2 * linux/net/sunrpc/svc_xprt.c
4 * Author: Tom Tucker <tom@opengridcomputing.com>
7 #include <linux/sched.h>
8 #include <linux/smp_lock.h>
9 #include <linux/errno.h>
10 #include <linux/freezer.h>
11 #include <linux/kthread.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
17 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
19 static struct svc_deferred_req
*svc_deferred_dequeue(struct svc_xprt
*xprt
);
20 static int svc_deferred_recv(struct svc_rqst
*rqstp
);
21 static struct cache_deferred_req
*svc_defer(struct cache_req
*req
);
22 static void svc_age_temp_xprts(unsigned long closure
);
24 /* apparently the "standard" is that clients close
25 * idle connections after 5 minutes, servers after
27 * http://www.connectathon.org/talks96/nfstcp.pdf
29 static int svc_conn_age_period
= 6*60;
31 /* List of registered transport classes */
32 static DEFINE_SPINLOCK(svc_xprt_class_lock
);
33 static LIST_HEAD(svc_xprt_class_list
);
35 /* SMP locking strategy:
37 * svc_pool->sp_lock protects most of the fields of that pool.
38 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
39 * when both need to be taken (rare), svc_serv->sv_lock is first.
40 * BKL protects svc_serv->sv_nrthread.
41 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
42 * and the ->sk_info_authunix cache.
44 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
45 * enqueued multiply. During normal transport processing this bit
46 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
47 * Providers should not manipulate this bit directly.
49 * Some flags can be set to certain values at any time
50 * providing that certain rules are followed:
53 * - Can be set or cleared at any time.
54 * - After a set, svc_xprt_enqueue must be called to enqueue
55 * the transport for processing.
56 * - After a clear, the transport must be read/accepted.
57 * If this succeeds, it must be set again.
59 * - Can set at any time. It is never cleared.
61 * - Can only be set while XPT_BUSY is held which ensures
62 * that no other thread will be using the transport or will
63 * try to set XPT_DEAD.
66 int svc_reg_xprt_class(struct svc_xprt_class
*xcl
)
68 struct svc_xprt_class
*cl
;
71 dprintk("svc: Adding svc transport class '%s'\n", xcl
->xcl_name
);
73 INIT_LIST_HEAD(&xcl
->xcl_list
);
74 spin_lock(&svc_xprt_class_lock
);
75 /* Make sure there isn't already a class with the same name */
76 list_for_each_entry(cl
, &svc_xprt_class_list
, xcl_list
) {
77 if (strcmp(xcl
->xcl_name
, cl
->xcl_name
) == 0)
80 list_add_tail(&xcl
->xcl_list
, &svc_xprt_class_list
);
83 spin_unlock(&svc_xprt_class_lock
);
86 EXPORT_SYMBOL_GPL(svc_reg_xprt_class
);
88 void svc_unreg_xprt_class(struct svc_xprt_class
*xcl
)
90 dprintk("svc: Removing svc transport class '%s'\n", xcl
->xcl_name
);
91 spin_lock(&svc_xprt_class_lock
);
92 list_del_init(&xcl
->xcl_list
);
93 spin_unlock(&svc_xprt_class_lock
);
95 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class
);
98 * Format the transport list for printing
100 int svc_print_xprts(char *buf
, int maxlen
)
102 struct list_head
*le
;
107 spin_lock(&svc_xprt_class_lock
);
108 list_for_each(le
, &svc_xprt_class_list
) {
110 struct svc_xprt_class
*xcl
=
111 list_entry(le
, struct svc_xprt_class
, xcl_list
);
113 sprintf(tmpstr
, "%s %d\n", xcl
->xcl_name
, xcl
->xcl_max_payload
);
114 slen
= strlen(tmpstr
);
115 if (len
+ slen
> maxlen
)
120 spin_unlock(&svc_xprt_class_lock
);
125 static void svc_xprt_free(struct kref
*kref
)
127 struct svc_xprt
*xprt
=
128 container_of(kref
, struct svc_xprt
, xpt_ref
);
129 struct module
*owner
= xprt
->xpt_class
->xcl_owner
;
130 if (test_bit(XPT_CACHE_AUTH
, &xprt
->xpt_flags
) &&
131 xprt
->xpt_auth_cache
!= NULL
)
132 svcauth_unix_info_release(xprt
->xpt_auth_cache
);
133 xprt
->xpt_ops
->xpo_free(xprt
);
137 void svc_xprt_put(struct svc_xprt
*xprt
)
139 kref_put(&xprt
->xpt_ref
, svc_xprt_free
);
141 EXPORT_SYMBOL_GPL(svc_xprt_put
);
144 * Called by transport drivers to initialize the transport independent
145 * portion of the transport instance.
