baf4096d52d491733ce22d5c773820410e5c62af
[deliverable/linux.git] / net / sunrpc / auth_gss / auth_gss.c
1 /*
2 * linux/net/sunrpc/auth_gss/auth_gss.c
3 *
4 * RPCSEC_GSS client authentication.
5 *
6 * Copyright (c) 2000 The Regents of the University of Michigan.
7 * All rights reserved.
8 *
9 * Dug Song <dugsong@monkey.org>
10 * Andy Adamson <andros@umich.edu>
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * $Id$
38 */
39
40
41 #include <linux/module.h>
42 #include <linux/init.h>
43 #include <linux/types.h>
44 #include <linux/slab.h>
45 #include <linux/sched.h>
46 #include <linux/pagemap.h>
47 #include <linux/sunrpc/clnt.h>
48 #include <linux/sunrpc/auth.h>
49 #include <linux/sunrpc/auth_gss.h>
50 #include <linux/sunrpc/svcauth_gss.h>
51 #include <linux/sunrpc/gss_err.h>
52 #include <linux/workqueue.h>
53 #include <linux/sunrpc/rpc_pipe_fs.h>
54 #include <linux/sunrpc/gss_api.h>
55 #include <asm/uaccess.h>
56
57 static const struct rpc_authops authgss_ops;
58
59 static const struct rpc_credops gss_credops;
60 static const struct rpc_credops gss_nullops;
61
62 #ifdef RPC_DEBUG
63 # define RPCDBG_FACILITY RPCDBG_AUTH
64 #endif
65
66 #define NFS_NGROUPS 16
67
68 #define GSS_CRED_SLACK 1024 /* XXX: unused */
69 /* length of a krb5 verifier (48), plus data added before arguments when
70 * using integrity (two 4-byte integers): */
71 #define GSS_VERF_SLACK 100
72
73 /* XXX this define must match the gssd define
74 * as it is passed to gssd to signal the use of
75 * machine creds should be part of the shared rpc interface */
76
77 #define CA_RUN_AS_MACHINE 0x00000200
78
79 /* dump the buffer in `emacs-hexl' style */
80 #define isprint(c) ((c > 0x1f) && (c < 0x7f))
81
82 struct gss_auth {
83 struct kref kref;
84 struct rpc_auth rpc_auth;
85 struct gss_api_mech *mech;
86 enum rpc_gss_svc service;
87 struct rpc_clnt *client;
88 struct dentry *dentry;
89 };
90
91 static void gss_free_ctx(struct gss_cl_ctx *);
92 static struct rpc_pipe_ops gss_upcall_ops;
93
94 static inline struct gss_cl_ctx *
95 gss_get_ctx(struct gss_cl_ctx *ctx)
96 {
97 atomic_inc(&ctx->count);
98 return ctx;
99 }
100
101 static inline void
102 gss_put_ctx(struct gss_cl_ctx *ctx)
103 {
104 if (atomic_dec_and_test(&ctx->count))
105 gss_free_ctx(ctx);
106 }
107
108 /* gss_cred_set_ctx:
109 * called by gss_upcall_callback and gss_create_upcall in order
110 * to set the gss context. The actual exchange of an old context
111 * and a new one is protected by the inode->i_lock.
112 */
113 static void
114 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx)
115 {
116 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
117 struct gss_cl_ctx *old;
118
119 old = gss_cred->gc_ctx;
120 rcu_assign_pointer(gss_cred->gc_ctx, ctx);
121 set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
122 clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags);
123 if (old)
124 gss_put_ctx(old);
125 }
126
127 static int
128 gss_cred_is_uptodate_ctx(struct rpc_cred *cred)
129 {
130 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
131 int res = 0;
132
133 rcu_read_lock();
134 if (test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) && gss_cred->gc_ctx)
135 res = 1;
136 rcu_read_unlock();
137 return res;
138 }
139
140 static const void *
141 simple_get_bytes(const void *p, const void *end, void *res, size_t len)
142 {
143 const void *q = (const void *)((const char *)p + len);
144 if (unlikely(q > end || q < p))
145 return ERR_PTR(-EFAULT);
146 memcpy(res, p, len);
147 return q;
148 }
149
150 static inline const void *
151 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest)
152 {
153 const void *q;
154 unsigned int len;
155
156 p = simple_get_bytes(p, end, &len, sizeof(len));
157 if (IS_ERR(p))
158 return p;
159 q = (const void *)((const char *)p + len);
160 if (unlikely(q > end || q < p))
161 return ERR_PTR(-EFAULT);
162 dest->data = kmemdup(p, len, GFP_KERNEL);
163 if (unlikely(dest->data == NULL))
164 return ERR_PTR(-ENOMEM);
165 dest->len = len;
166 return q;
167 }
168
169 static struct gss_cl_ctx *
170 gss_cred_get_ctx(struct rpc_cred *cred)
171 {
172 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
173 struct gss_cl_ctx *ctx = NULL;
174
175 rcu_read_lock();
176 if (gss_cred->gc_ctx)
177 ctx = gss_get_ctx(gss_cred->gc_ctx);
178 rcu_read_unlock();
179 return ctx;
180 }
181
182 static struct gss_cl_ctx *
183 gss_alloc_context(void)
184 {
185 struct gss_cl_ctx *ctx;
186
187 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
188 if (ctx != NULL) {
189 ctx->gc_proc = RPC_GSS_PROC_DATA;
190 ctx->gc_seq = 1; /* NetApp 6.4R1 doesn't accept seq. no. 0 */
191 spin_lock_init(&ctx->gc_seq_lock);
192 atomic_set(&ctx->count,1);
193 }
194 return ctx;
195 }
196
197 #define GSSD_MIN_TIMEOUT (60 * 60)
