Merge branches 'pm-domains', 'powercap' and 'pm-tools'
[deliverable/linux.git] / net / sunrpc / svc_xprt.c
1 /*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 #include <linux/module.h>
18 #include <trace/events/sunrpc.h>
19
20 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
21
22 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
23 static int svc_deferred_recv(struct svc_rqst *rqstp);
24 static struct cache_deferred_req *svc_defer(struct cache_req *req);
25 static void svc_age_temp_xprts(unsigned long closure);
26 static void svc_delete_xprt(struct svc_xprt *xprt);
27 static void svc_xprt_do_enqueue(struct svc_xprt *xprt);
28
29 /* apparently the "standard" is that clients close
30 * idle connections after 5 minutes, servers after
31 * 6 minutes
32 * http://www.connectathon.org/talks96/nfstcp.pdf
33 */
34 static int svc_conn_age_period = 6*60;
35
36 /* List of registered transport classes */
37 static DEFINE_SPINLOCK(svc_xprt_class_lock);
38 static LIST_HEAD(svc_xprt_class_list);
39
40 /* SMP locking strategy:
41 *
42 * svc_pool->sp_lock protects most of the fields of that pool.
43 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
44 * when both need to be taken (rare), svc_serv->sv_lock is first.
45 * BKL protects svc_serv->sv_nrthread.
46 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
47 * and the ->sk_info_authunix cache.
48 *
49 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
50 * enqueued multiply. During normal transport processing this bit
51 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
52 * Providers should not manipulate this bit directly.
53 *
54 * Some flags can be set to certain values at any time
55 * providing that certain rules are followed:
56 *
57 * XPT_CONN, XPT_DATA:
58 * - Can be set or cleared at any time.
59 * - After a set, svc_xprt_enqueue must be called to enqueue
60 * the transport for processing.
61 * - After a clear, the transport must be read/accepted.
62 * If this succeeds, it must be set again.
63 * XPT_CLOSE:
64 * - Can set at any time. It is never cleared.
65 * XPT_DEAD:
66 * - Can only be set while XPT_BUSY is held which ensures
67 * that no other thread will be using the transport or will
68 * try to set XPT_DEAD.
69 */
70
71 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
72 {
73 struct svc_xprt_class *cl;
74 int res = -EEXIST;
75
76 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
77
78 INIT_LIST_HEAD(&xcl->xcl_list);
79 spin_lock(&svc_xprt_class_lock);
80 /* Make sure there isn't already a class with the same name */
81 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
82 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
83 goto out;
84 }
85 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
86 res = 0;
87 out:
88 spin_unlock(&svc_xprt_class_lock);
89 return res;
90 }
91 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
92
93 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
94 {
95 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
96 spin_lock(&svc_xprt_class_lock);
97 list_del_init(&xcl->xcl_list);
98 spin_unlock(&svc_xprt_class_lock);
99 }
100 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
101
102 /*
103 * Format the transport list for printing
104 */
105 int svc_print_xprts(char *buf, int maxlen)
106 {
107 struct svc_xprt_class *xcl;
108 char tmpstr[80];
109 int len = 0;
110 buf[0] = '\0';
111
112 spin_lock(&svc_xprt_class_lock);
113 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
114 int slen;
115
116 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
117 slen = strlen(tmpstr);
118 if (len + slen > maxlen)
119 break;
120 len += slen;
121 strcat(buf, tmpstr);
122 }
123 spin_unlock(&svc_xprt_class_lock);
124
125 return len;
126 }
127
128 static void svc_xprt_free(struct kref *kref)
129 {
130 struct svc_xprt *xprt =
131 container_of(kref, struct svc_xprt, xpt_ref);
132 struct module *owner = xprt->xpt_class->xcl_owner;
133 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
134 svcauth_unix_info_release(xprt);
135 put_net(xprt->xpt_net);
136 /* See comment on corresponding get in xs_setup_bc_tcp(): */
137 if (xprt->xpt_bc_xprt)
138 xprt_put(xprt->xpt_bc_xprt);
139 xprt->xpt_ops->xpo_free(xprt);
140 module_put(owner);
141 }
142
143 void svc_xprt_put(struct svc_xprt *xprt)
144 {
145 kref_put(&xprt->xpt_ref, svc_xprt_free);
146 }
147 EXPORT_SYMBOL_GPL(svc_xprt_put);
148
149 /*
150 * Called by transport drivers to initialize the transport independent
151 * portion of the transport instance.
