svcrpc: sends on closed socket should stop immediately
[deliverable/linux.git] / net / sunrpc / svc_xprt.c
1 /*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 #include <linux/module.h>
18
19 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
20
21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
22 static int svc_deferred_recv(struct svc_rqst *rqstp);
23 static struct cache_deferred_req *svc_defer(struct cache_req *req);
24 static void svc_age_temp_xprts(unsigned long closure);
25 static void svc_delete_xprt(struct svc_xprt *xprt);
26
27 /* apparently the "standard" is that clients close
28 * idle connections after 5 minutes, servers after
29 * 6 minutes
30 * http://www.connectathon.org/talks96/nfstcp.pdf
31 */
32 static int svc_conn_age_period = 6*60;
33
34 /* List of registered transport classes */
35 static DEFINE_SPINLOCK(svc_xprt_class_lock);
36 static LIST_HEAD(svc_xprt_class_list);
37
38 /* SMP locking strategy:
39 *
40 * svc_pool->sp_lock protects most of the fields of that pool.
41 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
42 * when both need to be taken (rare), svc_serv->sv_lock is first.
43 * BKL protects svc_serv->sv_nrthread.
44 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
45 * and the ->sk_info_authunix cache.
46 *
47 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
48 * enqueued multiply. During normal transport processing this bit
49 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
50 * Providers should not manipulate this bit directly.
51 *
52 * Some flags can be set to certain values at any time
53 * providing that certain rules are followed:
54 *
55 * XPT_CONN, XPT_DATA:
56 * - Can be set or cleared at any time.
57 * - After a set, svc_xprt_enqueue must be called to enqueue
58 * the transport for processing.
59 * - After a clear, the transport must be read/accepted.
60 * If this succeeds, it must be set again.
61 * XPT_CLOSE:
62 * - Can set at any time. It is never cleared.
63 * XPT_DEAD:
64 * - Can only be set while XPT_BUSY is held which ensures
65 * that no other thread will be using the transport or will
66 * try to set XPT_DEAD.
67 */
68
69 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
70 {
71 struct svc_xprt_class *cl;
72 int res = -EEXIST;
73
74 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
75
76 INIT_LIST_HEAD(&xcl->xcl_list);
77 spin_lock(&svc_xprt_class_lock);
78 /* Make sure there isn't already a class with the same name */
79 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
80 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
81 goto out;
82 }
83 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
84 res = 0;
85 out:
86 spin_unlock(&svc_xprt_class_lock);
87 return res;
88 }
89 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
90
91 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
92 {
93 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
94 spin_lock(&svc_xprt_class_lock);
95 list_del_init(&xcl->xcl_list);
96 spin_unlock(&svc_xprt_class_lock);
97 }
98 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
99
100 /*
101 * Format the transport list for printing
102 */
103 int svc_print_xprts(char *buf, int maxlen)
104 {
105 struct svc_xprt_class *xcl;
106 char tmpstr[80];
107 int len = 0;
108 buf[0] = '\0';
109
110 spin_lock(&svc_xprt_class_lock);
111 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
112 int slen;
113
114 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
115 slen = strlen(tmpstr);
116 if (len + slen > maxlen)
117 break;
118 len += slen;
119 strcat(buf, tmpstr);
120 }
121 spin_unlock(&svc_xprt_class_lock);
122
123 return len;
124 }
125
126 static void svc_xprt_free(struct kref *kref)
127 {
128 struct svc_xprt *xprt =
129 container_of(kref, struct svc_xprt, xpt_ref);
130 struct module *owner = xprt->xpt_class->xcl_owner;
131 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
132 svcauth_unix_info_release(xprt);
133 put_net(xprt->xpt_net);
134 /* See comment on corresponding get in xs_setup_bc_tcp(): */
135 if (xprt->xpt_bc_xprt)
136 xprt_put(xprt->xpt_bc_xprt);
137 xprt->xpt_ops->xpo_free(xprt);
138 module_put(owner);
139 }
140
141 void svc_xprt_put(struct svc_xprt *xprt)
142 {
143 kref_put(&xprt->xpt_ref, svc_xprt_free);
144 }
145 EXPORT_SYMBOL_GPL(svc_xprt_put);
146
147 /*
148 * Called by transport drivers to initialize the transport independent
149 * portion of the transport instance.
