svcrpc: close connection if client sends short packet
[deliverable/linux.git] / net / sunrpc / svcsock.c
1 /*
2 * linux/net/sunrpc/svcsock.c
3 *
4 * These are the RPC server socket internals.
5 *
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_xprt_enqueue procedure...
9 *
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
18 *
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/errno.h>
25 #include <linux/fcntl.h>
26 #include <linux/net.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/udp.h>
30 #include <linux/tcp.h>
31 #include <linux/unistd.h>
32 #include <linux/slab.h>
33 #include <linux/netdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/file.h>
36 #include <linux/freezer.h>
37 #include <net/sock.h>
38 #include <net/checksum.h>
39 #include <net/ip.h>
40 #include <net/ipv6.h>
41 #include <net/tcp.h>
42 #include <net/tcp_states.h>
43 #include <asm/uaccess.h>
44 #include <asm/ioctls.h>
45
46 #include <linux/sunrpc/types.h>
47 #include <linux/sunrpc/clnt.h>
48 #include <linux/sunrpc/xdr.h>
49 #include <linux/sunrpc/msg_prot.h>
50 #include <linux/sunrpc/svcsock.h>
51 #include <linux/sunrpc/stats.h>
52 #include <linux/sunrpc/xprt.h>
53
54 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
55
56
57 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
58 int *errp, int flags);
59 static void svc_udp_data_ready(struct sock *, int);
60 static int svc_udp_recvfrom(struct svc_rqst *);
61 static int svc_udp_sendto(struct svc_rqst *);
62 static void svc_sock_detach(struct svc_xprt *);
63 static void svc_tcp_sock_detach(struct svc_xprt *);
64 static void svc_sock_free(struct svc_xprt *);
65
66 static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
67 struct net *, struct sockaddr *,
68 int, int);
69 #if defined(CONFIG_NFS_V4_1)
70 static struct svc_xprt *svc_bc_create_socket(struct svc_serv *, int,
71 struct net *, struct sockaddr *,
72 int, int);
73 static void svc_bc_sock_free(struct svc_xprt *xprt);
74 #endif /* CONFIG_NFS_V4_1 */
75
76 #ifdef CONFIG_DEBUG_LOCK_ALLOC
77 static struct lock_class_key svc_key[2];
78 static struct lock_class_key svc_slock_key[2];
79
80 static void svc_reclassify_socket(struct socket *sock)
81 {
82 struct sock *sk = sock->sk;
83 BUG_ON(sock_owned_by_user(sk));
84 switch (sk->sk_family) {
85 case AF_INET:
86 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
87 &svc_slock_key[0],
88 "sk_xprt.xpt_lock-AF_INET-NFSD",
89 &svc_key[0]);
90 break;
91
92 case AF_INET6:
93 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
94 &svc_slock_key[1],
95 "sk_xprt.xpt_lock-AF_INET6-NFSD",
96 &svc_key[1]);
97 break;
98
99 default:
100 BUG();
101 }
102 }
103 #else
104 static void svc_reclassify_socket(struct socket *sock)
105 {
106 }
107 #endif
108
109 /*
110 * Release an skbuff after use
111 */
112 static void svc_release_skb(struct svc_rqst *rqstp)
113 {
114 struct sk_buff *skb = rqstp->rq_xprt_ctxt;
115
116 if (skb) {
117 struct svc_sock *svsk =
118 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
119 rqstp->rq_xprt_ctxt = NULL;
120
121 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
122 skb_free_datagram_locked(svsk->sk_sk, skb);
123 }
124 }
125
126 union svc_pktinfo_u {
127 struct in_pktinfo pkti;
128 struct in6_pktinfo pkti6;
129 };
130 #define SVC_PKTINFO_SPACE \
131 CMSG_SPACE(sizeof(union svc_pktinfo_u))
132
133 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
134 {
135 struct svc_sock *svsk =
136 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
137 switch (svsk->sk_sk->sk_family) {
138 case AF_INET: {
139 struct in_pktinfo *pki = CMSG_DATA(cmh);
140
141 cmh->cmsg_level = SOL_IP;
142 cmh->cmsg_type = IP_PKTINFO;
143 pki->ipi_ifindex = 0;
144 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
145 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
146 }
147 break;
148
149 case AF_INET6: {
150 struct in6_pktinfo *pki = CMSG_DATA(cmh);
151
152 cmh->cmsg_level = SOL_IPV6;
153 cmh->cmsg_type = IPV6_PKTINFO;
154 pki->ipi6_ifindex = 0;
155 ipv6_addr_copy(&pki->ipi6_addr,
156 &rqstp->rq_daddr.addr6);
157 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
158 }
159 break;
160 }
161 }
162
163 /*
164 * send routine intended to be shared by the fore- and back-channel
165 */
166 int svc_send_common(struct socket *sock, struct xdr_buf *xdr,
167 struct page *headpage, unsigned long headoffset,
168 struct page *tailpage, unsigned long tailoffset)
169 {
170 int result;
171 int size;
172 struct page **ppage = xdr->pages;
173 size_t base = xdr->page_base;
174 unsigned int pglen = xdr->page_len;
175 unsigned int flags = MSG_MORE;
176 int slen;
177 int len = 0;
178
179 slen = xdr->len;
180
181 /* send head */
182 if (slen == xdr->head[0].iov_len)
183 flags = 0;
184 len = kernel_sendpage(sock, headpage, headoffset,
185 xdr->head[0].iov_len, flags);
186 if (len != xdr->head[0].iov_len)
187 goto out;
188 slen -= xdr->head[0].iov_len;
189 if (slen == 0)
190 goto out;
191
192 /* send page data */
193 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
194 while (pglen > 0) {
195 if (slen == size)
196 flags = 0;
197 result = kernel_sendpage(sock, *ppage, base, size, flags);
198 if (result > 0)
199 len += result;
200 if (result != size)
201 goto out;
202 slen -= size;
203 pglen -= size;
204 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
205 base = 0;
206 ppage++;
207 }
208
209 /* send tail */
210 if (xdr->tail[0].iov_len) {
211 result = kernel_sendpage(sock, tailpage, tailoffset,
212 xdr->tail[0].iov_len, 0);
213 if (result > 0)
214 len += result;
215 }
216
217 out:
218 return len;
219 }
220
221
222 /*
223 * Generic sendto routine
224 */
225 static int svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
226 {
227 struct svc_sock *svsk =
228 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
229 struct socket *sock = svsk->sk_sock;
230 union {
231 struct cmsghdr hdr;
232 long all[SVC_PKTINFO_SPACE / sizeof(long)];
233 } buffer;
234 struct cmsghdr *cmh = &buffer.hdr;
235 int len = 0;
236 unsigned long tailoff;
237 unsigned long headoff;
238 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
239
240 if (rqstp->rq_prot == IPPROTO_UDP) {
241 struct msghdr msg = {
242 .msg_name = &rqstp->rq_addr,
243 .msg_namelen = rqstp->rq_addrlen,
244 .msg_control = cmh,
245 .msg_controllen = sizeof(buffer),
246 .msg_flags = MSG_MORE,
247 };
248
249 svc_set_cmsg_data(rqstp, cmh);
250
251 if (sock_sendmsg(sock, &msg, 0) < 0)
252 goto out;
253 }
254
255 tailoff = ((unsigned long)xdr->tail[0].iov_base) & (PAGE_SIZE-1);
256 headoff = 0;
257 len = svc_send_common(sock, xdr, rqstp->rq_respages[0], headoff,
258 rqstp->rq_respages[0], tailoff);
259
260 out:
261 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
262 svsk, xdr->head[0].iov_base, xdr->head[0].iov_len,
263 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
264
265 return len;
266 }
267
268 /*
269 * Report socket names for nfsdfs
270 */
271 static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining)
272 {
273 const struct sock *sk = svsk->sk_sk;
274 const char *proto_name = sk->sk_protocol == IPPROTO_UDP ?