147 void svc_xprt_init(struct svc_xprt_class
*xcl
, struct svc_xprt
*xprt
,
148 struct svc_serv
*serv
)
150 memset(xprt
, 0, sizeof(*xprt
));
151 xprt
->xpt_class
= xcl
;
152 xprt
->xpt_ops
= xcl
->xcl_ops
;
153 kref_init(&xprt
->xpt_ref
);
154 xprt
->xpt_server
= serv
;
155 INIT_LIST_HEAD(&xprt
->xpt_list
);
156 INIT_LIST_HEAD(&xprt
->xpt_ready
);
157 INIT_LIST_HEAD(&xprt
->xpt_deferred
);
158 mutex_init(&xprt
->xpt_mutex
);
159 spin_lock_init(&xprt
->xpt_lock
);
160 set_bit(XPT_BUSY
, &xprt
->xpt_flags
);
161 rpc_init_wait_queue(&xprt
->xpt_bc_pending
, "xpt_bc_pending");
163 EXPORT_SYMBOL_GPL(svc_xprt_init
);
165 static struct svc_xprt
*__svc_xpo_create(struct svc_xprt_class
*xcl
,
166 struct svc_serv
*serv
,
168 const unsigned short port
,
171 struct sockaddr_in sin
= {
172 .sin_family
= AF_INET
,
173 .sin_addr
.s_addr
= htonl(INADDR_ANY
),
174 .sin_port
= htons(port
),
176 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
177 struct sockaddr_in6 sin6
= {
178 .sin6_family
= AF_INET6
,
179 .sin6_addr
= IN6ADDR_ANY_INIT
,
180 .sin6_port
= htons(port
),
182 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
183 struct sockaddr
*sap
;
188 sap
= (struct sockaddr
*)&sin
;
191 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
193 sap
= (struct sockaddr
*)&sin6
;
196 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
198 return ERR_PTR(-EAFNOSUPPORT
);
201 return xcl
->xcl_ops
->xpo_create(serv
, sap
, len
, flags
);
204 int svc_create_xprt(struct svc_serv
*serv
, const char *xprt_name
,
205 const int family
, const unsigned short port
,
208 struct svc_xprt_class
*xcl
;
210 dprintk("svc: creating transport %s[%d]\n", xprt_name
, port
);
211 spin_lock(&svc_xprt_class_lock
);
212 list_for_each_entry(xcl
, &svc_xprt_class_list
, xcl_list
) {
213 struct svc_xprt
*newxprt
;
215 if (strcmp(xprt_name
, xcl
->xcl_name
))
218 if (!try_module_get(xcl
->xcl_owner
))
221 spin_unlock(&svc_xprt_class_lock
);
222 newxprt
= __svc_xpo_create(xcl
, serv
, family
, port
, flags
);
223 if (IS_ERR(newxprt
)) {
224 module_put(xcl
->xcl_owner
);
225 return PTR_ERR(newxprt
);
228 clear_bit(XPT_TEMP
, &newxprt
->xpt_flags
);
229 spin_lock_bh(&serv
->sv_lock
);
230 list_add(&newxprt
->xpt_list
, &serv
->sv_permsocks
);
231 spin_unlock_bh(&serv
->sv_lock
);
232 clear_bit(XPT_BUSY
, &newxprt
->xpt_flags
);
233 return svc_xprt_local_port(newxprt
);
236 spin_unlock(&svc_xprt_class_lock
);
237 dprintk("svc: transport %s not found\n", xprt_name
);
239 /* This errno is exposed to user space. Provide a reasonable
240 * perror msg for a bad transport. */
241 return -EPROTONOSUPPORT
;
243 EXPORT_SYMBOL_GPL(svc_create_xprt
);
246 * Copy the local and remote xprt addresses to the rqstp structure
248 void svc_xprt_copy_addrs(struct svc_rqst
*rqstp
, struct svc_xprt
*xprt
)
250 struct sockaddr
*sin
;
252 memcpy(&rqstp
->rq_addr
, &xprt
->xpt_remote
, xprt
->xpt_remotelen
);
253 rqstp
->rq_addrlen
= xprt
->xpt_remotelen
;
256 * Destination address in request is needed for binding the
257 * source address in RPC replies/callbacks later.
259 sin
= (struct sockaddr
*)&xprt
->xpt_local
;
260 switch (sin
->sa_family
) {
262 rqstp
->rq_daddr
.addr
= ((struct sockaddr_in
*)sin
)->sin_addr
;
265 rqstp
->rq_daddr
.addr6
= ((struct sockaddr_in6
*)sin
)->sin6_addr
;
269 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs
);
272 * svc_print_addr - Format rq_addr field for printing
273 * @rqstp: svc_rqst struct containing address to print
274 * @buf: target buffer for formatted address
275 * @len: length of target buffer
278 char *svc_print_addr(struct svc_rqst
*rqstp
, char *buf
, size_t len
)
280 return __svc_print_addr(svc_addr(rqstp
), buf
, len
);
282 EXPORT_SYMBOL_GPL(svc_print_addr
);
285 * Queue up an idle server thread. Must have pool->sp_lock held.
286 * Note: this is really a stack rather than a queue, so that we only
287 * use as many different threads as we need, and the rest don't pollute
290 static void svc_thread_enqueue(struct svc_pool
*pool
, struct svc_rqst
*rqstp
)
292 list_add(&rqstp
->rq_list
, &pool
->sp_threads
);
296 * Dequeue an nfsd thread. Must have pool->sp_lock held.
298 static void svc_thread_dequeue(struct svc_pool
*pool
, struct svc_rqst
*rqstp
)
300 list_del(&rqstp
->rq_list
);
304 * Queue up a transport with data pending. If there are idle nfsd
305 * processes, wake 'em up.
