Merge branch 'cleanups-for-4.1-v2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / net / sunrpc / svc_xprt.c
1 /*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 #include <linux/module.h>
18 #include <trace/events/sunrpc.h>
19
20 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
21
22 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
23 static int svc_deferred_recv(struct svc_rqst *rqstp);
24 static struct cache_deferred_req *svc_defer(struct cache_req *req);
25 static void svc_age_temp_xprts(unsigned long closure);
26 static void svc_delete_xprt(struct svc_xprt *xprt);
27 static void svc_xprt_do_enqueue(struct svc_xprt *xprt);
28
29 /* apparently the "standard" is that clients close
30 * idle connections after 5 minutes, servers after
31 * 6 minutes
32 * http://www.connectathon.org/talks96/nfstcp.pdf
33 */
34 static int svc_conn_age_period = 6*60;
35
36 /* List of registered transport classes */
37 static DEFINE_SPINLOCK(svc_xprt_class_lock);
38 static LIST_HEAD(svc_xprt_class_list);
39
40 /* SMP locking strategy:
41 *
42 * svc_pool->sp_lock protects most of the fields of that pool.
43 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
44 * when both need to be taken (rare), svc_serv->sv_lock is first.
45 * The "service mutex" protects svc_serv->sv_nrthread.
46 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
47 * and the ->sk_info_authunix cache.
48 *
49 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
50 * enqueued multiply. During normal transport processing this bit
51 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
52 * Providers should not manipulate this bit directly.
53 *
54 * Some flags can be set to certain values at any time
55 * providing that certain rules are followed:
56 *
57 * XPT_CONN, XPT_DATA:
58 * - Can be set or cleared at any time.
59 * - After a set, svc_xprt_enqueue must be called to enqueue
60 * the transport for processing.
61 * - After a clear, the transport must be read/accepted.
62 * If this succeeds, it must be set again.
63 * XPT_CLOSE:
64 * - Can set at any time. It is never cleared.
65 * XPT_DEAD:
66 * - Can only be set while XPT_BUSY is held which ensures
67 * that no other thread will be using the transport or will
68 * try to set XPT_DEAD.
69 */
70 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
71 {
72 struct svc_xprt_class *cl;
73 int res = -EEXIST;
74
75 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
76
77 INIT_LIST_HEAD(&xcl->xcl_list);
78 spin_lock(&svc_xprt_class_lock);
79 /* Make sure there isn't already a class with the same name */
80 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
81 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
82 goto out;
83 }
84 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
85 res = 0;
86 out:
87 spin_unlock(&svc_xprt_class_lock);
88 return res;
89 }
90 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
91
92 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
93 {
94 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
95 spin_lock(&svc_xprt_class_lock);
96 list_del_init(&xcl->xcl_list);
97 spin_unlock(&svc_xprt_class_lock);
98 }
99 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
100
101 /*
102 * Format the transport list for printing
103 */
104 int svc_print_xprts(char *buf, int maxlen)
105 {
106 struct svc_xprt_class *xcl;
107 char tmpstr[80];
108 int len = 0;
109 buf[0] = '\0';
110
111 spin_lock(&svc_xprt_class_lock);
112 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
113 int slen;
114
115 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
116 slen = strlen(tmpstr);
117 if (len + slen > maxlen)
118 break;
119 len += slen;
120 strcat(buf, tmpstr);
121 }
122 spin_unlock(&svc_xprt_class_lock);
123
124 return len;
125 }
126
127 static void svc_xprt_free(struct kref *kref)
128 {
129 struct svc_xprt *xprt =
130 container_of(kref, struct svc_xprt, xpt_ref);
131 struct module *owner = xprt->xpt_class->xcl_owner;
132 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
133 svcauth_unix_info_release(xprt);
134 put_net(xprt->xpt_net);
135 /* See comment on corresponding get in xs_setup_bc_tcp(): */
136 if (xprt->xpt_bc_xprt)
137 xprt_put(xprt->xpt_bc_xprt);
138 xprt->xpt_ops->xpo_free(xprt);
139 module_put(owner);
140 }
141
142 void svc_xprt_put(struct svc_xprt *xprt)
143 {
144 kref_put(&xprt->xpt_ref, svc_xprt_free);
145 }
146 EXPORT_SYMBOL_GPL(svc_xprt_put);
147
148 /*
149 * Called by transport drivers to initialize the transport independent
150 * portion of the transport instance.