275 "udp" : "tcp";
276 int len;
277
278 switch (sk->sk_family) {
279 case PF_INET:
280 len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n",
281 proto_name,
282 &inet_sk(sk)->inet_rcv_saddr,
283 inet_sk(sk)->inet_num);
284 break;
285 case PF_INET6:
286 len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n",
287 proto_name,
288 &inet6_sk(sk)->rcv_saddr,
289 inet_sk(sk)->inet_num);
290 break;
291 default:
292 len = snprintf(buf, remaining, "*unknown-%d*\n",
293 sk->sk_family);
294 }
295
296 if (len >= remaining) {
297 *buf = '\0';
298 return -ENAMETOOLONG;
299 }
300 return len;
301 }
302
303 /**
304 * svc_sock_names - construct a list of listener names in a string
305 * @serv: pointer to RPC service
306 * @buf: pointer to a buffer to fill in with socket names
307 * @buflen: size of the buffer to be filled
308 * @toclose: pointer to '\0'-terminated C string containing the name
309 * of a listener to be closed
310 *
311 * Fills in @buf with a '\n'-separated list of names of listener
312 * sockets. If @toclose is not NULL, the socket named by @toclose
313 * is closed, and is not included in the output list.
314 *
315 * Returns positive length of the socket name string, or a negative
316 * errno value on error.
317 */
318 int svc_sock_names(struct svc_serv *serv, char *buf, const size_t buflen,
319 const char *toclose)
320 {
321 struct svc_sock *svsk, *closesk = NULL;
322 int len = 0;
323
324 if (!serv)
325 return 0;
326
327 spin_lock_bh(&serv->sv_lock);
328 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) {
329 int onelen = svc_one_sock_name(svsk, buf + len, buflen - len);
330 if (onelen < 0) {
331 len = onelen;
332 break;
333 }
334 if (toclose && strcmp(toclose, buf + len) == 0) {
335 closesk = svsk;
336 svc_xprt_get(&closesk->sk_xprt);
337 } else
338 len += onelen;
339 }
340 spin_unlock_bh(&serv->sv_lock);
341
342 if (closesk) {
343 /* Should unregister with portmap, but you cannot
344 * unregister just one protocol...
345 */
346 svc_close_xprt(&closesk->sk_xprt);
347 svc_xprt_put(&closesk->sk_xprt);
348 } else if (toclose)
349 return -ENOENT;
350 return len;
351 }
352 EXPORT_SYMBOL_GPL(svc_sock_names);
353
354 /*
355 * Check input queue length
356 */
357 static int svc_recv_available(struct svc_sock *svsk)
358 {
359 struct socket *sock = svsk->sk_sock;
360 int avail, err;
361
362 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
363
364 return (err >= 0)? avail : err;
365 }
366
367 /*
368 * Generic recvfrom routine.
369 */
370 static int svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr,
371 int buflen)
372 {
373 struct svc_sock *svsk =
374 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
375 struct msghdr msg = {
376 .msg_flags = MSG_DONTWAIT,
377 };
378 int len;
379
380 rqstp->rq_xprt_hlen = 0;
381
382 len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
383 msg.msg_flags);
384
385 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
386 svsk, iov[0].iov_base, iov[0].iov_len, len);
387 return len;
388 }
389
390 /*
391 * Set socket snd and rcv buffer lengths
392 */
393 static void svc_sock_setbufsize(struct socket *sock, unsigned int snd,
394 unsigned int rcv)
395 {
396 #if 0
397 mm_segment_t oldfs;
398 oldfs = get_fs(); set_fs(KERNEL_DS);
399 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
400 (char*)&snd, sizeof(snd));
401 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
402 (char*)&rcv, sizeof(rcv));
403 #else
404 /* sock_setsockopt limits use to sysctl_?mem_max,
405 * which isn't acceptable. Until that is made conditional
406 * on not having CAP_SYS_RESOURCE or similar, we go direct...
407 * DaveM said I could!
408 */
409 lock_sock(sock->sk);
410 sock->sk->sk_sndbuf = snd * 2;
411 sock->sk->sk_rcvbuf = rcv * 2;
412 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
413 sock->sk->sk_write_space(sock->sk);
414 release_sock(sock->sk);
415 #endif
416 }
417 /*
418 * INET callback when data has been received on the socket.
419 */
420 static void svc_udp_data_ready(struct sock *sk, int count)
421 {
422 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
423 wait_queue_head_t *wq = sk_sleep(sk);
424
425 if (svsk) {
426 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
427 svsk, sk, count,
428 test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
429 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
430 svc_xprt_enqueue(&svsk->sk_xprt);
431 }
432 if (wq && waitqueue_active(wq))
433 wake_up_interruptible(wq);
434 }
435
436 /*
437 * INET callback when space is newly available on the socket.
