Merge tag 'v3.5-rc1'
[deliverable/linux.git] / net / sunrpc / sched.c
1 /*
2 * linux/net/sunrpc/sched.c
3 *
4 * Scheduling for synchronous and asynchronous RPC requests.
5 *
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7 *
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10 */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #include "sunrpc.h"
26
27 #ifdef RPC_DEBUG
28 #define RPCDBG_FACILITY RPCDBG_SCHED
29 #endif
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33
34 /*
35 * RPC slabs and memory pools
36 */
37 #define RPC_BUFFER_MAXSIZE (2048)
38 #define RPC_BUFFER_POOLSIZE (8)
39 #define RPC_TASK_POOLSIZE (8)
40 static struct kmem_cache *rpc_task_slabp __read_mostly;
41 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
42 static mempool_t *rpc_task_mempool __read_mostly;
43 static mempool_t *rpc_buffer_mempool __read_mostly;
44
45 static void rpc_async_schedule(struct work_struct *);
46 static void rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
48
49 /*
50 * RPC tasks sit here while waiting for conditions to improve.
51 */
52 static struct rpc_wait_queue delay_queue;
53
54 /*
55 * rpciod-related stuff
56 */
57 struct workqueue_struct *rpciod_workqueue;
58
59 /*
60 * Disable the timer for a given RPC task. Should be called with
61 * queue->lock and bh_disabled in order to avoid races within
62 * rpc_run_timer().
63 */
64 static void
65 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
66 {
67 if (task->tk_timeout == 0)
68 return;
69 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
70 task->tk_timeout = 0;
71 list_del(&task->u.tk_wait.timer_list);
72 if (list_empty(&queue->timer_list.list))
73 del_timer(&queue->timer_list.timer);
74 }
75
76 static void
77 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
78 {
79 queue->timer_list.expires = expires;
80 mod_timer(&queue->timer_list.timer, expires);
81 }
82
83 /*
84 * Set up a timer for the current task.
85 */
86 static void
87 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
88 {
89 if (!task->tk_timeout)
90 return;
91
92 dprintk("RPC: %5u setting alarm for %lu ms\n",
93 task->tk_pid, task->tk_timeout * 1000 / HZ);
94
95 task->u.tk_wait.expires = jiffies + task->tk_timeout;
96 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
97 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
98 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
99 }
100
101 /*
102 * Add new request to a priority queue.
103 */
104 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
105 struct rpc_task *task,
106 unsigned char queue_priority)
107 {
108 struct list_head *q;
109 struct rpc_task *t;
110
111 INIT_LIST_HEAD(&task->u.tk_wait.links);
112 q = &queue->tasks[queue_priority];
113 if (unlikely(queue_priority > queue->maxpriority))
114 q = &queue->tasks[queue->maxpriority];
115 list_for_each_entry(t, q, u.tk_wait.list) {
116 if (t->tk_owner == task->tk_owner) {
117 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
118 return;
119 }
120 }
121 list_add_tail(&task->u.tk_wait.list, q);
122 }
123
124 /*
125 * Add new request to wait queue.
126 *
127 * Swapper tasks always get inserted at the head of the queue.
128 * This should avoid many nasty memory deadlocks and hopefully
129 * improve overall performance.
130 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
131 */
132 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
133 struct rpc_task *task,
134 unsigned char queue_priority)
135 {
136 BUG_ON (RPC_IS_QUEUED(task));
137
138 if (RPC_IS_PRIORITY(queue))
139 __rpc_add_wait_queue_priority(queue, task, queue_priority);
140 else if (RPC_IS_SWAPPER(task))
141 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
142 else
143 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
144 task->tk_waitqueue = queue;
145 queue->qlen++;
146 rpc_set_queued(task);
147
148 dprintk("RPC: %5u added to queue %p \"%s\"\n",
149 task->tk_pid, queue, rpc_qname(queue));
150 }
151
152 /*
153 * Remove request from a priority queue.
154 */
155 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
156 {
157 struct rpc_task *t;
158
159 if (!list_empty(&task->u.tk_wait.links)) {
160 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
161 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
162 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
163 }
164 }
165
166 /*
167 * Remove request from queue.
168 * Note: must be called with spin lock held.