198 static const void *
199 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm)
200 {
201 const void *q;
202 unsigned int seclen;
203 unsigned int timeout;
204 u32 window_size;
205 int ret;
206
207 /* First unsigned int gives the lifetime (in seconds) of the cred */
208 p = simple_get_bytes(p, end, &timeout, sizeof(timeout));
209 if (IS_ERR(p))
210 goto err;
211 if (timeout == 0)
212 timeout = GSSD_MIN_TIMEOUT;
213 ctx->gc_expiry = jiffies + (unsigned long)timeout * HZ * 3 / 4;
214 /* Sequence number window. Determines the maximum number of simultaneous requests */
215 p = simple_get_bytes(p, end, &window_size, sizeof(window_size));
216 if (IS_ERR(p))
217 goto err;
218 ctx->gc_win = window_size;
219 /* gssd signals an error by passing ctx->gc_win = 0: */
220 if (ctx->gc_win == 0) {
221 /* in which case, p points to an error code which we ignore */
222 p = ERR_PTR(-EACCES);
223 goto err;
224 }
225 /* copy the opaque wire context */
226 p = simple_get_netobj(p, end, &ctx->gc_wire_ctx);
227 if (IS_ERR(p))
228 goto err;
229 /* import the opaque security context */
230 p = simple_get_bytes(p, end, &seclen, sizeof(seclen));
231 if (IS_ERR(p))
232 goto err;
233 q = (const void *)((const char *)p + seclen);
234 if (unlikely(q > end || q < p)) {
235 p = ERR_PTR(-EFAULT);
236 goto err;
237 }
238 ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx);
239 if (ret < 0) {
240 p = ERR_PTR(ret);
241 goto err;
242 }
243 return q;
244 err:
245 dprintk("RPC: gss_fill_context returning %ld\n", -PTR_ERR(p));
246 return p;
247 }
248
249
250 struct gss_upcall_msg {
251 atomic_t count;
252 uid_t uid;
253 struct rpc_pipe_msg msg;
254 struct list_head list;
255 struct gss_auth *auth;
256 struct rpc_wait_queue rpc_waitqueue;
257 wait_queue_head_t waitqueue;
258 struct gss_cl_ctx *ctx;
259 };
260
261 static void
262 gss_release_msg(struct gss_upcall_msg *gss_msg)
263 {
264 if (!atomic_dec_and_test(&gss_msg->count))
265 return;
266 BUG_ON(!list_empty(&gss_msg->list));
267 if (gss_msg->ctx != NULL)
268 gss_put_ctx(gss_msg->ctx);
269 kfree(gss_msg);
270 }
271
272 static struct gss_upcall_msg *
273 __gss_find_upcall(struct rpc_inode *rpci, uid_t uid)
274 {
275 struct gss_upcall_msg *pos;
276 list_for_each_entry(pos, &rpci->in_downcall, list) {
277 if (pos->uid != uid)
278 continue;
279 atomic_inc(&pos->count);
280 dprintk("RPC: gss_find_upcall found msg %p\n", pos);
281 return pos;
282 }
283 dprintk("RPC: gss_find_upcall found nothing\n");
284 return NULL;
285 }
286
287 /* Try to add a upcall to the pipefs queue.
288 * If an upcall owned by our uid already exists, then we return a reference
289 * to that upcall instead of adding the new upcall.
290 */
291 static inline struct gss_upcall_msg *
292 gss_add_msg(struct gss_auth *gss_auth, struct gss_upcall_msg *gss_msg)
293 {
294 struct inode *inode = gss_auth->dentry->d_inode;
295 struct rpc_inode *rpci = RPC_I(inode);
296 struct gss_upcall_msg *old;
297
298 spin_lock(&inode->i_lock);
299 old = __gss_find_upcall(rpci, gss_msg->uid);
300 if (old == NULL) {
301 atomic_inc(&gss_msg->count);
302 list_add(&gss_msg->list, &rpci->in_downcall);
303 } else
304 gss_msg = old;
305 spin_unlock(&inode->i_lock);
306 return gss_msg;
307 }
308
309 static void
310 __gss_unhash_msg(struct gss_upcall_msg *gss_msg)
311 {
312 list_del_init(&gss_msg->list);
313 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
314 wake_up_all(&gss_msg->waitqueue);
315 atomic_dec(&gss_msg->count);
316 }
317
318 static void
319 gss_unhash_msg(struct gss_upcall_msg *gss_msg)
320 {
321 struct gss_auth *gss_auth = gss_msg->auth;
322 struct inode *inode = gss_auth->dentry->d_inode;
323
324 if (list_empty(&gss_msg->list))
325 return;
326 spin_lock(&inode->i_lock);
327 if (!list_empty(&gss_msg->list))
328 __gss_unhash_msg(gss_msg);
329 spin_unlock(&inode->i_lock);
330 }
331
332 static void
333 gss_upcall_callback(struct rpc_task *task)
334 {
335 struct gss_cred *gss_cred = container_of(task->tk_msg.rpc_cred,
336 struct gss_cred, gc_base);
337 struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall;
338 struct inode *inode = gss_msg->auth->dentry->d_inode;
339
340 spin_lock(&inode->i_lock);
341 if (gss_msg->ctx)
342 gss_cred_set_ctx(task->tk_msg.rpc_cred, gss_get_ctx(gss_msg->ctx));
343 else
344 task->tk_status = gss_msg->msg.errno;
345 gss_cred->gc_upcall = NULL;
346 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
347 spin_unlock(&inode->i_lock);
348 gss_release_msg(gss_msg);
349 }
350
351 static inline struct gss_upcall_msg *
352 gss_alloc_msg(struct gss_auth *gss_auth, uid_t uid)
353 {
354 struct gss_upcall_msg *gss_msg;
355
356 gss_msg = kzalloc(sizeof(*gss_msg), GFP_KERNEL);
357 if (gss_msg != NULL) {
358 INIT_LIST_HEAD(&gss_msg->list);