438 */
439 static void svc_write_space(struct sock *sk)
440 {
441 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
442 wait_queue_head_t *wq = sk_sleep(sk);
443
444 if (svsk) {
445 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
446 svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
447 svc_xprt_enqueue(&svsk->sk_xprt);
448 }
449
450 if (wq && waitqueue_active(wq)) {
451 dprintk("RPC svc_write_space: someone sleeping on %p\n",
452 svsk);
453 wake_up_interruptible(wq);
454 }
455 }
456
457 static void svc_tcp_write_space(struct sock *sk)
458 {
459 struct socket *sock = sk->sk_socket;
460
461 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && sock)
462 clear_bit(SOCK_NOSPACE, &sock->flags);
463 svc_write_space(sk);
464 }
465
466 /*
467 * See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo
468 */
469 static int svc_udp_get_dest_address4(struct svc_rqst *rqstp,
470 struct cmsghdr *cmh)
471 {
472 struct in_pktinfo *pki = CMSG_DATA(cmh);
473 if (cmh->cmsg_type != IP_PKTINFO)
474 return 0;
475 rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
476 return 1;
477 }
478
479 /*
480 * See net/ipv6/datagram.c : datagram_recv_ctl
481 */
482 static int svc_udp_get_dest_address6(struct svc_rqst *rqstp,
483 struct cmsghdr *cmh)
484 {
485 struct in6_pktinfo *pki = CMSG_DATA(cmh);
486 if (cmh->cmsg_type != IPV6_PKTINFO)
487 return 0;
488 ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
489 return 1;
490 }
491
492 /*
493 * Copy the UDP datagram's destination address to the rqstp structure.
494 * The 'destination' address in this case is the address to which the
495 * peer sent the datagram, i.e. our local address. For multihomed
496 * hosts, this can change from msg to msg. Note that only the IP
497 * address changes, the port number should remain the same.
498 */
499 static int svc_udp_get_dest_address(struct svc_rqst *rqstp,
500 struct cmsghdr *cmh)
501 {
502 switch (cmh->cmsg_level) {
503 case SOL_IP:
504 return svc_udp_get_dest_address4(rqstp, cmh);
505 case SOL_IPV6:
506 return svc_udp_get_dest_address6(rqstp, cmh);
507 }
508
509 return 0;
510 }
511
512 /*
513 * Receive a datagram from a UDP socket.
514 */
515 static int svc_udp_recvfrom(struct svc_rqst *rqstp)
516 {
517 struct svc_sock *svsk =
518 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
519 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
520 struct sk_buff *skb;
521 union {
522 struct cmsghdr hdr;
523 long all[SVC_PKTINFO_SPACE / sizeof(long)];
524 } buffer;
525 struct cmsghdr *cmh = &buffer.hdr;
526 struct msghdr msg = {
527 .msg_name = svc_addr(rqstp),
528 .msg_control = cmh,
529 .msg_controllen = sizeof(buffer),
530 .msg_flags = MSG_DONTWAIT,
531 };
532 size_t len;
533 int err;
534
535 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
536 /* udp sockets need large rcvbuf as all pending
537 * requests are still in that buffer. sndbuf must
538 * also be large enough that there is enough space
539 * for one reply per thread. We count all threads
540 * rather than threads in a particular pool, which
541 * provides an upper bound on the number of threads
542 * which will access the socket.
543 */
544 svc_sock_setbufsize(svsk->sk_sock,
545 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
546 (serv->sv_nrthreads+3) * serv->sv_max_mesg);
547
548 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
549 skb = NULL;
550 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
551 0, 0, MSG_PEEK | MSG_DONTWAIT);
552 if (err >= 0)
553 skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
554
555 if (skb == NULL) {
556 if (err != -EAGAIN) {
557 /* possibly an icmp error */
558 dprintk("svc: recvfrom returned error %d\n", -err);
559 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
560 }
561 return -EAGAIN;
562 }
563 len = svc_addr_len(svc_addr(rqstp));
564 if (len == 0)
565 return -EAFNOSUPPORT;
566 rqstp->rq_addrlen = len;
567 if (skb->tstamp.tv64 == 0) {
568 skb->tstamp = ktime_get_real();
569 /* Don't enable netstamp, sunrpc doesn't
570 need that much accuracy */
571 }
572 svsk->sk_sk->sk_stamp = skb->tstamp;
573 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
574
575 len = skb->len - sizeof(struct udphdr);
576 rqstp->rq_arg.len = len;
577
578 rqstp->rq_prot = IPPROTO_UDP;
579
580 if (!svc_udp_get_dest_address(rqstp, cmh)) {
581 if (net_ratelimit())
582 printk(KERN_WARNING
583 "svc: received unknown control message %d/%d; "
584 "dropping RPC reply datagram\n",
585 cmh->cmsg_level, cmh->cmsg_type);
586 skb_free_datagram_locked(svsk->sk_sk, skb);
587 return 0;
588 }
589
590 if (skb_is_nonlinear(skb)) {
591 /* we have to copy */
592 local_bh_disable();
593 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
594 local_bh_enable();
595 /* checksum error */
596 skb_free_datagram_locked(svsk->sk_sk, skb);
597 return 0;
598 }
599 local_bh_enable();
600 skb_free_datagram_locked(svsk->sk_sk, skb);
601 } else {
602 /* we can use it in-place */
603 rqstp->rq_arg.head[0].iov_base = skb->data +
604 sizeof(struct udphdr);
605 rqstp->rq_arg.head[0].iov_len = len;
606 if (skb_checksum_complete(skb)) {
607 skb_free_datagram_locked(svsk->sk_sk, skb);
608 return 0;
609 }
610 rqstp->rq_xprt_ctxt = skb;
611 }
612
613 rqstp->rq_arg.page_base = 0;
614 if (len <= rqstp->rq_arg.head[0].iov_len) {
615 rqstp->rq_arg.head[0].iov_len = len;
616 rqstp->rq_arg.page_len = 0;
617 rqstp->rq_respages = rqstp->rq_pages+1;
618 } else {
619 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
620 rqstp->rq_respages = rqstp->rq_pages + 1 +
621 DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
622 }
623
624 if (serv->sv_stats)
625 serv->sv_stats->netudpcnt++;
626
627 return len;
628 }
629
630 static int
631 svc_udp_sendto(struct svc_rqst *rqstp)
632 {
633 int error;
634
635 error = svc_sendto(rqstp, &rqstp->rq_res);
636 if (error == -ECONNREFUSED)
637 /* ICMP error on earlier request. */
638 error = svc_sendto(rqstp, &rqstp->rq_res);
639
640 return error;
641 }
642
643 static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp)
644 {
645 }
646
647 static int svc_udp_has_wspace(struct svc_xprt *xprt)
648 {
649 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
650 struct svc_serv *serv = xprt->xpt_server;
651 unsigned long required;
652
653 /*
654 * Set the SOCK_NOSPACE flag before checking the available
655 * sock space.