150 */
151 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
152 struct svc_xprt *xprt, struct svc_serv *serv)
153 {
154 memset(xprt, 0, sizeof(*xprt));
155 xprt->xpt_class = xcl;
156 xprt->xpt_ops = xcl->xcl_ops;
157 kref_init(&xprt->xpt_ref);
158 xprt->xpt_server = serv;
159 INIT_LIST_HEAD(&xprt->xpt_list);
160 INIT_LIST_HEAD(&xprt->xpt_ready);
161 INIT_LIST_HEAD(&xprt->xpt_deferred);
162 INIT_LIST_HEAD(&xprt->xpt_users);
163 mutex_init(&xprt->xpt_mutex);
164 spin_lock_init(&xprt->xpt_lock);
165 set_bit(XPT_BUSY, &xprt->xpt_flags);
166 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
167 xprt->xpt_net = get_net(net);
168 }
169 EXPORT_SYMBOL_GPL(svc_xprt_init);
170
171 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
172 struct svc_serv *serv,
173 struct net *net,
174 const int family,
175 const unsigned short port,
176 int flags)
177 {
178 struct sockaddr_in sin = {
179 .sin_family = AF_INET,
180 .sin_addr.s_addr = htonl(INADDR_ANY),
181 .sin_port = htons(port),
182 };
183 #if IS_ENABLED(CONFIG_IPV6)
184 struct sockaddr_in6 sin6 = {
185 .sin6_family = AF_INET6,
186 .sin6_addr = IN6ADDR_ANY_INIT,
187 .sin6_port = htons(port),
188 };
189 #endif
190 struct sockaddr *sap;
191 size_t len;
192
193 switch (family) {
194 case PF_INET:
195 sap = (struct sockaddr *)&sin;
196 len = sizeof(sin);
197 break;
198 #if IS_ENABLED(CONFIG_IPV6)
199 case PF_INET6:
200 sap = (struct sockaddr *)&sin6;
201 len = sizeof(sin6);
202 break;
203 #endif
204 default:
205 return ERR_PTR(-EAFNOSUPPORT);
206 }
207
208 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
209 }
210
211 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
212 struct net *net, const int family,
213 const unsigned short port, int flags)
214 {
215 struct svc_xprt_class *xcl;
216
217 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
218 spin_lock(&svc_xprt_class_lock);
219 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
220 struct svc_xprt *newxprt;
221 unsigned short newport;
222
223 if (strcmp(xprt_name, xcl->xcl_name))
224 continue;
225
226 if (!try_module_get(xcl->xcl_owner))
227 goto err;
228
229 spin_unlock(&svc_xprt_class_lock);
230 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
231 if (IS_ERR(newxprt)) {
232 module_put(xcl->xcl_owner);
233 return PTR_ERR(newxprt);
234 }
235
236 clear_bit(XPT_TEMP, &newxprt->xpt_flags);
237 spin_lock_bh(&serv->sv_lock);
238 list_add(&newxprt->xpt_list, &serv->sv_permsocks);
239 spin_unlock_bh(&serv->sv_lock);
240 newport = svc_xprt_local_port(newxprt);
241 clear_bit(XPT_BUSY, &newxprt->xpt_flags);
242 return newport;
243 }
244 err:
245 spin_unlock(&svc_xprt_class_lock);
246 dprintk("svc: transport %s not found\n", xprt_name);
247
248 /* This errno is exposed to user space. Provide a reasonable
249 * perror msg for a bad transport. */
250 return -EPROTONOSUPPORT;
251 }
252 EXPORT_SYMBOL_GPL(svc_create_xprt);
253
254 /*
255 * Copy the local and remote xprt addresses to the rqstp structure
256 */
257 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
258 {
259 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
260 rqstp->rq_addrlen = xprt->xpt_remotelen;
261
262 /*
263 * Destination address in request is needed for binding the
264 * source address in RPC replies/callbacks later.
265 */
266 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
267 rqstp->rq_daddrlen = xprt->xpt_locallen;
268 }
269 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
270
271 /**
272 * svc_print_addr - Format rq_addr field for printing
273 * @rqstp: svc_rqst struct containing address to print
274 * @buf: target buffer for formatted address
275 * @len: length of target buffer
276 *
277 */
278 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
279 {
280 return __svc_print_addr(svc_addr(rqstp), buf, len);
281 }
282 EXPORT_SYMBOL_GPL(svc_print_addr);
283
284 /*
285 * Queue up an idle server thread. Must have pool->sp_lock held.
286 * Note: this is really a stack rather than a queue, so that we only
287 * use as many different threads as we need, and the rest don't pollute
288 * the cache.
289 */
290 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
291 {
292 list_add(&rqstp->rq_list, &pool->sp_threads);
293 }
294
295 /*
296 * Dequeue an nfsd thread. Must have pool->sp_lock held.
297 */
298 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
299 {
300 list_del(&rqstp->rq_list);
301 }
302
303 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
304 {
305 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
306 return true;
307 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
308 return xprt->xpt_ops->xpo_has_wspace(xprt);
309 return false;
310 }
311
312 /*
313 * Queue up a transport with data pending. If there are idle nfsd
314 * processes, wake 'em up.
315 *
316 */
317 void svc_xprt_enqueue(struct svc_xprt *xprt)
318 {
319 struct svc_serv *serv = xprt->xpt_server;
320 struct svc_pool *pool;
321 struct svc_rqst *rqstp;
322 int cpu;
323
324 if (!svc_xprt_has_something_to_do(xprt))
325 return;
326
327 cpu = get_cpu();
328 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
329 put_cpu();
330
331 spin_lock_bh(&pool->sp_lock);
332
333 if (!list_empty(&pool->sp_threads) &&
334 !list_empty(&pool->sp_sockets))
335 printk(KERN_ERR
336 "svc_xprt_enqueue: "
337 "threads and transports both waiting??\n");
338
339 pool->sp_stats.packets++;
340
341 /* Mark transport as busy. It will remain in this state until
342 * the provider calls svc_xprt_received. We update XPT_BUSY
343 * atomically because it also guards against trying to enqueue
344 * the transport twice.