152 */
153 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
154 struct svc_xprt *xprt, struct svc_serv *serv)
155 {
156 memset(xprt, 0, sizeof(*xprt));
157 xprt->xpt_class = xcl;
158 xprt->xpt_ops = xcl->xcl_ops;
159 kref_init(&xprt->xpt_ref);
160 xprt->xpt_server = serv;
161 INIT_LIST_HEAD(&xprt->xpt_list);
162 INIT_LIST_HEAD(&xprt->xpt_ready);
163 INIT_LIST_HEAD(&xprt->xpt_deferred);
164 INIT_LIST_HEAD(&xprt->xpt_users);
165 mutex_init(&xprt->xpt_mutex);
166 spin_lock_init(&xprt->xpt_lock);
167 set_bit(XPT_BUSY, &xprt->xpt_flags);
168 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
169 xprt->xpt_net = get_net(net);
170 }
171 EXPORT_SYMBOL_GPL(svc_xprt_init);
172
173 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
174 struct svc_serv *serv,
175 struct net *net,
176 const int family,
177 const unsigned short port,
178 int flags)
179 {
180 struct sockaddr_in sin = {
181 .sin_family = AF_INET,
182 .sin_addr.s_addr = htonl(INADDR_ANY),
183 .sin_port = htons(port),
184 };
185 #if IS_ENABLED(CONFIG_IPV6)
186 struct sockaddr_in6 sin6 = {
187 .sin6_family = AF_INET6,
188 .sin6_addr = IN6ADDR_ANY_INIT,
189 .sin6_port = htons(port),
190 };
191 #endif
192 struct sockaddr *sap;
193 size_t len;
194
195 switch (family) {
196 case PF_INET:
197 sap = (struct sockaddr *)&sin;
198 len = sizeof(sin);
199 break;
200 #if IS_ENABLED(CONFIG_IPV6)
201 case PF_INET6:
202 sap = (struct sockaddr *)&sin6;
203 len = sizeof(sin6);
204 break;
205 #endif
206 default:
207 return ERR_PTR(-EAFNOSUPPORT);
208 }
209
210 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
211 }
212
213 /*
214 * svc_xprt_received conditionally queues the transport for processing
215 * by another thread. The caller must hold the XPT_BUSY bit and must
216 * not thereafter touch transport data.
217 *
218 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
219 * insufficient) data.
220 */
221 static void svc_xprt_received(struct svc_xprt *xprt)
222 {
223 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
224 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
225 return;
226 }
227
228 /* As soon as we clear busy, the xprt could be closed and
229 * 'put', so we need a reference to call svc_xprt_do_enqueue with:
230 */
231 svc_xprt_get(xprt);
232 smp_mb__before_atomic();
233 clear_bit(XPT_BUSY, &xprt->xpt_flags);
234 svc_xprt_do_enqueue(xprt);
235 svc_xprt_put(xprt);
236 }
237
238 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
239 {
240 clear_bit(XPT_TEMP, &new->xpt_flags);
241 spin_lock_bh(&serv->sv_lock);
242 list_add(&new->xpt_list, &serv->sv_permsocks);
243 spin_unlock_bh(&serv->sv_lock);
244 svc_xprt_received(new);
245 }
246
247 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
248 struct net *net, const int family,
249 const unsigned short port, int flags)
250 {
251 struct svc_xprt_class *xcl;
252
253 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
254 spin_lock(&svc_xprt_class_lock);
255 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
256 struct svc_xprt *newxprt;
257 unsigned short newport;
258
259 if (strcmp(xprt_name, xcl->xcl_name))
260 continue;
261
262 if (!try_module_get(xcl->xcl_owner))
263 goto err;
264
265 spin_unlock(&svc_xprt_class_lock);
266 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
267 if (IS_ERR(newxprt)) {
268 module_put(xcl->xcl_owner);
269 return PTR_ERR(newxprt);
270 }
271 svc_add_new_perm_xprt(serv, newxprt);
272 newport = svc_xprt_local_port(newxprt);
273 return newport;
274 }
275 err:
276 spin_unlock(&svc_xprt_class_lock);
277 dprintk("svc: transport %s not found\n", xprt_name);
278
279 /* This errno is exposed to user space. Provide a reasonable
280 * perror msg for a bad transport. */
281 return -EPROTONOSUPPORT;
282 }
283 EXPORT_SYMBOL_GPL(svc_create_xprt);
284
285 /*
286 * Copy the local and remote xprt addresses to the rqstp structure
287 */
288 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
289 {
290 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
291 rqstp->rq_addrlen = xprt->xpt_remotelen;
292
293 /*
294 * Destination address in request is needed for binding the
295 * source address in RPC replies/callbacks later.
296 */
297 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
298 rqstp->rq_daddrlen = xprt->xpt_locallen;
299 }
300 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
301
302 /**
303 * svc_print_addr - Format rq_addr field for printing
304 * @rqstp: svc_rqst struct containing address to print
305 * @buf: target buffer for formatted address
306 * @len: length of target buffer
307 *
308 */
309 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
310 {
311 return __svc_print_addr(svc_addr(rqstp), buf, len);
312 }
313 EXPORT_SYMBOL_GPL(svc_print_addr);
314
315 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
316 {
317 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
318 return true;
319 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
320 return xprt->xpt_ops->xpo_has_wspace(xprt);
321 return false;
322 }
323
324 static void svc_xprt_do_enqueue(struct svc_xprt *xprt)
325 {
326 struct svc_pool *pool;
327 struct svc_rqst *rqstp = NULL;
328 int cpu;
329 bool queued = false;
330
331 if (!svc_xprt_has_something_to_do(xprt))
332 goto out;
333
334 /* Mark transport as busy. It will remain in this state until
335 * the provider calls svc_xprt_received. We update XPT_BUSY
336 * atomically because it also guards against trying to enqueue
337 * the transport twice.
338 */
339 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
340 /* Don't enqueue transport while already enqueued */
341 dprintk("svc: transport %p busy, not enqueued\n", xprt);
342 goto out;
343 }
344
345 cpu = get_cpu();
346 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
347
348 atomic_long_inc(&pool->sp_stats.packets);
349
350 redo_search:
351 /* find a thread for this xprt */
352 rcu_read_lock();
353 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
354 /* Do a lockless check first */
355 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
356 continue;
357
358 /*
359 * Once the xprt has been queued, it can only be dequeued by
360 * the task that intends to service it. All we can do at that
361 * point is to try to wake this thread back up so that it can
362 * do so.