656 */
657 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
658 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
659 if (required*2 > sock_wspace(svsk->sk_sk))
660 return 0;
661 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
662 return 1;
663 }
664
665 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
666 {
667 BUG();
668 return NULL;
669 }
670
671 static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
672 struct net *net,
673 struct sockaddr *sa, int salen,
674 int flags)
675 {
676 return svc_create_socket(serv, IPPROTO_UDP, net, sa, salen, flags);
677 }
678
679 static struct svc_xprt_ops svc_udp_ops = {
680 .xpo_create = svc_udp_create,
681 .xpo_recvfrom = svc_udp_recvfrom,
682 .xpo_sendto = svc_udp_sendto,
683 .xpo_release_rqst = svc_release_skb,
684 .xpo_detach = svc_sock_detach,
685 .xpo_free = svc_sock_free,
686 .xpo_prep_reply_hdr = svc_udp_prep_reply_hdr,
687 .xpo_has_wspace = svc_udp_has_wspace,
688 .xpo_accept = svc_udp_accept,
689 };
690
691 static struct svc_xprt_class svc_udp_class = {
692 .xcl_name = "udp",
693 .xcl_owner = THIS_MODULE,
694 .xcl_ops = &svc_udp_ops,
695 .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
696 };
697
698 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
699 {
700 int err, level, optname, one = 1;
701
702 svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv);
703 clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
704 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
705 svsk->sk_sk->sk_write_space = svc_write_space;
706
707 /* initialise setting must have enough space to
708 * receive and respond to one request.
709 * svc_udp_recvfrom will re-adjust if necessary
710 */
711 svc_sock_setbufsize(svsk->sk_sock,
712 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
713 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
714
715 /* data might have come in before data_ready set up */
716 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
717 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
718
719 /* make sure we get destination address info */
720 switch (svsk->sk_sk->sk_family) {
721 case AF_INET:
722 level = SOL_IP;
723 optname = IP_PKTINFO;
724 break;
725 case AF_INET6:
726 level = SOL_IPV6;
727 optname = IPV6_RECVPKTINFO;
728 break;
729 default:
730 BUG();
731 }
732 err = kernel_setsockopt(svsk->sk_sock, level, optname,
733 (char *)&one, sizeof(one));
734 dprintk("svc: kernel_setsockopt returned %d\n", err);
735 }
736
737 /*
738 * A data_ready event on a listening socket means there's a connection
739 * pending. Do not use state_change as a substitute for it.
740 */
741 static void svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
742 {
743 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
744 wait_queue_head_t *wq;
745
746 dprintk("svc: socket %p TCP (listen) state change %d\n",
747 sk, sk->sk_state);
748
749 /*
750 * This callback may called twice when a new connection
751 * is established as a child socket inherits everything
752 * from a parent LISTEN socket.
753 * 1) data_ready method of the parent socket will be called
754 * when one of child sockets become ESTABLISHED.
755 * 2) data_ready method of the child socket may be called
756 * when it receives data before the socket is accepted.
757 * In case of 2, we should ignore it silently.
758 */
759 if (sk->sk_state == TCP_LISTEN) {
760 if (svsk) {
761 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
762 svc_xprt_enqueue(&svsk->sk_xprt);
763 } else
764 printk("svc: socket %p: no user data\n", sk);
765 }
766
767 wq = sk_sleep(sk);
768 if (wq && waitqueue_active(wq))
769 wake_up_interruptible_all(wq);
770 }
771
772 /*
773 * A state change on a connected socket means it's dying or dead.
774 */
775 static void svc_tcp_state_change(struct sock *sk)
776 {
777 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
778 wait_queue_head_t *wq = sk_sleep(sk);
779
780 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
781 sk, sk->sk_state, sk->sk_user_data);
782
783 if (!svsk)
784 printk("svc: socket %p: no user data\n", sk);
785 else {
786 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
787 svc_xprt_enqueue(&svsk->sk_xprt);
788 }
789 if (wq && waitqueue_active(wq))
790 wake_up_interruptible_all(wq);
791 }
792
793 static void svc_tcp_data_ready(struct sock *sk, int count)
794 {
795 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
796 wait_queue_head_t *wq = sk_sleep(sk);
797
798 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
799 sk, sk->sk_user_data);
800 if (svsk) {
801 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
802 svc_xprt_enqueue(&svsk->sk_xprt);
803 }
804 if (wq && waitqueue_active(wq))
805 wake_up_interruptible(wq);
806 }
807
808 /*
809 * Accept a TCP connection
810 */
811 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
812 {
813 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
814 struct sockaddr_storage addr;
815 struct sockaddr *sin = (struct sockaddr *) &addr;
816 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
817 struct socket *sock = svsk->sk_sock;
818 struct socket *newsock;
819 struct svc_sock *newsvsk;
820 int err, slen;
821 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
822
823 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
824 if (!sock)
825 return NULL;
826
827 clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
828 err = kernel_accept(sock, &newsock, O_NONBLOCK);
829 if (err < 0) {
830 if (err == -ENOMEM)
831 printk(KERN_WARNING "%s: no more sockets!\n",
832 serv->sv_name);
833 else if (err != -EAGAIN && net_ratelimit())
834 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
835 serv->sv_name, -err);
836 return NULL;
837 }
838 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
839
840 err = kernel_getpeername(newsock, sin, &slen);
841 if (err < 0) {
842 if (net_ratelimit())
843 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
844 serv->sv_name, -err);
845 goto failed; /* aborted connection or whatever */
846 }
847
848 /* Ideally, we would want to reject connections from unauthorized
849 * hosts here, but when we get encryption, the IP of the host won't
850 * tell us anything. For now just warn about unpriv connections.