169 */
170 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
171 {
172 __rpc_disable_timer(queue, task);
173 if (RPC_IS_PRIORITY(queue))
174 __rpc_remove_wait_queue_priority(task);
175 list_del(&task->u.tk_wait.list);
176 queue->qlen--;
177 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
178 task->tk_pid, queue, rpc_qname(queue));
179 }
180
181 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
182 {
183 queue->priority = priority;
184 queue->count = 1 << (priority * 2);
185 }
186
187 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
188 {
189 queue->owner = pid;
190 queue->nr = RPC_BATCH_COUNT;
191 }
192
193 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
194 {
195 rpc_set_waitqueue_priority(queue, queue->maxpriority);
196 rpc_set_waitqueue_owner(queue, 0);
197 }
198
199 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
200 {
201 int i;
202
203 spin_lock_init(&queue->lock);
204 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
205 INIT_LIST_HEAD(&queue->tasks[i]);
206 queue->maxpriority = nr_queues - 1;
207 rpc_reset_waitqueue_priority(queue);
208 queue->qlen = 0;
209 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
210 INIT_LIST_HEAD(&queue->timer_list.list);
211 rpc_assign_waitqueue_name(queue, qname);
212 }
213
214 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
215 {
216 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
217 }
218 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
219
220 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
221 {
222 __rpc_init_priority_wait_queue(queue, qname, 1);
223 }
224 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
225
226 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
227 {
228 del_timer_sync(&queue->timer_list.timer);
229 }
230 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
231
232 static int rpc_wait_bit_killable(void *word)
233 {
234 if (fatal_signal_pending(current))
235 return -ERESTARTSYS;
236 freezable_schedule();
237 return 0;
238 }
239
240 #ifdef RPC_DEBUG
241 static void rpc_task_set_debuginfo(struct rpc_task *task)
242 {
243 static atomic_t rpc_pid;
244
245 task->tk_pid = atomic_inc_return(&rpc_pid);
246 }
247 #else
248 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
249 {
250 }
251 #endif
252
253 static void rpc_set_active(struct rpc_task *task)
254 {
255 trace_rpc_task_begin(task->tk_client, task, NULL);
256
257 rpc_task_set_debuginfo(task);
258 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
259 }
260
261 /*
262 * Mark an RPC call as having completed by clearing the 'active' bit
263 * and then waking up all tasks that were sleeping.
264 */
265 static int rpc_complete_task(struct rpc_task *task)
266 {
267 void *m = &task->tk_runstate;
268 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
269 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
270 unsigned long flags;
271 int ret;
272
273 trace_rpc_task_complete(task->tk_client, task, NULL);
274
275 spin_lock_irqsave(&wq->lock, flags);
276 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
277 ret = atomic_dec_and_test(&task->tk_count);
278 if (waitqueue_active(wq))
279 __wake_up_locked_key(wq, TASK_NORMAL, &k);
280 spin_unlock_irqrestore(&wq->lock, flags);
281 return ret;
282 }
283
284 /*
285 * Allow callers to wait for completion of an RPC call
286 *
287 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
288 * to enforce taking of the wq->lock and hence avoid races with
289 * rpc_complete_task().
290 */
291 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
292 {
293 if (action == NULL)
294 action = rpc_wait_bit_killable;
295 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
296 action, TASK_KILLABLE);
297 }
298 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
299
300 /*
301 * Make an RPC task runnable.
302 *
303 * Note: If the task is ASYNC, this must be called with
304 * the spinlock held to protect the wait queue operation.
305 */
306 static void rpc_make_runnable(struct rpc_task *task)
307 {
308 rpc_clear_queued(task);
309 if (rpc_test_and_set_running(task))
310 return;
311 if (RPC_IS_ASYNC(task)) {
312 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
313 queue_work(rpciod_workqueue, &task->u.tk_work);
314 } else
315 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
316 }
317
318 /*
319 * Prepare for sleeping on a wait queue.
320 * By always appending tasks to the list we ensure FIFO behavior.
321 * NB: An RPC task will only receive interrupt-driven events as long
322 * as it's on a wait queue.
323 */
324 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
325 struct rpc_task *task,
326 rpc_action action,
327 unsigned char queue_priority)
328 {
329 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
330 task->tk_pid, rpc_qname(q), jiffies);
331
332 trace_rpc_task_sleep(task->tk_client, task, q);
333
334 __rpc_add_wait_queue(q, task, queue_priority);
335
336 BUG_ON(task->tk_callback != NULL);
337 task->tk_callback = action;
338 __rpc_add_timer(q, task);
339 }
340
341 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
342 rpc_action action)
343 {
344 /* We shouldn't ever put an inactive task to sleep */
345 BUG_ON(!RPC_IS_ACTIVATED(task));
346
347 /*
348 * Protect the queue operations.