363 */
364 if (!queued) {
365 spin_lock_bh(&rqstp->rq_lock);
366 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) {
367 /* already busy, move on... */
368 spin_unlock_bh(&rqstp->rq_lock);
369 continue;
370 }
371
372 /* this one will do */
373 rqstp->rq_xprt = xprt;
374 svc_xprt_get(xprt);
375 spin_unlock_bh(&rqstp->rq_lock);
376 }
377 rcu_read_unlock();
378
379 atomic_long_inc(&pool->sp_stats.threads_woken);
380 wake_up_process(rqstp->rq_task);
381 put_cpu();
382 goto out;
383 }
384 rcu_read_unlock();
385
386 /*
387 * We didn't find an idle thread to use, so we need to queue the xprt.
388 * Do so and then search again. If we find one, we can't hook this one
389 * up to it directly but we can wake the thread up in the hopes that it
390 * will pick it up once it searches for a xprt to service.
391 */
392 if (!queued) {
393 queued = true;
394 dprintk("svc: transport %p put into queue\n", xprt);
395 spin_lock_bh(&pool->sp_lock);
396 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
397 pool->sp_stats.sockets_queued++;
398 spin_unlock_bh(&pool->sp_lock);
399 goto redo_search;
400 }
401 rqstp = NULL;
402 put_cpu();
403 out:
404 trace_svc_xprt_do_enqueue(xprt, rqstp);
405 }
406
407 /*
408 * Queue up a transport with data pending. If there are idle nfsd
409 * processes, wake 'em up.
410 *
411 */
412 void svc_xprt_enqueue(struct svc_xprt *xprt)
413 {
414 if (test_bit(XPT_BUSY, &xprt->xpt_flags))
415 return;
416 svc_xprt_do_enqueue(xprt);
417 }
418 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
419
420 /*
421 * Dequeue the first transport, if there is one.
422 */
423 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
424 {
425 struct svc_xprt *xprt = NULL;
426
427 if (list_empty(&pool->sp_sockets))
428 goto out;
429
430 spin_lock_bh(&pool->sp_lock);
431 if (likely(!list_empty(&pool->sp_sockets))) {
432 xprt = list_first_entry(&pool->sp_sockets,
433 struct svc_xprt, xpt_ready);
434 list_del_init(&xprt->xpt_ready);
435 svc_xprt_get(xprt);
436
437 dprintk("svc: transport %p dequeued, inuse=%d\n",
438 xprt, atomic_read(&xprt->xpt_ref.refcount));
439 }
440 spin_unlock_bh(&pool->sp_lock);
441 out:
442 trace_svc_xprt_dequeue(xprt);
443 return xprt;
444 }
445
446 /**
447 * svc_reserve - change the space reserved for the reply to a request.
448 * @rqstp: The request in question
449 * @space: new max space to reserve
450 *
451 * Each request reserves some space on the output queue of the transport
452 * to make sure the reply fits. This function reduces that reserved
453 * space to be the amount of space used already, plus @space.
454 *
455 */
456 void svc_reserve(struct svc_rqst *rqstp, int space)
457 {
458 space += rqstp->rq_res.head[0].iov_len;
459
460 if (space < rqstp->rq_reserved) {
461 struct svc_xprt *xprt = rqstp->rq_xprt;
462 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
463 rqstp->rq_reserved = space;
464
465 if (xprt->xpt_ops->xpo_adjust_wspace)
466 xprt->xpt_ops->xpo_adjust_wspace(xprt);
467 svc_xprt_enqueue(xprt);
468 }
469 }
470 EXPORT_SYMBOL_GPL(svc_reserve);
471
472 static void svc_xprt_release(struct svc_rqst *rqstp)
473 {
474 struct svc_xprt *xprt = rqstp->rq_xprt;
475
476 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
477
478 kfree(rqstp->rq_deferred);
479 rqstp->rq_deferred = NULL;
480
481 svc_free_res_pages(rqstp);
482 rqstp->rq_res.page_len = 0;
483 rqstp->rq_res.page_base = 0;
484
485 /* Reset response buffer and release
486 * the reservation.
487 * But first, check that enough space was reserved
488 * for the reply, otherwise we have a bug!
489 */
490 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
491 printk(KERN_ERR "RPC request reserved %d but used %d\n",
492 rqstp->rq_reserved,
493 rqstp->rq_res.len);
494
495 rqstp->rq_res.head[0].iov_len = 0;
496 svc_reserve(rqstp, 0);
497 rqstp->rq_xprt = NULL;
498
499 svc_xprt_put(xprt);
500 }
501
502 /*
503 * Some svc_serv's will have occasional work to do, even when a xprt is not
504 * waiting to be serviced. This function is there to "kick" a task in one of
505 * those services so that it can wake up and do that work. Note that we only
506 * bother with pool 0 as we don't need to wake up more than one thread for
507 * this purpose.