345 */
346 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
347 /* Don't enqueue transport while already enqueued */
348 dprintk("svc: transport %p busy, not enqueued\n", xprt);
349 goto out_unlock;
350 }
351
352 if (!list_empty(&pool->sp_threads)) {
353 rqstp = list_entry(pool->sp_threads.next,
354 struct svc_rqst,
355 rq_list);
356 dprintk("svc: transport %p served by daemon %p\n",
357 xprt, rqstp);
358 svc_thread_dequeue(pool, rqstp);
359 if (rqstp->rq_xprt)
360 printk(KERN_ERR
361 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
362 rqstp, rqstp->rq_xprt);
363 rqstp->rq_xprt = xprt;
364 svc_xprt_get(xprt);
365 rqstp->rq_reserved = serv->sv_max_mesg;
366 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
367 pool->sp_stats.threads_woken++;
368 wake_up(&rqstp->rq_wait);
369 } else {
370 dprintk("svc: transport %p put into queue\n", xprt);
371 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
372 pool->sp_stats.sockets_queued++;
373 }
374
375 out_unlock:
376 spin_unlock_bh(&pool->sp_lock);
377 }
378 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
379
380 /*
381 * Dequeue the first transport. Must be called with the pool->sp_lock held.
382 */
383 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
384 {
385 struct svc_xprt *xprt;
386
387 if (list_empty(&pool->sp_sockets))
388 return NULL;
389
390 xprt = list_entry(pool->sp_sockets.next,
391 struct svc_xprt, xpt_ready);
392 list_del_init(&xprt->xpt_ready);
393
394 dprintk("svc: transport %p dequeued, inuse=%d\n",
395 xprt, atomic_read(&xprt->xpt_ref.refcount));
396
397 return xprt;
398 }
399
400 /*
401 * svc_xprt_received conditionally queues the transport for processing
402 * by another thread. The caller must hold the XPT_BUSY bit and must
403 * not thereafter touch transport data.
404 *
405 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
406 * insufficient) data.
407 */
408 void svc_xprt_received(struct svc_xprt *xprt)
409 {
410 BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
411 /* As soon as we clear busy, the xprt could be closed and
412 * 'put', so we need a reference to call svc_xprt_enqueue with:
413 */
414 svc_xprt_get(xprt);
415 clear_bit(XPT_BUSY, &xprt->xpt_flags);
416 svc_xprt_enqueue(xprt);
417 svc_xprt_put(xprt);
418 }
419 EXPORT_SYMBOL_GPL(svc_xprt_received);
420
421 /**
422 * svc_reserve - change the space reserved for the reply to a request.
423 * @rqstp: The request in question
424 * @space: new max space to reserve
425 *
426 * Each request reserves some space on the output queue of the transport
427 * to make sure the reply fits. This function reduces that reserved
428 * space to be the amount of space used already, plus @space.
429 *
430 */
431 void svc_reserve(struct svc_rqst *rqstp, int space)
432 {
433 space += rqstp->rq_res.head[0].iov_len;
434
435 if (space < rqstp->rq_reserved) {
436 struct svc_xprt *xprt = rqstp->rq_xprt;
437 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
438 rqstp->rq_reserved = space;
439
440 svc_xprt_enqueue(xprt);
441 }
442 }
443 EXPORT_SYMBOL_GPL(svc_reserve);
444
445 static void svc_xprt_release(struct svc_rqst *rqstp)
446 {
447 struct svc_xprt *xprt = rqstp->rq_xprt;
448
449 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
450
451 kfree(rqstp->rq_deferred);
452 rqstp->rq_deferred = NULL;
453
454 svc_free_res_pages(rqstp);
455 rqstp->rq_res.page_len = 0;
456 rqstp->rq_res.page_base = 0;
457
458 /* Reset response buffer and release
459 * the reservation.
460 * But first, check that enough space was reserved
461 * for the reply, otherwise we have a bug!
462 */
463 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
464 printk(KERN_ERR "RPC request reserved %d but used %d\n",
465 rqstp->rq_reserved,
466 rqstp->rq_res.len);
467
468 rqstp->rq_res.head[0].iov_len = 0;
469 svc_reserve(rqstp, 0);
470 rqstp->rq_xprt = NULL;
471
472 svc_xprt_put(xprt);
473 }
474
475 /*
476 * External function to wake up a server waiting for data
477 * This really only makes sense for services like lockd
478 * which have exactly one thread anyway.