851 */
852 if (!svc_port_is_privileged(sin)) {
853 dprintk(KERN_WARNING
854 "%s: connect from unprivileged port: %s\n",
855 serv->sv_name,
856 __svc_print_addr(sin, buf, sizeof(buf)));
857 }
858 dprintk("%s: connect from %s\n", serv->sv_name,
859 __svc_print_addr(sin, buf, sizeof(buf)));
860
861 /* make sure that a write doesn't block forever when
862 * low on memory
863 */
864 newsock->sk->sk_sndtimeo = HZ*30;
865
866 if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
867 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
868 goto failed;
869 svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen);
870 err = kernel_getsockname(newsock, sin, &slen);
871 if (unlikely(err < 0)) {
872 dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
873 slen = offsetof(struct sockaddr, sa_data);
874 }
875 svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen);
876
877 if (serv->sv_stats)
878 serv->sv_stats->nettcpconn++;
879
880 return &newsvsk->sk_xprt;
881
882 failed:
883 sock_release(newsock);
884 return NULL;
885 }
886
887 /*
888 * Receive data.
889 * If we haven't gotten the record length yet, get the next four bytes.
890 * Otherwise try to gobble up as much as possible up to the complete
891 * record length.
892 */
893 static int svc_tcp_recv_record(struct svc_sock *svsk, struct svc_rqst *rqstp)
894 {
895 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
896 unsigned int want;
897 int len;
898
899 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
900 /* sndbuf needs to have room for one request
901 * per thread, otherwise we can stall even when the
902 * network isn't a bottleneck.
903 *
904 * We count all threads rather than threads in a
905 * particular pool, which provides an upper bound
906 * on the number of threads which will access the socket.
907 *
908 * rcvbuf just needs to be able to hold a few requests.
909 * Normally they will be removed from the queue
910 * as soon a a complete request arrives.
911 */
912 svc_sock_setbufsize(svsk->sk_sock,
913 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
914 3 * serv->sv_max_mesg);
915
916 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
917
918 if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) {
919 struct kvec iov;
920
921 want = sizeof(rpc_fraghdr) - svsk->sk_tcplen;
922 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
923 iov.iov_len = want;
924 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
925 goto error;
926 svsk->sk_tcplen += len;
927
928 if (len < want) {
929 dprintk("svc: short recvfrom while reading record "
930 "length (%d of %d)\n", len, want);
931 goto err_again; /* record header not complete */
932 }
933
934 svsk->sk_reclen = ntohl(svsk->sk_reclen);
935 if (!(svsk->sk_reclen & RPC_LAST_STREAM_FRAGMENT)) {
936 /* FIXME: technically, a record can be fragmented,
937 * and non-terminal fragments will not have the top
938 * bit set in the fragment length header.
939 * But apparently no known nfs clients send fragmented
940 * records. */
941 if (net_ratelimit())
942 printk(KERN_NOTICE "RPC: multiple fragments "
943 "per record not supported\n");
944 goto err_delete;
945 }
946
947 svsk->sk_reclen &= RPC_FRAGMENT_SIZE_MASK;
948 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
949 if (svsk->sk_reclen > serv->sv_max_mesg) {
950 if (net_ratelimit())
951 printk(KERN_NOTICE "RPC: "
952 "fragment too large: 0x%08lx\n",
953 (unsigned long)svsk->sk_reclen);
954 goto err_delete;
955 }
956 }
957
958 if (svsk->sk_reclen < 8)
959 goto err_delete; /* client is nuts. */
960
961 /* Check whether enough data is available */
962 len = svc_recv_available(svsk);
963 if (len < 0)
964 goto error;
965
966 if (len < svsk->sk_reclen) {
967 dprintk("svc: incomplete TCP record (%d of %d)\n",
968 len, svsk->sk_reclen);
969 goto err_again; /* record not complete */
970 }
971 len = svsk->sk_reclen;
972
973 return len;
974 error:
975 if (len == -EAGAIN)
976 dprintk("RPC: TCP recv_record got EAGAIN\n");
977 return len;
978 err_delete:
979 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
980 err_again:
981 return -EAGAIN;
982 }
983
984 static int svc_process_calldir(struct svc_sock *svsk, struct svc_rqst *rqstp,
985 struct rpc_rqst **reqpp, struct kvec *vec)
986 {
987 struct rpc_rqst *req = NULL;
988 __be32 *p;
989 __be32 xid;
990 __be32 calldir;
991 int len;
992
993 len = svc_recvfrom(rqstp, vec, 1, 8);
994 if (len < 0)
995 goto error;
996
997 p = (u32 *)rqstp->rq_arg.head[0].iov_base;
998 xid = *p++;
999 calldir = *p;
1000
1001 if (calldir == 0) {
1002 /* REQUEST is the most common case */
1003 vec[0] = rqstp->rq_arg.head[0];
1004 } else {
1005 /* REPLY */
1006 struct rpc_xprt *bc_xprt = svsk->sk_xprt.xpt_bc_xprt;
1007
1008 if (bc_xprt)
1009 req = xprt_lookup_rqst(bc_xprt, xid);
1010
1011 if (!req) {
1012 printk(KERN_NOTICE
1013 "%s: Got unrecognized reply: "
1014 "calldir 0x%x xpt_bc_xprt %p xid %08x\n",
1015 __func__, ntohl(calldir),
1016 bc_xprt, xid);
1017 vec[0] = rqstp->rq_arg.head[0];
1018 goto out;
1019 }
1020
1021 memcpy(&req->rq_private_buf, &req->rq_rcv_buf,
1022 sizeof(struct xdr_buf));
1023 /* copy the xid and call direction */
1024 memcpy(req->rq_private_buf.head[0].iov_base,
1025 rqstp->rq_arg.head[0].iov_base, 8);
1026 vec[0] = req->rq_private_buf.head[0];
1027 }
1028 out:
1029 vec[0].iov_base += 8;
1030 vec[0].iov_len -= 8;
1031 len = svsk->sk_reclen - 8;
1032 error:
1033 *reqpp = req;
1034 return len;
1035 }
1036
1037 /*
1038 * Receive data from a TCP socket.
1039 */
1040 static int svc_tcp_recvfrom(struct svc_rqst *rqstp)
1041 {
1042 struct svc_sock *svsk =
1043 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
1044 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
1045 int len;
1046 struct kvec *vec;
1047 struct rpc_rqst *req = NULL;
1048 unsigned int vlen;
1049 int pnum;
1050
1051 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1052 svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags),
1053 test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags),
1054 test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags));
1055
1056 len = svc_tcp_recv_record(svsk, rqstp);
1057 if (len < 0)
1058 goto error;
1059
1060 vec = rqstp->rq_vec;
1061 vec[0] = rqstp->rq_arg.head[0];
1062 vlen = PAGE_SIZE;
1063
1064 len = svc_process_calldir(svsk, rqstp, &req, vec);
1065 if (len < 0)
1066 goto err_again;
1067 vlen -= 8;
1068
1069 pnum = 1;
1070 while (vlen < svsk->sk_reclen - 8) {
1071 vec[pnum].iov_base = (req) ?