349 */
350 spin_lock_bh(&q->lock);
351 __rpc_sleep_on_priority(q, task, action, task->tk_priority);
352 spin_unlock_bh(&q->lock);
353 }
354 EXPORT_SYMBOL_GPL(rpc_sleep_on);
355
356 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
357 rpc_action action, int priority)
358 {
359 /* We shouldn't ever put an inactive task to sleep */
360 BUG_ON(!RPC_IS_ACTIVATED(task));
361
362 /*
363 * Protect the queue operations.
364 */
365 spin_lock_bh(&q->lock);
366 __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
367 spin_unlock_bh(&q->lock);
368 }
369
370 /**
371 * __rpc_do_wake_up_task - wake up a single rpc_task
372 * @queue: wait queue
373 * @task: task to be woken up
374 *
375 * Caller must hold queue->lock, and have cleared the task queued flag.
376 */
377 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
378 {
379 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
380 task->tk_pid, jiffies);
381
382 /* Has the task been executed yet? If not, we cannot wake it up! */
383 if (!RPC_IS_ACTIVATED(task)) {
384 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
385 return;
386 }
387
388 trace_rpc_task_wakeup(task->tk_client, task, queue);
389
390 __rpc_remove_wait_queue(queue, task);
391
392 rpc_make_runnable(task);
393
394 dprintk("RPC: __rpc_wake_up_task done\n");
395 }
396
397 /*
398 * Wake up a queued task while the queue lock is being held
399 */
400 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
401 {
402 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
403 __rpc_do_wake_up_task(queue, task);
404 }
405
406 /*
407 * Tests whether rpc queue is empty
408 */
409 int rpc_queue_empty(struct rpc_wait_queue *queue)
410 {
411 int res;
412
413 spin_lock_bh(&queue->lock);
414 res = queue->qlen;
415 spin_unlock_bh(&queue->lock);
416 return res == 0;
417 }
418 EXPORT_SYMBOL_GPL(rpc_queue_empty);
419
420 /*
421 * Wake up a task on a specific queue
422 */
423 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
424 {
425 spin_lock_bh(&queue->lock);
426 rpc_wake_up_task_queue_locked(queue, task);
427 spin_unlock_bh(&queue->lock);
428 }
429 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
430
431 /*
432 * Wake up the next task on a priority queue.
433 */
434 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
435 {
436 struct list_head *q;
437 struct rpc_task *task;
438
439 /*
440 * Service a batch of tasks from a single owner.
441 */
442 q = &queue->tasks[queue->priority];
443 if (!list_empty(q)) {
444 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
445 if (queue->owner == task->tk_owner) {
446 if (--queue->nr)
447 goto out;
448 list_move_tail(&task->u.tk_wait.list, q);
449 }
450 /*
451 * Check if we need to switch queues.
452 */
453 if (--queue->count)
454 goto new_owner;
455 }
456
457 /*
458 * Service the next queue.
459 */
460 do {
461 if (q == &queue->tasks[0])
462 q = &queue->tasks[queue->maxpriority];
463 else
464 q = q - 1;
465 if (!list_empty(q)) {
466 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
467 goto new_queue;
468 }
469 } while (q != &queue->tasks[queue->priority]);
470
471 rpc_reset_waitqueue_priority(queue);
472 return NULL;
473
474 new_queue:
475 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
476 new_owner:
477 rpc_set_waitqueue_owner(queue, task->tk_owner);
478 out:
479 return task;
480 }
481
482 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
483 {
484 if (RPC_IS_PRIORITY(queue))
485 return __rpc_find_next_queued_priority(queue);
486 if (!list_empty(&queue->tasks[0]))
487 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
488 return NULL;
489 }
490
491 /*
492 * Wake up the first task on the wait queue.
493 */
494 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
495 bool (*func)(struct rpc_task *, void *), void *data)
496 {
497 struct rpc_task *task = NULL;
498
499 dprintk("RPC: wake_up_first(%p \"%s\")\n",
500 queue, rpc_qname(queue));
501 spin_lock_bh(&queue->lock);
502 task = __rpc_find_next_queued(queue);
503 if (task != NULL) {
504 if (func(task, data))
505 rpc_wake_up_task_queue_locked(queue, task);
506 else
507 task = NULL;
508 }
509 spin_unlock_bh(&queue->lock);
510
511 return task;
512 }
513 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
514
515 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
516 {
517 return true;
518 }
519
520 /*
521 * Wake up the next task on the wait queue.