479 */
480 void svc_wake_up(struct svc_serv *serv)
481 {
482 struct svc_rqst *rqstp;
483 unsigned int i;
484 struct svc_pool *pool;
485
486 for (i = 0; i < serv->sv_nrpools; i++) {
487 pool = &serv->sv_pools[i];
488
489 spin_lock_bh(&pool->sp_lock);
490 if (!list_empty(&pool->sp_threads)) {
491 rqstp = list_entry(pool->sp_threads.next,
492 struct svc_rqst,
493 rq_list);
494 dprintk("svc: daemon %p woken up.\n", rqstp);
495 /*
496 svc_thread_dequeue(pool, rqstp);
497 rqstp->rq_xprt = NULL;
498 */
499 wake_up(&rqstp->rq_wait);
500 }
501 spin_unlock_bh(&pool->sp_lock);
502 }
503 }
504 EXPORT_SYMBOL_GPL(svc_wake_up);
505
506 int svc_port_is_privileged(struct sockaddr *sin)
507 {
508 switch (sin->sa_family) {
509 case AF_INET:
510 return ntohs(((struct sockaddr_in *)sin)->sin_port)
511 < PROT_SOCK;
512 case AF_INET6:
513 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
514 < PROT_SOCK;
515 default:
516 return 0;
517 }
518 }
519
520 /*
521 * Make sure that we don't have too many active connections. If we have,
522 * something must be dropped. It's not clear what will happen if we allow
523 * "too many" connections, but when dealing with network-facing software,
524 * we have to code defensively. Here we do that by imposing hard limits.
525 *
526 * There's no point in trying to do random drop here for DoS
527 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
528 * attacker can easily beat that.
529 *
530 * The only somewhat efficient mechanism would be if drop old
531 * connections from the same IP first. But right now we don't even
532 * record the client IP in svc_sock.
533 *
534 * single-threaded services that expect a lot of clients will probably
535 * need to set sv_maxconn to override the default value which is based
536 * on the number of threads
537 */
538 static void svc_check_conn_limits(struct svc_serv *serv)
539 {
540 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
541 (serv->sv_nrthreads+3) * 20;
542
543 if (serv->sv_tmpcnt > limit) {
544 struct svc_xprt *xprt = NULL;
545 spin_lock_bh(&serv->sv_lock);
546 if (!list_empty(&serv->sv_tempsocks)) {
547 /* Try to help the admin */
548 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
549 serv->sv_name, serv->sv_maxconn ?
550 "max number of connections" :
551 "number of threads");
552 /*
553 * Always select the oldest connection. It's not fair,
554 * but so is life
555 */
556 xprt = list_entry(serv->sv_tempsocks.prev,
557 struct svc_xprt,
558 xpt_list);
559 set_bit(XPT_CLOSE, &xprt->xpt_flags);
560 svc_xprt_get(xprt);
561 }
562 spin_unlock_bh(&serv->sv_lock);
563
564 if (xprt) {
565 svc_xprt_enqueue(xprt);
566 svc_xprt_put(xprt);
567 }
568 }
569 }
570
571 /*
572 * Receive the next request on any transport. This code is carefully
573 * organised not to touch any cachelines in the shared svc_serv
574 * structure, only cachelines in the local svc_pool.
575 */
576 int svc_recv(struct svc_rqst *rqstp, long timeout)
577 {
578 struct svc_xprt *xprt = NULL;
579 struct svc_serv *serv = rqstp->rq_server;
580 struct svc_pool *pool = rqstp->rq_pool;
581 int len, i;
582 int pages;
583 struct xdr_buf *arg;
584 DECLARE_WAITQUEUE(wait, current);
585 long time_left;
586
587 dprintk("svc: server %p waiting for data (to = %ld)\n",
588 rqstp, timeout);
589
590 if (rqstp->rq_xprt)
591 printk(KERN_ERR
592 "svc_recv: service %p, transport not NULL!\n",
593 rqstp);
594 if (waitqueue_active(&rqstp->rq_wait))
595 printk(KERN_ERR
596 "svc_recv: service %p, wait queue active!\n",
597 rqstp);
598
599 /* now allocate needed pages. If we get a failure, sleep briefly */
600 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
601 BUG_ON(pages >= RPCSVC_MAXPAGES);
602 for (i = 0; i < pages ; i++)
603 while (rqstp->rq_pages[i] == NULL) {
604 struct page *p = alloc_page(GFP_KERNEL);
605 if (!p) {
606 set_current_state(TASK_INTERRUPTIBLE);
607 if (signalled() || kthread_should_stop()) {
608 set_current_state(TASK_RUNNING);
609 return -EINTR;
610 }
611 schedule_timeout(msecs_to_jiffies(500));
612 }
613 rqstp->rq_pages[i] = p;
614 }
615 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
616
617 /* Make arg->head point to first page and arg->pages point to rest */
618 arg = &rqstp->rq_arg;
619 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
620 arg->head[0].iov_len = PAGE_SIZE;
621 arg->pages = rqstp->rq_pages + 1;
622 arg->page_base = 0;
623 /* save at least one page for response */
624 arg->page_len = (pages-2)*PAGE_SIZE;
625 arg->len = (pages-1)*PAGE_SIZE;
626 arg->tail[0].iov_len = 0;
627
628 try_to_freeze();
629 cond_resched();
630 if (signalled() || kthread_should_stop())
631 return -EINTR;
632
633 /* Normally we will wait up to 5 seconds for any required
634 * cache information to be provided.