1072 page_address(req->rq_private_buf.pages[pnum - 1]) :
1073 page_address(rqstp->rq_pages[pnum]);
1074 vec[pnum].iov_len = PAGE_SIZE;
1075 pnum++;
1076 vlen += PAGE_SIZE;
1077 }
1078 rqstp->rq_respages = &rqstp->rq_pages[pnum];
1079
1080 /* Now receive data */
1081 len = svc_recvfrom(rqstp, vec, pnum, svsk->sk_reclen - 8);
1082 if (len < 0)
1083 goto err_again;
1084
1085 if (req) {
1086 xprt_complete_rqst(req->rq_task, svsk->sk_reclen);
1087 rqstp->rq_arg.len = 0;
1088 goto out;
1089 }
1090 dprintk("svc: TCP complete record (%d bytes)\n", svsk->sk_reclen);
1091 rqstp->rq_arg.len = svsk->sk_reclen;
1092 rqstp->rq_arg.page_base = 0;
1093 if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1094 rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1095 rqstp->rq_arg.page_len = 0;
1096 } else
1097 rqstp->rq_arg.page_len = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1098
1099 rqstp->rq_xprt_ctxt = NULL;
1100 rqstp->rq_prot = IPPROTO_TCP;
1101
1102 out:
1103 /* Reset TCP read info */
1104 svsk->sk_reclen = 0;
1105 svsk->sk_tcplen = 0;
1106 /* If we have more data, signal svc_xprt_enqueue() to try again */
1107 if (svc_recv_available(svsk) > sizeof(rpc_fraghdr))
1108 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1109
1110
1111 svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt);
1112 if (serv->sv_stats)
1113 serv->sv_stats->nettcpcnt++;
1114
1115 return rqstp->rq_arg.len;
1116
1117 err_again:
1118 if (len == -EAGAIN) {
1119 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1120 return len;
1121 }
1122 error:
1123 if (len != -EAGAIN) {
1124 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1125 svsk->sk_xprt.xpt_server->sv_name, -len);
1126 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1127 }
1128 return -EAGAIN;
1129 }
1130
1131 /*
1132 * Send out data on TCP socket.
1133 */
1134 static int svc_tcp_sendto(struct svc_rqst *rqstp)
1135 {
1136 struct xdr_buf *xbufp = &rqstp->rq_res;
1137 int sent;
1138 __be32 reclen;
1139
1140 /* Set up the first element of the reply kvec.
1141 * Any other kvecs that may be in use have been taken
1142 * care of by the server implementation itself.
1143 */
1144 reclen = htonl(0x80000000|((xbufp->len ) - 4));
1145 memcpy(xbufp->head[0].iov_base, &reclen, 4);
1146
1147 sent = svc_sendto(rqstp, &rqstp->rq_res);
1148 if (sent != xbufp->len) {
1149 printk(KERN_NOTICE
1150 "rpc-srv/tcp: %s: %s %d when sending %d bytes "
1151 "- shutting down socket\n",
1152 rqstp->rq_xprt->xpt_server->sv_name,
1153 (sent<0)?"got error":"sent only",
1154 sent, xbufp->len);
1155 set_bit(XPT_CLOSE, &rqstp->rq_xprt->xpt_flags);
1156 svc_xprt_enqueue(rqstp->rq_xprt);
1157 sent = -EAGAIN;
1158 }
1159 return sent;
1160 }
1161
1162 /*
1163 * Setup response header. TCP has a 4B record length field.
1164 */
1165 static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp)
1166 {
1167 struct kvec *resv = &rqstp->rq_res.head[0];
1168
1169 /* tcp needs a space for the record length... */
1170 svc_putnl(resv, 0);
1171 }
1172
1173 static int svc_tcp_has_wspace(struct svc_xprt *xprt)
1174 {
1175 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1176 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
1177 int required;
1178
1179 if (test_bit(XPT_LISTENER, &xprt->xpt_flags))
1180 return 1;
1181 required = atomic_read(&xprt->xpt_reserved) + serv->sv_max_mesg;
1182 if (sk_stream_wspace(svsk->sk_sk) >= required)
1183 return 1;
1184 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
1185 return 0;
1186 }
1187
1188 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
1189 struct net *net,
1190 struct sockaddr *sa, int salen,
1191 int flags)
1192 {
1193 return svc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags);
1194 }
1195
1196 #if defined(CONFIG_NFS_V4_1)
1197 static struct svc_xprt *svc_bc_create_socket(struct svc_serv *, int,
1198 struct net *, struct sockaddr *,
1199 int, int);
1200 static void svc_bc_sock_free(struct svc_xprt *xprt);
1201
1202 static struct svc_xprt *svc_bc_tcp_create(struct svc_serv *serv,
1203 struct net *net,
1204 struct sockaddr *sa, int salen,
1205 int flags)
1206 {
1207 return svc_bc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags);
1208 }
1209
1210 static void svc_bc_tcp_sock_detach(struct svc_xprt *xprt)
1211 {
1212 }
1213
1214 static struct svc_xprt_ops svc_tcp_bc_ops = {
1215 .xpo_create = svc_bc_tcp_create,
1216 .xpo_detach = svc_bc_tcp_sock_detach,
1217 .xpo_free = svc_bc_sock_free,
1218 .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr,
1219 };
1220
1221 static struct svc_xprt_class svc_tcp_bc_class = {
1222 .xcl_name = "tcp-bc",
1223 .xcl_owner = THIS_MODULE,
1224 .xcl_ops = &svc_tcp_bc_ops,
1225 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1226 };
1227
1228 static void svc_init_bc_xprt_sock(void)
1229 {
1230 svc_reg_xprt_class(&svc_tcp_bc_class);
1231 }
1232
1233 static void svc_cleanup_bc_xprt_sock(void)
1234 {
1235 svc_unreg_xprt_class(&svc_tcp_bc_class);
1236 }
1237 #else /* CONFIG_NFS_V4_1 */
1238 static void svc_init_bc_xprt_sock(void)
1239 {
1240 }
1241
1242 static void svc_cleanup_bc_xprt_sock(void)
1243 {
1244 }
1245 #endif /* CONFIG_NFS_V4_1 */
1246
1247 static struct svc_xprt_ops svc_tcp_ops = {
1248 .xpo_create = svc_tcp_create,
1249 .xpo_recvfrom = svc_tcp_recvfrom,
1250 .xpo_sendto = svc_tcp_sendto,
1251 .xpo_release_rqst = svc_release_skb,
1252 .xpo_detach = svc_tcp_sock_detach,
1253 .xpo_free = svc_sock_free,
1254 .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr,
1255 .xpo_has_wspace = svc_tcp_has_wspace,
1256 .xpo_accept = svc_tcp_accept,
1257 };
1258
1259 static struct svc_xprt_class svc_tcp_class = {
1260 .xcl_name = "tcp",