359 rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq");
360 init_waitqueue_head(&gss_msg->waitqueue);
361 atomic_set(&gss_msg->count, 1);
362 gss_msg->msg.data = &gss_msg->uid;
363 gss_msg->msg.len = sizeof(gss_msg->uid);
364 gss_msg->uid = uid;
365 gss_msg->auth = gss_auth;
366 }
367 return gss_msg;
368 }
369
370 static struct gss_upcall_msg *
371 gss_setup_upcall(struct rpc_clnt *clnt, struct gss_auth *gss_auth, struct rpc_cred *cred)
372 {
373 struct gss_upcall_msg *gss_new, *gss_msg;
374
375 gss_new = gss_alloc_msg(gss_auth, cred->cr_uid);
376 if (gss_new == NULL)
377 return ERR_PTR(-ENOMEM);
378 gss_msg = gss_add_msg(gss_auth, gss_new);
379 if (gss_msg == gss_new) {
380 int res = rpc_queue_upcall(gss_auth->dentry->d_inode, &gss_new->msg);
381 if (res) {
382 gss_unhash_msg(gss_new);
383 gss_msg = ERR_PTR(res);
384 }
385 } else
386 gss_release_msg(gss_new);
387 return gss_msg;
388 }
389
390 static inline int
391 gss_refresh_upcall(struct rpc_task *task)
392 {
393 struct rpc_cred *cred = task->tk_msg.rpc_cred;
394 struct gss_auth *gss_auth = container_of(cred->cr_auth,
395 struct gss_auth, rpc_auth);
396 struct gss_cred *gss_cred = container_of(cred,
397 struct gss_cred, gc_base);
398 struct gss_upcall_msg *gss_msg;
399 struct inode *inode = gss_auth->dentry->d_inode;
400 int err = 0;
401
402 dprintk("RPC: %5u gss_refresh_upcall for uid %u\n", task->tk_pid,
403 cred->cr_uid);
404 gss_msg = gss_setup_upcall(task->tk_client, gss_auth, cred);
405 if (IS_ERR(gss_msg)) {
406 err = PTR_ERR(gss_msg);
407 goto out;
408 }
409 spin_lock(&inode->i_lock);
410 if (gss_cred->gc_upcall != NULL)
411 rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL, NULL);
412 else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) {
413 task->tk_timeout = 0;
414 gss_cred->gc_upcall = gss_msg;
415 /* gss_upcall_callback will release the reference to gss_upcall_msg */
416 atomic_inc(&gss_msg->count);
417 rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback, NULL);
418 } else
419 err = gss_msg->msg.errno;
420 spin_unlock(&inode->i_lock);
421 gss_release_msg(gss_msg);
422 out:
423 dprintk("RPC: %5u gss_refresh_upcall for uid %u result %d\n",
424 task->tk_pid, cred->cr_uid, err);
425 return err;
426 }
427
428 static inline int
429 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred)
430 {
431 struct inode *inode = gss_auth->dentry->d_inode;
432 struct rpc_cred *cred = &gss_cred->gc_base;
433 struct gss_upcall_msg *gss_msg;
434 DEFINE_WAIT(wait);
435 int err = 0;
436
437 dprintk("RPC: gss_upcall for uid %u\n", cred->cr_uid);
438 gss_msg = gss_setup_upcall(gss_auth->client, gss_auth, cred);
439 if (IS_ERR(gss_msg)) {
440 err = PTR_ERR(gss_msg);
441 goto out;
442 }
443 for (;;) {
444 prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_INTERRUPTIBLE);
445 spin_lock(&inode->i_lock);
446 if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) {
447 break;
448 }
449 spin_unlock(&inode->i_lock);
450 if (signalled()) {
451 err = -ERESTARTSYS;
452 goto out_intr;
453 }
454 schedule();
455 }
456 if (gss_msg->ctx)
457 gss_cred_set_ctx(cred, gss_get_ctx(gss_msg->ctx));
458 else
459 err = gss_msg->msg.errno;
460 spin_unlock(&inode->i_lock);
461 out_intr:
462 finish_wait(&gss_msg->waitqueue, &wait);
463 gss_release_msg(gss_msg);
464 out:
465 dprintk("RPC: gss_create_upcall for uid %u result %d\n",
466 cred->cr_uid, err);
467 return err;
468 }
469
470 static ssize_t
471 gss_pipe_upcall(struct file *filp, struct rpc_pipe_msg *msg,
472 char __user *dst, size_t buflen)
473 {
474 char *data = (char *)msg->data + msg->copied;
475 ssize_t mlen = msg->len;
476 ssize_t left;
477
478 if (mlen > buflen)
479 mlen = buflen;
480 left = copy_to_user(dst, data, mlen);
481 if (left < 0) {
482 msg->errno = left;
483 return left;
484 }
485 mlen -= left;
486 msg->copied += mlen;
487 msg->errno = 0;
488 return mlen;
489 }
490
491 #define MSG_BUF_MAXSIZE 1024
492
493 static ssize_t
494 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen)
495 {
496 const void *p, *end;
497 void *buf;
498 struct rpc_clnt *clnt;
499 struct gss_upcall_msg *gss_msg;
500 struct inode *inode = filp->f_path.dentry->d_inode;
501 struct gss_cl_ctx *ctx;
502 uid_t uid;
503 ssize_t err = -EFBIG;
504
505 if (mlen > MSG_BUF_MAXSIZE)
506 goto out;
507 err = -ENOMEM;
508 buf = kmalloc(mlen, GFP_KERNEL);
509 if (!buf)
510 goto out;
511
512 clnt = RPC_I(inode)->private;
513 err = -EFAULT;
514 if (copy_from_user(buf, src, mlen))
515 goto err;
516
517 end = (const void *)((char *)buf + mlen);
518 p = simple_get_bytes(buf, end, &uid, sizeof(uid));
519 if (IS_ERR(p)) {
520 err = PTR_ERR(p);
521 goto err;
522 }
523
524 err = -ENOMEM;
525 ctx = gss_alloc_context();
526 if (ctx == NULL)
527 goto err;
528
529 err = -ENOENT;
530 /* Find a matching upcall */