151 */
152 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
153 struct svc_xprt *xprt, struct svc_serv *serv)
154 {
155 memset(xprt, 0, sizeof(*xprt));
156 xprt->xpt_class = xcl;
157 xprt->xpt_ops = xcl->xcl_ops;
158 kref_init(&xprt->xpt_ref);
159 xprt->xpt_server = serv;
160 INIT_LIST_HEAD(&xprt->xpt_list);
161 INIT_LIST_HEAD(&xprt->xpt_ready);
162 INIT_LIST_HEAD(&xprt->xpt_deferred);
163 INIT_LIST_HEAD(&xprt->xpt_users);
164 mutex_init(&xprt->xpt_mutex);
165 spin_lock_init(&xprt->xpt_lock);
166 set_bit(XPT_BUSY, &xprt->xpt_flags);
167 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
168 xprt->xpt_net = get_net(net);
169 }
170 EXPORT_SYMBOL_GPL(svc_xprt_init);
171
172 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
173 struct svc_serv *serv,
174 struct net *net,
175 const int family,
176 const unsigned short port,
177 int flags)
178 {
179 struct sockaddr_in sin = {
180 .sin_family = AF_INET,
181 .sin_addr.s_addr = htonl(INADDR_ANY),
182 .sin_port = htons(port),
183 };
184 #if IS_ENABLED(CONFIG_IPV6)
185 struct sockaddr_in6 sin6 = {
186 .sin6_family = AF_INET6,
187 .sin6_addr = IN6ADDR_ANY_INIT,
188 .sin6_port = htons(port),
189 };
190 #endif
191 struct sockaddr *sap;
192 size_t len;
193
194 switch (family) {
195 case PF_INET:
196 sap = (struct sockaddr *)&sin;
197 len = sizeof(sin);
198 break;
199 #if IS_ENABLED(CONFIG_IPV6)
200 case PF_INET6:
201 sap = (struct sockaddr *)&sin6;
202 len = sizeof(sin6);
203 break;
204 #endif
205 default:
206 return ERR_PTR(-EAFNOSUPPORT);
207 }
208
209 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
210 }
211
212 /*
213 * svc_xprt_received conditionally queues the transport for processing
214 * by another thread. The caller must hold the XPT_BUSY bit and must
215 * not thereafter touch transport data.
216 *
217 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
218 * insufficient) data.
219 */
220 static void svc_xprt_received(struct svc_xprt *xprt)
221 {
222 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
223 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
224 return;
225 }
226
227 /* As soon as we clear busy, the xprt could be closed and
228 * 'put', so we need a reference to call svc_xprt_do_enqueue with:
229 */
230 svc_xprt_get(xprt);
231 smp_mb__before_atomic();
232 clear_bit(XPT_BUSY, &xprt->xpt_flags);
233 svc_xprt_do_enqueue(xprt);
234 svc_xprt_put(xprt);
235 }
236
237 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
238 {
239 clear_bit(XPT_TEMP, &new->xpt_flags);
240 spin_lock_bh(&serv->sv_lock);
241 list_add(&new->xpt_list, &serv->sv_permsocks);
242 spin_unlock_bh(&serv->sv_lock);
243 svc_xprt_received(new);
244 }
245
246 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
247 struct net *net, const int family,
248 const unsigned short port, int flags)
249 {
250 struct svc_xprt_class *xcl;
251
252 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
253 spin_lock(&svc_xprt_class_lock);
254 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
255 struct svc_xprt *newxprt;
256 unsigned short newport;
257
258 if (strcmp(xprt_name, xcl->xcl_name))
259 continue;
260
261 if (!try_module_get(xcl->xcl_owner))
262 goto err;
263
264 spin_unlock(&svc_xprt_class_lock);
265 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
266 if (IS_ERR(newxprt)) {
267 module_put(xcl->xcl_owner);
268 return PTR_ERR(newxprt);
269 }
270 svc_add_new_perm_xprt(serv, newxprt);
271 newport = svc_xprt_local_port(newxprt);
272 return newport;
273 }
274 err:
275 spin_unlock(&svc_xprt_class_lock);
276 dprintk("svc: transport %s not found\n", xprt_name);
277
278 /* This errno is exposed to user space. Provide a reasonable
279 * perror msg for a bad transport. */
280 return -EPROTONOSUPPORT;
281 }
282 EXPORT_SYMBOL_GPL(svc_create_xprt);
283
284 /*
285 * Copy the local and remote xprt addresses to the rqstp structure
286 */
287 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
288 {
289 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
290 rqstp->rq_addrlen = xprt->xpt_remotelen;
291
292 /*
293 * Destination address in request is needed for binding the
294 * source address in RPC replies/callbacks later.
295 */
296 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
297 rqstp->rq_daddrlen = xprt->xpt_locallen;
298 }
299 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
300
301 /**
302 * svc_print_addr - Format rq_addr field for printing
303 * @rqstp: svc_rqst struct containing address to print
304 * @buf: target buffer for formatted address
305 * @len: length of target buffer
306 *
307 */
308 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
309 {
310 return __svc_print_addr(svc_addr(rqstp), buf, len);
311 }
312 EXPORT_SYMBOL_GPL(svc_print_addr);
313
314 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
315 {
316 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
317 return true;
318 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
319 return xprt->xpt_ops->xpo_has_wspace(xprt);
320 return false;
321 }
322
323 static void svc_xprt_do_enqueue(struct svc_xprt *xprt)
324 {
325 struct svc_pool *pool;
326 struct svc_rqst *rqstp = NULL;
327 int cpu;
328 bool queued = false;
329
330 if (!svc_xprt_has_something_to_do(xprt))
331 goto out;
332
333 /* Mark transport as busy. It will remain in this state until
334 * the provider calls svc_xprt_received. We update XPT_BUSY
335 * atomically because it also guards against trying to enqueue
336 * the transport twice.
337 */
338 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
339 /* Don't enqueue transport while already enqueued */
340 dprintk("svc: transport %p busy, not enqueued\n", xprt);
341 goto out;
342 }
343
344 cpu = get_cpu();
345 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
346
347 atomic_long_inc(&pool->sp_stats.packets);
348
349 redo_search:
350 /* find a thread for this xprt */
351 rcu_read_lock();
352 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
353 /* Do a lockless check first */
354 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
355 continue;
356
357 /*
358 * Once the xprt has been queued, it can only be dequeued by
359 * the task that intends to service it. All we can do at that
360 * point is to try to wake this thread back up so that it can
361 * do so.
