svc: Removing remaining references to rq_sock in rqstp
[deliverable/linux.git] / net / sunrpc / svcsock.c
1 /*
2 * linux/net/sunrpc/svcsock.c
3 *
4 * These are the RPC server socket internals.
5 *
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_xprt_enqueue procedure...
9 *
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
18 *
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/errno.h>
25 #include <linux/fcntl.h>
26 #include <linux/net.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/udp.h>
30 #include <linux/tcp.h>
31 #include <linux/unistd.h>
32 #include <linux/slab.h>
33 #include <linux/netdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/file.h>
36 #include <linux/freezer.h>
37 #include <net/sock.h>
38 #include <net/checksum.h>
39 #include <net/ip.h>
40 #include <net/ipv6.h>
41 #include <net/tcp_states.h>
42 #include <asm/uaccess.h>
43 #include <asm/ioctls.h>
44
45 #include <linux/sunrpc/types.h>
46 #include <linux/sunrpc/clnt.h>
47 #include <linux/sunrpc/xdr.h>
48 #include <linux/sunrpc/svcsock.h>
49 #include <linux/sunrpc/stats.h>
50
51 /* SMP locking strategy:
52 *
53 * svc_pool->sp_lock protects most of the fields of that pool.
54 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
55 * when both need to be taken (rare), svc_serv->sv_lock is first.
56 * BKL protects svc_serv->sv_nrthread.
57 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
58 * and the ->sk_info_authunix cache.
59 * svc_sock->sk_xprt.xpt_flags.XPT_BUSY prevents a svc_sock being
60 * enqueued multiply.
61 *
62 * Some flags can be set to certain values at any time
63 * providing that certain rules are followed:
64 *
65 * XPT_CONN, XPT_DATA, can be set or cleared at any time.
66 * after a set, svc_xprt_enqueue must be called.
67 * after a clear, the socket must be read/accepted
68 * if this succeeds, it must be set again.
69 * XPT_CLOSE can set at any time. It is never cleared.
70 * xpt_ref contains a bias of '1' until XPT_DEAD is set.
71 * so when xprt_ref hits zero, we know the transport is dead
72 * and no-one is using it.
73 * XPT_DEAD can only be set while XPT_BUSY is held which ensures
74 * no other thread will be using the socket or will try to
75 * set XPT_DEAD.
76 *
77 */
78
79 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
80
81
82 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
83 int *errp, int flags);
84 static void svc_delete_xprt(struct svc_xprt *xprt);
85 static void svc_udp_data_ready(struct sock *, int);
86 static int svc_udp_recvfrom(struct svc_rqst *);
87 static int svc_udp_sendto(struct svc_rqst *);
88 static void svc_close_xprt(struct svc_xprt *xprt);
89 static void svc_sock_detach(struct svc_xprt *);
90 static void svc_sock_free(struct svc_xprt *);
91
92 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
93 static int svc_deferred_recv(struct svc_rqst *rqstp);
94 static struct cache_deferred_req *svc_defer(struct cache_req *req);
95 static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
96 struct sockaddr *, int, int);
97 static void svc_age_temp_xprts(unsigned long closure);
98
99 /* apparently the "standard" is that clients close
100 * idle connections after 5 minutes, servers after
101 * 6 minutes
102 * http://www.connectathon.org/talks96/nfstcp.pdf
103 */
104 static int svc_conn_age_period = 6*60;
105
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 static struct lock_class_key svc_key[2];
108 static struct lock_class_key svc_slock_key[2];
109
110 static inline void svc_reclassify_socket(struct socket *sock)
111 {
112 struct sock *sk = sock->sk;
113 BUG_ON(sock_owned_by_user(sk));
114 switch (sk->sk_family) {
115 case AF_INET:
116 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
117 &svc_slock_key[0],
118 "sk_xprt.xpt_lock-AF_INET-NFSD",
119 &svc_key[0]);
120 break;
121
122 case AF_INET6:
123 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
124 &svc_slock_key[1],
125 "sk_xprt.xpt_lock-AF_INET6-NFSD",
126 &svc_key[1]);
127 break;
128
129 default:
130 BUG();
131 }
132 }
133 #else
134 static inline void svc_reclassify_socket(struct socket *sock)
135 {
136 }
137 #endif
138
139 static char *__svc_print_addr(struct sockaddr *addr, char *buf, size_t len)
140 {
141 switch (addr->sa_family) {
142 case AF_INET:
143 snprintf(buf, len, "%u.%u.%u.%u, port=%u",
144 NIPQUAD(((struct sockaddr_in *) addr)->sin_addr),
145 ntohs(((struct sockaddr_in *) addr)->sin_port));
146 break;
147
148 case AF_INET6:
149 snprintf(buf, len, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
150 NIP6(((struct sockaddr_in6 *) addr)->sin6_addr),
151 ntohs(((struct sockaddr_in6 *) addr)->sin6_port));
152 break;
153
154 default:
155 snprintf(buf, len, "unknown address type: %d", addr->sa_family);
156 break;
157 }
158 return buf;
159 }
160
161 /**
162 * svc_print_addr - Format rq_addr field for printing
163 * @rqstp: svc_rqst struct containing address to print
164 * @buf: target buffer for formatted address
165 * @len: length of target buffer
166 *
167 */
168 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
169 {
170 return __svc_print_addr(svc_addr(rqstp), buf, len);
171 }
172 EXPORT_SYMBOL_GPL(svc_print_addr);
173
174 /*
175 * Queue up an idle server thread. Must have pool->sp_lock held.