531 spin_lock(&inode->i_lock);
532 gss_msg = __gss_find_upcall(RPC_I(inode), uid);
533 if (gss_msg == NULL) {
534 spin_unlock(&inode->i_lock);
535 goto err_put_ctx;
536 }
537 list_del_init(&gss_msg->list);
538 spin_unlock(&inode->i_lock);
539
540 p = gss_fill_context(p, end, ctx, gss_msg->auth->mech);
541 if (IS_ERR(p)) {
542 err = PTR_ERR(p);
543 gss_msg->msg.errno = (err == -EACCES) ? -EACCES : -EAGAIN;
544 goto err_release_msg;
545 }
546 gss_msg->ctx = gss_get_ctx(ctx);
547 err = mlen;
548
549 err_release_msg:
550 spin_lock(&inode->i_lock);
551 __gss_unhash_msg(gss_msg);
552 spin_unlock(&inode->i_lock);
553 gss_release_msg(gss_msg);
554 err_put_ctx:
555 gss_put_ctx(ctx);
556 err:
557 kfree(buf);
558 out:
559 dprintk("RPC: gss_pipe_downcall returning %Zd\n", err);
560 return err;
561 }
562
563 static void
564 gss_pipe_release(struct inode *inode)
565 {
566 struct rpc_inode *rpci = RPC_I(inode);
567 struct gss_upcall_msg *gss_msg;
568
569 spin_lock(&inode->i_lock);
570 while (!list_empty(&rpci->in_downcall)) {
571
572 gss_msg = list_entry(rpci->in_downcall.next,
573 struct gss_upcall_msg, list);
574 gss_msg->msg.errno = -EPIPE;
575 atomic_inc(&gss_msg->count);
576 __gss_unhash_msg(gss_msg);
577 spin_unlock(&inode->i_lock);
578 gss_release_msg(gss_msg);
579 spin_lock(&inode->i_lock);
580 }
581 spin_unlock(&inode->i_lock);
582 }
583
584 static void
585 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg)
586 {
587 struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg);
588 static unsigned long ratelimit;
589
590 if (msg->errno < 0) {
591 dprintk("RPC: gss_pipe_destroy_msg releasing msg %p\n",
592 gss_msg);
593 atomic_inc(&gss_msg->count);
594 gss_unhash_msg(gss_msg);
595 if (msg->errno == -ETIMEDOUT) {
596 unsigned long now = jiffies;
597 if (time_after(now, ratelimit)) {
598 printk(KERN_WARNING "RPC: AUTH_GSS upcall timed out.\n"
599 "Please check user daemon is running!\n");
600 ratelimit = now + 15*HZ;
601 }
602 }
603 gss_release_msg(gss_msg);
604 }
605 }
606
607 /*
608 * NOTE: we have the opportunity to use different
609 * parameters based on the input flavor (which must be a pseudoflavor)
610 */
611 static struct rpc_auth *
612 gss_create(struct rpc_clnt *clnt, rpc_authflavor_t flavor)
613 {
614 struct gss_auth *gss_auth;
615 struct rpc_auth * auth;
616 int err = -ENOMEM; /* XXX? */
617
618 dprintk("RPC: creating GSS authenticator for client %p\n", clnt);
619
620 if (!try_module_get(THIS_MODULE))
621 return ERR_PTR(err);
622 if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL)))
623 goto out_dec;
624 gss_auth->client = clnt;
625 err = -EINVAL;
626 gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor);
627 if (!gss_auth->mech) {
628 printk(KERN_WARNING "%s: Pseudoflavor %d not found!",
629 __FUNCTION__, flavor);
630 goto err_free;
631 }
632 gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor);
633 if (gss_auth->service == 0)
634 goto err_put_mech;
635 auth = &gss_auth->rpc_auth;
636 auth->au_cslack = GSS_CRED_SLACK >> 2;
637 auth->au_rslack = GSS_VERF_SLACK >> 2;
638 auth->au_ops = &authgss_ops;
639 auth->au_flavor = flavor;
640 atomic_set(&auth->au_count, 1);
641 kref_init(&gss_auth->kref);
642
643 gss_auth->dentry = rpc_mkpipe(clnt->cl_dentry, gss_auth->mech->gm_name,
644 clnt, &gss_upcall_ops, RPC_PIPE_WAIT_FOR_OPEN);
645 if (IS_ERR(gss_auth->dentry)) {
646 err = PTR_ERR(gss_auth->dentry);
647 goto err_put_mech;
648 }
649
650 err = rpcauth_init_credcache(auth);
651 if (err)
652 goto err_unlink_pipe;
653
654 return auth;
655 err_unlink_pipe:
656 rpc_unlink(gss_auth->dentry);
657 err_put_mech:
658 gss_mech_put(gss_auth->mech);
659 err_free:
660 kfree(gss_auth);
661 out_dec:
662 module_put(THIS_MODULE);
663 return ERR_PTR(err);
664 }
665
666 static void
667 gss_free(struct gss_auth *gss_auth)
668 {
669 rpc_unlink(gss_auth->dentry);
670 gss_auth->dentry = NULL;
671 gss_mech_put(gss_auth->mech);
672
673 kfree(gss_auth);
674 module_put(THIS_MODULE);
675 }
676
677 static void
678 gss_free_callback(struct kref *kref)
679 {
680 struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref);
681
682 gss_free(gss_auth);
683 }
684
685 static void
686 gss_destroy(struct rpc_auth *auth)
687 {
688 struct gss_auth *gss_auth;
689
690 dprintk("RPC: destroying GSS authenticator %p flavor %d\n",
691 auth, auth->au_flavor);
692
693 rpcauth_destroy_credcache(auth);
694
695 gss_auth = container_of(auth, struct gss_auth, rpc_auth);
696 kref_put(&gss_auth->kref, gss_free_callback);
697 }
698
699 /*
700 * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call
701 * to the server with the GSS control procedure field set to
702 * RPC_GSS_PROC_DESTROY. This should normally cause the server to release
703 * all RPCSEC_GSS state associated with that context.
