_len = err;
1759
1760 err = -ENOBUFS;
1761
1762 if (msg_sys.msg_controllen > INT_MAX)
1763 goto out_freeiov;
1764 ctl_len = msg_sys.msg_controllen;
1765 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1766 err =
1767 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1768 sizeof(ctl));
1769 if (err)
1770 goto out_freeiov;
1771 ctl_buf = msg_sys.msg_control;
1772 ctl_len = msg_sys.msg_controllen;
1773 } else if (ctl_len) {
1774 if (ctl_len > sizeof(ctl)) {
1775 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1776 if (ctl_buf == NULL)
1777 goto out_freeiov;
1778 }
1779 err = -EFAULT;
1780 /*
1781 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1782 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1783 * checking falls down on this.
1784 */
1785 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1786 ctl_len))
1787 goto out_freectl;
1788 msg_sys.msg_control = ctl_buf;
1789 }
1790 msg_sys.msg_flags = flags;
1791
1792 if (sock->file->f_flags & O_NONBLOCK)
1793 msg_sys.msg_flags |= MSG_DONTWAIT;
1794 err = sock_sendmsg(sock, &msg_sys, total_len);
1795
1796 out_freectl:
1797 if (ctl_buf != ctl)
1798 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1799 out_freeiov:
1800 if (iov != iovstack)
1801 sock_kfree_s(sock->sk, iov, iov_size);
1802 out_put:
1803 fput_light(sock->file, fput_needed);
1804 out:
1805 return err;
1806 }
1807
1808 /*
1809 * BSD recvmsg interface
1810 */
1811
1812 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1813 unsigned int flags)
1814 {
1815 struct compat_msghdr __user *msg_compat =
1816 (struct compat_msghdr __user *)msg;
1817 struct socket *sock;
1818 struct iovec iovstack[UIO_FASTIOV];
1819 struct iovec *iov = iovstack;
1820 struct msghdr msg_sys;
1821 unsigned long cmsg_ptr;
1822 int err, iov_size, total_len, len;
1823 int fput_needed;
1824
1825 /* kernel mode address */
1826 char addr[MAX_SOCK_ADDR];
1827
1828 /* user mode address pointers */
1829 struct sockaddr __user *uaddr;
1830 int __user *uaddr_len;
1831
1832 if (MSG_CMSG_COMPAT & flags) {
1833 if (get_compat_msghdr(&msg_sys, msg_compat))
1834 return -EFAULT;
1835 }
1836 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1837 return -EFAULT;
1838
1839 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1840 if (!sock)
1841 goto out;
1842
1843 err = -EMSGSIZE;
1844 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1845 goto out_put;
1846
1847 /* Check whether to allocate the iovec area */
1848 err = -ENOMEM;
1849 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1850 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1851 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1852 if (!iov)
1853 goto out_put;
1854 }
1855
1856 /*
1857 * Save the user-mode address (verify_iovec will change the
1858 * kernel msghdr to use the kernel address space)
1859 */
1860
1861 uaddr = (void __user *)msg_sys.msg_name;
1862 uaddr_len = COMPAT_NAMELEN(msg);
1863 if (MSG_CMSG_COMPAT & flags) {
1864 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1865 } else
1866 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1867 if (err < 0)
1868 goto out_freeiov;
1869 total_len = err;
1870
1871 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1872 msg_sys.msg_flags = 0;
1873 if (MSG_CMSG_COMPAT & flags)
1874 msg_sys.msg_flags = MSG_CMSG_COMPAT;
1875
1876 if (sock->file->f_flags & O_NONBLOCK)
1877 flags |= MSG_DONTWAIT;
1878 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1879 if (err < 0)
1880 goto out_freeiov;
1881 len = err;
1882
1883 if (uaddr != NULL) {
1884 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1885 uaddr_len);
1886 if (err < 0)
1887 goto out_freeiov;
1888 }
1889 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1890 COMPAT_FLAGS(msg));
1891 if (err)
1892 goto out_freeiov;
1893 if (MSG_CMSG_COMPAT & flags)
1894 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1895 &msg_compat->msg_controllen);
1896 else
1897 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1898 &msg->msg_controllen);
1899 if (err)
1900 goto out_freeiov;
1901 err = len;
1902
1903 out_freeiov:
1904 if (iov != iovstack)
1905 sock_kfree_s(sock->sk, iov, iov_size);
1906 out_put:
1907 fput_light(sock->file, fput_needed);
1908 out:
1909 return err;
1910 }
1911
1912 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1913
1914 /* Argument list sizes for sys_socketcall */
1915 #define AL(x) ((x) * sizeof(unsigned long))
1916 static const unsigned char nargs[18]={
1917 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1918 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1919 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1920 };
1921
1922 #undef AL
1923
1924 /*
1925 * System call vectors.
1926 *
1927 * Argument checking cleaned up. Saved 20% in size.
1928 * This function doesn't need to set the kernel lock because
1929 * it is set by the callees.