1261 .xcl_owner = THIS_MODULE,
1262 .xcl_ops = &svc_tcp_ops,
1263 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1264 };
1265
1266 void svc_init_xprt_sock(void)
1267 {
1268 svc_reg_xprt_class(&svc_tcp_class);
1269 svc_reg_xprt_class(&svc_udp_class);
1270 svc_init_bc_xprt_sock();
1271 }
1272
1273 void svc_cleanup_xprt_sock(void)
1274 {
1275 svc_unreg_xprt_class(&svc_tcp_class);
1276 svc_unreg_xprt_class(&svc_udp_class);
1277 svc_cleanup_bc_xprt_sock();
1278 }
1279
1280 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
1281 {
1282 struct sock *sk = svsk->sk_sk;
1283
1284 svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv);
1285 set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
1286 if (sk->sk_state == TCP_LISTEN) {
1287 dprintk("setting up TCP socket for listening\n");
1288 set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
1289 sk->sk_data_ready = svc_tcp_listen_data_ready;
1290 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1291 } else {
1292 dprintk("setting up TCP socket for reading\n");
1293 sk->sk_state_change = svc_tcp_state_change;
1294 sk->sk_data_ready = svc_tcp_data_ready;
1295 sk->sk_write_space = svc_tcp_write_space;
1296
1297 svsk->sk_reclen = 0;
1298 svsk->sk_tcplen = 0;
1299
1300 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF;
1301
1302 /* initialise setting must have enough space to
1303 * receive and respond to one request.
1304 * svc_tcp_recvfrom will re-adjust if necessary
1305 */
1306 svc_sock_setbufsize(svsk->sk_sock,
1307 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
1308 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
1309
1310 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1311 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1312 if (sk->sk_state != TCP_ESTABLISHED)
1313 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1314 }
1315 }
1316
1317 void svc_sock_update_bufs(struct svc_serv *serv)
1318 {
1319 /*
1320 * The number of server threads has changed. Update
1321 * rcvbuf and sndbuf accordingly on all sockets
1322 */
1323 struct svc_sock *svsk;
1324
1325 spin_lock_bh(&serv->sv_lock);
1326 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list)
1327 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1328 list_for_each_entry(svsk, &serv->sv_tempsocks, sk_xprt.xpt_list)
1329 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1330 spin_unlock_bh(&serv->sv_lock);
1331 }
1332 EXPORT_SYMBOL_GPL(svc_sock_update_bufs);
1333
1334 /*
1335 * Initialize socket for RPC use and create svc_sock struct
1336 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1337 */
1338 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1339 struct socket *sock,
1340 int *errp, int flags)
1341 {
1342 struct svc_sock *svsk;
1343 struct sock *inet;
1344 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1345
1346 dprintk("svc: svc_setup_socket %p\n", sock);
1347 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1348 *errp = -ENOMEM;
1349 return NULL;
1350 }
1351
1352 inet = sock->sk;
1353
1354 /* Register socket with portmapper */
1355 if (*errp >= 0 && pmap_register)
1356 *errp = svc_register(serv, inet->sk_family, inet->sk_protocol,
1357 ntohs(inet_sk(inet)->inet_sport));
1358
1359 if (*errp < 0) {
1360 kfree(svsk);
1361 return NULL;
1362 }
1363
1364 inet->sk_user_data = svsk;
1365 svsk->sk_sock = sock;
1366 svsk->sk_sk = inet;
1367 svsk->sk_ostate = inet->sk_state_change;
1368 svsk->sk_odata = inet->sk_data_ready;
1369 svsk->sk_owspace = inet->sk_write_space;
1370
1371 /* Initialize the socket */
1372 if (sock->type == SOCK_DGRAM)
1373 svc_udp_init(svsk, serv);
1374 else
1375 svc_tcp_init(svsk, serv);
1376
1377 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1378 svsk, svsk->sk_sk);
1379
1380 return svsk;
1381 }
1382
1383 /**
1384 * svc_addsock - add a listener socket to an RPC service
1385 * @serv: pointer to RPC service to which to add a new listener
1386 * @fd: file descriptor of the new listener
1387 * @name_return: pointer to buffer to fill in with name of listener
1388 * @len: size of the buffer
1389 *
1390 * Fills in socket name and returns positive length of name if successful.
1391 * Name is terminated with '\n'. On error, returns a negative errno
1392 * value.
1393 */
1394 int svc_addsock(struct svc_serv *serv, const int fd, char *name_return,
1395 const size_t len)
1396 {
1397 int err = 0;
1398 struct socket *so = sockfd_lookup(fd, &err);
1399 struct svc_sock *svsk = NULL;
1400
1401 if (!so)
1402 return err;
1403 if ((so->sk->sk_family != PF_INET) && (so->sk->sk_family != PF_INET6))
1404 err = -EAFNOSUPPORT;
1405 else if (so->sk->sk_protocol != IPPROTO_TCP &&
1406 so->sk->sk_protocol != IPPROTO_UDP)
1407 err = -EPROTONOSUPPORT;
1408 else if (so->state > SS_UNCONNECTED)
1409 err = -EISCONN;
1410 else {
1411 if (!try_module_get(THIS_MODULE))
1412 err = -ENOENT;
1413 else
1414 svsk = svc_setup_socket(serv, so, &err,
1415 SVC_SOCK_DEFAULTS);
1416 if (svsk) {
1417 struct sockaddr_storage addr;
1418 struct sockaddr *sin = (struct sockaddr *)&addr;
1419 int salen;
1420 if (kernel_getsockname(svsk->sk_sock, sin, &salen) == 0)
1421 svc_xprt_set_local(&svsk->sk_xprt, sin, salen);
1422 clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
1423 spin_lock_bh(&serv->sv_lock);
1424 list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks);
1425 spin_unlock_bh(&serv->sv_lock);
1426 svc_xprt_received(&svsk->sk_xprt);
1427 err = 0;
1428 } else
1429 module_put(THIS_MODULE);
1430 }
1431 if (err) {
1432 sockfd_put(so);
1433 return err;
1434 }
1435 return svc_one_sock_name(svsk, name_return, len);
1436 }
1437 EXPORT_SYMBOL_GPL(svc_addsock);
1438
1439 /*
1440 * Create socket for RPC service.