522 */
523 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
524 {
525 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
526 }
527 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
528
529 /**
530 * rpc_wake_up - wake up all rpc_tasks
531 * @queue: rpc_wait_queue on which the tasks are sleeping
532 *
533 * Grabs queue->lock
534 */
535 void rpc_wake_up(struct rpc_wait_queue *queue)
536 {
537 struct list_head *head;
538
539 spin_lock_bh(&queue->lock);
540 head = &queue->tasks[queue->maxpriority];
541 for (;;) {
542 while (!list_empty(head)) {
543 struct rpc_task *task;
544 task = list_first_entry(head,
545 struct rpc_task,
546 u.tk_wait.list);
547 rpc_wake_up_task_queue_locked(queue, task);
548 }
549 if (head == &queue->tasks[0])
550 break;
551 head--;
552 }
553 spin_unlock_bh(&queue->lock);
554 }
555 EXPORT_SYMBOL_GPL(rpc_wake_up);
556
557 /**
558 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
559 * @queue: rpc_wait_queue on which the tasks are sleeping
560 * @status: status value to set
561 *
562 * Grabs queue->lock
563 */
564 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
565 {
566 struct list_head *head;
567
568 spin_lock_bh(&queue->lock);
569 head = &queue->tasks[queue->maxpriority];
570 for (;;) {
571 while (!list_empty(head)) {
572 struct rpc_task *task;
573 task = list_first_entry(head,
574 struct rpc_task,
575 u.tk_wait.list);
576 task->tk_status = status;
577 rpc_wake_up_task_queue_locked(queue, task);
578 }
579 if (head == &queue->tasks[0])
580 break;
581 head--;
582 }
583 spin_unlock_bh(&queue->lock);
584 }
585 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
586
587 static void __rpc_queue_timer_fn(unsigned long ptr)
588 {
589 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
590 struct rpc_task *task, *n;
591 unsigned long expires, now, timeo;
592
593 spin_lock(&queue->lock);
594 expires = now = jiffies;
595 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
596 timeo = task->u.tk_wait.expires;
597 if (time_after_eq(now, timeo)) {
598 dprintk("RPC: %5u timeout\n", task->tk_pid);
599 task->tk_status = -ETIMEDOUT;
600 rpc_wake_up_task_queue_locked(queue, task);
601 continue;
602 }
603 if (expires == now || time_after(expires, timeo))
604 expires = timeo;
605 }
606 if (!list_empty(&queue->timer_list.list))
607 rpc_set_queue_timer(queue, expires);
608 spin_unlock(&queue->lock);
609 }
610
611 static void __rpc_atrun(struct rpc_task *task)
612 {
613 task->tk_status = 0;
614 }
615
616 /*
617 * Run a task at a later time
618 */
619 void rpc_delay(struct rpc_task *task, unsigned long delay)
620 {
621 task->tk_timeout = delay;
622 rpc_sleep_on(&delay_queue, task, __rpc_atrun);
623 }
624 EXPORT_SYMBOL_GPL(rpc_delay);
625
626 /*
627 * Helper to call task->tk_ops->rpc_call_prepare
628 */
629 void rpc_prepare_task(struct rpc_task *task)
630 {
631 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
632 }
633
634 static void
635 rpc_init_task_statistics(struct rpc_task *task)
636 {
637 /* Initialize retry counters */
638 task->tk_garb_retry = 2;
639 task->tk_cred_retry = 2;
640 task->tk_rebind_retry = 2;
641
642 /* starting timestamp */
643 task->tk_start = ktime_get();
644 }
645
646 static void
647 rpc_reset_task_statistics(struct rpc_task *task)
648 {
649 task->tk_timeouts = 0;
650 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
651
652 rpc_init_task_statistics(task);
653 }
654
655 /*
656 * Helper that calls task->tk_ops->rpc_call_done if it exists
657 */
658 void rpc_exit_task(struct rpc_task *task)
659 {
660 task->tk_action = NULL;
661 if (task->tk_ops->rpc_call_done != NULL) {
662 task->tk_ops->rpc_call_done(task, task->tk_calldata);
663 if (task->tk_action != NULL) {
664 WARN_ON(RPC_ASSASSINATED(task));
665 /* Always release the RPC slot and buffer memory */
666 xprt_release(task);
667 rpc_reset_task_statistics(task);
668 }
669 }
670 }
671
672 void rpc_exit(struct rpc_task *task, int status)
673 {
674 task->tk_status = status;
675 task->tk_action = rpc_exit_task;
676 if (RPC_IS_QUEUED(task))
677 rpc_wake_up_queued_task(task->tk_waitqueue, task);
678 }
679 EXPORT_SYMBOL_GPL(rpc_exit);
680
681 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
682 {
683 if (ops->rpc_release != NULL)
684 ops->rpc_release(calldata);
685 }
686
687 /*
688 * This is the RPC `scheduler' (or rather, the finite state machine).