704 */
705 static int
706 gss_destroying_context(struct rpc_cred *cred)
707 {
708 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
709 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
710 struct rpc_task *task;
711
712 if (gss_cred->gc_ctx == NULL ||
713 gss_cred->gc_ctx->gc_proc == RPC_GSS_PROC_DESTROY)
714 return 0;
715
716 gss_cred->gc_ctx->gc_proc = RPC_GSS_PROC_DESTROY;
717 cred->cr_ops = &gss_nullops;
718
719 /* Take a reference to ensure the cred will be destroyed either
720 * by the RPC call or by the put_rpccred() below */
721 get_rpccred(cred);
722
723 task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC);
724 if (!IS_ERR(task))
725 rpc_put_task(task);
726
727 put_rpccred(cred);
728 return 1;
729 }
730
731 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure
732 * to create a new cred or context, so they check that things have been
733 * allocated before freeing them. */
734 static void
735 gss_do_free_ctx(struct gss_cl_ctx *ctx)
736 {
737 dprintk("RPC: gss_free_ctx\n");
738
739 if (ctx->gc_gss_ctx)
740 gss_delete_sec_context(&ctx->gc_gss_ctx);
741
742 kfree(ctx->gc_wire_ctx.data);
743 kfree(ctx);
744 }
745
746 static void
747 gss_free_ctx_callback(struct rcu_head *head)
748 {
749 struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu);
750 gss_do_free_ctx(ctx);
751 }
752
753 static void
754 gss_free_ctx(struct gss_cl_ctx *ctx)
755 {
756 call_rcu(&ctx->gc_rcu, gss_free_ctx_callback);
757 }
758
759 static void
760 gss_free_cred(struct gss_cred *gss_cred)
761 {
762 dprintk("RPC: gss_free_cred %p\n", gss_cred);
763 kfree(gss_cred);
764 }
765
766 static void
767 gss_free_cred_callback(struct rcu_head *head)
768 {
769 struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu);
770 gss_free_cred(gss_cred);
771 }
772
773 static void
774 gss_destroy_cred(struct rpc_cred *cred)
775 {
776 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
777 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
778 struct gss_cl_ctx *ctx = gss_cred->gc_ctx;
779
780 if (gss_destroying_context(cred))
781 return;
782 rcu_assign_pointer(gss_cred->gc_ctx, NULL);
783 call_rcu(&cred->cr_rcu, gss_free_cred_callback);
784 if (ctx)
785 gss_put_ctx(ctx);
786 kref_put(&gss_auth->kref, gss_free_callback);
787 }
788
789 /*
790 * Lookup RPCSEC_GSS cred for the current process
791 */
792 static struct rpc_cred *
793 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
794 {
795 return rpcauth_lookup_credcache(auth, acred, flags);
796 }
797
798 static struct rpc_cred *
799 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
800 {
801 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
802 struct gss_cred *cred = NULL;
803 int err = -ENOMEM;
804
805 dprintk("RPC: gss_create_cred for uid %d, flavor %d\n",
806 acred->uid, auth->au_flavor);
807
808 if (!(cred = kzalloc(sizeof(*cred), GFP_KERNEL)))
809 goto out_err;
810
811 rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops);
812 /*
813 * Note: in order to force a call to call_refresh(), we deliberately
814 * fail to flag the credential as RPCAUTH_CRED_UPTODATE.
815 */
816 cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW;
817 cred->gc_service = gss_auth->service;
818 kref_get(&gss_auth->kref);
819 return &cred->gc_base;
820
821 out_err:
822 dprintk("RPC: gss_create_cred failed with error %d\n", err);
823 return ERR_PTR(err);
824 }
825
826 static int
827 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred)
828 {
829 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
830 struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base);
831 int err;
832
833 do {
834 err = gss_create_upcall(gss_auth, gss_cred);
835 } while (err == -EAGAIN);
836 return err;
837 }
838
839 static int
840 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags)
841 {
842 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
843
844 /*
845 * If the searchflags have set RPCAUTH_LOOKUP_NEW, then
846 * we don't really care if the credential has expired or not,
847 * since the caller should be prepared to reinitialise it.
848 */
849 if ((flags & RPCAUTH_LOOKUP_NEW) && test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags))
850 goto out;
851 /* Don't match with creds that have expired. */
852 if (gss_cred->gc_ctx && time_after(jiffies, gss_cred->gc_ctx->gc_expiry))
853 return 0;
854 out:
855 return (rc->cr_uid == acred->uid);
856 }
857
858 /*
859 * Marshal credentials.