176 * Note: this is really a stack rather than a queue, so that we only
177 * use as many different threads as we need, and the rest don't pollute
178 * the cache.
179 */
180 static inline void
181 svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
182 {
183 list_add(&rqstp->rq_list, &pool->sp_threads);
184 }
185
186 /*
187 * Dequeue an nfsd thread. Must have pool->sp_lock held.
188 */
189 static inline void
190 svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
191 {
192 list_del(&rqstp->rq_list);
193 }
194
195 /*
196 * Release an skbuff after use
197 */
198 static void svc_release_skb(struct svc_rqst *rqstp)
199 {
200 struct sk_buff *skb = rqstp->rq_xprt_ctxt;
201 struct svc_deferred_req *dr = rqstp->rq_deferred;
202
203 if (skb) {
204 struct svc_sock *svsk =
205 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
206 rqstp->rq_xprt_ctxt = NULL;
207
208 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
209 skb_free_datagram(svsk->sk_sk, skb);
210 }
211 if (dr) {
212 rqstp->rq_deferred = NULL;
213 kfree(dr);
214 }
215 }
216
217 /*
218 * Queue up a socket with data pending. If there are idle nfsd
219 * processes, wake 'em up.
220 *
221 */
222 void svc_xprt_enqueue(struct svc_xprt *xprt)
223 {
224 struct svc_serv *serv = xprt->xpt_server;
225 struct svc_pool *pool;
226 struct svc_rqst *rqstp;
227 int cpu;
228
229 if (!(xprt->xpt_flags &
230 ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
231 return;
232 if (test_bit(XPT_DEAD, &xprt->xpt_flags))
233 return;
234
235 cpu = get_cpu();
236 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
237 put_cpu();
238
239 spin_lock_bh(&pool->sp_lock);
240
241 if (!list_empty(&pool->sp_threads) &&
242 !list_empty(&pool->sp_sockets))
243 printk(KERN_ERR
244 "svc_xprt_enqueue: "
245 "threads and transports both waiting??\n");
246
247 if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
248 /* Don't enqueue dead sockets */
249 dprintk("svc: transport %p is dead, not enqueued\n", xprt);
250 goto out_unlock;
251 }
252
253 /* Mark socket as busy. It will remain in this state until the
254 * server has processed all pending data and put the socket back
255 * on the idle list. We update XPT_BUSY atomically because
256 * it also guards against trying to enqueue the svc_sock twice.
257 */
258 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
259 /* Don't enqueue socket while already enqueued */
260 dprintk("svc: transport %p busy, not enqueued\n", xprt);
261 goto out_unlock;
262 }
263 BUG_ON(xprt->xpt_pool != NULL);
264 xprt->xpt_pool = pool;
265
266 /* Handle pending connection */
267 if (test_bit(XPT_CONN, &xprt->xpt_flags))
268 goto process;
269
270 /* Handle close in-progress */
271 if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
272 goto process;
273
274 /* Check if we have space to reply to a request */
275 if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
276 /* Don't enqueue while not enough space for reply */
277 dprintk("svc: no write space, transport %p not enqueued\n",
278 xprt);
279 xprt->xpt_pool = NULL;
280 clear_bit(XPT_BUSY, &xprt->xpt_flags);
281 goto out_unlock;
282 }
283
284 process:
285 if (!list_empty(&pool->sp_threads)) {
286 rqstp = list_entry(pool->sp_threads.next,
287 struct svc_rqst,
288 rq_list);
289 dprintk("svc: transport %p served by daemon %p\n",
290 xprt, rqstp);
291 svc_thread_dequeue(pool, rqstp);
292 if (rqstp->rq_xprt)
293 printk(KERN_ERR
294 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
295 rqstp, rqstp->rq_xprt);
296 rqstp->rq_xprt = xprt;
297 svc_xprt_get(xprt);
298 rqstp->rq_reserved = serv->sv_max_mesg;
299 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
300 BUG_ON(xprt->xpt_pool != pool);
301 wake_up(&rqstp->rq_wait);
302 } else {
303 dprintk("svc: transport %p put into queue\n", xprt);
304 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
305 BUG_ON(xprt->xpt_pool != pool);
306 }
307
308 out_unlock:
309 spin_unlock_bh(&pool->sp_lock);
310 }
311 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
312
313 /*
314 * Dequeue the first socket. Must be called with the pool->sp_lock held.
315 */
316 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
317 {
318 struct svc_xprt *xprt;
319
320 if (list_empty(&pool->sp_sockets))
321 return NULL;
322
323 xprt = list_entry(pool->sp_sockets.next,
324 struct svc_xprt, xpt_ready);
325 list_del_init(&xprt->xpt_ready);
326
327 dprintk("svc: transport %p dequeued, inuse=%d\n",
328 xprt, atomic_read(&xprt->xpt_ref.refcount));
329
330 return xprt;
331 }
332
333 /*
334 * svc_xprt_received conditionally queues the transport for processing
335 * by another thread. The caller must hold the XPT_BUSY bit and must
336 * not thereafter touch transport data.
337 *
338 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
339 * insufficient) data.
340 */
341 void svc_xprt_received(struct svc_xprt *xprt)
342 {
343 BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
344 xprt->xpt_pool = NULL;
345 clear_bit(XPT_BUSY, &xprt->xpt_flags);
346 svc_xprt_enqueue(xprt);
347 }
348 EXPORT_SYMBOL_GPL(svc_xprt_received);
349
350 /**
351 * svc_reserve - change the space reserved for the reply to a request.