689 */
690 static void __rpc_execute(struct rpc_task *task)
691 {
692 struct rpc_wait_queue *queue;
693 int task_is_async = RPC_IS_ASYNC(task);
694 int status = 0;
695
696 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
697 task->tk_pid, task->tk_flags);
698
699 BUG_ON(RPC_IS_QUEUED(task));
700
701 for (;;) {
702 void (*do_action)(struct rpc_task *);
703
704 /*
705 * Execute any pending callback first.
706 */
707 do_action = task->tk_callback;
708 task->tk_callback = NULL;
709 if (do_action == NULL) {
710 /*
711 * Perform the next FSM step.
712 * tk_action may be NULL if the task has been killed.
713 * In particular, note that rpc_killall_tasks may
714 * do this at any time, so beware when dereferencing.
715 */
716 do_action = task->tk_action;
717 if (do_action == NULL)
718 break;
719 }
720 trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
721 do_action(task);
722
723 /*
724 * Lockless check for whether task is sleeping or not.
725 */
726 if (!RPC_IS_QUEUED(task))
727 continue;
728 /*
729 * The queue->lock protects against races with
730 * rpc_make_runnable().
731 *
732 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
733 * rpc_task, rpc_make_runnable() can assign it to a
734 * different workqueue. We therefore cannot assume that the
735 * rpc_task pointer may still be dereferenced.
736 */
737 queue = task->tk_waitqueue;
738 spin_lock_bh(&queue->lock);
739 if (!RPC_IS_QUEUED(task)) {
740 spin_unlock_bh(&queue->lock);
741 continue;
742 }
743 rpc_clear_running(task);
744 spin_unlock_bh(&queue->lock);
745 if (task_is_async)
746 return;
747
748 /* sync task: sleep here */
749 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
750 status = out_of_line_wait_on_bit(&task->tk_runstate,
751 RPC_TASK_QUEUED, rpc_wait_bit_killable,
752 TASK_KILLABLE);
753 if (status == -ERESTARTSYS) {
754 /*
755 * When a sync task receives a signal, it exits with
756 * -ERESTARTSYS. In order to catch any callbacks that
757 * clean up after sleeping on some queue, we don't
758 * break the loop here, but go around once more.
759 */
760 dprintk("RPC: %5u got signal\n", task->tk_pid);
761 task->tk_flags |= RPC_TASK_KILLED;
762 rpc_exit(task, -ERESTARTSYS);
763 }
764 rpc_set_running(task);
765 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
766 }
767
768 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
769 task->tk_status);
770 /* Release all resources associated with the task */
771 rpc_release_task(task);
772 }
773
774 /*
775 * User-visible entry point to the scheduler.
776 *
777 * This may be called recursively if e.g. an async NFS task updates
778 * the attributes and finds that dirty pages must be flushed.
779 * NOTE: Upon exit of this function the task is guaranteed to be
780 * released. In particular note that tk_release() will have
781 * been called, so your task memory may have been freed.
782 */
783 void rpc_execute(struct rpc_task *task)
784 {
785 rpc_set_active(task);
786 rpc_make_runnable(task);
787 if (!RPC_IS_ASYNC(task))
788 __rpc_execute(task);
789 }
790
791 static void rpc_async_schedule(struct work_struct *work)
792 {
793 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
794 }
795
796 /**
797 * rpc_malloc - allocate an RPC buffer
798 * @task: RPC task that will use this buffer
799 * @size: requested byte size
800 *
801 * To prevent rpciod from hanging, this allocator never sleeps,
802 * returning NULL if the request cannot be serviced immediately.