308 void svc_xprt_enqueue(struct svc_xprt
*xprt
)
310 struct svc_serv
*serv
= xprt
->xpt_server
;
311 struct svc_pool
*pool
;
312 struct svc_rqst
*rqstp
;
315 if (!(xprt
->xpt_flags
&
316 ((1<<XPT_CONN
)|(1<<XPT_DATA
)|(1<<XPT_CLOSE
)|(1<<XPT_DEFERRED
))))
320 pool
= svc_pool_for_cpu(xprt
->xpt_server
, cpu
);
323 spin_lock_bh(&pool
->sp_lock
);
325 if (!list_empty(&pool
->sp_threads
) &&
326 !list_empty(&pool
->sp_sockets
))
329 "threads and transports both waiting??\n");
331 if (test_bit(XPT_DEAD
, &xprt
->xpt_flags
)) {
332 /* Don't enqueue dead transports */
333 dprintk("svc: transport %p is dead, not enqueued\n", xprt
);
337 pool
->sp_stats
.packets
++;
339 /* Mark transport as busy. It will remain in this state until
340 * the provider calls svc_xprt_received. We update XPT_BUSY
341 * atomically because it also guards against trying to enqueue
342 * the transport twice.
344 if (test_and_set_bit(XPT_BUSY
, &xprt
->xpt_flags
)) {
345 /* Don't enqueue transport while already enqueued */
346 dprintk("svc: transport %p busy, not enqueued\n", xprt
);
349 BUG_ON(xprt
->xpt_pool
!= NULL
);
350 xprt
->xpt_pool
= pool
;
352 /* Handle pending connection */
353 if (test_bit(XPT_CONN
, &xprt
->xpt_flags
))
356 /* Handle close in-progress */
357 if (test_bit(XPT_CLOSE
, &xprt
->xpt_flags
))
360 /* Check if we have space to reply to a request */
361 if (!xprt
->xpt_ops
->xpo_has_wspace(xprt
)) {
362 /* Don't enqueue while not enough space for reply */
363 dprintk("svc: no write space, transport %p not enqueued\n",
365 xprt
->xpt_pool
= NULL
;
366 clear_bit(XPT_BUSY
, &xprt
->xpt_flags
);
371 if (!list_empty(&pool
->sp_threads
)) {
372 rqstp
= list_entry(pool
->sp_threads
.next
,
375 dprintk("svc: transport %p served by daemon %p\n",
377 svc_thread_dequeue(pool
, rqstp
);
380 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
381 rqstp
, rqstp
->rq_xprt
);
382 rqstp
->rq_xprt
= xprt
;
384 rqstp
->rq_reserved
= serv
->sv_max_mesg
;
385 atomic_add(rqstp
->rq_reserved
, &xprt
->xpt_reserved
);
386 pool
->sp_stats
.threads_woken
++;
387 BUG_ON(xprt
->xpt_pool
!= pool
);
388 wake_up(&rqstp
->rq_wait
);
390 dprintk("svc: transport %p put into queue\n", xprt
);
391 list_add_tail(&xprt
->xpt_ready
, &pool
->sp_sockets
);
392 pool
->sp_stats
.sockets_queued
++;
393 BUG_ON(xprt
->xpt_pool
!= pool
);
397 spin_unlock_bh(&pool
->sp_lock
);
399 EXPORT_SYMBOL_GPL(svc_xprt_enqueue
);
402 * Dequeue the first transport. Must be called with the pool->sp_lock held.
404 static struct svc_xprt
*svc_xprt_dequeue(struct svc_pool
*pool
)
406 struct svc_xprt
*xprt
;
408 if (list_empty(&pool
->sp_sockets
))
411 xprt
= list_entry(pool
->sp_sockets
.next
,
412 struct svc_xprt
, xpt_ready
);
413 list_del_init(&xprt
->xpt_ready
);
415 dprintk("svc: transport %p dequeued, inuse=%d\n",
416 xprt
, atomic_read(&xprt
->xpt_ref
.refcount
));
422 * svc_xprt_received conditionally queues the transport for processing
423 * by another thread. The caller must hold the XPT_BUSY bit and must
424 * not thereafter touch transport data.
426 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
427 * insufficient) data.
429 void svc_xprt_received(struct svc_xprt
*xprt
)
431 BUG_ON(!test_bit(XPT_BUSY
, &xprt
->xpt_flags
));
432 xprt
->xpt_pool
= NULL
;
433 clear_bit(XPT_BUSY
, &xprt
->xpt_flags
);
434 svc_xprt_enqueue(xprt
);
436 EXPORT_SYMBOL_GPL(svc_xprt_received
);
439 * svc_reserve - change the space reserved for the reply to a request.
440 * @rqstp: The request in question
441 * @space: new max space to reserve
443 * Each request reserves some space on the output queue of the transport
444 * to make sure the reply fits. This function reduces that reserved
445 * space to be the amount of space used already, plus @space.