362 */
363 if (!queued) {
364 spin_lock_bh(&rqstp->rq_lock);
365 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) {
366 /* already busy, move on... */
367 spin_unlock_bh(&rqstp->rq_lock);
368 continue;
369 }
370
371 /* this one will do */
372 rqstp->rq_xprt = xprt;
373 svc_xprt_get(xprt);
374 spin_unlock_bh(&rqstp->rq_lock);
375 }
376 rcu_read_unlock();
377
378 atomic_long_inc(&pool->sp_stats.threads_woken);
379 wake_up_process(rqstp->rq_task);
380 put_cpu();
381 goto out;
382 }
383 rcu_read_unlock();
384
385 /*
386 * We didn't find an idle thread to use, so we need to queue the xprt.
387 * Do so and then search again. If we find one, we can't hook this one
388 * up to it directly but we can wake the thread up in the hopes that it
389 * will pick it up once it searches for a xprt to service.
390 */
391 if (!queued) {
392 queued = true;
393 dprintk("svc: transport %p put into queue\n", xprt);
394 spin_lock_bh(&pool->sp_lock);
395 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
396 pool->sp_stats.sockets_queued++;
397 spin_unlock_bh(&pool->sp_lock);
398 goto redo_search;
399 }
400 rqstp = NULL;
401 put_cpu();
402 out:
403 trace_svc_xprt_do_enqueue(xprt, rqstp);
404 }
405
406 /*
407 * Queue up a transport with data pending. If there are idle nfsd
408 * processes, wake 'em up.
409 *
410 */
411 void svc_xprt_enqueue(struct svc_xprt *xprt)
412 {
413 if (test_bit(XPT_BUSY, &xprt->xpt_flags))
414 return;
415 svc_xprt_do_enqueue(xprt);
416 }
417 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
418
419 /*
420 * Dequeue the first transport, if there is one.
421 */
422 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
423 {
424 struct svc_xprt *xprt = NULL;
425
426 if (list_empty(&pool->sp_sockets))
427 goto out;
428
429 spin_lock_bh(&pool->sp_lock);
430 if (likely(!list_empty(&pool->sp_sockets))) {
431 xprt = list_first_entry(&pool->sp_sockets,
432 struct svc_xprt, xpt_ready);
433 list_del_init(&xprt->xpt_ready);
434 svc_xprt_get(xprt);
435
436 dprintk("svc: transport %p dequeued, inuse=%d\n",
437 xprt, atomic_read(&xprt->xpt_ref.refcount));
438 }
439 spin_unlock_bh(&pool->sp_lock);
440 out:
441 trace_svc_xprt_dequeue(xprt);
442 return xprt;
443 }
444
445 /**
446 * svc_reserve - change the space reserved for the reply to a request.
447 * @rqstp: The request in question
448 * @space: new max space to reserve
449 *
450 * Each request reserves some space on the output queue of the transport
451 * to make sure the reply fits. This function reduces that reserved
452 * space to be the amount of space used already, plus @space.
453 *
454 */
455 void svc_reserve(struct svc_rqst *rqstp, int space)
456 {
457 space += rqstp->rq_res.head[0].iov_len;
458
459 if (space < rqstp->rq_reserved) {
460 struct svc_xprt *xprt = rqstp->rq_xprt;
461 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
462 rqstp->rq_reserved = space;
463
464 if (xprt->xpt_ops->xpo_adjust_wspace)
465 xprt->xpt_ops->xpo_adjust_wspace(xprt);
466 svc_xprt_enqueue(xprt);
467 }
468 }
469 EXPORT_SYMBOL_GPL(svc_reserve);
470
471 static void svc_xprt_release(struct svc_rqst *rqstp)
472 {
473 struct svc_xprt *xprt = rqstp->rq_xprt;
474
475 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
476
477 kfree(rqstp->rq_deferred);
478 rqstp->rq_deferred = NULL;
479
480 svc_free_res_pages(rqstp);
481 rqstp->rq_res.page_len = 0;
482 rqstp->rq_res.page_base = 0;
483
484 /* Reset response buffer and release
485 * the reservation.
486 * But first, check that enough space was reserved
487 * for the reply, otherwise we have a bug!
488 */
489 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
490 printk(KERN_ERR "RPC request reserved %d but used %d\n",
491 rqstp->rq_reserved,
492 rqstp->rq_res.len);
493
494 rqstp->rq_res.head[0].iov_len = 0;
495 svc_reserve(rqstp, 0);
496 rqstp->rq_xprt = NULL;
497
498 svc_xprt_put(xprt);
499 }
500
501 /*
502 * Some svc_serv's will have occasional work to do, even when a xprt is not
503 * waiting to be serviced. This function is there to "kick" a task in one of
504 * those services so that it can wake up and do that work. Note that we only
505 * bother with pool 0 as we don't need to wake up more than one thread for
506 * this purpose.