860 * Maybe we should keep a cached credential for performance reasons.
861 */
862 static __be32 *
863 gss_marshal(struct rpc_task *task, __be32 *p)
864 {
865 struct rpc_cred *cred = task->tk_msg.rpc_cred;
866 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
867 gc_base);
868 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
869 __be32 *cred_len;
870 struct rpc_rqst *req = task->tk_rqstp;
871 u32 maj_stat = 0;
872 struct xdr_netobj mic;
873 struct kvec iov;
874 struct xdr_buf verf_buf;
875
876 dprintk("RPC: %5u gss_marshal\n", task->tk_pid);
877
878 *p++ = htonl(RPC_AUTH_GSS);
879 cred_len = p++;
880
881 spin_lock(&ctx->gc_seq_lock);
882 req->rq_seqno = ctx->gc_seq++;
883 spin_unlock(&ctx->gc_seq_lock);
884
885 *p++ = htonl((u32) RPC_GSS_VERSION);
886 *p++ = htonl((u32) ctx->gc_proc);
887 *p++ = htonl((u32) req->rq_seqno);
888 *p++ = htonl((u32) gss_cred->gc_service);
889 p = xdr_encode_netobj(p, &ctx->gc_wire_ctx);
890 *cred_len = htonl((p - (cred_len + 1)) << 2);
891
892 /* We compute the checksum for the verifier over the xdr-encoded bytes
893 * starting with the xid and ending at the end of the credential: */
894 iov.iov_base = xprt_skip_transport_header(task->tk_xprt,
895 req->rq_snd_buf.head[0].iov_base);
896 iov.iov_len = (u8 *)p - (u8 *)iov.iov_base;
897 xdr_buf_from_iov(&iov, &verf_buf);
898
899 /* set verifier flavor*/
900 *p++ = htonl(RPC_AUTH_GSS);
901
902 mic.data = (u8 *)(p + 1);
903 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
904 if (maj_stat == GSS_S_CONTEXT_EXPIRED) {
905 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
906 } else if (maj_stat != 0) {
907 printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat);
908 goto out_put_ctx;
909 }
910 p = xdr_encode_opaque(p, NULL, mic.len);
911 gss_put_ctx(ctx);
912 return p;
913 out_put_ctx:
914 gss_put_ctx(ctx);
915 return NULL;
916 }
917
918 /*
919 * Refresh credentials. XXX - finish
920 */
921 static int
922 gss_refresh(struct rpc_task *task)
923 {
924
925 if (!gss_cred_is_uptodate_ctx(task->tk_msg.rpc_cred))
926 return gss_refresh_upcall(task);
927 return 0;
928 }
929
930 /* Dummy refresh routine: used only when destroying the context */
931 static int
932 gss_refresh_null(struct rpc_task *task)
933 {
934 return -EACCES;
935 }
936
937 static __be32 *
938 gss_validate(struct rpc_task *task, __be32 *p)
939 {
940 struct rpc_cred *cred = task->tk_msg.rpc_cred;
941 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
942 __be32 seq;
943 struct kvec iov;
944 struct xdr_buf verf_buf;
945 struct xdr_netobj mic;
946 u32 flav,len;
947 u32 maj_stat;
948
949 dprintk("RPC: %5u gss_validate\n", task->tk_pid);
950
951 flav = ntohl(*p++);
952 if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE)
953 goto out_bad;
954 if (flav != RPC_AUTH_GSS)
955 goto out_bad;
956 seq = htonl(task->tk_rqstp->rq_seqno);
957 iov.iov_base = &seq;
958 iov.iov_len = sizeof(seq);
959 xdr_buf_from_iov(&iov, &verf_buf);
960 mic.data = (u8 *)p;
961 mic.len = len;
962
963 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
964 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
965 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
966 if (maj_stat) {
967 dprintk("RPC: %5u gss_validate: gss_verify_mic returned"
968 "error 0x%08x\n", task->tk_pid, maj_stat);
969 goto out_bad;
970 }
971 /* We leave it to unwrap to calculate au_rslack. For now we just
972 * calculate the length of the verifier: */
973 cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2;
974 gss_put_ctx(ctx);
975 dprintk("RPC: %5u gss_validate: gss_verify_mic succeeded.\n",
976 task->tk_pid);
977 return p + XDR_QUADLEN(len);
978 out_bad:
979 gss_put_ctx(ctx);
980 dprintk("RPC: %5u gss_validate failed.\n", task->tk_pid);
981 return NULL;
982 }
983
984 static inline int
985 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
986 kxdrproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj)
987 {
988 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
989 struct xdr_buf integ_buf;
990 __be32 *integ_len = NULL;
991 struct xdr_netobj mic;
992 u32 offset;
993 __be32 *q;
994 struct kvec *iov;
995 u32 maj_stat = 0;
996 int status = -EIO;
997
998 integ_len = p++;
999 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1000 *p++ = htonl(rqstp->rq_seqno);
1001
1002 lock_kernel();
1003 status = encode(rqstp, p, obj);
1004 unlock_kernel();
1005 if (status)
1006 return status;
1007
1008 if (xdr_buf_subsegment(snd_buf, &integ_buf,
1009 offset, snd_buf->len - offset))
1010 return status;
1011 *integ_len = htonl(integ_buf.len);
1012
1013 /* guess whether we're in the head or the tail: */