448 void svc_reserve(struct svc_rqst
*rqstp
, int space
)
450 space
+= rqstp
->rq_res
.head
[0].iov_len
;
452 if (space
< rqstp
->rq_reserved
) {
453 struct svc_xprt
*xprt
= rqstp
->rq_xprt
;
454 atomic_sub((rqstp
->rq_reserved
- space
), &xprt
->xpt_reserved
);
455 rqstp
->rq_reserved
= space
;
457 svc_xprt_enqueue(xprt
);
460 EXPORT_SYMBOL_GPL(svc_reserve
);
462 static void svc_xprt_release(struct svc_rqst
*rqstp
)
464 struct svc_xprt
*xprt
= rqstp
->rq_xprt
;
466 rqstp
->rq_xprt
->xpt_ops
->xpo_release_rqst(rqstp
);
468 kfree(rqstp
->rq_deferred
);
469 rqstp
->rq_deferred
= NULL
;
471 svc_free_res_pages(rqstp
);
472 rqstp
->rq_res
.page_len
= 0;
473 rqstp
->rq_res
.page_base
= 0;
475 /* Reset response buffer and release
477 * But first, check that enough space was reserved
478 * for the reply, otherwise we have a bug!
480 if ((rqstp
->rq_res
.len
) > rqstp
->rq_reserved
)
481 printk(KERN_ERR
"RPC request reserved %d but used %d\n",
485 rqstp
->rq_res
.head
[0].iov_len
= 0;
486 svc_reserve(rqstp
, 0);
487 rqstp
->rq_xprt
= NULL
;
493 * External function to wake up a server waiting for data
494 * This really only makes sense for services like lockd
495 * which have exactly one thread anyway.
497 void svc_wake_up(struct svc_serv
*serv
)
499 struct svc_rqst
*rqstp
;
501 struct svc_pool
*pool
;
503 for (i
= 0; i
< serv
->sv_nrpools
; i
++) {
504 pool
= &serv
->sv_pools
[i
];
506 spin_lock_bh(&pool
->sp_lock
);
507 if (!list_empty(&pool
->sp_threads
)) {
508 rqstp
= list_entry(pool
->sp_threads
.next
,
511 dprintk("svc: daemon %p woken up.\n", rqstp
);
513 svc_thread_dequeue(pool, rqstp);
514 rqstp->rq_xprt = NULL;
516 wake_up(&rqstp
->rq_wait
);
518 spin_unlock_bh(&pool
->sp_lock
);
521 EXPORT_SYMBOL_GPL(svc_wake_up
);
523 int svc_port_is_privileged(struct sockaddr
*sin
)
525 switch (sin
->sa_family
) {
527 return ntohs(((struct sockaddr_in
*)sin
)->sin_port
)
530 return ntohs(((struct sockaddr_in6
*)sin
)->sin6_port
)
538 * Make sure that we don't have too many active connections. If we have,
539 * something must be dropped. It's not clear what will happen if we allow
540 * "too many" connections, but when dealing with network-facing software,
541 * we have to code defensively. Here we do that by imposing hard limits.
543 * There's no point in trying to do random drop here for DoS
544 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
545 * attacker can easily beat that.
547 * The only somewhat efficient mechanism would be if drop old
548 * connections from the same IP first. But right now we don't even
549 * record the client IP in svc_sock.
551 * single-threaded services that expect a lot of clients will probably
552 * need to set sv_maxconn to override the default value which is based
553 * on the number of threads
555 static void svc_check_conn_limits(struct svc_serv
*serv
)
557 unsigned int limit
= serv
->sv_maxconn
? serv
->sv_maxconn
:
558 (serv
->sv_nrthreads
+3) * 20;
560 if (serv
->sv_tmpcnt
> limit
) {
561 struct svc_xprt
*xprt
= NULL
;
562 spin_lock_bh(&serv
->sv_lock
);
563 if (!list_empty(&serv
->sv_tempsocks
)) {
564 if (net_ratelimit()) {
565 /* Try to help the admin */
566 printk(KERN_NOTICE
"%s: too many open "
567 "connections, consider increasing %s\n",
568 serv
->sv_name
, serv
->sv_maxconn
?
569 "the max number of connections." :
570 "the number of threads.");
573 * Always select the oldest connection. It's not fair,
576 xprt
= list_entry(serv
->sv_tempsocks
.prev
,
579 set_bit(XPT_CLOSE
, &xprt
->xpt_flags
);
582 spin_unlock_bh(&serv
->sv_lock
);
585 svc_xprt_enqueue(xprt
);
592 * Receive the next request on any transport. This code is carefully
593 * organised not to touch any cachelines in the shared svc_serv
594 * structure, only cachelines in the local svc_pool.