507 */
508 void svc_wake_up(struct svc_serv *serv)
509 {
510 struct svc_rqst *rqstp;
511 struct svc_pool *pool;
512
513 pool = &serv->sv_pools[0];
514
515 rcu_read_lock();
516 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
517 /* skip any that aren't queued */
518 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
519 continue;
520 rcu_read_unlock();
521 dprintk("svc: daemon %p woken up.\n", rqstp);
522 wake_up_process(rqstp->rq_task);
523 trace_svc_wake_up(rqstp->rq_task->pid);
524 return;
525 }
526 rcu_read_unlock();
527
528 /* No free entries available */
529 set_bit(SP_TASK_PENDING, &pool->sp_flags);
530 smp_wmb();
531 trace_svc_wake_up(0);
532 }
533 EXPORT_SYMBOL_GPL(svc_wake_up);
534
535 int svc_port_is_privileged(struct sockaddr *sin)
536 {
537 switch (sin->sa_family) {
538 case AF_INET:
539 return ntohs(((struct sockaddr_in *)sin)->sin_port)
540 < PROT_SOCK;
541 case AF_INET6:
542 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
543 < PROT_SOCK;
544 default:
545 return 0;
546 }
547 }
548
549 /*
550 * Make sure that we don't have too many active connections. If we have,
551 * something must be dropped. It's not clear what will happen if we allow
552 * "too many" connections, but when dealing with network-facing software,
553 * we have to code defensively. Here we do that by imposing hard limits.
554 *
555 * There's no point in trying to do random drop here for DoS
556 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
557 * attacker can easily beat that.
558 *
559 * The only somewhat efficient mechanism would be if drop old
560 * connections from the same IP first. But right now we don't even
561 * record the client IP in svc_sock.
562 *
563 * single-threaded services that expect a lot of clients will probably
564 * need to set sv_maxconn to override the default value which is based
565 * on the number of threads
566 */
567 static void svc_check_conn_limits(struct svc_serv *serv)
568 {
569 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
570 (serv->sv_nrthreads+3) * 20;
571
572 if (serv->sv_tmpcnt > limit) {
573 struct svc_xprt *xprt = NULL;
574 spin_lock_bh(&serv->sv_lock);
575 if (!list_empty(&serv->sv_tempsocks)) {
576 /* Try to help the admin */
577 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
578 serv->sv_name, serv->sv_maxconn ?
579 "max number of connections" :
580 "number of threads");
581 /*
582 * Always select the oldest connection. It's not fair,
583 * but so is life
584 */
585 xprt = list_entry(serv->sv_tempsocks.prev,
586 struct svc_xprt,
587 xpt_list);
588 set_bit(XPT_CLOSE, &xprt->xpt_flags);
589 svc_xprt_get(xprt);
590 }
591 spin_unlock_bh(&serv->sv_lock);
592
593 if (xprt) {
594 svc_xprt_enqueue(xprt);
595 svc_xprt_put(xprt);
596 }
597 }
598 }
599
600 static int svc_alloc_arg(struct svc_rqst *rqstp)
601 {
602 struct svc_serv *serv = rqstp->rq_server;
603 struct xdr_buf *arg;
604 int pages;
605 int i;
606
607 /* now allocate needed pages. If we get a failure, sleep briefly */
608 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
609 WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
610 if (pages >= RPCSVC_MAXPAGES)
611 /* use as many pages as possible */
612 pages = RPCSVC_MAXPAGES - 1;
613 for (i = 0; i < pages ; i++)
614 while (rqstp->rq_pages[i] == NULL) {
615 struct page *p = alloc_page(GFP_KERNEL);
616 if (!p) {
617 set_current_state(TASK_INTERRUPTIBLE);
618 if (signalled() || kthread_should_stop()) {
619 set_current_state(TASK_RUNNING);
620 return -EINTR;
621 }
622 schedule_timeout(msecs_to_jiffies(500));
623 }
624 rqstp->rq_pages[i] = p;
625 }
626 rqstp->rq_page_end = &rqstp->rq_pages[i];
627 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
628
629 /* Make arg->head point to first page and arg->pages point to rest */
630 arg = &rqstp->rq_arg;
631 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
632 arg->head[0].iov_len = PAGE_SIZE;
633 arg->pages = rqstp->rq_pages + 1;
634 arg->page_base = 0;
635 /* save at least one page for response */
636 arg->page_len = (pages-2)*PAGE_SIZE;
637 arg->len = (pages-1)*PAGE_SIZE;
638 arg->tail[0].iov_len = 0;
639 return 0;
640 }
641
642 static bool
643 rqst_should_sleep(struct svc_rqst *rqstp)
644 {
645 struct svc_pool *pool = rqstp->rq_pool;
646
647 /* did someone call svc_wake_up? */
648 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
649 return false;
650
651 /* was a socket queued? */
652 if (!list_empty(&pool->sp_sockets))
653 return false;
654
655 /* are we shutting down? */
656 if (signalled() || kthread_should_stop())
657 return false;
658
659 /* are we freezing? */
660 if (freezing(current))
661 return false;
662
663 return true;
664 }
665
666 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
667 {
668 struct svc_xprt *xprt;
669 struct svc_pool *pool = rqstp->rq_pool;
670 long time_left = 0;
671
672 /* rq_xprt should be clear on entry */
673 WARN_ON_ONCE(rqstp->rq_xprt);
674
675 /* Normally we will wait up to 5 seconds for any required
676 * cache information to be provided.