635 */
636 rqstp->rq_chandle.thread_wait = 5*HZ;
637
638 spin_lock_bh(&pool->sp_lock);
639 xprt = svc_xprt_dequeue(pool);
640 if (xprt) {
641 rqstp->rq_xprt = xprt;
642 svc_xprt_get(xprt);
643 rqstp->rq_reserved = serv->sv_max_mesg;
644 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
645
646 /* As there is a shortage of threads and this request
647 * had to be queued, don't allow the thread to wait so
648 * long for cache updates.
649 */
650 rqstp->rq_chandle.thread_wait = 1*HZ;
651 } else {
652 /* No data pending. Go to sleep */
653 svc_thread_enqueue(pool, rqstp);
654
655 /*
656 * We have to be able to interrupt this wait
657 * to bring down the daemons ...
658 */
659 set_current_state(TASK_INTERRUPTIBLE);
660
661 /*
662 * checking kthread_should_stop() here allows us to avoid
663 * locking and signalling when stopping kthreads that call
664 * svc_recv. If the thread has already been woken up, then
665 * we can exit here without sleeping. If not, then it
666 * it'll be woken up quickly during the schedule_timeout
667 */
668 if (kthread_should_stop()) {
669 set_current_state(TASK_RUNNING);
670 spin_unlock_bh(&pool->sp_lock);
671 return -EINTR;
672 }
673
674 add_wait_queue(&rqstp->rq_wait, &wait);
675 spin_unlock_bh(&pool->sp_lock);
676
677 time_left = schedule_timeout(timeout);
678
679 try_to_freeze();
680
681 spin_lock_bh(&pool->sp_lock);
682 remove_wait_queue(&rqstp->rq_wait, &wait);
683 if (!time_left)
684 pool->sp_stats.threads_timedout++;
685
686 xprt = rqstp->rq_xprt;
687 if (!xprt) {
688 svc_thread_dequeue(pool, rqstp);
689 spin_unlock_bh(&pool->sp_lock);
690 dprintk("svc: server %p, no data yet\n", rqstp);
691 if (signalled() || kthread_should_stop())
692 return -EINTR;
693 else
694 return -EAGAIN;
695 }
696 }
697 spin_unlock_bh(&pool->sp_lock);
698
699 len = 0;
700 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
701 dprintk("svc_recv: found XPT_CLOSE\n");
702 svc_delete_xprt(xprt);
703 /* Leave XPT_BUSY set on the dead xprt: */
704 goto out;
705 }
706 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
707 struct svc_xprt *newxpt;
708 newxpt = xprt->xpt_ops->xpo_accept(xprt);
709 if (newxpt) {
710 /*
711 * We know this module_get will succeed because the
712 * listener holds a reference too
713 */
714 __module_get(newxpt->xpt_class->xcl_owner);
715 svc_check_conn_limits(xprt->xpt_server);
716 spin_lock_bh(&serv->sv_lock);
717 set_bit(XPT_TEMP, &newxpt->xpt_flags);
718 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
719 serv->sv_tmpcnt++;
720 if (serv->sv_temptimer.function == NULL) {
721 /* setup timer to age temp transports */
722 setup_timer(&serv->sv_temptimer,
723 svc_age_temp_xprts,
724 (unsigned long)serv);
725 mod_timer(&serv->sv_temptimer,
726 jiffies + svc_conn_age_period * HZ);
727 }
728 spin_unlock_bh(&serv->sv_lock);
729 svc_xprt_received(newxpt);
730 }
731 } else if (xprt->xpt_ops->xpo_has_wspace(xprt)) {
732 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
733 rqstp, pool->sp_id, xprt,
734 atomic_read(&xprt->xpt_ref.refcount));
735 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
736 if (rqstp->rq_deferred)
737 len = svc_deferred_recv(rqstp);
738 else
739 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
740 dprintk("svc: got len=%d\n", len);
741 }
742 svc_xprt_received(xprt);
743
744 /* No data, incomplete (TCP) read, or accept() */
745 if (len == 0 || len == -EAGAIN)
746 goto out;
747
748 clear_bit(XPT_OLD, &xprt->xpt_flags);
749
750 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
751 rqstp->rq_chandle.defer = svc_defer;
752
753 if (serv->sv_stats)
754 serv->sv_stats->netcnt++;
755 return len;
756 out:
757 rqstp->rq_res.len = 0;
758 svc_xprt_release(rqstp);
759 return -EAGAIN;
760 }
761 EXPORT_SYMBOL_GPL(svc_recv);
762
763 /*
764 * Drop request
765 */
766 void svc_drop(struct svc_rqst *rqstp)
767 {
768 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
769 svc_xprt_release(rqstp);
770 }
771 EXPORT_SYMBOL_GPL(svc_drop);
772
773 /*
774 * Return reply to client.