352 * @rqstp: The request in question
353 * @space: new max space to reserve
354 *
355 * Each request reserves some space on the output queue of the socket
356 * to make sure the reply fits. This function reduces that reserved
357 * space to be the amount of space used already, plus @space.
358 *
359 */
360 void svc_reserve(struct svc_rqst *rqstp, int space)
361 {
362 space += rqstp->rq_res.head[0].iov_len;
363
364 if (space < rqstp->rq_reserved) {
365 struct svc_xprt *xprt = rqstp->rq_xprt;
366 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
367 rqstp->rq_reserved = space;
368
369 svc_xprt_enqueue(xprt);
370 }
371 }
372
373 static void svc_xprt_release(struct svc_rqst *rqstp)
374 {
375 struct svc_xprt *xprt = rqstp->rq_xprt;
376
377 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
378
379 svc_free_res_pages(rqstp);
380 rqstp->rq_res.page_len = 0;
381 rqstp->rq_res.page_base = 0;
382
383 /* Reset response buffer and release
384 * the reservation.
385 * But first, check that enough space was reserved
386 * for the reply, otherwise we have a bug!
387 */
388 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
389 printk(KERN_ERR "RPC request reserved %d but used %d\n",
390 rqstp->rq_reserved,
391 rqstp->rq_res.len);
392
393 rqstp->rq_res.head[0].iov_len = 0;
394 svc_reserve(rqstp, 0);
395 rqstp->rq_xprt = NULL;
396
397 svc_xprt_put(xprt);
398 }
399
400 /*
401 * External function to wake up a server waiting for data
402 * This really only makes sense for services like lockd
403 * which have exactly one thread anyway.
404 */
405 void
406 svc_wake_up(struct svc_serv *serv)
407 {
408 struct svc_rqst *rqstp;
409 unsigned int i;
410 struct svc_pool *pool;
411
412 for (i = 0; i < serv->sv_nrpools; i++) {
413 pool = &serv->sv_pools[i];
414
415 spin_lock_bh(&pool->sp_lock);
416 if (!list_empty(&pool->sp_threads)) {
417 rqstp = list_entry(pool->sp_threads.next,
418 struct svc_rqst,
419 rq_list);
420 dprintk("svc: daemon %p woken up.\n", rqstp);
421 /*
422 svc_thread_dequeue(pool, rqstp);
423 rqstp->rq_xprt = NULL;
424 */
425 wake_up(&rqstp->rq_wait);
426 }
427 spin_unlock_bh(&pool->sp_lock);
428 }
429 }
430
431 union svc_pktinfo_u {
432 struct in_pktinfo pkti;
433 struct in6_pktinfo pkti6;
434 };
435 #define SVC_PKTINFO_SPACE \
436 CMSG_SPACE(sizeof(union svc_pktinfo_u))
437
438 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
439 {
440 struct svc_sock *svsk =
441 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
442 switch (svsk->sk_sk->sk_family) {
443 case AF_INET: {
444 struct in_pktinfo *pki = CMSG_DATA(cmh);
445
446 cmh->cmsg_level = SOL_IP;
447 cmh->cmsg_type = IP_PKTINFO;
448 pki->ipi_ifindex = 0;
449 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
450 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
451 }
452 break;
453
454 case AF_INET6: {
455 struct in6_pktinfo *pki = CMSG_DATA(cmh);
456
457 cmh->cmsg_level = SOL_IPV6;
458 cmh->cmsg_type = IPV6_PKTINFO;
459 pki->ipi6_ifindex = 0;
460 ipv6_addr_copy(&pki->ipi6_addr,
461 &rqstp->rq_daddr.addr6);
462 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
463 }
464 break;
465 }
466 return;
467 }
468
469 /*
470 * Generic sendto routine
471 */
472 static int
473 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
474 {
475 struct svc_sock *svsk =
476 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
477 struct socket *sock = svsk->sk_sock;
478 int slen;
479 union {
480 struct cmsghdr hdr;
481 long all[SVC_PKTINFO_SPACE / sizeof(long)];
482 } buffer;
483 struct cmsghdr *cmh = &buffer.hdr;
484 int len = 0;
485 int result;
486 int size;
487 struct page **ppage = xdr->pages;
488 size_t base = xdr->page_base;
489 unsigned int pglen = xdr->page_len;
490 unsigned int flags = MSG_MORE;
491 char buf[RPC_MAX_ADDRBUFLEN];
492
493 slen = xdr->len;
494
495 if (rqstp->rq_prot == IPPROTO_UDP) {
496 struct msghdr msg = {
497 .msg_name = &rqstp->rq_addr,
498 .msg_namelen = rqstp->rq_addrlen,
499 .msg_control = cmh,
500 .msg_controllen = sizeof(buffer),
501 .msg_flags = MSG_MORE,
502 };
503
504 svc_set_cmsg_data(rqstp, cmh);
505
506 if (sock_sendmsg(sock, &msg, 0) < 0)
507 goto out;
508 }
509
510 /* send head */
511 if (slen == xdr->head[0].iov_len)
512 flags = 0;
513 len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
514 xdr->head[0].iov_len, flags);
515 if (len != xdr->head[0].iov_len)
516 goto out;
517 slen -= xdr->head[0].iov_len;
518 if (slen == 0)
519 goto out;
520
521 /* send page data */
522 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
523 while (pglen > 0) {
524 if (slen == size)
525 flags = 0;
526 result = kernel_sendpage(sock, *ppage, base, size, flags);
527 if (result > 0)
528 len += result;
529 if (result != size)
530 goto out;
531 slen -= size;
532 pglen -= size;
533 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
534 base = 0;
535 ppage++;
536 }
537 /* send tail */
538 if (xdr->tail[0].iov_len) {
539 result = kernel_sendpage(sock, rqstp->rq_respages[0],
540 ((unsigned long)xdr->tail[0].iov_base)
541 & (PAGE_SIZE-1),
542 xdr->tail[0].iov_len, 0);
543
544 if (result > 0)
545 len += result;
546 }
547 out:
548 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
549 svsk, xdr->head[0].iov_base, xdr->head[0].iov_len,
550 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
551
552 return len;
553 }
554
555 /*
556 * Report socket names for nfsdfs
557 */
558 static int one_sock_name(char *buf, struct svc_sock *svsk)
559 {
560 int len;
561
562 switch(svsk->sk_sk->sk_family) {
563 case AF_INET:
564 len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
565 svsk->sk_sk->sk_protocol==IPPROTO_UDP?