508 */
509 void svc_wake_up(struct svc_serv *serv)
510 {
511 struct svc_rqst *rqstp;
512 struct svc_pool *pool;
513
514 pool = &serv->sv_pools[0];
515
516 rcu_read_lock();
517 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
518 /* skip any that aren't queued */
519 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
520 continue;
521 rcu_read_unlock();
522 dprintk("svc: daemon %p woken up.\n", rqstp);
523 wake_up_process(rqstp->rq_task);
524 trace_svc_wake_up(rqstp->rq_task->pid);
525 return;
526 }
527 rcu_read_unlock();
528
529 /* No free entries available */
530 set_bit(SP_TASK_PENDING, &pool->sp_flags);
531 smp_wmb();
532 trace_svc_wake_up(0);
533 }
534 EXPORT_SYMBOL_GPL(svc_wake_up);
535
536 int svc_port_is_privileged(struct sockaddr *sin)
537 {
538 switch (sin->sa_family) {
539 case AF_INET:
540 return ntohs(((struct sockaddr_in *)sin)->sin_port)
541 < PROT_SOCK;
542 case AF_INET6:
543 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
544 < PROT_SOCK;
545 default:
546 return 0;
547 }
548 }
549
550 /*
551 * Make sure that we don't have too many active connections. If we have,
552 * something must be dropped. It's not clear what will happen if we allow
553 * "too many" connections, but when dealing with network-facing software,
554 * we have to code defensively. Here we do that by imposing hard limits.
555 *
556 * There's no point in trying to do random drop here for DoS
557 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
558 * attacker can easily beat that.
559 *
560 * The only somewhat efficient mechanism would be if drop old
561 * connections from the same IP first. But right now we don't even
562 * record the client IP in svc_sock.
563 *
564 * single-threaded services that expect a lot of clients will probably
565 * need to set sv_maxconn to override the default value which is based
566 * on the number of threads
567 */
568 static void svc_check_conn_limits(struct svc_serv *serv)
569 {
570 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
571 (serv->sv_nrthreads+3) * 20;
572
573 if (serv->sv_tmpcnt > limit) {
574 struct svc_xprt *xprt = NULL;
575 spin_lock_bh(&serv->sv_lock);
576 if (!list_empty(&serv->sv_tempsocks)) {
577 /* Try to help the admin */
578 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
579 serv->sv_name, serv->sv_maxconn ?
580 "max number of connections" :
581 "number of threads");
582 /*
583 * Always select the oldest connection. It's not fair,
584 * but so is life
585 */
586 xprt = list_entry(serv->sv_tempsocks.prev,
587 struct svc_xprt,
588 xpt_list);
589 set_bit(XPT_CLOSE, &xprt->xpt_flags);
590 svc_xprt_get(xprt);
591 }
592 spin_unlock_bh(&serv->sv_lock);
593
594 if (xprt) {
595 svc_xprt_enqueue(xprt);
596 svc_xprt_put(xprt);
597 }
598 }
599 }
600
601 static int svc_alloc_arg(struct svc_rqst *rqstp)
602 {
603 struct svc_serv *serv = rqstp->rq_server;
604 struct xdr_buf *arg;
605 int pages;
606 int i;
607
608 /* now allocate needed pages. If we get a failure, sleep briefly */
609 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
610 WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
611 if (pages >= RPCSVC_MAXPAGES)
612 /* use as many pages as possible */
613 pages = RPCSVC_MAXPAGES - 1;
614 for (i = 0; i < pages ; i++)
615 while (rqstp->rq_pages[i] == NULL) {
616 struct page *p = alloc_page(GFP_KERNEL);
617 if (!p) {
618 set_current_state(TASK_INTERRUPTIBLE);
619 if (signalled() || kthread_should_stop()) {
620 set_current_state(TASK_RUNNING);
621 return -EINTR;
622 }
623 schedule_timeout(msecs_to_jiffies(500));
624 }
625 rqstp->rq_pages[i] = p;
626 }
627 rqstp->rq_page_end = &rqstp->rq_pages[i];
628 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
629
630 /* Make arg->head point to first page and arg->pages point to rest */
631 arg = &rqstp->rq_arg;
632 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
633 arg->head[0].iov_len = PAGE_SIZE;
634 arg->pages = rqstp->rq_pages + 1;
635 arg->page_base = 0;
636 /* save at least one page for response */
637 arg->page_len = (pages-2)*PAGE_SIZE;
638 arg->len = (pages-1)*PAGE_SIZE;
639 arg->tail[0].iov_len = 0;
640 return 0;
641 }
642
643 static bool
644 rqst_should_sleep(struct svc_rqst *rqstp)
645 {
646 struct svc_pool *pool = rqstp->rq_pool;
647
648 /* did someone call svc_wake_up? */
649 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
650 return false;
651
652 /* was a socket queued? */
653 if (!list_empty(&pool->sp_sockets))
654 return false;
655
656 /* are we shutting down? */
657 if (signalled() || kthread_should_stop())
658 return false;
659
660 /* are we freezing? */
661 if (freezing(current))
662 return false;
663
664 return true;
665 }
666
667 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
668 {
669 struct svc_xprt *xprt;
670 struct svc_pool *pool = rqstp->rq_pool;
671 long time_left = 0;
672
673 /* rq_xprt should be clear on entry */
674 WARN_ON_ONCE(rqstp->rq_xprt);
675
676 /* Normally we will wait up to 5 seconds for any required
677 * cache information to be provided.