677 */
678 rqstp->rq_chandle.thread_wait = 5*HZ;
679
680 xprt = svc_xprt_dequeue(pool);
681 if (xprt) {
682 rqstp->rq_xprt = xprt;
683
684 /* As there is a shortage of threads and this request
685 * had to be queued, don't allow the thread to wait so
686 * long for cache updates.
687 */
688 rqstp->rq_chandle.thread_wait = 1*HZ;
689 clear_bit(SP_TASK_PENDING, &pool->sp_flags);
690 return xprt;
691 }
692
693 /*
694 * We have to be able to interrupt this wait
695 * to bring down the daemons ...
696 */
697 set_current_state(TASK_INTERRUPTIBLE);
698 clear_bit(RQ_BUSY, &rqstp->rq_flags);
699 smp_mb();
700
701 if (likely(rqst_should_sleep(rqstp)))
702 time_left = schedule_timeout(timeout);
703 else
704 __set_current_state(TASK_RUNNING);
705
706 try_to_freeze();
707
708 spin_lock_bh(&rqstp->rq_lock);
709 set_bit(RQ_BUSY, &rqstp->rq_flags);
710 spin_unlock_bh(&rqstp->rq_lock);
711
712 xprt = rqstp->rq_xprt;
713 if (xprt != NULL)
714 return xprt;
715
716 if (!time_left)
717 atomic_long_inc(&pool->sp_stats.threads_timedout);
718
719 if (signalled() || kthread_should_stop())
720 return ERR_PTR(-EINTR);
721 return ERR_PTR(-EAGAIN);
722 }
723
724 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
725 {
726 spin_lock_bh(&serv->sv_lock);
727 set_bit(XPT_TEMP, &newxpt->xpt_flags);
728 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
729 serv->sv_tmpcnt++;
730 if (serv->sv_temptimer.function == NULL) {
731 /* setup timer to age temp transports */
732 setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
733 (unsigned long)serv);
734 mod_timer(&serv->sv_temptimer,
735 jiffies + svc_conn_age_period * HZ);
736 }
737 spin_unlock_bh(&serv->sv_lock);
738 svc_xprt_received(newxpt);
739 }
740
741 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
742 {
743 struct svc_serv *serv = rqstp->rq_server;
744 int len = 0;
745
746 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
747 dprintk("svc_recv: found XPT_CLOSE\n");
748 svc_delete_xprt(xprt);
749 /* Leave XPT_BUSY set on the dead xprt: */
750 goto out;
751 }
752 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
753 struct svc_xprt *newxpt;
754 /*
755 * We know this module_get will succeed because the
756 * listener holds a reference too
757 */
758 __module_get(xprt->xpt_class->xcl_owner);
759 svc_check_conn_limits(xprt->xpt_server);
760 newxpt = xprt->xpt_ops->xpo_accept(xprt);
761 if (newxpt)
762 svc_add_new_temp_xprt(serv, newxpt);
763 else
764 module_put(xprt->xpt_class->xcl_owner);
765 } else {
766 /* XPT_DATA|XPT_DEFERRED case: */
767 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
768 rqstp, rqstp->rq_pool->sp_id, xprt,
769 atomic_read(&xprt->xpt_ref.refcount));
770 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
771 if (rqstp->rq_deferred)
772 len = svc_deferred_recv(rqstp);
773 else
774 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
775 dprintk("svc: got len=%d\n", len);
776 rqstp->rq_reserved = serv->sv_max_mesg;
777 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
778 }
779 /* clear XPT_BUSY: */
780 svc_xprt_received(xprt);
781 out:
782 trace_svc_handle_xprt(xprt, len);
783 return len;
784 }
785
786 /*
787 * Receive the next request on any transport. This code is carefully
788 * organised not to touch any cachelines in the shared svc_serv
789 * structure, only cachelines in the local svc_pool.
790 */
791 int svc_recv(struct svc_rqst *rqstp, long timeout)
792 {
793 struct svc_xprt *xprt = NULL;
794 struct svc_serv *serv = rqstp->rq_server;
795 int len, err;
796
797 dprintk("svc: server %p waiting for data (to = %ld)\n",
798 rqstp, timeout);
799
800 if (rqstp->rq_xprt)
801 printk(KERN_ERR
802 "svc_recv: service %p, transport not NULL!\n",
803 rqstp);
804
805 err = svc_alloc_arg(rqstp);
806 if (err)
807 goto out;
808
809 try_to_freeze();
810 cond_resched();
811 err = -EINTR;
812 if (signalled() || kthread_should_stop())
813 goto out;
814
815 xprt = svc_get_next_xprt(rqstp, timeout);
816 if (IS_ERR(xprt)) {
817 err = PTR_ERR(xprt);
818 goto out;
819 }
820
821 len = svc_handle_xprt(rqstp, xprt);
822
823 /* No data, incomplete (TCP) read, or accept() */
824 err = -EAGAIN;
825 if (len <= 0)
826 goto out_release;
827
828 clear_bit(XPT_OLD, &xprt->xpt_flags);
829
830 if (xprt->xpt_ops->xpo_secure_port(rqstp))
831 set_bit(RQ_SECURE, &rqstp->rq_flags);
832 else
833 clear_bit(RQ_SECURE, &rqstp->rq_flags);
834 rqstp->rq_chandle.defer = svc_defer;
835 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
836
837 if (serv->sv_stats)
838 serv->sv_stats->netcnt++;
839 trace_svc_recv(rqstp, len);
840 return len;
841 out_release:
842 rqstp->rq_res.len = 0;
843 svc_xprt_release(rqstp);
844 out:
845 trace_svc_recv(rqstp, err);
846 return err;
847 }
848 EXPORT_SYMBOL_GPL(svc_recv);
849
850 /*
851 * Drop request
852 */
853 void svc_drop(struct svc_rqst *rqstp)
854 {
855 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
856 svc_xprt_release(rqstp);
857 }
858 EXPORT_SYMBOL_GPL(svc_drop);
859
860 /*
861 * Return reply to client.