566 "udp" : "tcp",
567 NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
568 inet_sk(svsk->sk_sk)->num);
569 break;
570 default:
571 len = sprintf(buf, "*unknown-%d*\n",
572 svsk->sk_sk->sk_family);
573 }
574 return len;
575 }
576
577 int
578 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
579 {
580 struct svc_sock *svsk, *closesk = NULL;
581 int len = 0;
582
583 if (!serv)
584 return 0;
585 spin_lock_bh(&serv->sv_lock);
586 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) {
587 int onelen = one_sock_name(buf+len, svsk);
588 if (toclose && strcmp(toclose, buf+len) == 0)
589 closesk = svsk;
590 else
591 len += onelen;
592 }
593 spin_unlock_bh(&serv->sv_lock);
594 if (closesk)
595 /* Should unregister with portmap, but you cannot
596 * unregister just one protocol...
597 */
598 svc_close_xprt(&closesk->sk_xprt);
599 else if (toclose)
600 return -ENOENT;
601 return len;
602 }
603 EXPORT_SYMBOL(svc_sock_names);
604
605 /*
606 * Check input queue length
607 */
608 static int
609 svc_recv_available(struct svc_sock *svsk)
610 {
611 struct socket *sock = svsk->sk_sock;
612 int avail, err;
613
614 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
615
616 return (err >= 0)? avail : err;
617 }
618
619 /*
620 * Generic recvfrom routine.
621 */
622 static int
623 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
624 {
625 struct svc_sock *svsk =
626 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
627 struct msghdr msg = {
628 .msg_flags = MSG_DONTWAIT,
629 };
630 int len;
631
632 len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
633 msg.msg_flags);
634
635 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
636 svsk, iov[0].iov_base, iov[0].iov_len, len);
637 return len;
638 }
639
640 /*
641 * Set socket snd and rcv buffer lengths
642 */
643 static inline void
644 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
645 {
646 #if 0
647 mm_segment_t oldfs;
648 oldfs = get_fs(); set_fs(KERNEL_DS);
649 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
650 (char*)&snd, sizeof(snd));
651 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
652 (char*)&rcv, sizeof(rcv));
653 #else
654 /* sock_setsockopt limits use to sysctl_?mem_max,
655 * which isn't acceptable. Until that is made conditional
656 * on not having CAP_SYS_RESOURCE or similar, we go direct...
657 * DaveM said I could!
658 */
659 lock_sock(sock->sk);
660 sock->sk->sk_sndbuf = snd * 2;
661 sock->sk->sk_rcvbuf = rcv * 2;
662 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
663 release_sock(sock->sk);
664 #endif
665 }
666 /*
667 * INET callback when data has been received on the socket.
668 */
669 static void
670 svc_udp_data_ready(struct sock *sk, int count)
671 {
672 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
673
674 if (svsk) {
675 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
676 svsk, sk, count,
677 test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
678 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
679 svc_xprt_enqueue(&svsk->sk_xprt);
680 }
681 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
682 wake_up_interruptible(sk->sk_sleep);
683 }
684
685 /*
686 * INET callback when space is newly available on the socket.
687 */
688 static void
689 svc_write_space(struct sock *sk)
690 {
691 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
692
693 if (svsk) {
694 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
695 svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
696 svc_xprt_enqueue(&svsk->sk_xprt);
697 }
698
699 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
700 dprintk("RPC svc_write_space: someone sleeping on %p\n",
701 svsk);
702 wake_up_interruptible(sk->sk_sleep);
703 }
704 }
705
706 /*
707 * Copy the UDP datagram's destination address to the rqstp structure.
708 * The 'destination' address in this case is the address to which the
709 * peer sent the datagram, i.e. our local address. For multihomed
710 * hosts, this can change from msg to msg. Note that only the IP
711 * address changes, the port number should remain the same.
712 */
713 static void svc_udp_get_dest_address(struct svc_rqst *rqstp,
714 struct cmsghdr *cmh)
715 {
716 struct svc_sock *svsk =
717 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
718 switch (svsk->sk_sk->sk_family) {
719 case AF_INET: {
720 struct in_pktinfo *pki = CMSG_DATA(cmh);
721 rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
722 break;
723 }
724 case AF_INET6: {
725 struct in6_pktinfo *pki = CMSG_DATA(cmh);
726 ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
727 break;
728 }
729 }
730 }
731
732 /*
733 * Receive a datagram from a UDP socket.