1014 if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1015 iov = snd_buf->tail;
1016 else
1017 iov = snd_buf->head;
1018 p = iov->iov_base + iov->iov_len;
1019 mic.data = (u8 *)(p + 1);
1020
1021 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1022 status = -EIO; /* XXX? */
1023 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1024 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1025 else if (maj_stat)
1026 return status;
1027 q = xdr_encode_opaque(p, NULL, mic.len);
1028
1029 offset = (u8 *)q - (u8 *)p;
1030 iov->iov_len += offset;
1031 snd_buf->len += offset;
1032 return 0;
1033 }
1034
1035 static void
1036 priv_release_snd_buf(struct rpc_rqst *rqstp)
1037 {
1038 int i;
1039
1040 for (i=0; i < rqstp->rq_enc_pages_num; i++)
1041 __free_page(rqstp->rq_enc_pages[i]);
1042 kfree(rqstp->rq_enc_pages);
1043 }
1044
1045 static int
1046 alloc_enc_pages(struct rpc_rqst *rqstp)
1047 {
1048 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1049 int first, last, i;
1050
1051 if (snd_buf->page_len == 0) {
1052 rqstp->rq_enc_pages_num = 0;
1053 return 0;
1054 }
1055
1056 first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1057 last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_CACHE_SHIFT;
1058 rqstp->rq_enc_pages_num = last - first + 1 + 1;
1059 rqstp->rq_enc_pages
1060 = kmalloc(rqstp->rq_enc_pages_num * sizeof(struct page *),
1061 GFP_NOFS);
1062 if (!rqstp->rq_enc_pages)
1063 goto out;
1064 for (i=0; i < rqstp->rq_enc_pages_num; i++) {
1065 rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS);
1066 if (rqstp->rq_enc_pages[i] == NULL)
1067 goto out_free;
1068 }
1069 rqstp->rq_release_snd_buf = priv_release_snd_buf;
1070 return 0;
1071 out_free:
1072 for (i--; i >= 0; i--) {
1073 __free_page(rqstp->rq_enc_pages[i]);
1074 }
1075 out:
1076 return -EAGAIN;
1077 }
1078
1079 static inline int
1080 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1081 kxdrproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj)
1082 {
1083 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1084 u32 offset;
1085 u32 maj_stat;
1086 int status;
1087 __be32 *opaque_len;
1088 struct page **inpages;
1089 int first;
1090 int pad;
1091 struct kvec *iov;
1092 char *tmp;
1093
1094 opaque_len = p++;
1095 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1096 *p++ = htonl(rqstp->rq_seqno);
1097
1098 lock_kernel();
1099 status = encode(rqstp, p, obj);
1100 unlock_kernel();
1101 if (status)
1102 return status;
1103
1104 status = alloc_enc_pages(rqstp);
1105 if (status)
1106 return status;
1107 first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1108 inpages = snd_buf->pages + first;
1109 snd_buf->pages = rqstp->rq_enc_pages;
1110 snd_buf->page_base -= first << PAGE_CACHE_SHIFT;
1111 /* Give the tail its own page, in case we need extra space in the
1112 * head when wrapping: */
1113 if (snd_buf->page_len || snd_buf->tail[0].iov_len) {
1114 tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]);
1115 memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len);
1116 snd_buf->tail[0].iov_base = tmp;
1117 }
1118 maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages);
1119 /* RPC_SLACK_SPACE should prevent this ever happening: */
1120 BUG_ON(snd_buf->len > snd_buf->buflen);
1121 status = -EIO;
1122 /* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was
1123 * done anyway, so it's safe to put the request on the wire: */
1124 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1125 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1126 else if (maj_stat)
1127 return status;
1128
1129 *opaque_len = htonl(snd_buf->len - offset);
1130 /* guess whether we're in the head or the tail: */
1131 if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1132 iov = snd_buf->tail;
1133 else
1134 iov = snd_buf->head;
1135 p = iov->iov_base + iov->iov_len;
1136 pad = 3 - ((snd_buf->len - offset - 1) & 3);
1137 memset(p, 0, pad);
1138 iov->iov_len += pad;
1139 snd_buf->len += pad;
1140
1141 return 0;
1142 }
1143
1144 static int
1145 gss_wrap_req(struct rpc_task *task,
1146 kxdrproc_t encode, void *rqstp, __be32 *p, void *obj)
1147 {
1148 struct rpc_cred *cred = task->tk_msg.rpc_cred;
1149 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1150 gc_base);
1151 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1152 int status = -EIO;
1153
1154 dprintk("RPC: %5u gss_wrap_req\n", task->tk_pid);
1155 if (ctx->gc_proc != RPC_GSS_PROC_DATA) {
1156 /* The spec seems a little ambiguous here, but I think that not
1157 * wrapping context destruction requests makes the most sense.