862 */
863 int svc_send(struct svc_rqst *rqstp)
864 {
865 struct svc_xprt *xprt;
866 int len = -EFAULT;
867 struct xdr_buf *xb;
868
869 xprt = rqstp->rq_xprt;
870 if (!xprt)
871 goto out;
872
873 /* release the receive skb before sending the reply */
874 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
875
876 /* calculate over-all length */
877 xb = &rqstp->rq_res;
878 xb->len = xb->head[0].iov_len +
879 xb->page_len +
880 xb->tail[0].iov_len;
881
882 /* Grab mutex to serialize outgoing data. */
883 mutex_lock(&xprt->xpt_mutex);
884 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
885 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
886 len = -ENOTCONN;
887 else
888 len = xprt->xpt_ops->xpo_sendto(rqstp);
889 mutex_unlock(&xprt->xpt_mutex);
890 rpc_wake_up(&xprt->xpt_bc_pending);
891 svc_xprt_release(rqstp);
892
893 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
894 len = 0;
895 out:
896 trace_svc_send(rqstp, len);
897 return len;
898 }
899
900 /*
901 * Timer function to close old temporary transports, using
902 * a mark-and-sweep algorithm.
903 */
904 static void svc_age_temp_xprts(unsigned long closure)
905 {
906 struct svc_serv *serv = (struct svc_serv *)closure;
907 struct svc_xprt *xprt;
908 struct list_head *le, *next;
909
910 dprintk("svc_age_temp_xprts\n");
911
912 if (!spin_trylock_bh(&serv->sv_lock)) {
913 /* busy, try again 1 sec later */
914 dprintk("svc_age_temp_xprts: busy\n");
915 mod_timer(&serv->sv_temptimer, jiffies + HZ);
916 return;
917 }
918
919 list_for_each_safe(le, next, &serv->sv_tempsocks) {
920 xprt = list_entry(le, struct svc_xprt, xpt_list);
921
922 /* First time through, just mark it OLD. Second time
923 * through, close it. */
924 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
925 continue;
926 if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
927 test_bit(XPT_BUSY, &xprt->xpt_flags))
928 continue;
929 list_del_init(le);
930 set_bit(XPT_CLOSE, &xprt->xpt_flags);
931 dprintk("queuing xprt %p for closing\n", xprt);
932
933 /* a thread will dequeue and close it soon */
934 svc_xprt_enqueue(xprt);
935 }
936 spin_unlock_bh(&serv->sv_lock);
937
938 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
939 }
940
941 static void call_xpt_users(struct svc_xprt *xprt)
942 {
943 struct svc_xpt_user *u;
944
945 spin_lock(&xprt->xpt_lock);
946 while (!list_empty(&xprt->xpt_users)) {
947 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
948 list_del(&u->list);
949 u->callback(u);
950 }
951 spin_unlock(&xprt->xpt_lock);
952 }
953
954 /*
955 * Remove a dead transport
956 */
957 static void svc_delete_xprt(struct svc_xprt *xprt)
958 {
959 struct svc_serv *serv = xprt->xpt_server;
960 struct svc_deferred_req *dr;
961
962 /* Only do this once */
963 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
964 BUG();
965
966 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
967 xprt->xpt_ops->xpo_detach(xprt);
968
969 spin_lock_bh(&serv->sv_lock);
970 list_del_init(&xprt->xpt_list);
971 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
972 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
973 serv->sv_tmpcnt--;
974 spin_unlock_bh(&serv->sv_lock);
975
976 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
977 kfree(dr);
978
979 call_xpt_users(xprt);
980 svc_xprt_put(xprt);
981 }
982
983 void svc_close_xprt(struct svc_xprt *xprt)
984 {
985 set_bit(XPT_CLOSE, &xprt->xpt_flags);
986 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
987 /* someone else will have to effect the close */
988 return;
989 /*
990 * We expect svc_close_xprt() to work even when no threads are
991 * running (e.g., while configuring the server before starting
992 * any threads), so if the transport isn't busy, we delete
993 * it ourself:
994 */
995 svc_delete_xprt(xprt);
996 }
997 EXPORT_SYMBOL_GPL(svc_close_xprt);
998
999 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1000 {
1001 struct svc_xprt *xprt;
1002 int ret = 0;
1003
1004 spin_lock(&serv->sv_lock);
1005 list_for_each_entry(xprt, xprt_list, xpt_list) {
1006 if (xprt->xpt_net != net)
1007 continue;
1008 ret++;
1009 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1010 svc_xprt_enqueue(xprt);
1011 }
1012 spin_unlock(&serv->sv_lock);
1013 return ret;
1014 }
1015
1016 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1017 {
1018 struct svc_pool *pool;
1019 struct svc_xprt *xprt;
1020 struct svc_xprt *tmp;
1021 int i;
1022
1023 for (i = 0; i < serv->sv_nrpools; i++) {
1024 pool = &serv->sv_pools[i];
1025
1026 spin_lock_bh(&pool->sp_lock);
1027 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1028 if (xprt->xpt_net != net)
1029 continue;
1030 list_del_init(&xprt->xpt_ready);
1031 spin_unlock_bh(&pool->sp_lock);
1032 return xprt;
1033 }
1034 spin_unlock_bh(&pool->sp_lock);
1035 }
1036 return NULL;
1037 }
1038
1039 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1040 {
1041 struct svc_xprt *xprt;
1042
1043 while ((xprt = svc_dequeue_net(serv, net))) {
1044 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1045 svc_delete_xprt(xprt);
1046 }
1047 }
1048
1049 /*
1050 * Server threads may still be running (especially in the case where the
1051 * service is still running in other network namespaces).