596 int svc_recv(struct svc_rqst
*rqstp
, long timeout
)
598 struct svc_xprt
*xprt
= NULL
;
599 struct svc_serv
*serv
= rqstp
->rq_server
;
600 struct svc_pool
*pool
= rqstp
->rq_pool
;
604 DECLARE_WAITQUEUE(wait
, current
);
607 dprintk("svc: server %p waiting for data (to = %ld)\n",
612 "svc_recv: service %p, transport not NULL!\n",
614 if (waitqueue_active(&rqstp
->rq_wait
))
616 "svc_recv: service %p, wait queue active!\n",
619 /* now allocate needed pages. If we get a failure, sleep briefly */
620 pages
= (serv
->sv_max_mesg
+ PAGE_SIZE
) / PAGE_SIZE
;
621 for (i
= 0; i
< pages
; i
++)
622 while (rqstp
->rq_pages
[i
] == NULL
) {
623 struct page
*p
= alloc_page(GFP_KERNEL
);
625 set_current_state(TASK_INTERRUPTIBLE
);
626 if (signalled() || kthread_should_stop()) {
627 set_current_state(TASK_RUNNING
);
630 schedule_timeout(msecs_to_jiffies(500));
632 rqstp
->rq_pages
[i
] = p
;
634 rqstp
->rq_pages
[i
++] = NULL
; /* this might be seen in nfs_read_actor */
635 BUG_ON(pages
>= RPCSVC_MAXPAGES
);
637 /* Make arg->head point to first page and arg->pages point to rest */
638 arg
= &rqstp
->rq_arg
;
639 arg
->head
[0].iov_base
= page_address(rqstp
->rq_pages
[0]);
640 arg
->head
[0].iov_len
= PAGE_SIZE
;
641 arg
->pages
= rqstp
->rq_pages
+ 1;
643 /* save at least one page for response */
644 arg
->page_len
= (pages
-2)*PAGE_SIZE
;
645 arg
->len
= (pages
-1)*PAGE_SIZE
;
646 arg
->tail
[0].iov_len
= 0;
650 if (signalled() || kthread_should_stop())
653 spin_lock_bh(&pool
->sp_lock
);
654 xprt
= svc_xprt_dequeue(pool
);
656 rqstp
->rq_xprt
= xprt
;
658 rqstp
->rq_reserved
= serv
->sv_max_mesg
;
659 atomic_add(rqstp
->rq_reserved
, &xprt
->xpt_reserved
);
661 /* No data pending. Go to sleep */
662 svc_thread_enqueue(pool
, rqstp
);
665 * We have to be able to interrupt this wait
666 * to bring down the daemons ...
668 set_current_state(TASK_INTERRUPTIBLE
);
671 * checking kthread_should_stop() here allows us to avoid
672 * locking and signalling when stopping kthreads that call
673 * svc_recv. If the thread has already been woken up, then
674 * we can exit here without sleeping. If not, then it
675 * it'll be woken up quickly during the schedule_timeout
677 if (kthread_should_stop()) {
678 set_current_state(TASK_RUNNING
);
679 spin_unlock_bh(&pool
->sp_lock
);
683 add_wait_queue(&rqstp
->rq_wait
, &wait
);
684 spin_unlock_bh(&pool
->sp_lock
);
686 time_left
= schedule_timeout(timeout
);
690 spin_lock_bh(&pool
->sp_lock
);
691 remove_wait_queue(&rqstp
->rq_wait
, &wait
);
693 pool
->sp_stats
.threads_timedout
++;
695 xprt
= rqstp
->rq_xprt
;
697 svc_thread_dequeue(pool
, rqstp
);
698 spin_unlock_bh(&pool
->sp_lock
);
699 dprintk("svc: server %p, no data yet\n", rqstp
);
700 if (signalled() || kthread_should_stop())
706 spin_unlock_bh(&pool
->sp_lock
);
709 if (test_bit(XPT_CLOSE
, &xprt
->xpt_flags
)) {
710 dprintk("svc_recv: found XPT_CLOSE\n");
711 svc_delete_xprt(xprt
);
712 } else if (test_bit(XPT_LISTENER
, &xprt
->xpt_flags
)) {
713 struct svc_xprt
*newxpt
;
714 newxpt
= xprt
->xpt_ops
->xpo_accept(xprt
);
717 * We know this module_get will succeed because the
718 * listener holds a reference too
720 __module_get(newxpt
->xpt_class
->xcl_owner
);
721 svc_check_conn_limits(xprt
->xpt_server
);
722 spin_lock_bh(&serv
->sv_lock
);
723 set_bit(XPT_TEMP
, &newxpt
->xpt_flags
);
724 list_add(&newxpt
->xpt_list
, &serv
->sv_tempsocks
);
726 if (serv
->sv_temptimer
.function
== NULL
) {
727 /* setup timer to age temp transports */
728 setup_timer(&serv
->sv_temptimer
,
730 (unsigned long)serv
);
731 mod_timer(&serv
->sv_temptimer
,
732 jiffies
+ svc_conn_age_period
* HZ
);
734 spin_unlock_bh(&serv
->sv_lock
);
735 svc_xprt_received(newxpt
);
737 svc_xprt_received(xprt
);
739 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
740 rqstp
, pool
->sp_id
, xprt
,
741 atomic_read(&xprt
->xpt_ref
.refcount
));
742 rqstp
->rq_deferred
= svc_deferred_dequeue(xprt
);
743 if (rqstp
->rq_deferred
) {
744 svc_xprt_received(xprt
);
745 len
= svc_deferred_recv(rqstp
);
747 len
= xprt
->xpt_ops
->xpo_recvfrom(rqstp
);
748 dprintk("svc: got len=%d\n", len
);
751 /* No data, incomplete (TCP) read, or accept() */
752 if (len
== 0 || len
== -EAGAIN
) {
753 rqstp
->rq_res
.len
= 0;
754 svc_xprt_release(rqstp
);
757 clear_bit(XPT_OLD
, &xprt
->xpt_flags
);
759 rqstp
->rq_secure
= svc_port_is_privileged(svc_addr(rqstp
));
760 rqstp
->rq_chandle
.defer
= svc_defer
;
763 serv
->sv_stats
->netcnt
++;
766 EXPORT_SYMBOL_GPL(svc_recv
);
771 void svc_drop(struct svc_rqst
*rqstp
)
773 dprintk("svc: xprt %p dropped request\n", rqstp
->rq_xprt
);
774 svc_xprt_release(rqstp
);
776 EXPORT_SYMBOL_GPL(svc_drop
);
779 * Return reply to client.