803 * The caller can arrange to sleep in a way that is safe for rpciod.
804 *
805 * Most requests are 'small' (under 2KiB) and can be serviced from a
806 * mempool, ensuring that NFS reads and writes can always proceed,
807 * and that there is good locality of reference for these buffers.
808 *
809 * In order to avoid memory starvation triggering more writebacks of
810 * NFS requests, we avoid using GFP_KERNEL.
811 */
812 void *rpc_malloc(struct rpc_task *task, size_t size)
813 {
814 struct rpc_buffer *buf;
815 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
816
817 size += sizeof(struct rpc_buffer);
818 if (size <= RPC_BUFFER_MAXSIZE)
819 buf = mempool_alloc(rpc_buffer_mempool, gfp);
820 else
821 buf = kmalloc(size, gfp);
822
823 if (!buf)
824 return NULL;
825
826 buf->len = size;
827 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
828 task->tk_pid, size, buf);
829 return &buf->data;
830 }
831 EXPORT_SYMBOL_GPL(rpc_malloc);
832
833 /**
834 * rpc_free - free buffer allocated via rpc_malloc
835 * @buffer: buffer to free
836 *
837 */
838 void rpc_free(void *buffer)
839 {
840 size_t size;
841 struct rpc_buffer *buf;
842
843 if (!buffer)
844 return;
845
846 buf = container_of(buffer, struct rpc_buffer, data);
847 size = buf->len;
848
849 dprintk("RPC: freeing buffer of size %zu at %p\n",
850 size, buf);
851
852 if (size <= RPC_BUFFER_MAXSIZE)
853 mempool_free(buf, rpc_buffer_mempool);
854 else
855 kfree(buf);
856 }
857 EXPORT_SYMBOL_GPL(rpc_free);
858
859 /*
860 * Creation and deletion of RPC task structures
861 */
862 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
863 {
864 memset(task, 0, sizeof(*task));
865 atomic_set(&task->tk_count, 1);
866 task->tk_flags = task_setup_data->flags;
867 task->tk_ops = task_setup_data->callback_ops;
868 task->tk_calldata = task_setup_data->callback_data;
869 INIT_LIST_HEAD(&task->tk_task);
870
871 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
872 task->tk_owner = current->tgid;
873
874 /* Initialize workqueue for async tasks */
875 task->tk_workqueue = task_setup_data->workqueue;
876
877 if (task->tk_ops->rpc_call_prepare != NULL)
878 task->tk_action = rpc_prepare_task;
879
880 rpc_init_task_statistics(task);
881
882 dprintk("RPC: new task initialized, procpid %u\n",
883 task_pid_nr(current));
884 }
885
886 static struct rpc_task *
887 rpc_alloc_task(void)
888 {
889 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
890 }
891
892 /*
893 * Create a new task for the specified client.
894 */
895 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
896 {
897 struct rpc_task *task = setup_data->task;
898 unsigned short flags = 0;
899
900 if (task == NULL) {
901 task = rpc_alloc_task();
902 if (task == NULL) {
903 rpc_release_calldata(setup_data->callback_ops,
904 setup_data->callback_data);
905 return ERR_PTR(-ENOMEM);
906 }
907 flags = RPC_TASK_DYNAMIC;
908 }
909
910 rpc_init_task(task, setup_data);
911 task->tk_flags |= flags;
912 dprintk("RPC: allocated task %p\n", task);
913 return task;
914 }
915
916 static void rpc_free_task(struct rpc_task *task)
917 {
918 const struct rpc_call_ops *tk_ops = task->tk_ops;
919 void *calldata = task->tk_calldata;
920
921 if (task->tk_flags & RPC_TASK_DYNAMIC) {
922 dprintk("RPC: %5u freeing task\n", task->tk_pid);
923 mempool_free(task, rpc_task_mempool);
924 }
925 rpc_release_calldata(tk_ops, calldata);
926 }
927
928 static void rpc_async_release(struct work_struct *work)
929 {
930 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
931 }
932
933 static void rpc_release_resources_task(struct rpc_task *task)
934 {
935 if (task->tk_rqstp)
936 xprt_release(task);
937 if (task->tk_msg.rpc_cred) {
938 put_rpccred(task->tk_msg.rpc_cred);
939 task->tk_msg.rpc_cred = NULL;
940 }
941 rpc_task_release_client(task);
942 }
943
944 static void rpc_final_put_task(struct rpc_task *task,
945 struct workqueue_struct *q)
946 {
947 if (q != NULL) {
948 INIT_WORK(&task->u.tk_work, rpc_async_release);
949 queue_work(q, &task->u.tk_work);
950 } else
951 rpc_free_task(task);
952 }
953
954 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
955 {
956 if (atomic_dec_and_test(&task->tk_count)) {
957 rpc_release_resources_task(task);
958 rpc_final_put_task(task, q);
959 }
960 }
961
962 void rpc_put_task(struct rpc_task *task)
963 {
964 rpc_do_put_task(task, NULL);
965 }
966 EXPORT_SYMBOL_GPL(rpc_put_task);
967
968 void rpc_put_task_async(struct rpc_task *task)
969 {
970 rpc_do_put_task(task, task->tk_workqueue);
971 }
972 EXPORT_SYMBOL_GPL(rpc_put_task_async);
973
974 static void rpc_release_task(struct rpc_task *task)
975 {
976 dprintk("RPC: %5u release task\n", task->tk_pid);
977
978 BUG_ON (RPC_IS_QUEUED(task));
979
980 rpc_release_resources_task(task);
981
982 /*
983 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
984 * so it should be safe to use task->tk_count as a test for whether
985 * or not any other processes still hold references to our rpc_task.