734 */
735 static int
736 svc_udp_recvfrom(struct svc_rqst *rqstp)
737 {
738 struct svc_sock *svsk =
739 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
740 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
741 struct sk_buff *skb;
742 union {
743 struct cmsghdr hdr;
744 long all[SVC_PKTINFO_SPACE / sizeof(long)];
745 } buffer;
746 struct cmsghdr *cmh = &buffer.hdr;
747 int err, len;
748 struct msghdr msg = {
749 .msg_name = svc_addr(rqstp),
750 .msg_control = cmh,
751 .msg_controllen = sizeof(buffer),
752 .msg_flags = MSG_DONTWAIT,
753 };
754
755 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
756 /* udp sockets need large rcvbuf as all pending
757 * requests are still in that buffer. sndbuf must
758 * also be large enough that there is enough space
759 * for one reply per thread. We count all threads
760 * rather than threads in a particular pool, which
761 * provides an upper bound on the number of threads
762 * which will access the socket.
763 */
764 svc_sock_setbufsize(svsk->sk_sock,
765 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
766 (serv->sv_nrthreads+3) * serv->sv_max_mesg);
767
768 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
769 skb = NULL;
770 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
771 0, 0, MSG_PEEK | MSG_DONTWAIT);
772 if (err >= 0)
773 skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
774
775 if (skb == NULL) {
776 if (err != -EAGAIN) {
777 /* possibly an icmp error */
778 dprintk("svc: recvfrom returned error %d\n", -err);
779 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
780 }
781 svc_xprt_received(&svsk->sk_xprt);
782 return -EAGAIN;
783 }
784 len = svc_addr_len(svc_addr(rqstp));
785 if (len < 0)
786 return len;
787 rqstp->rq_addrlen = len;
788 if (skb->tstamp.tv64 == 0) {
789 skb->tstamp = ktime_get_real();
790 /* Don't enable netstamp, sunrpc doesn't
791 need that much accuracy */
792 }
793 svsk->sk_sk->sk_stamp = skb->tstamp;
794 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
795
796 /*
797 * Maybe more packets - kick another thread ASAP.
798 */
799 svc_xprt_received(&svsk->sk_xprt);
800
801 len = skb->len - sizeof(struct udphdr);
802 rqstp->rq_arg.len = len;
803
804 rqstp->rq_prot = IPPROTO_UDP;
805
806 if (cmh->cmsg_level != IPPROTO_IP ||
807 cmh->cmsg_type != IP_PKTINFO) {
808 if (net_ratelimit())
809 printk("rpcsvc: received unknown control message:"
810 "%d/%d\n",
811 cmh->cmsg_level, cmh->cmsg_type);
812 skb_free_datagram(svsk->sk_sk, skb);
813 return 0;
814 }
815 svc_udp_get_dest_address(rqstp, cmh);
816
817 if (skb_is_nonlinear(skb)) {
818 /* we have to copy */
819 local_bh_disable();
820 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
821 local_bh_enable();
822 /* checksum error */
823 skb_free_datagram(svsk->sk_sk, skb);
824 return 0;
825 }
826 local_bh_enable();
827 skb_free_datagram(svsk->sk_sk, skb);
828 } else {
829 /* we can use it in-place */
830 rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
831 rqstp->rq_arg.head[0].iov_len = len;
832 if (skb_checksum_complete(skb)) {
833 skb_free_datagram(svsk->sk_sk, skb);
834 return 0;
835 }
836 rqstp->rq_xprt_ctxt = skb;
837 }
838
839 rqstp->rq_arg.page_base = 0;
840 if (len <= rqstp->rq_arg.head[0].iov_len) {
841 rqstp->rq_arg.head[0].iov_len = len;
842 rqstp->rq_arg.page_len = 0;
843 rqstp->rq_respages = rqstp->rq_pages+1;
844 } else {
845 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
846 rqstp->rq_respages = rqstp->rq_pages + 1 +
847 DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
848 }
849
850 if (serv->sv_stats)
851 serv->sv_stats->netudpcnt++;
852
853 return len;
854 }
855
856 static int
857 svc_udp_sendto(struct svc_rqst *rqstp)
858 {
859 int error;
860
861 error = svc_sendto(rqstp, &rqstp->rq_res);
862 if (error == -ECONNREFUSED)
863 /* ICMP error on earlier request. */
864 error = svc_sendto(rqstp, &rqstp->rq_res);
865
866 return error;
867 }
868
869 static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp)
870 {
871 }
872
873 static int svc_udp_has_wspace(struct svc_xprt *xprt)
874 {
875 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
876 struct svc_serv *serv = xprt->xpt_server;
877 unsigned long required;
878
879 /*
880 * Set the SOCK_NOSPACE flag before checking the available
881 * sock space.
882 */
883 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
884 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
885 if (required*2 > sock_wspace(svsk->sk_sk))
886 return 0;
887 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
888 return 1;
889 }
890
891 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
892 {
893 BUG();
894 return NULL;
895 }
896
897 static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
898 struct sockaddr *sa, int salen,
899 int flags)
900 {
901 return svc_create_socket(serv, IPPROTO_UDP, sa, salen, flags);
902 }
903
904 static struct svc_xprt_ops svc_udp_ops = {
905 .xpo_create = svc_udp_create,
906 .xpo_recvfrom = svc_udp_recvfrom,
907 .xpo_sendto = svc_udp_sendto,
908 .xpo_release_rqst = svc_release_skb,
909 .xpo_detach = svc_sock_detach,
910 .xpo_free = svc_sock_free,
911 .xpo_prep_reply_hdr = svc_udp_prep_reply_hdr,
912 .xpo_has_wspace = svc_udp_has_wspace,
913 .xpo_accept = svc_udp_accept,
914 };
915
916 static struct svc_xprt_class svc_udp_class = {
917 .xcl_name = "udp",
918 .xcl_owner = THIS_MODULE,
919 .xcl_ops = &svc_udp_ops,
920 .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
921 };
922
923 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
924 {
925 int one = 1;
926 mm_segment_t oldfs;
927
928 svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv);
929 clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
930 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
931 svsk->sk_sk->sk_write_space = svc_write_space;
932
933 /* initialise setting must have enough space to
934 * receive and respond to one request.