781 int svc_send(struct svc_rqst
*rqstp
)
783 struct svc_xprt
*xprt
;
787 xprt
= rqstp
->rq_xprt
;
791 /* release the receive skb before sending the reply */
792 rqstp
->rq_xprt
->xpt_ops
->xpo_release_rqst(rqstp
);
794 /* calculate over-all length */
796 xb
->len
= xb
->head
[0].iov_len
+
800 /* Grab mutex to serialize outgoing data. */
801 mutex_lock(&xprt
->xpt_mutex
);
802 if (test_bit(XPT_DEAD
, &xprt
->xpt_flags
))
805 len
= xprt
->xpt_ops
->xpo_sendto(rqstp
);
806 mutex_unlock(&xprt
->xpt_mutex
);
807 rpc_wake_up(&xprt
->xpt_bc_pending
);
808 svc_xprt_release(rqstp
);
810 if (len
== -ECONNREFUSED
|| len
== -ENOTCONN
|| len
== -EAGAIN
)
816 * Timer function to close old temporary transports, using
817 * a mark-and-sweep algorithm.
819 static void svc_age_temp_xprts(unsigned long closure
)
821 struct svc_serv
*serv
= (struct svc_serv
*)closure
;
822 struct svc_xprt
*xprt
;
823 struct list_head
*le
, *next
;
824 LIST_HEAD(to_be_aged
);
826 dprintk("svc_age_temp_xprts\n");
828 if (!spin_trylock_bh(&serv
->sv_lock
)) {
829 /* busy, try again 1 sec later */
830 dprintk("svc_age_temp_xprts: busy\n");
831 mod_timer(&serv
->sv_temptimer
, jiffies
+ HZ
);
835 list_for_each_safe(le
, next
, &serv
->sv_tempsocks
) {
836 xprt
= list_entry(le
, struct svc_xprt
, xpt_list
);
838 /* First time through, just mark it OLD. Second time
839 * through, close it. */
840 if (!test_and_set_bit(XPT_OLD
, &xprt
->xpt_flags
))
842 if (atomic_read(&xprt
->xpt_ref
.refcount
) > 1 ||
843 test_bit(XPT_BUSY
, &xprt
->xpt_flags
))
846 list_move(le
, &to_be_aged
);
847 set_bit(XPT_CLOSE
, &xprt
->xpt_flags
);
848 set_bit(XPT_DETACHED
, &xprt
->xpt_flags
);
850 spin_unlock_bh(&serv
->sv_lock
);
852 while (!list_empty(&to_be_aged
)) {
853 le
= to_be_aged
.next
;
854 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
856 xprt
= list_entry(le
, struct svc_xprt
, xpt_list
);
858 dprintk("queuing xprt %p for closing\n", xprt
);
860 /* a thread will dequeue and close it soon */
861 svc_xprt_enqueue(xprt
);
865 mod_timer(&serv
->sv_temptimer
, jiffies
+ svc_conn_age_period
* HZ
);
869 * Remove a dead transport
871 void svc_delete_xprt(struct svc_xprt
*xprt
)
873 struct svc_serv
*serv
= xprt
->xpt_server
;
874 struct svc_deferred_req
*dr
;
876 /* Only do this once */
877 if (test_and_set_bit(XPT_DEAD
, &xprt
->xpt_flags
))
880 dprintk("svc: svc_delete_xprt(%p)\n", xprt
);
881 xprt
->xpt_ops
->xpo_detach(xprt
);
883 spin_lock_bh(&serv
->sv_lock
);
884 if (!test_and_set_bit(XPT_DETACHED
, &xprt
->xpt_flags
))
885 list_del_init(&xprt
->xpt_list
);
887 * We used to delete the transport from whichever list
888 * it's sk_xprt.xpt_ready node was on, but we don't actually
889 * need to. This is because the only time we're called
890 * while still attached to a queue, the queue itself
891 * is about to be destroyed (in svc_destroy).