1441 */
1442 static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
1443 int protocol,
1444 struct net *net,
1445 struct sockaddr *sin, int len,
1446 int flags)
1447 {
1448 struct svc_sock *svsk;
1449 struct socket *sock;
1450 int error;
1451 int type;
1452 struct sockaddr_storage addr;
1453 struct sockaddr *newsin = (struct sockaddr *)&addr;
1454 int newlen;
1455 int family;
1456 int val;
1457 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
1458
1459 dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1460 serv->sv_program->pg_name, protocol,
1461 __svc_print_addr(sin, buf, sizeof(buf)));
1462
1463 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1464 printk(KERN_WARNING "svc: only UDP and TCP "
1465 "sockets supported\n");
1466 return ERR_PTR(-EINVAL);
1467 }
1468
1469 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1470 switch (sin->sa_family) {
1471 case AF_INET6:
1472 family = PF_INET6;
1473 break;
1474 case AF_INET:
1475 family = PF_INET;
1476 break;
1477 default:
1478 return ERR_PTR(-EINVAL);
1479 }
1480
1481 error = __sock_create(net, family, type, protocol, &sock, 1);
1482 if (error < 0)
1483 return ERR_PTR(error);
1484
1485 svc_reclassify_socket(sock);
1486
1487 /*
1488 * If this is an PF_INET6 listener, we want to avoid
1489 * getting requests from IPv4 remotes. Those should
1490 * be shunted to a PF_INET listener via rpcbind.
1491 */
1492 val = 1;
1493 if (family == PF_INET6)
1494 kernel_setsockopt(sock, SOL_IPV6, IPV6_V6ONLY,
1495 (char *)&val, sizeof(val));
1496
1497 if (type == SOCK_STREAM)
1498 sock->sk->sk_reuse = 1; /* allow address reuse */
1499 error = kernel_bind(sock, sin, len);
1500 if (error < 0)
1501 goto bummer;
1502
1503 newlen = len;
1504 error = kernel_getsockname(sock, newsin, &newlen);
1505 if (error < 0)
1506 goto bummer;
1507
1508 if (protocol == IPPROTO_TCP) {
1509 if ((error = kernel_listen(sock, 64)) < 0)
1510 goto bummer;
1511 }
1512
1513 if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1514 svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen);
1515 return (struct svc_xprt *)svsk;
1516 }
1517
1518 bummer:
1519 dprintk("svc: svc_create_socket error = %d\n", -error);
1520 sock_release(sock);
1521 return ERR_PTR(error);
1522 }
1523
1524 /*
1525 * Detach the svc_sock from the socket so that no
1526 * more callbacks occur.
1527 */
1528 static void svc_sock_detach(struct svc_xprt *xprt)
1529 {
1530 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1531 struct sock *sk = svsk->sk_sk;
1532 wait_queue_head_t *wq;
1533
1534 dprintk("svc: svc_sock_detach(%p)\n", svsk);
1535
1536 /* put back the old socket callbacks */
1537 sk->sk_state_change = svsk->sk_ostate;
1538 sk->sk_data_ready = svsk->sk_odata;
1539 sk->sk_write_space = svsk->sk_owspace;
1540
1541 wq = sk_sleep(sk);
1542 if (wq && waitqueue_active(wq))
1543 wake_up_interruptible(wq);
1544 }
1545
1546 /*
1547 * Disconnect the socket, and reset the callbacks
1548 */
1549 static void svc_tcp_sock_detach(struct svc_xprt *xprt)
1550 {
1551 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1552
1553 dprintk("svc: svc_tcp_sock_detach(%p)\n", svsk);
1554
1555 svc_sock_detach(xprt);
1556
1557 if (!test_bit(XPT_LISTENER, &xprt->xpt_flags))
1558 kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR);
1559 }
1560
1561 /*
1562 * Free the svc_sock's socket resources and the svc_sock itself.
1563 */
1564 static void svc_sock_free(struct svc_xprt *xprt)
1565 {
1566 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1567 dprintk("svc: svc_sock_free(%p)\n", svsk);
1568
1569 if (svsk->sk_sock->file)
1570 sockfd_put(svsk->sk_sock);
1571 else
1572 sock_release(svsk->sk_sock);
1573 kfree(svsk);
1574 }
1575
1576 #if defined(CONFIG_NFS_V4_1)
1577 /*
1578 * Create a back channel svc_xprt which shares the fore channel socket.
1579 */
1580 static struct svc_xprt *svc_bc_create_socket(struct svc_serv *serv,
1581 int protocol,
1582 struct net *net,
1583 struct sockaddr *sin, int len,
1584 int flags)
1585 {
1586 struct svc_sock *svsk;
1587 struct svc_xprt *xprt;
1588
1589 if (protocol != IPPROTO_TCP) {
1590 printk(KERN_WARNING "svc: only TCP sockets"
1591 " supported on shared back channel\n");
1592 return ERR_PTR(-EINVAL);
1593 }
1594
1595 svsk = kzalloc(sizeof(*svsk), GFP_KERNEL);
1596 if (!svsk)
1597 return ERR_PTR(-ENOMEM);
1598
1599 xprt = &svsk->sk_xprt;
1600 svc_xprt_init(&svc_tcp_bc_class, xprt, serv);
1601
1602 serv->sv_bc_xprt = xprt;
1603
1604 return xprt;
1605 }
1606
1607 /*
1608 * Free a back channel svc_sock.
1609 */
1610 static void svc_bc_sock_free(struct svc_xprt *xprt)
1611 {
1612 if (xprt)
1613 kfree(container_of(xprt, struct svc_sock, sk_xprt));
1614 }
1615 #endif /* CONFIG_NFS_V4_1 */
This page took 0.062495 seconds and 5 git commands to generate.