935 * svc_udp_recvfrom will re-adjust if necessary
936 */
937 svc_sock_setbufsize(svsk->sk_sock,
938 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
939 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
940
941 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* might have come in before data_ready set up */
942 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
943
944 oldfs = get_fs();
945 set_fs(KERNEL_DS);
946 /* make sure we get destination address info */
947 svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
948 (char __user *)&one, sizeof(one));
949 set_fs(oldfs);
950 }
951
952 /*
953 * A data_ready event on a listening socket means there's a connection
954 * pending. Do not use state_change as a substitute for it.
955 */
956 static void
957 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
958 {
959 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
960
961 dprintk("svc: socket %p TCP (listen) state change %d\n",
962 sk, sk->sk_state);
963
964 /*
965 * This callback may called twice when a new connection
966 * is established as a child socket inherits everything
967 * from a parent LISTEN socket.
968 * 1) data_ready method of the parent socket will be called
969 * when one of child sockets become ESTABLISHED.
970 * 2) data_ready method of the child socket may be called
971 * when it receives data before the socket is accepted.
972 * In case of 2, we should ignore it silently.
973 */
974 if (sk->sk_state == TCP_LISTEN) {
975 if (svsk) {
976 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
977 svc_xprt_enqueue(&svsk->sk_xprt);
978 } else
979 printk("svc: socket %p: no user data\n", sk);
980 }
981
982 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
983 wake_up_interruptible_all(sk->sk_sleep);
984 }
985
986 /*
987 * A state change on a connected socket means it's dying or dead.
988 */
989 static void
990 svc_tcp_state_change(struct sock *sk)
991 {
992 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
993
994 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
995 sk, sk->sk_state, sk->sk_user_data);
996
997 if (!svsk)
998 printk("svc: socket %p: no user data\n", sk);
999 else {
1000 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1001 svc_xprt_enqueue(&svsk->sk_xprt);
1002 }
1003 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1004 wake_up_interruptible_all(sk->sk_sleep);
1005 }
1006
1007 static void
1008 svc_tcp_data_ready(struct sock *sk, int count)
1009 {
1010 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
1011
1012 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
1013 sk, sk->sk_user_data);
1014 if (svsk) {
1015 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1016 svc_xprt_enqueue(&svsk->sk_xprt);
1017 }
1018 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1019 wake_up_interruptible(sk->sk_sleep);
1020 }
1021
1022 static inline int svc_port_is_privileged(struct sockaddr *sin)
1023 {
1024 switch (sin->sa_family) {
1025 case AF_INET:
1026 return ntohs(((struct sockaddr_in *)sin)->sin_port)
1027 < PROT_SOCK;
1028 case AF_INET6:
1029 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
1030 < PROT_SOCK;
1031 default:
1032 return 0;
1033 }
1034 }
1035
1036 /*
1037 * Accept a TCP connection
1038 */
1039 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
1040 {
1041 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1042 struct sockaddr_storage addr;
1043 struct sockaddr *sin = (struct sockaddr *) &addr;
1044 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
1045 struct socket *sock = svsk->sk_sock;
1046 struct socket *newsock;
1047 struct svc_sock *newsvsk;
1048 int err, slen;
1049 char buf[RPC_MAX_ADDRBUFLEN];
1050
1051 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
1052 if (!sock)
1053 return NULL;
1054
1055 clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1056 err = kernel_accept(sock, &newsock, O_NONBLOCK);
1057 if (err < 0) {
1058 if (err == -ENOMEM)
1059 printk(KERN_WARNING "%s: no more sockets!\n",
1060 serv->sv_name);
1061 else if (err != -EAGAIN && net_ratelimit())
1062 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
1063 serv->sv_name, -err);
1064 return NULL;
1065 }
1066 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1067
1068 err = kernel_getpeername(newsock, sin, &slen);
1069 if (err < 0) {
1070 if (net_ratelimit())
1071 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
1072 serv->sv_name, -err);
1073 goto failed; /* aborted connection or whatever */
1074 }
1075
1076 /* Ideally, we would want to reject connections from unauthorized
1077 * hosts here, but when we get encryption, the IP of the host won't
1078 * tell us anything. For now just warn about unpriv connections.
1079 */
1080 if (!svc_port_is_privileged(sin)) {
1081 dprintk(KERN_WARNING
1082 "%s: connect from unprivileged port: %s\n",
1083 serv->sv_name,
1084 __svc_print_addr(sin, buf, sizeof(buf)));
1085 }
1086 dprintk("%s: connect from %s\n", serv->sv_name,
1087 __svc_print_addr(sin, buf, sizeof(buf)));
1088
1089 /* make sure that a write doesn't block forever when
1090 * low on memory
1091 */
1092 newsock->sk->sk_sndtimeo = HZ*30;
1093
1094 if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
1095 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
1096 goto failed;
1097 svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen);
1098 err = kernel_getsockname(newsock, sin, &slen);
1099 if (unlikely(err < 0)) {
1100 dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
1101 slen = offsetof(struct sockaddr, sa_data);
1102 }
1103 svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen);
1104
1105 if (serv->sv_stats)
1106 serv->sv_stats->nettcpconn++;
1107
1108 return &newsvsk->sk_xprt;
1109
1110 failed:
1111 sock_release(newsock);
1112 return NULL;
1113 }
1114
1115 /*
1116 * Receive data from a TCP socket.