775 */
776 int svc_send(struct svc_rqst *rqstp)
777 {
778 struct svc_xprt *xprt;
779 int len;
780 struct xdr_buf *xb;
781
782 xprt = rqstp->rq_xprt;
783 if (!xprt)
784 return -EFAULT;
785
786 /* release the receive skb before sending the reply */
787 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
788
789 /* calculate over-all length */
790 xb = &rqstp->rq_res;
791 xb->len = xb->head[0].iov_len +
792 xb->page_len +
793 xb->tail[0].iov_len;
794
795 /* Grab mutex to serialize outgoing data. */
796 mutex_lock(&xprt->xpt_mutex);
797 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
798 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
799 len = -ENOTCONN;
800 else
801 len = xprt->xpt_ops->xpo_sendto(rqstp);
802 mutex_unlock(&xprt->xpt_mutex);
803 rpc_wake_up(&xprt->xpt_bc_pending);
804 svc_xprt_release(rqstp);
805
806 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
807 return 0;
808 return len;
809 }
810
811 /*
812 * Timer function to close old temporary transports, using
813 * a mark-and-sweep algorithm.
814 */
815 static void svc_age_temp_xprts(unsigned long closure)
816 {
817 struct svc_serv *serv = (struct svc_serv *)closure;
818 struct svc_xprt *xprt;
819 struct list_head *le, *next;
820 LIST_HEAD(to_be_aged);
821
822 dprintk("svc_age_temp_xprts\n");
823
824 if (!spin_trylock_bh(&serv->sv_lock)) {
825 /* busy, try again 1 sec later */
826 dprintk("svc_age_temp_xprts: busy\n");
827 mod_timer(&serv->sv_temptimer, jiffies + HZ);
828 return;
829 }
830
831 list_for_each_safe(le, next, &serv->sv_tempsocks) {
832 xprt = list_entry(le, struct svc_xprt, xpt_list);
833
834 /* First time through, just mark it OLD. Second time
835 * through, close it. */
836 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
837 continue;
838 if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
839 test_bit(XPT_BUSY, &xprt->xpt_flags))
840 continue;
841 svc_xprt_get(xprt);
842 list_move(le, &to_be_aged);
843 set_bit(XPT_CLOSE, &xprt->xpt_flags);
844 set_bit(XPT_DETACHED, &xprt->xpt_flags);
845 }
846 spin_unlock_bh(&serv->sv_lock);
847
848 while (!list_empty(&to_be_aged)) {
849 le = to_be_aged.next;
850 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
851 list_del_init(le);
852 xprt = list_entry(le, struct svc_xprt, xpt_list);
853
854 dprintk("queuing xprt %p for closing\n", xprt);
855
856 /* a thread will dequeue and close it soon */
857 svc_xprt_enqueue(xprt);
858 svc_xprt_put(xprt);
859 }
860
861 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
862 }
863
864 static void call_xpt_users(struct svc_xprt *xprt)
865 {
866 struct svc_xpt_user *u;
867
868 spin_lock(&xprt->xpt_lock);
869 while (!list_empty(&xprt->xpt_users)) {
870 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
871 list_del(&u->list);
872 u->callback(u);
873 }
874 spin_unlock(&xprt->xpt_lock);
875 }
876
877 /*
878 * Remove a dead transport
879 */
880 static void svc_delete_xprt(struct svc_xprt *xprt)
881 {
882 struct svc_serv *serv = xprt->xpt_server;
883 struct svc_deferred_req *dr;
884
885 /* Only do this once */
886 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
887 BUG();
888
889 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
890 xprt->xpt_ops->xpo_detach(xprt);
891
892 spin_lock_bh(&serv->sv_lock);
893 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
894 list_del_init(&xprt->xpt_list);
895 BUG_ON(!list_empty(&xprt->xpt_ready));
896 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
897 serv->sv_tmpcnt--;
898 spin_unlock_bh(&serv->sv_lock);
899
900 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
901 kfree(dr);
902
903 call_xpt_users(xprt);
904 svc_xprt_put(xprt);
905 }
906
907 void svc_close_xprt(struct svc_xprt *xprt)
908 {
909 set_bit(XPT_CLOSE, &xprt->xpt_flags);
910 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
911 /* someone else will have to effect the close */
912 return;
913 /*
914 * We expect svc_close_xprt() to work even when no threads are
915 * running (e.g., while configuring the server before starting
916 * any threads), so if the transport isn't busy, we delete
917 * it ourself:
918 */
919 svc_delete_xprt(xprt);
920 }
921 EXPORT_SYMBOL_GPL(svc_close_xprt);
922
923 static void svc_close_list(struct list_head *xprt_list, struct net *net)
924 {
925 struct svc_xprt *xprt;
926
927 list_for_each_entry(xprt, xprt_list, xpt_list) {
928 if (xprt->xpt_net != net)
929 continue;
930 set_bit(XPT_CLOSE, &xprt->xpt_flags);
931 set_bit(XPT_BUSY, &xprt->xpt_flags);
932 }
933 }
934
935 static void svc_clear_pools(struct svc_serv *serv, struct net *net)
936 {
937 struct svc_pool *pool;
938 struct svc_xprt *xprt;
939 struct svc_xprt *tmp;
940 int i;
941
942 for (i = 0; i < serv->sv_nrpools; i++) {
943 pool = &serv->sv_pools[i];
944
945 spin_lock_bh(&pool->sp_lock);
946 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
947 if (xprt->xpt_net != net)
948 continue;
949 list_del_init(&xprt->xpt_ready);
950 }
951 spin_unlock_bh(&pool->sp_lock);
952 }
953 }
954
955 static void svc_clear_list(struct list_head *xprt_list, struct net *net)
956 {
957 struct svc_xprt *xprt;
958 struct svc_xprt *tmp;
959
960 list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
961 if (xprt->xpt_net != net)
962 continue;
963 svc_delete_xprt(xprt);
964 }
965 list_for_each_entry(xprt, xprt_list, xpt_list)
966 BUG_ON(xprt->xpt_net == net);
967 }
968
969 void svc_close_net(struct svc_serv *serv, struct net *net)
970 {
971 svc_close_list(&serv->sv_tempsocks, net);
972 svc_close_list(&serv->sv_permsocks, net);
973
974 svc_clear_pools(serv, net);
975 /*
976 * At this point the sp_sockets lists will stay empty, since
977 * svc_xprt_enqueue will not add new entries without taking the
978 * sp_lock and checking XPT_BUSY.