678 */
679 rqstp->rq_chandle.thread_wait = 5*HZ;
680
681 xprt = svc_xprt_dequeue(pool);
682 if (xprt) {
683 rqstp->rq_xprt = xprt;
684
685 /* As there is a shortage of threads and this request
686 * had to be queued, don't allow the thread to wait so
687 * long for cache updates.
688 */
689 rqstp->rq_chandle.thread_wait = 1*HZ;
690 clear_bit(SP_TASK_PENDING, &pool->sp_flags);
691 return xprt;
692 }
693
694 /*
695 * We have to be able to interrupt this wait
696 * to bring down the daemons ...
697 */
698 set_current_state(TASK_INTERRUPTIBLE);
699 clear_bit(RQ_BUSY, &rqstp->rq_flags);
700 smp_mb();
701
702 if (likely(rqst_should_sleep(rqstp)))
703 time_left = schedule_timeout(timeout);
704 else
705 __set_current_state(TASK_RUNNING);
706
707 try_to_freeze();
708
709 spin_lock_bh(&rqstp->rq_lock);
710 set_bit(RQ_BUSY, &rqstp->rq_flags);
711 spin_unlock_bh(&rqstp->rq_lock);
712
713 xprt = rqstp->rq_xprt;
714 if (xprt != NULL)
715 return xprt;
716
717 if (!time_left)
718 atomic_long_inc(&pool->sp_stats.threads_timedout);
719
720 if (signalled() || kthread_should_stop())
721 return ERR_PTR(-EINTR);
722 return ERR_PTR(-EAGAIN);
723 }
724
725 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
726 {
727 spin_lock_bh(&serv->sv_lock);
728 set_bit(XPT_TEMP, &newxpt->xpt_flags);
729 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
730 serv->sv_tmpcnt++;
731 if (serv->sv_temptimer.function == NULL) {
732 /* setup timer to age temp transports */
733 setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
734 (unsigned long)serv);
735 mod_timer(&serv->sv_temptimer,
736 jiffies + svc_conn_age_period * HZ);
737 }
738 spin_unlock_bh(&serv->sv_lock);
739 svc_xprt_received(newxpt);
740 }
741
742 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
743 {
744 struct svc_serv *serv = rqstp->rq_server;
745 int len = 0;
746
747 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
748 dprintk("svc_recv: found XPT_CLOSE\n");
749 svc_delete_xprt(xprt);
750 /* Leave XPT_BUSY set on the dead xprt: */
751 goto out;
752 }
753 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
754 struct svc_xprt *newxpt;
755 /*
756 * We know this module_get will succeed because the
757 * listener holds a reference too
758 */
759 __module_get(xprt->xpt_class->xcl_owner);
760 svc_check_conn_limits(xprt->xpt_server);
761 newxpt = xprt->xpt_ops->xpo_accept(xprt);
762 if (newxpt)
763 svc_add_new_temp_xprt(serv, newxpt);
764 else
765 module_put(xprt->xpt_class->xcl_owner);
766 } else {
767 /* XPT_DATA|XPT_DEFERRED case: */
768 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
769 rqstp, rqstp->rq_pool->sp_id, xprt,
770 atomic_read(&xprt->xpt_ref.refcount));
771 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
772 if (rqstp->rq_deferred)
773 len = svc_deferred_recv(rqstp);
774 else
775 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
776 dprintk("svc: got len=%d\n", len);
777 rqstp->rq_reserved = serv->sv_max_mesg;
778 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
779 }
780 /* clear XPT_BUSY: */
781 svc_xprt_received(xprt);
782 out:
783 trace_svc_handle_xprt(xprt, len);
784 return len;
785 }
786
787 /*
788 * Receive the next request on any transport. This code is carefully
789 * organised not to touch any cachelines in the shared svc_serv
790 * structure, only cachelines in the local svc_pool.
791 */
792 int svc_recv(struct svc_rqst *rqstp, long timeout)
793 {
794 struct svc_xprt *xprt = NULL;
795 struct svc_serv *serv = rqstp->rq_server;
796 int len, err;
797
798 dprintk("svc: server %p waiting for data (to = %ld)\n",
799 rqstp, timeout);
800
801 if (rqstp->rq_xprt)
802 printk(KERN_ERR
803 "svc_recv: service %p, transport not NULL!\n",
804 rqstp);
805
806 err = svc_alloc_arg(rqstp);
807 if (err)
808 goto out;
809
810 try_to_freeze();
811 cond_resched();
812 err = -EINTR;
813 if (signalled() || kthread_should_stop())
814 goto out;
815
816 xprt = svc_get_next_xprt(rqstp, timeout);
817 if (IS_ERR(xprt)) {
818 err = PTR_ERR(xprt);
819 goto out;
820 }
821
822 len = svc_handle_xprt(rqstp, xprt);
823
824 /* No data, incomplete (TCP) read, or accept() */
825 err = -EAGAIN;
826 if (len <= 0)
827 goto out_release;
828
829 clear_bit(XPT_OLD, &xprt->xpt_flags);
830
831 if (xprt->xpt_ops->xpo_secure_port(rqstp))
832 set_bit(RQ_SECURE, &rqstp->rq_flags);
833 else
834 clear_bit(RQ_SECURE, &rqstp->rq_flags);
835 rqstp->rq_chandle.defer = svc_defer;
836 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
837
838 if (serv->sv_stats)
839 serv->sv_stats->netcnt++;
840 trace_svc_recv(rqstp, len);
841 return len;
842 out_release:
843 rqstp->rq_res.len = 0;
844 svc_xprt_release(rqstp);
845 out:
846 trace_svc_recv(rqstp, err);
847 return err;
848 }
849 EXPORT_SYMBOL_GPL(svc_recv);
850
851 /*
852 * Drop request
853 */
854 void svc_drop(struct svc_rqst *rqstp)
855 {
856 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
857 svc_xprt_release(rqstp);
858 }
859 EXPORT_SYMBOL_GPL(svc_drop);
860
861 /*
862 * Return reply to client.