986 */
987 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
988 /* Wake up anyone who may be waiting for task completion */
989 if (!rpc_complete_task(task))
990 return;
991 } else {
992 if (!atomic_dec_and_test(&task->tk_count))
993 return;
994 }
995 rpc_final_put_task(task, task->tk_workqueue);
996 }
997
998 int rpciod_up(void)
999 {
1000 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1001 }
1002
1003 void rpciod_down(void)
1004 {
1005 module_put(THIS_MODULE);
1006 }
1007
1008 /*
1009 * Start up the rpciod workqueue.
1010 */
1011 static int rpciod_start(void)
1012 {
1013 struct workqueue_struct *wq;
1014
1015 /*
1016 * Create the rpciod thread and wait for it to start.
1017 */
1018 dprintk("RPC: creating workqueue rpciod\n");
1019 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
1020 rpciod_workqueue = wq;
1021 return rpciod_workqueue != NULL;
1022 }
1023
1024 static void rpciod_stop(void)
1025 {
1026 struct workqueue_struct *wq = NULL;
1027
1028 if (rpciod_workqueue == NULL)
1029 return;
1030 dprintk("RPC: destroying workqueue rpciod\n");
1031
1032 wq = rpciod_workqueue;
1033 rpciod_workqueue = NULL;
1034 destroy_workqueue(wq);
1035 }
1036
1037 void
1038 rpc_destroy_mempool(void)
1039 {
1040 rpciod_stop();
1041 if (rpc_buffer_mempool)
1042 mempool_destroy(rpc_buffer_mempool);
1043 if (rpc_task_mempool)
1044 mempool_destroy(rpc_task_mempool);
1045 if (rpc_task_slabp)
1046 kmem_cache_destroy(rpc_task_slabp);
1047 if (rpc_buffer_slabp)
1048 kmem_cache_destroy(rpc_buffer_slabp);
1049 rpc_destroy_wait_queue(&delay_queue);
1050 }
1051
1052 int
1053 rpc_init_mempool(void)
1054 {
1055 /*
1056 * The following is not strictly a mempool initialisation,
1057 * but there is no harm in doing it here
1058 */
1059 rpc_init_wait_queue(&delay_queue, "delayq");
1060 if (!rpciod_start())
1061 goto err_nomem;
1062
1063 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1064 sizeof(struct rpc_task),
1065 0, SLAB_HWCACHE_ALIGN,
1066 NULL);
1067 if (!rpc_task_slabp)
1068 goto err_nomem;
1069 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1070 RPC_BUFFER_MAXSIZE,
1071 0, SLAB_HWCACHE_ALIGN,
1072 NULL);
1073 if (!rpc_buffer_slabp)
1074 goto err_nomem;
1075 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1076 rpc_task_slabp);
1077 if (!rpc_task_mempool)
1078 goto err_nomem;
1079 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1080 rpc_buffer_slabp);
1081 if (!rpc_buffer_mempool)
1082 goto err_nomem;
1083 return 0;
1084 err_nomem:
1085 rpc_destroy_mempool();
1086 return -ENOMEM;
1087 }
This page took 0.073855 seconds and 5 git commands to generate.