979 */
980 svc_clear_list(&serv->sv_tempsocks, net);
981 svc_clear_list(&serv->sv_permsocks, net);
982 }
983
984 /*
985 * Handle defer and revisit of requests
986 */
987
988 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
989 {
990 struct svc_deferred_req *dr =
991 container_of(dreq, struct svc_deferred_req, handle);
992 struct svc_xprt *xprt = dr->xprt;
993
994 spin_lock(&xprt->xpt_lock);
995 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
996 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
997 spin_unlock(&xprt->xpt_lock);
998 dprintk("revisit canceled\n");
999 svc_xprt_put(xprt);
1000 kfree(dr);
1001 return;
1002 }
1003 dprintk("revisit queued\n");
1004 dr->xprt = NULL;
1005 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1006 spin_unlock(&xprt->xpt_lock);
1007 svc_xprt_enqueue(xprt);
1008 svc_xprt_put(xprt);
1009 }
1010
1011 /*
1012 * Save the request off for later processing. The request buffer looks
1013 * like this:
1014 *
1015 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1016 *
1017 * This code can only handle requests that consist of an xprt-header
1018 * and rpc-header.
1019 */
1020 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1021 {
1022 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1023 struct svc_deferred_req *dr;
1024
1025 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
1026 return NULL; /* if more than a page, give up FIXME */
1027 if (rqstp->rq_deferred) {
1028 dr = rqstp->rq_deferred;
1029 rqstp->rq_deferred = NULL;
1030 } else {
1031 size_t skip;
1032 size_t size;
1033 /* FIXME maybe discard if size too large */
1034 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1035 dr = kmalloc(size, GFP_KERNEL);
1036 if (dr == NULL)
1037 return NULL;
1038
1039 dr->handle.owner = rqstp->rq_server;
1040 dr->prot = rqstp->rq_prot;
1041 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1042 dr->addrlen = rqstp->rq_addrlen;
1043 dr->daddr = rqstp->rq_daddr;
1044 dr->argslen = rqstp->rq_arg.len >> 2;
1045 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1046
1047 /* back up head to the start of the buffer and copy */
1048 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1049 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1050 dr->argslen << 2);
1051 }
1052 svc_xprt_get(rqstp->rq_xprt);
1053 dr->xprt = rqstp->rq_xprt;
1054 rqstp->rq_dropme = true;
1055
1056 dr->handle.revisit = svc_revisit;
1057 return &dr->handle;
1058 }
1059
1060 /*
1061 * recv data from a deferred request into an active one
1062 */
1063 static int svc_deferred_recv(struct svc_rqst *rqstp)
1064 {
1065 struct svc_deferred_req *dr = rqstp->rq_deferred;
1066
1067 /* setup iov_base past transport header */
1068 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1069 /* The iov_len does not include the transport header bytes */
1070 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1071 rqstp->rq_arg.page_len = 0;
1072 /* The rq_arg.len includes the transport header bytes */
1073 rqstp->rq_arg.len = dr->argslen<<2;
1074 rqstp->rq_prot = dr->prot;
1075 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1076 rqstp->rq_addrlen = dr->addrlen;
1077 /* Save off transport header len in case we get deferred again */
1078 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1079 rqstp->rq_daddr = dr->daddr;
1080 rqstp->rq_respages = rqstp->rq_pages;
1081 return (dr->argslen<<2) - dr->xprt_hlen;
1082 }
1083
1084
1085 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1086 {
1087 struct svc_deferred_req *dr = NULL;
1088
1089 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1090 return NULL;
1091 spin_lock(&xprt->xpt_lock);
1092 if (!list_empty(&xprt->xpt_deferred)) {
1093 dr = list_entry(xprt->xpt_deferred.next,
1094 struct svc_deferred_req,
1095 handle.recent);
1096 list_del_init(&dr->handle.recent);
1097 } else
1098 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1099 spin_unlock(&xprt->xpt_lock);
1100 return dr;
1101 }
1102
1103 /**
1104 * svc_find_xprt - find an RPC transport instance
1105 * @serv: pointer to svc_serv to search
1106 * @xcl_name: C string containing transport's class name
1107 * @net: owner net pointer
1108 * @af: Address family of transport's local address
1109 * @port: transport's IP port number
1110 *
1111 * Return the transport instance pointer for the endpoint accepting
1112 * connections/peer traffic from the specified transport class,
1113 * address family and port.