863 */
864 int svc_send(struct svc_rqst *rqstp)
865 {
866 struct svc_xprt *xprt;
867 int len = -EFAULT;
868 struct xdr_buf *xb;
869
870 xprt = rqstp->rq_xprt;
871 if (!xprt)
872 goto out;
873
874 /* release the receive skb before sending the reply */
875 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
876
877 /* calculate over-all length */
878 xb = &rqstp->rq_res;
879 xb->len = xb->head[0].iov_len +
880 xb->page_len +
881 xb->tail[0].iov_len;
882
883 /* Grab mutex to serialize outgoing data. */
884 mutex_lock(&xprt->xpt_mutex);
885 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
886 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
887 len = -ENOTCONN;
888 else
889 len = xprt->xpt_ops->xpo_sendto(rqstp);
890 mutex_unlock(&xprt->xpt_mutex);
891 rpc_wake_up(&xprt->xpt_bc_pending);
892 svc_xprt_release(rqstp);
893
894 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
895 len = 0;
896 out:
897 trace_svc_send(rqstp, len);
898 return len;
899 }
900
901 /*
902 * Timer function to close old temporary transports, using
903 * a mark-and-sweep algorithm.
904 */
905 static void svc_age_temp_xprts(unsigned long closure)
906 {
907 struct svc_serv *serv = (struct svc_serv *)closure;
908 struct svc_xprt *xprt;
909 struct list_head *le, *next;
910
911 dprintk("svc_age_temp_xprts\n");
912
913 if (!spin_trylock_bh(&serv->sv_lock)) {
914 /* busy, try again 1 sec later */
915 dprintk("svc_age_temp_xprts: busy\n");
916 mod_timer(&serv->sv_temptimer, jiffies + HZ);
917 return;
918 }
919
920 list_for_each_safe(le, next, &serv->sv_tempsocks) {
921 xprt = list_entry(le, struct svc_xprt, xpt_list);
922
923 /* First time through, just mark it OLD. Second time
924 * through, close it. */
925 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
926 continue;
927 if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
928 test_bit(XPT_BUSY, &xprt->xpt_flags))
929 continue;
930 list_del_init(le);
931 set_bit(XPT_CLOSE, &xprt->xpt_flags);
932 dprintk("queuing xprt %p for closing\n", xprt);
933
934 /* a thread will dequeue and close it soon */
935 svc_xprt_enqueue(xprt);
936 }
937 spin_unlock_bh(&serv->sv_lock);
938
939 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
940 }
941
942 static void call_xpt_users(struct svc_xprt *xprt)
943 {
944 struct svc_xpt_user *u;
945
946 spin_lock(&xprt->xpt_lock);
947 while (!list_empty(&xprt->xpt_users)) {
948 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
949 list_del(&u->list);
950 u->callback(u);
951 }
952 spin_unlock(&xprt->xpt_lock);
953 }
954
955 /*
956 * Remove a dead transport
957 */
958 static void svc_delete_xprt(struct svc_xprt *xprt)
959 {
960 struct svc_serv *serv = xprt->xpt_server;
961 struct svc_deferred_req *dr;
962
963 /* Only do this once */
964 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
965 BUG();
966
967 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
968 xprt->xpt_ops->xpo_detach(xprt);
969
970 spin_lock_bh(&serv->sv_lock);
971 list_del_init(&xprt->xpt_list);
972 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
973 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
974 serv->sv_tmpcnt--;
975 spin_unlock_bh(&serv->sv_lock);
976
977 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
978 kfree(dr);
979
980 call_xpt_users(xprt);
981 svc_xprt_put(xprt);
982 }
983
984 void svc_close_xprt(struct svc_xprt *xprt)
985 {
986 set_bit(XPT_CLOSE, &xprt->xpt_flags);
987 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
988 /* someone else will have to effect the close */
989 return;
990 /*
991 * We expect svc_close_xprt() to work even when no threads are
992 * running (e.g., while configuring the server before starting
993 * any threads), so if the transport isn't busy, we delete
994 * it ourself:
995 */
996 svc_delete_xprt(xprt);
997 }
998 EXPORT_SYMBOL_GPL(svc_close_xprt);
999
1000 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1001 {
1002 struct svc_xprt *xprt;
1003 int ret = 0;
1004
1005 spin_lock(&serv->sv_lock);
1006 list_for_each_entry(xprt, xprt_list, xpt_list) {
1007 if (xprt->xpt_net != net)
1008 continue;
1009 ret++;
1010 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1011 svc_xprt_enqueue(xprt);
1012 }
1013 spin_unlock(&serv->sv_lock);
1014 return ret;
1015 }
1016
1017 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1018 {
1019 struct svc_pool *pool;
1020 struct svc_xprt *xprt;
1021 struct svc_xprt *tmp;
1022 int i;
1023
1024 for (i = 0; i < serv->sv_nrpools; i++) {
1025 pool = &serv->sv_pools[i];
1026
1027 spin_lock_bh(&pool->sp_lock);
1028 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1029 if (xprt->xpt_net != net)
1030 continue;
1031 list_del_init(&xprt->xpt_ready);
1032 spin_unlock_bh(&pool->sp_lock);
1033 return xprt;
1034 }
1035 spin_unlock_bh(&pool->sp_lock);
1036 }
1037 return NULL;
1038 }
1039
1040 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1041 {
1042 struct svc_xprt *xprt;
1043
1044 while ((xprt = svc_dequeue_net(serv, net))) {
1045 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1046 svc_delete_xprt(xprt);
1047 }
1048 }
1049
1050 /*
1051 * Server threads may still be running (especially in the case where the
1052 * service is still running in other network namespaces).