893 if (test_bit(XPT_TEMP
, &xprt
->xpt_flags
))
896 while ((dr
= svc_deferred_dequeue(xprt
)) != NULL
)
900 spin_unlock_bh(&serv
->sv_lock
);
903 void svc_close_xprt(struct svc_xprt
*xprt
)
905 set_bit(XPT_CLOSE
, &xprt
->xpt_flags
);
906 if (test_and_set_bit(XPT_BUSY
, &xprt
->xpt_flags
))
907 /* someone else will have to effect the close */
911 svc_delete_xprt(xprt
);
912 clear_bit(XPT_BUSY
, &xprt
->xpt_flags
);
915 EXPORT_SYMBOL_GPL(svc_close_xprt
);
917 void svc_close_all(struct list_head
*xprt_list
)
919 struct svc_xprt
*xprt
;
920 struct svc_xprt
*tmp
;
922 list_for_each_entry_safe(xprt
, tmp
, xprt_list
, xpt_list
) {
923 set_bit(XPT_CLOSE
, &xprt
->xpt_flags
);
924 if (test_bit(XPT_BUSY
, &xprt
->xpt_flags
)) {
925 /* Waiting to be processed, but no threads left,
926 * So just remove it from the waiting list
928 list_del_init(&xprt
->xpt_ready
);
929 clear_bit(XPT_BUSY
, &xprt
->xpt_flags
);
931 svc_close_xprt(xprt
);
936 * Handle defer and revisit of requests
939 static void svc_revisit(struct cache_deferred_req
*dreq
, int too_many
)
941 struct svc_deferred_req
*dr
=
942 container_of(dreq
, struct svc_deferred_req
, handle
);
943 struct svc_xprt
*xprt
= dr
->xprt
;
945 spin_lock(&xprt
->xpt_lock
);
946 set_bit(XPT_DEFERRED
, &xprt
->xpt_flags
);
947 if (too_many
|| test_bit(XPT_DEAD
, &xprt
->xpt_flags
)) {
948 spin_unlock(&xprt
->xpt_lock
);
949 dprintk("revisit canceled\n");
954 dprintk("revisit queued\n");
956 list_add(&dr
->handle
.recent
, &xprt
->xpt_deferred
);
957 spin_unlock(&xprt
->xpt_lock
);
958 svc_xprt_enqueue(xprt
);
963 * Save the request off for later processing. The request buffer looks
966 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
968 * This code can only handle requests that consist of an xprt-header
971 static struct cache_deferred_req
*svc_defer(struct cache_req
*req
)
973 struct svc_rqst
*rqstp
= container_of(req
, struct svc_rqst
, rq_chandle
);
974 struct svc_deferred_req
*dr
;
976 if (rqstp
->rq_arg
.page_len
|| !rqstp
->rq_usedeferral
)
977 return NULL
; /* if more than a page, give up FIXME */
978 if (rqstp
->rq_deferred
) {
979 dr
= rqstp
->rq_deferred
;
980 rqstp
->rq_deferred
= NULL
;
984 /* FIXME maybe discard if size too large */
985 size
= sizeof(struct svc_deferred_req
) + rqstp
->rq_arg
.len
;
986 dr
= kmalloc(size
, GFP_KERNEL
);
990 dr
->handle
.owner
= rqstp
->rq_server
;
991 dr
->prot
= rqstp
->rq_prot
;
992 memcpy(&dr
->addr
, &rqstp
->rq_addr
, rqstp
->rq_addrlen
);
993 dr
->addrlen
= rqstp
->rq_addrlen
;
994 dr
->daddr
= rqstp
->rq_daddr
;
995 dr
->argslen
= rqstp
->rq_arg
.len
>> 2;
996 dr
->xprt_hlen
= rqstp
->rq_xprt_hlen
;
998 /* back up head to the start of the buffer and copy */
999 skip
= rqstp
->rq_arg
.len
- rqstp
->rq_arg
.head
[0].iov_len
;
1000 memcpy(dr
->args
, rqstp
->rq_arg
.head
[0].iov_base
- skip
,
1003 svc_xprt_get(rqstp
->rq_xprt
);
1004 dr
->xprt
= rqstp
->rq_xprt
;
1006 dr
->handle
.revisit
= svc_revisit
;
1011 * recv data from a deferred request into an active one
1013 static int svc_deferred_recv(struct svc_rqst
*rqstp
)
1015 struct svc_deferred_req
*dr
= rqstp
->rq_deferred
;
1017 /* setup iov_base past transport header */
1018 rqstp
->rq_arg
.head
[0].iov_base
= dr
->args
+ (dr
->xprt_hlen
>>2);
1019 /* The iov_len does not include the transport header bytes */
1020 rqstp
->rq_arg
.head
[0].iov_len
= (dr
->argslen
<<2) - dr
->xprt_hlen
;
1021 rqstp
->rq_arg
.page_len
= 0;
1022 /* The rq_arg.len includes the transport header bytes */
1023 rqstp
->rq_arg
.len
= dr
->argslen
<<2;
1024 rqstp
->rq_prot
= dr
->prot
;
1025 memcpy(&rqstp
->rq_addr
, &dr
->addr
, dr
->addrlen
);
1026 rqstp
->rq_addrlen
= dr
->addrlen
;
1027 /* Save off transport header len in case we get deferred again */
1028 rqstp
->rq_xprt_hlen
= dr
->xprt_hlen
;
1029 rqstp
->rq_daddr
= dr
->daddr
;
1030 rqstp
->rq_respages
= rqstp
->rq_pages
;
1031 return (dr
->argslen
<<2) - dr
->xprt_hlen
;
1035 static struct svc_deferred_req
*svc_deferred_dequeue(struct svc_xprt
*xprt
)
1037 struct svc_deferred_req
*dr
= NULL
;
1039 if (!test_bit(XPT_DEFERRED
, &xprt
->xpt_flags
))
1041 spin_lock(&xprt
->xpt_lock
);
1042 clear_bit(XPT_DEFERRED
, &xprt
->xpt_flags
);
1043 if (!list_empty(&xprt
->xpt_deferred
)) {
1044 dr
= list_entry(xprt
->xpt_deferred
.next
,
1045 struct svc_deferred_req
,
1047 list_del_init(&dr
->handle
.recent
);
1048 set_bit(XPT_DEFERRED
, &xprt
->xpt_flags
);
1050 spin_unlock(&xprt
->xpt_lock
);
1055 * svc_find_xprt - find an RPC transport instance
1056 * @serv: pointer to svc_serv to search
1057 * @xcl_name: C string containing transport's class name
1058 * @af: Address family of transport's local address
1059 * @port: transport's IP port number
1061 * Return the transport instance pointer for the endpoint accepting
1062 * connections/peer traffic from the specified transport class,
1063 * address family and port.