1158 */
1159 lock_kernel();
1160 status = encode(rqstp, p, obj);
1161 unlock_kernel();
1162 goto out;
1163 }
1164 switch (gss_cred->gc_service) {
1165 case RPC_GSS_SVC_NONE:
1166 lock_kernel();
1167 status = encode(rqstp, p, obj);
1168 unlock_kernel();
1169 break;
1170 case RPC_GSS_SVC_INTEGRITY:
1171 status = gss_wrap_req_integ(cred, ctx, encode,
1172 rqstp, p, obj);
1173 break;
1174 case RPC_GSS_SVC_PRIVACY:
1175 status = gss_wrap_req_priv(cred, ctx, encode,
1176 rqstp, p, obj);
1177 break;
1178 }
1179 out:
1180 gss_put_ctx(ctx);
1181 dprintk("RPC: %5u gss_wrap_req returning %d\n", task->tk_pid, status);
1182 return status;
1183 }
1184
1185 static inline int
1186 gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1187 struct rpc_rqst *rqstp, __be32 **p)
1188 {
1189 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
1190 struct xdr_buf integ_buf;
1191 struct xdr_netobj mic;
1192 u32 data_offset, mic_offset;
1193 u32 integ_len;
1194 u32 maj_stat;
1195 int status = -EIO;
1196
1197 integ_len = ntohl(*(*p)++);
1198 if (integ_len & 3)
1199 return status;
1200 data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1201 mic_offset = integ_len + data_offset;
1202 if (mic_offset > rcv_buf->len)
1203 return status;
1204 if (ntohl(*(*p)++) != rqstp->rq_seqno)
1205 return status;
1206
1207 if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset,
1208 mic_offset - data_offset))
1209 return status;
1210
1211 if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset))
1212 return status;
1213
1214 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1215 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1216 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1217 if (maj_stat != GSS_S_COMPLETE)
1218 return status;
1219 return 0;
1220 }
1221
1222 static inline int
1223 gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1224 struct rpc_rqst *rqstp, __be32 **p)
1225 {
1226 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
1227 u32 offset;
1228 u32 opaque_len;
1229 u32 maj_stat;
1230 int status = -EIO;
1231
1232 opaque_len = ntohl(*(*p)++);
1233 offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1234 if (offset + opaque_len > rcv_buf->len)
1235 return status;
1236 /* remove padding: */
1237 rcv_buf->len = offset + opaque_len;
1238
1239 maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf);
1240 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1241 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1242 if (maj_stat != GSS_S_COMPLETE)
1243 return status;
1244 if (ntohl(*(*p)++) != rqstp->rq_seqno)
1245 return status;
1246
1247 return 0;
1248 }
1249
1250
1251 static int
1252 gss_unwrap_resp(struct rpc_task *task,
1253 kxdrproc_t decode, void *rqstp, __be32 *p, void *obj)
1254 {
1255 struct rpc_cred *cred = task->tk_msg.rpc_cred;
1256 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1257 gc_base);
1258 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1259 __be32 *savedp = p;
1260 struct kvec *head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head;
1261 int savedlen = head->iov_len;
1262 int status = -EIO;
1263
1264 if (ctx->gc_proc != RPC_GSS_PROC_DATA)
1265 goto out_decode;
1266 switch (gss_cred->gc_service) {
1267 case RPC_GSS_SVC_NONE:
1268 break;
1269 case RPC_GSS_SVC_INTEGRITY:
1270 status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p);
1271 if (status)
1272 goto out;
1273 break;
1274 case RPC_GSS_SVC_PRIVACY:
1275 status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p);
1276 if (status)
1277 goto out;
1278 break;
1279 }
1280 /* take into account extra slack for integrity and privacy cases: */
1281 cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp)
1282 + (savedlen - head->iov_len);
1283 out_decode:
1284 lock_kernel();
1285 status = decode(rqstp, p, obj);
1286 unlock_kernel();
1287 out:
1288 gss_put_ctx(ctx);
1289 dprintk("RPC: %5u gss_unwrap_resp returning %d\n", task->tk_pid,
1290 status);
1291 return status;
1292 }
1293
1294 static const struct rpc_authops authgss_ops = {
1295 .owner = THIS_MODULE,
1296 .au_flavor = RPC_AUTH_GSS,
1297 #ifdef RPC_DEBUG
1298 .au_name = "RPCSEC_GSS",
1299 #endif
1300 .create = gss_create,
1301 .destroy = gss_destroy,
1302 .lookup_cred = gss_lookup_cred,
1303 .crcreate = gss_create_cred
1304 };
1305
1306 static const struct rpc_credops gss_credops = {
1307 .cr_name = "AUTH_GSS",
1308 .crdestroy = gss_destroy_cred,
1309 .cr_init = gss_cred_init,
1310 .crmatch = gss_match,
1311 .crmarshal = gss_marshal,
1312 .crrefresh = gss_refresh,
1313 .crvalidate = gss_validate,
1314 .crwrap_req = gss_wrap_req,
1315 .crunwrap_resp = gss_unwrap_resp,
1316 };
1317
1318 static const struct rpc_credops gss_nullops = {
1319 .cr_name = "AUTH_GSS",
1320 .crdestroy = gss_destroy_cred,
1321 .crmatch = gss_match,
1322 .crmarshal = gss_marshal,
1323 .crrefresh = gss_refresh_null,
1324 .crvalidate = gss_validate,
1325 .crwrap_req = gss_wrap_req,
1326 .crunwrap_resp = gss_unwrap_resp,
1327 };
1328
1329 static struct rpc_pipe_ops gss_upcall_ops = {
1330 .upcall = gss_pipe_upcall,
1331 .downcall = gss_pipe_downcall,
1332 .destroy_msg = gss_pipe_destroy_msg,
1333 .release_pipe = gss_pipe_release,
1334 };
1335
1336 /*
1337 * Initialize RPCSEC_GSS module
1338 */
1339 static int __init init_rpcsec_gss(void)
1340 {
1341 int err = 0;
1342
1343 err = rpcauth_register(&authgss_ops);
1344 if (err)
1345 goto out;
1346 err = gss_svc_init();
1347 if (err)
1348 goto out_unregister;
1349 return 0;
1350 out_unregister:
1351 rpcauth_unregister(&authgss_ops);
1352 out:
1353 return err;
1354 }
1355
1356 static void __exit exit_rpcsec_gss(void)
1357 {
1358 gss_svc_shutdown();
1359 rpcauth_unregister(&authgss_ops);
1360 }
1361
1362 MODULE_LICENSE("GPL");
1363 module_init(init_rpcsec_gss)
1364 module_exit(exit_rpcsec_gss)
This page took 0.057345 seconds and 4 git commands to generate.