1053 *
1054 * So we shut down sockets the same way we would on a running server, by
1055 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1056 * the close. In the case there are no such other threads,
1057 * threads running, svc_clean_up_xprts() does a simple version of a
1058 * server's main event loop, and in the case where there are other
1059 * threads, we may need to wait a little while and then check again to
1060 * see if they're done.
1061 */
1062 void svc_close_net(struct svc_serv *serv, struct net *net)
1063 {
1064 int delay = 0;
1065
1066 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1067 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1068
1069 svc_clean_up_xprts(serv, net);
1070 msleep(delay++);
1071 }
1072 }
1073
1074 /*
1075 * Handle defer and revisit of requests
1076 */
1077
1078 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1079 {
1080 struct svc_deferred_req *dr =
1081 container_of(dreq, struct svc_deferred_req, handle);
1082 struct svc_xprt *xprt = dr->xprt;
1083
1084 spin_lock(&xprt->xpt_lock);
1085 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1086 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1087 spin_unlock(&xprt->xpt_lock);
1088 dprintk("revisit canceled\n");
1089 svc_xprt_put(xprt);
1090 kfree(dr);
1091 return;
1092 }
1093 dprintk("revisit queued\n");
1094 dr->xprt = NULL;
1095 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1096 spin_unlock(&xprt->xpt_lock);
1097 svc_xprt_enqueue(xprt);
1098 svc_xprt_put(xprt);
1099 }
1100
1101 /*
1102 * Save the request off for later processing. The request buffer looks
1103 * like this:
1104 *
1105 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1106 *
1107 * This code can only handle requests that consist of an xprt-header
1108 * and rpc-header.
1109 */
1110 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1111 {
1112 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1113 struct svc_deferred_req *dr;
1114
1115 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1116 return NULL; /* if more than a page, give up FIXME */
1117 if (rqstp->rq_deferred) {
1118 dr = rqstp->rq_deferred;
1119 rqstp->rq_deferred = NULL;
1120 } else {
1121 size_t skip;
1122 size_t size;
1123 /* FIXME maybe discard if size too large */
1124 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1125 dr = kmalloc(size, GFP_KERNEL);
1126 if (dr == NULL)
1127 return NULL;
1128
1129 dr->handle.owner = rqstp->rq_server;
1130 dr->prot = rqstp->rq_prot;
1131 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1132 dr->addrlen = rqstp->rq_addrlen;
1133 dr->daddr = rqstp->rq_daddr;
1134 dr->argslen = rqstp->rq_arg.len >> 2;
1135 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1136
1137 /* back up head to the start of the buffer and copy */
1138 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1139 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1140 dr->argslen << 2);
1141 }
1142 svc_xprt_get(rqstp->rq_xprt);
1143 dr->xprt = rqstp->rq_xprt;
1144 set_bit(RQ_DROPME, &rqstp->rq_flags);
1145
1146 dr->handle.revisit = svc_revisit;
1147 return &dr->handle;
1148 }
1149
1150 /*
1151 * recv data from a deferred request into an active one
1152 */
1153 static int svc_deferred_recv(struct svc_rqst *rqstp)
1154 {
1155 struct svc_deferred_req *dr = rqstp->rq_deferred;
1156
1157 /* setup iov_base past transport header */
1158 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1159 /* The iov_len does not include the transport header bytes */
1160 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1161 rqstp->rq_arg.page_len = 0;
1162 /* The rq_arg.len includes the transport header bytes */
1163 rqstp->rq_arg.len = dr->argslen<<2;
1164 rqstp->rq_prot = dr->prot;
1165 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1166 rqstp->rq_addrlen = dr->addrlen;
1167 /* Save off transport header len in case we get deferred again */
1168 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1169 rqstp->rq_daddr = dr->daddr;
1170 rqstp->rq_respages = rqstp->rq_pages;
1171 return (dr->argslen<<2) - dr->xprt_hlen;
1172 }
1173
1174
1175 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1176 {
1177 struct svc_deferred_req *dr = NULL;
1178
1179 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1180 return NULL;
1181 spin_lock(&xprt->xpt_lock);
1182 if (!list_empty(&xprt->xpt_deferred)) {
1183 dr = list_entry(xprt->xpt_deferred.next,
1184 struct svc_deferred_req,
1185 handle.recent);
1186 list_del_init(&dr->handle.recent);
1187 } else
1188 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1189 spin_unlock(&xprt->xpt_lock);
1190 return dr;
1191 }
1192
1193 /**
1194 * svc_find_xprt - find an RPC transport instance
1195 * @serv: pointer to svc_serv to search
1196 * @xcl_name: C string containing transport's class name
1197 * @net: owner net pointer
1198 * @af: Address family of transport's local address
1199 * @port: transport's IP port number
1200 *
1201 * Return the transport instance pointer for the endpoint accepting
1202 * connections/peer traffic from the specified transport class,
1203 * address family and port.