1065 * Specifying 0 for the address family or port is effectively a
1066 * wild-card, and will result in matching the first transport in the
1067 * service's list that has a matching class name.
1069 struct svc_xprt
*svc_find_xprt(struct svc_serv
*serv
, const char *xcl_name
,
1070 const sa_family_t af
, const unsigned short port
)
1072 struct svc_xprt
*xprt
;
1073 struct svc_xprt
*found
= NULL
;
1075 /* Sanity check the args */
1076 if (serv
== NULL
|| xcl_name
== NULL
)
1079 spin_lock_bh(&serv
->sv_lock
);
1080 list_for_each_entry(xprt
, &serv
->sv_permsocks
, xpt_list
) {
1081 if (strcmp(xprt
->xpt_class
->xcl_name
, xcl_name
))
1083 if (af
!= AF_UNSPEC
&& af
!= xprt
->xpt_local
.ss_family
)
1085 if (port
!= 0 && port
!= svc_xprt_local_port(xprt
))
1091 spin_unlock_bh(&serv
->sv_lock
);
1094 EXPORT_SYMBOL_GPL(svc_find_xprt
);
1096 static int svc_one_xprt_name(const struct svc_xprt
*xprt
,
1097 char *pos
, int remaining
)
1101 len
= snprintf(pos
, remaining
, "%s %u\n",
1102 xprt
->xpt_class
->xcl_name
,
1103 svc_xprt_local_port(xprt
));
1104 if (len
>= remaining
)
1105 return -ENAMETOOLONG
;
1110 * svc_xprt_names - format a buffer with a list of transport names
1111 * @serv: pointer to an RPC service
1112 * @buf: pointer to a buffer to be filled in
1113 * @buflen: length of buffer to be filled in
1115 * Fills in @buf with a string containing a list of transport names,
1116 * each name terminated with '\n'.
1118 * Returns positive length of the filled-in string on success; otherwise
1119 * a negative errno value is returned if an error occurs.
1121 int svc_xprt_names(struct svc_serv
*serv
, char *buf
, const int buflen
)
1123 struct svc_xprt
*xprt
;
1127 /* Sanity check args */
1131 spin_lock_bh(&serv
->sv_lock
);
1135 list_for_each_entry(xprt
, &serv
->sv_permsocks
, xpt_list
) {
1136 len
= svc_one_xprt_name(xprt
, pos
, buflen
- totlen
);
1148 spin_unlock_bh(&serv
->sv_lock
);
1151 EXPORT_SYMBOL_GPL(svc_xprt_names
);
1154 /*----------------------------------------------------------------------------*/
1156 static void *svc_pool_stats_start(struct seq_file
*m
, loff_t
*pos
)
1158 unsigned int pidx
= (unsigned int)*pos
;
1159 struct svc_serv
*serv
= m
->private;
1161 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx
);
1164 return SEQ_START_TOKEN
;
1165 return (pidx
> serv
->sv_nrpools
? NULL
: &serv
->sv_pools
[pidx
-1]);
1168 static void *svc_pool_stats_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1170 struct svc_pool
*pool
= p
;
1171 struct svc_serv
*serv
= m
->private;
1173 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos
);
1175 if (p
== SEQ_START_TOKEN
) {
1176 pool
= &serv
->sv_pools
[0];
1178 unsigned int pidx
= (pool
- &serv
->sv_pools
[0]);
1179 if (pidx
< serv
->sv_nrpools
-1)
1180 pool
= &serv
->sv_pools
[pidx
+1];
1188 static void svc_pool_stats_stop(struct seq_file
*m
, void *p
)
1192 static int svc_pool_stats_show(struct seq_file
*m
, void *p
)
1194 struct svc_pool
*pool
= p
;
1196 if (p
== SEQ_START_TOKEN
) {
1197 seq_puts(m
, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1201 seq_printf(m
, "%u %lu %lu %lu %lu\n",
1203 pool
->sp_stats
.packets
,
1204 pool
->sp_stats
.sockets_queued
,
1205 pool
->sp_stats
.threads_woken
,
1206 pool
->sp_stats
.threads_timedout
);
1211 static const struct seq_operations svc_pool_stats_seq_ops
= {
1212 .start
= svc_pool_stats_start
,
1213 .next
= svc_pool_stats_next
,
1214 .stop
= svc_pool_stats_stop
,
1215 .show
= svc_pool_stats_show
,
1218 int svc_pool_stats_open(struct svc_serv
*serv
, struct file
*file
)
1222 err
= seq_open(file
, &svc_pool_stats_seq_ops
);
1224 ((struct seq_file
*) file
->private_data
)->private = serv
;
1227 EXPORT_SYMBOL(svc_pool_stats_open
);
1229 /*----------------------------------------------------------------------------*/