1930 */
1931
1932 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1933 {
1934 unsigned long a[6];
1935 unsigned long a0, a1;
1936 int err;
1937
1938 if (call < 1 || call > SYS_RECVMSG)
1939 return -EINVAL;
1940
1941 /* copy_from_user should be SMP safe. */
1942 if (copy_from_user(a, args, nargs[call]))
1943 return -EFAULT;
1944
1945 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
1946 if (err)
1947 return err;
1948
1949 a0 = a[0];
1950 a1 = a[1];
1951
1952 switch (call) {
1953 case SYS_SOCKET:
1954 err = sys_socket(a0, a1, a[2]);
1955 break;
1956 case SYS_BIND:
1957 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
1958 break;
1959 case SYS_CONNECT:
1960 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
1961 break;
1962 case SYS_LISTEN:
1963 err = sys_listen(a0, a1);
1964 break;
1965 case SYS_ACCEPT:
1966 err =
1967 sys_accept(a0, (struct sockaddr __user *)a1,
1968 (int __user *)a[2]);
1969 break;
1970 case SYS_GETSOCKNAME:
1971 err =
1972 sys_getsockname(a0, (struct sockaddr __user *)a1,
1973 (int __user *)a[2]);
1974 break;
1975 case SYS_GETPEERNAME:
1976 err =
1977 sys_getpeername(a0, (struct sockaddr __user *)a1,
1978 (int __user *)a[2]);
1979 break;
1980 case SYS_SOCKETPAIR:
1981 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
1982 break;
1983 case SYS_SEND:
1984 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
1985 break;
1986 case SYS_SENDTO:
1987 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
1988 (struct sockaddr __user *)a[4], a[5]);
1989 break;
1990 case SYS_RECV:
1991 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
1992 break;
1993 case SYS_RECVFROM:
1994 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
1995 (struct sockaddr __user *)a[4],
1996 (int __user *)a[5]);
1997 break;
1998 case SYS_SHUTDOWN:
1999 err = sys_shutdown(a0, a1);
2000 break;
2001 case SYS_SETSOCKOPT:
2002 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2003 break;
2004 case SYS_GETSOCKOPT:
2005 err =
2006 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2007 (int __user *)a[4]);
2008 break;
2009 case SYS_SENDMSG:
2010 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2011 break;
2012 case SYS_RECVMSG:
2013 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2014 break;
2015 default:
2016 err = -EINVAL;
2017 break;
2018 }
2019 return err;
2020 }
2021
2022 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2023
2024 /**
2025 * sock_register - add a socket protocol handler
2026 * @ops: description of protocol
2027 *
2028 * This function is called by a protocol handler that wants to
2029 * advertise its address family, and have it linked into the
2030 * socket interface. The value ops->family coresponds to the
2031 * socket system call protocol family.
2032 */
2033 int sock_register(const struct net_proto_family *ops)
2034 {
2035 int err;
2036
2037 if (ops->family >= NPROTO) {
2038 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2039 NPROTO);
2040 return -ENOBUFS;
2041 }
2042
2043 spin_lock(&net_family_lock);
2044 if (net_families[ops->family])
2045 err = -EEXIST;
2046 else {
2047 net_families[ops->family] = ops;
2048 err = 0;
2049 }
2050 spin_unlock(&net_family_lock);
2051
2052 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2053 return err;
2054 }
2055
2056 /**
2057 * sock_unregister - remove a protocol handler
2058 * @family: protocol family to remove
2059 *
2060 * This function is called by a protocol handler that wants to
2061 * remove its address family, and have it unlinked from the
2062 * new socket creation.
2063 *
2064 * If protocol handler is a module, then it can use module reference
2065 * counts to protect against new references. If protocol handler is not
2066 * a module then it needs to provide its own protection in
2067 * the ops->create routine.
2068 */
2069 void sock_unregister(int family)
2070 {
2071 BUG_ON(family < 0 || family >= NPROTO);
2072
2073 spin_lock(&net_family_lock);
2074 net_families[family] = NULL;
2075 spin_unlock(&net_family_lock);
2076
2077 synchronize_rcu();
2078
2079 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2080 }
2081
2082 static int __init sock_init(void)
2083 {
2084 /*
2085 * Initialize sock SLAB cache.
2086 */
2087
2088 sk_init();
2089
2090 /*
2091 * Initialize skbuff SLAB cache
2092 */
2093 skb_init();
2094
2095 /*
2096 * Initialize the protocols module.
2097 */
2098
2099 init_inodecache();
2100 register_filesystem(&sock_fs_type);
2101 sock_mnt = kern_mount(&sock_fs_type);
2102
2103 /* The real protocol initialization is performed in later initcalls.