1204 *
1205 * Specifying 0 for the address family or port is effectively a
1206 * wild-card, and will result in matching the first transport in the
1207 * service's list that has a matching class name.
1208 */
1209 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1210 struct net *net, const sa_family_t af,
1211 const unsigned short port)
1212 {
1213 struct svc_xprt *xprt;
1214 struct svc_xprt *found = NULL;
1215
1216 /* Sanity check the args */
1217 if (serv == NULL || xcl_name == NULL)
1218 return found;
1219
1220 spin_lock_bh(&serv->sv_lock);
1221 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1222 if (xprt->xpt_net != net)
1223 continue;
1224 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1225 continue;
1226 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1227 continue;
1228 if (port != 0 && port != svc_xprt_local_port(xprt))
1229 continue;
1230 found = xprt;
1231 svc_xprt_get(xprt);
1232 break;
1233 }
1234 spin_unlock_bh(&serv->sv_lock);
1235 return found;
1236 }
1237 EXPORT_SYMBOL_GPL(svc_find_xprt);
1238
1239 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1240 char *pos, int remaining)
1241 {
1242 int len;
1243
1244 len = snprintf(pos, remaining, "%s %u\n",
1245 xprt->xpt_class->xcl_name,
1246 svc_xprt_local_port(xprt));
1247 if (len >= remaining)
1248 return -ENAMETOOLONG;
1249 return len;
1250 }
1251
1252 /**
1253 * svc_xprt_names - format a buffer with a list of transport names
1254 * @serv: pointer to an RPC service
1255 * @buf: pointer to a buffer to be filled in
1256 * @buflen: length of buffer to be filled in
1257 *
1258 * Fills in @buf with a string containing a list of transport names,
1259 * each name terminated with '\n'.
1260 *
1261 * Returns positive length of the filled-in string on success; otherwise
1262 * a negative errno value is returned if an error occurs.
1263 */
1264 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1265 {
1266 struct svc_xprt *xprt;
1267 int len, totlen;
1268 char *pos;
1269
1270 /* Sanity check args */
1271 if (!serv)
1272 return 0;
1273
1274 spin_lock_bh(&serv->sv_lock);
1275
1276 pos = buf;
1277 totlen = 0;
1278 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1279 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1280 if (len < 0) {
1281 *buf = '\0';
1282 totlen = len;
1283 }
1284 if (len <= 0)
1285 break;
1286
1287 pos += len;
1288 totlen += len;
1289 }
1290
1291 spin_unlock_bh(&serv->sv_lock);
1292 return totlen;
1293 }
1294 EXPORT_SYMBOL_GPL(svc_xprt_names);
1295
1296
1297 /*----------------------------------------------------------------------------*/
1298
1299 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1300 {
1301 unsigned int pidx = (unsigned int)*pos;
1302 struct svc_serv *serv = m->private;
1303
1304 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1305
1306 if (!pidx)
1307 return SEQ_START_TOKEN;
1308 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1309 }
1310
1311 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1312 {
1313 struct svc_pool *pool = p;
1314 struct svc_serv *serv = m->private;
1315
1316 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1317
1318 if (p == SEQ_START_TOKEN) {
1319 pool = &serv->sv_pools[0];
1320 } else {
1321 unsigned int pidx = (pool - &serv->sv_pools[0]);
1322 if (pidx < serv->sv_nrpools-1)
1323 pool = &serv->sv_pools[pidx+1];
1324 else
1325 pool = NULL;
1326 }
1327 ++*pos;
1328 return pool;
1329 }
1330
1331 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1332 {
1333 }
1334
1335 static int svc_pool_stats_show(struct seq_file *m, void *p)
1336 {
1337 struct svc_pool *pool = p;
1338
1339 if (p == SEQ_START_TOKEN) {
1340 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1341 return 0;
1342 }
1343
1344 seq_printf(m, "%u %lu %lu %lu %lu\n",
1345 pool->sp_id,
1346 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1347 pool->sp_stats.sockets_queued,
1348 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1349 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1350
1351 return 0;
1352 }
1353
1354 static const struct seq_operations svc_pool_stats_seq_ops = {
1355 .start = svc_pool_stats_start,
1356 .next = svc_pool_stats_next,
1357 .stop = svc_pool_stats_stop,
1358 .show = svc_pool_stats_show,
1359 };
1360
1361 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1362 {
1363 int err;
1364
1365 err = seq_open(file, &svc_pool_stats_seq_ops);
1366 if (!err)
1367 ((struct seq_file *) file->private_data)->private = serv;
1368 return err;
1369 }
1370 EXPORT_SYMBOL(svc_pool_stats_open);
1371
1372 /*----------------------------------------------------------------------------*/
This page took 0.084043 seconds and 5 git commands to generate.