1117 */
1118 static int
1119 svc_tcp_recvfrom(struct svc_rqst *rqstp)
1120 {
1121 struct svc_sock *svsk =
1122 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
1123 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
1124 int len;
1125 struct kvec *vec;
1126 int pnum, vlen;
1127
1128 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1129 svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags),
1130 test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags),
1131 test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags));
1132
1133 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
1134 /* sndbuf needs to have room for one request
1135 * per thread, otherwise we can stall even when the
1136 * network isn't a bottleneck.
1137 *
1138 * We count all threads rather than threads in a
1139 * particular pool, which provides an upper bound
1140 * on the number of threads which will access the socket.
1141 *
1142 * rcvbuf just needs to be able to hold a few requests.
1143 * Normally they will be removed from the queue
1144 * as soon a a complete request arrives.
1145 */
1146 svc_sock_setbufsize(svsk->sk_sock,
1147 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
1148 3 * serv->sv_max_mesg);
1149
1150 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1151
1152 /* Receive data. If we haven't got the record length yet, get
1153 * the next four bytes. Otherwise try to gobble up as much as
1154 * possible up to the complete record length.
1155 */
1156 if (svsk->sk_tcplen < 4) {
1157 unsigned long want = 4 - svsk->sk_tcplen;
1158 struct kvec iov;
1159
1160 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
1161 iov.iov_len = want;
1162 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
1163 goto error;
1164 svsk->sk_tcplen += len;
1165
1166 if (len < want) {
1167 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1168 len, want);
1169 svc_xprt_received(&svsk->sk_xprt);
1170 return -EAGAIN; /* record header not complete */
1171 }
1172
1173 svsk->sk_reclen = ntohl(svsk->sk_reclen);
1174 if (!(svsk->sk_reclen & 0x80000000)) {
1175 /* FIXME: technically, a record can be fragmented,
1176 * and non-terminal fragments will not have the top
1177 * bit set in the fragment length header.
1178 * But apparently no known nfs clients send fragmented
1179 * records. */
1180 if (net_ratelimit())
1181 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1182 " (non-terminal)\n",
1183 (unsigned long) svsk->sk_reclen);
1184 goto err_delete;
1185 }
1186 svsk->sk_reclen &= 0x7fffffff;
1187 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
1188 if (svsk->sk_reclen > serv->sv_max_mesg) {
1189 if (net_ratelimit())
1190 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1191 " (large)\n",
1192 (unsigned long) svsk->sk_reclen);
1193 goto err_delete;
1194 }
1195 }
1196
1197 /* Check whether enough data is available */
1198 len = svc_recv_available(svsk);
1199 if (len < 0)
1200 goto error;
1201
1202 if (len < svsk->sk_reclen) {
1203 dprintk("svc: incomplete TCP record (%d of %d)\n",
1204 len, svsk->sk_reclen);
1205 svc_xprt_received(&svsk->sk_xprt);
1206 return -EAGAIN; /* record not complete */
1207 }
1208 len = svsk->sk_reclen;
1209 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1210
1211 vec = rqstp->rq_vec;
1212 vec[0] = rqstp->rq_arg.head[0];
1213 vlen = PAGE_SIZE;
1214 pnum = 1;
1215 while (vlen < len) {
1216 vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
1217 vec[pnum].iov_len = PAGE_SIZE;
1218 pnum++;
1219 vlen += PAGE_SIZE;
1220 }
1221 rqstp->rq_respages = &rqstp->rq_pages[pnum];
1222
1223 /* Now receive data */
1224 len = svc_recvfrom(rqstp, vec, pnum, len);
1225 if (len < 0)
1226 goto error;
1227
1228 dprintk("svc: TCP complete record (%d bytes)\n", len);
1229 rqstp->rq_arg.len = len;
1230 rqstp->rq_arg.page_base = 0;
1231 if (len <= rqstp->rq_arg.head[0].iov_len) {
1232 rqstp->rq_arg.head[0].iov_len = len;
1233 rqstp->rq_arg.page_len = 0;
1234 } else {
1235 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1236 }
1237
1238 rqstp->rq_xprt_ctxt = NULL;
1239 rqstp->rq_prot = IPPROTO_TCP;
1240
1241 /* Reset TCP read info */
1242 svsk->sk_reclen = 0;
1243 svsk->sk_tcplen = 0;
1244
1245 svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt);
1246 svc_xprt_received(&svsk->sk_xprt);
1247 if (serv->sv_stats)
1248 serv->sv_stats->nettcpcnt++;
1249
1250 return len;
1251
1252 err_delete:
1253 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1254 return -EAGAIN;
1255
1256 error:
1257 if (len == -EAGAIN) {
1258 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1259 svc_xprt_received(&svsk->sk_xprt);
1260 } else {
1261 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1262 svsk->sk_xprt.xpt_server->sv_name, -len);
1263 goto err_delete;
1264 }
1265
1266 return len;
1267 }
1268
1269 /*
1270 * Send out data on TCP socket.
1271 */
1272 static int
1273 svc_tcp_sendto(struct svc_rqst *rqstp)
1274 {
1275 struct xdr_buf *xbufp = &rqstp->rq_res;
1276 int sent;
1277 __be32 reclen;
1278
1279 /* Set up the first element of the reply kvec.