2104 */
2105
2106 #ifdef CONFIG_NETFILTER
2107 netfilter_init();
2108 #endif
2109
2110 return 0;
2111 }
2112
2113 core_initcall(sock_init); /* early initcall */
2114
2115 #ifdef CONFIG_PROC_FS
2116 void socket_seq_show(struct seq_file *seq)
2117 {
2118 int cpu;
2119 int counter = 0;
2120
2121 for_each_possible_cpu(cpu)
2122 counter += per_cpu(sockets_in_use, cpu);
2123
2124 /* It can be negative, by the way. 8) */
2125 if (counter < 0)
2126 counter = 0;
2127
2128 seq_printf(seq, "sockets: used %d\n", counter);
2129 }
2130 #endif /* CONFIG_PROC_FS */
2131
2132 #ifdef CONFIG_COMPAT
2133 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2134 unsigned long arg)
2135 {
2136 struct socket *sock = file->private_data;
2137 int ret = -ENOIOCTLCMD;
2138
2139 if (sock->ops->compat_ioctl)
2140 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2141
2142 return ret;
2143 }
2144 #endif
2145
2146 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2147 {
2148 return sock->ops->bind(sock, addr, addrlen);
2149 }
2150
2151 int kernel_listen(struct socket *sock, int backlog)
2152 {
2153 return sock->ops->listen(sock, backlog);
2154 }
2155
2156 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2157 {
2158 struct sock *sk = sock->sk;
2159 int err;
2160
2161 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2162 newsock);
2163 if (err < 0)
2164 goto done;
2165
2166 err = sock->ops->accept(sock, *newsock, flags);
2167 if (err < 0) {
2168 sock_release(*newsock);
2169 goto done;
2170 }
2171
2172 (*newsock)->ops = sock->ops;
2173
2174 done:
2175 return err;
2176 }
2177
2178 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2179 int flags)
2180 {
2181 return sock->ops->connect(sock, addr, addrlen, flags);
2182 }
2183
2184 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2185 int *addrlen)
2186 {
2187 return sock->ops->getname(sock, addr, addrlen, 0);
2188 }
2189
2190 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2191 int *addrlen)
2192 {
2193 return sock->ops->getname(sock, addr, addrlen, 1);
2194 }
2195
2196 int kernel_getsockopt(struct socket *sock, int level, int optname,
2197 char *optval, int *optlen)
2198 {
2199 mm_segment_t oldfs = get_fs();
2200 int err;
2201
2202 set_fs(KERNEL_DS);
2203 if (level == SOL_SOCKET)
2204 err = sock_getsockopt(sock, level, optname, optval, optlen);
2205 else
2206 err = sock->ops->getsockopt(sock, level, optname, optval,
2207 optlen);
2208 set_fs(oldfs);
2209 return err;
2210 }
2211
2212 int kernel_setsockopt(struct socket *sock, int level, int optname,
2213 char *optval, int optlen)
2214 {
2215 mm_segment_t oldfs = get_fs();
2216 int err;
2217
2218 set_fs(KERNEL_DS);
2219 if (level == SOL_SOCKET)
2220 err = sock_setsockopt(sock, level, optname, optval, optlen);
2221 else
2222 err = sock->ops->setsockopt(sock, level, optname, optval,
2223 optlen);
2224 set_fs(oldfs);
2225 return err;
2226 }
2227
2228 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2229 size_t size, int flags)
2230 {
2231 if (sock->ops->sendpage)
2232 return sock->ops->sendpage(sock, page, offset, size, flags);
2233
2234 return sock_no_sendpage(sock, page, offset, size, flags);
2235 }
2236
2237 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2238 {
2239 mm_segment_t oldfs = get_fs();
2240 int err;
2241
2242 set_fs(KERNEL_DS);
2243 err = sock->ops->ioctl(sock, cmd, arg);
2244 set_fs(oldfs);
2245
2246 return err;
2247 }
2248
2249 /* ABI emulation layers need these two */
2250 EXPORT_SYMBOL(move_addr_to_kernel);
2251 EXPORT_SYMBOL(move_addr_to_user);
2252 EXPORT_SYMBOL(sock_create);
2253 EXPORT_SYMBOL(sock_create_kern);
2254 EXPORT_SYMBOL(sock_create_lite);
2255 EXPORT_SYMBOL(sock_map_fd);
2256 EXPORT_SYMBOL(sock_recvmsg);
2257 EXPORT_SYMBOL(sock_register);
2258 EXPORT_SYMBOL(sock_release);
2259 EXPORT_SYMBOL(sock_sendmsg);
2260 EXPORT_SYMBOL(sock_unregister);
2261 EXPORT_SYMBOL(sock_wake_async);
2262 EXPORT_SYMBOL(sockfd_lookup);
2263 EXPORT_SYMBOL(kernel_sendmsg);
2264 EXPORT_SYMBOL(kernel_recvmsg);
2265 EXPORT_SYMBOL(kernel_bind);
2266 EXPORT_SYMBOL(kernel_listen);
2267 EXPORT_SYMBOL(kernel_accept);
2268 EXPORT_SYMBOL(kernel_connect);
2269 EXPORT_SYMBOL(kernel_getsockname);
2270 EXPORT_SYMBOL(kernel_getpeername);
2271 EXPORT_SYMBOL(kernel_getsockopt);
2272 EXPORT_SYMBOL(kernel_setsockopt);
2273 EXPORT_SYMBOL(kernel_sendpage);
2274 EXPORT_SYMBOL(kernel_sock_ioctl);
This page took 0.075775 seconds and 6 git commands to generate.