1052 *
1053 * So we shut down sockets the same way we would on a running server, by
1054 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1055 * the close. In the case there are no such other threads,
1056 * threads running, svc_clean_up_xprts() does a simple version of a
1057 * server's main event loop, and in the case where there are other
1058 * threads, we may need to wait a little while and then check again to
1059 * see if they're done.
1060 */
1061 void svc_close_net(struct svc_serv *serv, struct net *net)
1062 {
1063 int delay = 0;
1064
1065 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1066 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1067
1068 svc_clean_up_xprts(serv, net);
1069 msleep(delay++);
1070 }
1071 }
1072
1073 /*
1074 * Handle defer and revisit of requests
1075 */
1076
1077 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1078 {
1079 struct svc_deferred_req *dr =
1080 container_of(dreq, struct svc_deferred_req, handle);
1081 struct svc_xprt *xprt = dr->xprt;
1082
1083 spin_lock(&xprt->xpt_lock);
1084 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1085 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1086 spin_unlock(&xprt->xpt_lock);
1087 dprintk("revisit canceled\n");
1088 svc_xprt_put(xprt);
1089 kfree(dr);
1090 return;
1091 }
1092 dprintk("revisit queued\n");
1093 dr->xprt = NULL;
1094 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1095 spin_unlock(&xprt->xpt_lock);
1096 svc_xprt_enqueue(xprt);
1097 svc_xprt_put(xprt);
1098 }
1099
1100 /*
1101 * Save the request off for later processing. The request buffer looks
1102 * like this:
1103 *
1104 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1105 *
1106 * This code can only handle requests that consist of an xprt-header
1107 * and rpc-header.
1108 */
1109 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1110 {
1111 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1112 struct svc_deferred_req *dr;
1113
1114 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1115 return NULL; /* if more than a page, give up FIXME */
1116 if (rqstp->rq_deferred) {
1117 dr = rqstp->rq_deferred;
1118 rqstp->rq_deferred = NULL;
1119 } else {
1120 size_t skip;
1121 size_t size;
1122 /* FIXME maybe discard if size too large */
1123 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1124 dr = kmalloc(size, GFP_KERNEL);
1125 if (dr == NULL)
1126 return NULL;
1127
1128 dr->handle.owner = rqstp->rq_server;
1129 dr->prot = rqstp->rq_prot;
1130 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1131 dr->addrlen = rqstp->rq_addrlen;
1132 dr->daddr = rqstp->rq_daddr;
1133 dr->argslen = rqstp->rq_arg.len >> 2;
1134 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1135
1136 /* back up head to the start of the buffer and copy */
1137 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1138 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1139 dr->argslen << 2);
1140 }
1141 svc_xprt_get(rqstp->rq_xprt);
1142 dr->xprt = rqstp->rq_xprt;
1143 set_bit(RQ_DROPME, &rqstp->rq_flags);
1144
1145 dr->handle.revisit = svc_revisit;
1146 return &dr->handle;
1147 }
1148
1149 /*
1150 * recv data from a deferred request into an active one
1151 */
1152 static int svc_deferred_recv(struct svc_rqst *rqstp)
1153 {
1154 struct svc_deferred_req *dr = rqstp->rq_deferred;
1155
1156 /* setup iov_base past transport header */
1157 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1158 /* The iov_len does not include the transport header bytes */
1159 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1160 rqstp->rq_arg.page_len = 0;
1161 /* The rq_arg.len includes the transport header bytes */
1162 rqstp->rq_arg.len = dr->argslen<<2;
1163 rqstp->rq_prot = dr->prot;
1164 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1165 rqstp->rq_addrlen = dr->addrlen;
1166 /* Save off transport header len in case we get deferred again */
1167 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1168 rqstp->rq_daddr = dr->daddr;
1169 rqstp->rq_respages = rqstp->rq_pages;
1170 return (dr->argslen<<2) - dr->xprt_hlen;
1171 }
1172
1173
1174 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1175 {
1176 struct svc_deferred_req *dr = NULL;
1177
1178 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1179 return NULL;
1180 spin_lock(&xprt->xpt_lock);
1181 if (!list_empty(&xprt->xpt_deferred)) {
1182 dr = list_entry(xprt->xpt_deferred.next,
1183 struct svc_deferred_req,
1184 handle.recent);
1185 list_del_init(&dr->handle.recent);
1186 } else
1187 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1188 spin_unlock(&xprt->xpt_lock);
1189 return dr;
1190 }
1191
1192 /**
1193 * svc_find_xprt - find an RPC transport instance
1194 * @serv: pointer to svc_serv to search
1195 * @xcl_name: C string containing transport's class name
1196 * @net: owner net pointer
1197 * @af: Address family of transport's local address
1198 * @port: transport's IP port number
1199 *
1200 * Return the transport instance pointer for the endpoint accepting
1201 * connections/peer traffic from the specified transport class,
1202 * address family and port.