1114 *
1115 * Specifying 0 for the address family or port is effectively a
1116 * wild-card, and will result in matching the first transport in the
1117 * service's list that has a matching class name.
1118 */
1119 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1120 struct net *net, const sa_family_t af,
1121 const unsigned short port)
1122 {
1123 struct svc_xprt *xprt;
1124 struct svc_xprt *found = NULL;
1125
1126 /* Sanity check the args */
1127 if (serv == NULL || xcl_name == NULL)
1128 return found;
1129
1130 spin_lock_bh(&serv->sv_lock);
1131 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1132 if (xprt->xpt_net != net)
1133 continue;
1134 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1135 continue;
1136 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1137 continue;
1138 if (port != 0 && port != svc_xprt_local_port(xprt))
1139 continue;
1140 found = xprt;
1141 svc_xprt_get(xprt);
1142 break;
1143 }
1144 spin_unlock_bh(&serv->sv_lock);
1145 return found;
1146 }
1147 EXPORT_SYMBOL_GPL(svc_find_xprt);
1148
1149 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1150 char *pos, int remaining)
1151 {
1152 int len;
1153
1154 len = snprintf(pos, remaining, "%s %u\n",
1155 xprt->xpt_class->xcl_name,
1156 svc_xprt_local_port(xprt));
1157 if (len >= remaining)
1158 return -ENAMETOOLONG;
1159 return len;
1160 }
1161
1162 /**
1163 * svc_xprt_names - format a buffer with a list of transport names
1164 * @serv: pointer to an RPC service
1165 * @buf: pointer to a buffer to be filled in
1166 * @buflen: length of buffer to be filled in
1167 *
1168 * Fills in @buf with a string containing a list of transport names,
1169 * each name terminated with '\n'.
1170 *
1171 * Returns positive length of the filled-in string on success; otherwise
1172 * a negative errno value is returned if an error occurs.
1173 */
1174 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1175 {
1176 struct svc_xprt *xprt;
1177 int len, totlen;
1178 char *pos;
1179
1180 /* Sanity check args */
1181 if (!serv)
1182 return 0;
1183
1184 spin_lock_bh(&serv->sv_lock);
1185
1186 pos = buf;
1187 totlen = 0;
1188 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1189 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1190 if (len < 0) {
1191 *buf = '\0';
1192 totlen = len;
1193 }
1194 if (len <= 0)
1195 break;
1196
1197 pos += len;
1198 totlen += len;
1199 }
1200
1201 spin_unlock_bh(&serv->sv_lock);
1202 return totlen;
1203 }
1204 EXPORT_SYMBOL_GPL(svc_xprt_names);
1205
1206
1207 /*----------------------------------------------------------------------------*/
1208
1209 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1210 {
1211 unsigned int pidx = (unsigned int)*pos;
1212 struct svc_serv *serv = m->private;
1213
1214 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1215
1216 if (!pidx)
1217 return SEQ_START_TOKEN;
1218 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1219 }
1220
1221 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1222 {
1223 struct svc_pool *pool = p;
1224 struct svc_serv *serv = m->private;
1225
1226 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1227
1228 if (p == SEQ_START_TOKEN) {
1229 pool = &serv->sv_pools[0];
1230 } else {
1231 unsigned int pidx = (pool - &serv->sv_pools[0]);
1232 if (pidx < serv->sv_nrpools-1)
1233 pool = &serv->sv_pools[pidx+1];
1234 else
1235 pool = NULL;
1236 }
1237 ++*pos;
1238 return pool;
1239 }
1240
1241 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1242 {
1243 }
1244
1245 static int svc_pool_stats_show(struct seq_file *m, void *p)
1246 {
1247 struct svc_pool *pool = p;
1248
1249 if (p == SEQ_START_TOKEN) {
1250 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1251 return 0;
1252 }
1253
1254 seq_printf(m, "%u %lu %lu %lu %lu\n",
1255 pool->sp_id,
1256 pool->sp_stats.packets,
1257 pool->sp_stats.sockets_queued,
1258 pool->sp_stats.threads_woken,
1259 pool->sp_stats.threads_timedout);
1260
1261 return 0;
1262 }
1263
1264 static const struct seq_operations svc_pool_stats_seq_ops = {
1265 .start = svc_pool_stats_start,
1266 .next = svc_pool_stats_next,
1267 .stop = svc_pool_stats_stop,
1268 .show = svc_pool_stats_show,
1269 };
1270
1271 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1272 {
1273 int err;
1274
1275 err = seq_open(file, &svc_pool_stats_seq_ops);
1276 if (!err)
1277 ((struct seq_file *) file->private_data)->private = serv;
1278 return err;
1279 }
1280 EXPORT_SYMBOL(svc_pool_stats_open);
1281
1282 /*----------------------------------------------------------------------------*/
This page took 0.077211 seconds and 5 git commands to generate.