1203 *
1204 * Specifying 0 for the address family or port is effectively a
1205 * wild-card, and will result in matching the first transport in the
1206 * service's list that has a matching class name.
1207 */
1208 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1209 struct net *net, const sa_family_t af,
1210 const unsigned short port)
1211 {
1212 struct svc_xprt *xprt;
1213 struct svc_xprt *found = NULL;
1214
1215 /* Sanity check the args */
1216 if (serv == NULL || xcl_name == NULL)
1217 return found;
1218
1219 spin_lock_bh(&serv->sv_lock);
1220 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1221 if (xprt->xpt_net != net)
1222 continue;
1223 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1224 continue;
1225 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1226 continue;
1227 if (port != 0 && port != svc_xprt_local_port(xprt))
1228 continue;
1229 found = xprt;
1230 svc_xprt_get(xprt);
1231 break;
1232 }
1233 spin_unlock_bh(&serv->sv_lock);
1234 return found;
1235 }
1236 EXPORT_SYMBOL_GPL(svc_find_xprt);
1237
1238 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1239 char *pos, int remaining)
1240 {
1241 int len;
1242
1243 len = snprintf(pos, remaining, "%s %u\n",
1244 xprt->xpt_class->xcl_name,
1245 svc_xprt_local_port(xprt));
1246 if (len >= remaining)
1247 return -ENAMETOOLONG;
1248 return len;
1249 }
1250
1251 /**
1252 * svc_xprt_names - format a buffer with a list of transport names
1253 * @serv: pointer to an RPC service
1254 * @buf: pointer to a buffer to be filled in
1255 * @buflen: length of buffer to be filled in
1256 *
1257 * Fills in @buf with a string containing a list of transport names,
1258 * each name terminated with '\n'.
1259 *
1260 * Returns positive length of the filled-in string on success; otherwise
1261 * a negative errno value is returned if an error occurs.
1262 */
1263 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1264 {
1265 struct svc_xprt *xprt;
1266 int len, totlen;
1267 char *pos;
1268
1269 /* Sanity check args */
1270 if (!serv)
1271 return 0;
1272
1273 spin_lock_bh(&serv->sv_lock);
1274
1275 pos = buf;
1276 totlen = 0;
1277 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1278 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1279 if (len < 0) {
1280 *buf = '\0';
1281 totlen = len;
1282 }
1283 if (len <= 0)
1284 break;
1285
1286 pos += len;
1287 totlen += len;
1288 }
1289
1290 spin_unlock_bh(&serv->sv_lock);
1291 return totlen;
1292 }
1293 EXPORT_SYMBOL_GPL(svc_xprt_names);
1294
1295
1296 /*----------------------------------------------------------------------------*/
1297
1298 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1299 {
1300 unsigned int pidx = (unsigned int)*pos;
1301 struct svc_serv *serv = m->private;
1302
1303 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1304
1305 if (!pidx)
1306 return SEQ_START_TOKEN;
1307 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1308 }
1309
1310 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1311 {
1312 struct svc_pool *pool = p;
1313 struct svc_serv *serv = m->private;
1314
1315 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1316
1317 if (p == SEQ_START_TOKEN) {
1318 pool = &serv->sv_pools[0];
1319 } else {
1320 unsigned int pidx = (pool - &serv->sv_pools[0]);
1321 if (pidx < serv->sv_nrpools-1)
1322 pool = &serv->sv_pools[pidx+1];
1323 else
1324 pool = NULL;
1325 }
1326 ++*pos;
1327 return pool;
1328 }
1329
1330 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1331 {
1332 }
1333
1334 static int svc_pool_stats_show(struct seq_file *m, void *p)
1335 {
1336 struct svc_pool *pool = p;
1337
1338 if (p == SEQ_START_TOKEN) {
1339 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1340 return 0;
1341 }
1342
1343 seq_printf(m, "%u %lu %lu %lu %lu\n",
1344 pool->sp_id,
1345 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1346 pool->sp_stats.sockets_queued,
1347 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1348 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1349
1350 return 0;
1351 }
1352
1353 static const struct seq_operations svc_pool_stats_seq_ops = {
1354 .start = svc_pool_stats_start,
1355 .next = svc_pool_stats_next,
1356 .stop = svc_pool_stats_stop,
1357 .show = svc_pool_stats_show,
1358 };
1359
1360 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1361 {
1362 int err;
1363
1364 err = seq_open(file, &svc_pool_stats_seq_ops);
1365 if (!err)
1366 ((struct seq_file *) file->private_data)->private = serv;
1367 return err;
1368 }
1369 EXPORT_SYMBOL(svc_pool_stats_open);
1370
1371 /*----------------------------------------------------------------------------*/
This page took 0.085497 seconds and 6 git commands to generate.