1280 * Any other kvecs that may be in use have been taken
1281 * care of by the server implementation itself.
1282 */
1283 reclen = htonl(0x80000000|((xbufp->len ) - 4));
1284 memcpy(xbufp->head[0].iov_base, &reclen, 4);
1285
1286 if (test_bit(XPT_DEAD, &rqstp->rq_xprt->xpt_flags))
1287 return -ENOTCONN;
1288
1289 sent = svc_sendto(rqstp, &rqstp->rq_res);
1290 if (sent != xbufp->len) {
1291 printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1292 rqstp->rq_xprt->xpt_server->sv_name,
1293 (sent<0)?"got error":"sent only",
1294 sent, xbufp->len);
1295 set_bit(XPT_CLOSE, &rqstp->rq_xprt->xpt_flags);
1296 svc_xprt_enqueue(rqstp->rq_xprt);
1297 sent = -EAGAIN;
1298 }
1299 return sent;
1300 }
1301
1302 /*
1303 * Setup response header. TCP has a 4B record length field.
1304 */
1305 static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp)
1306 {
1307 struct kvec *resv = &rqstp->rq_res.head[0];
1308
1309 /* tcp needs a space for the record length... */
1310 svc_putnl(resv, 0);
1311 }
1312
1313 static int svc_tcp_has_wspace(struct svc_xprt *xprt)
1314 {
1315 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1316 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
1317 int required;
1318 int wspace;
1319
1320 /*
1321 * Set the SOCK_NOSPACE flag before checking the available
1322 * sock space.
1323 */
1324 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
1325 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
1326 wspace = sk_stream_wspace(svsk->sk_sk);
1327
1328 if (wspace < sk_stream_min_wspace(svsk->sk_sk))
1329 return 0;
1330 if (required * 2 > wspace)
1331 return 0;
1332
1333 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
1334 return 1;
1335 }
1336
1337 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
1338 struct sockaddr *sa, int salen,
1339 int flags)
1340 {
1341 return svc_create_socket(serv, IPPROTO_TCP, sa, salen, flags);
1342 }
1343
1344 static struct svc_xprt_ops svc_tcp_ops = {
1345 .xpo_create = svc_tcp_create,
1346 .xpo_recvfrom = svc_tcp_recvfrom,
1347 .xpo_sendto = svc_tcp_sendto,
1348 .xpo_release_rqst = svc_release_skb,
1349 .xpo_detach = svc_sock_detach,
1350 .xpo_free = svc_sock_free,
1351 .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr,
1352 .xpo_has_wspace = svc_tcp_has_wspace,
1353 .xpo_accept = svc_tcp_accept,
1354 };
1355
1356 static struct svc_xprt_class svc_tcp_class = {
1357 .xcl_name = "tcp",
1358 .xcl_owner = THIS_MODULE,
1359 .xcl_ops = &svc_tcp_ops,
1360 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1361 };
1362
1363 void svc_init_xprt_sock(void)
1364 {
1365 svc_reg_xprt_class(&svc_tcp_class);
1366 svc_reg_xprt_class(&svc_udp_class);
1367 }
1368
1369 void svc_cleanup_xprt_sock(void)
1370 {
1371 svc_unreg_xprt_class(&svc_tcp_class);
1372 svc_unreg_xprt_class(&svc_udp_class);
1373 }
1374
1375 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
1376 {
1377 struct sock *sk = svsk->sk_sk;
1378 struct tcp_sock *tp = tcp_sk(sk);
1379
1380 svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv);
1381 set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
1382 if (sk->sk_state == TCP_LISTEN) {
1383 dprintk("setting up TCP socket for listening\n");
1384 set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
1385 sk->sk_data_ready = svc_tcp_listen_data_ready;
1386 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1387 } else {
1388 dprintk("setting up TCP socket for reading\n");
1389 sk->sk_state_change = svc_tcp_state_change;
1390 sk->sk_data_ready = svc_tcp_data_ready;
1391 sk->sk_write_space = svc_write_space;
1392
1393 svsk->sk_reclen = 0;
1394 svsk->sk_tcplen = 0;
1395
1396 tp->nonagle = 1; /* disable Nagle's algorithm */
1397
1398 /* initialise setting must have enough space to
1399 * receive and respond to one request.
1400 * svc_tcp_recvfrom will re-adjust if necessary
1401 */
1402 svc_sock_setbufsize(svsk->sk_sock,
1403 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
1404 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
1405
1406 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1407 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1408 if (sk->sk_state != TCP_ESTABLISHED)
1409 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1410 }
1411 }
1412
1413 void
1414 svc_sock_update_bufs(struct svc_serv *serv)
1415 {
1416 /*
1417 * The number of server threads has changed. Update
1418 * rcvbuf and sndbuf accordingly on all sockets
1419 */
1420 struct list_head *le;
1421
1422 spin_lock_bh(&serv->sv_lock);
1423 list_for_each(le, &serv->sv_permsocks) {
1424 struct svc_sock *svsk =
1425 list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1426 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1427 }
1428 list_for_each(le, &serv->sv_tempsocks) {
1429 struct svc_sock *svsk =
1430 list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1431 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1432 }
1433 spin_unlock_bh(&serv->sv_lock);
1434 }
1435
1436 /*
1437 * Make sure that we don't have too many active connections. If we
1438 * have, something must be dropped.
1439 *
1440 * There's no point in trying to do random drop here for DoS
1441 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
1442 * attacker can easily beat that.
1443 *
1444 * The only somewhat efficient mechanism would be if drop old
1445 * connections from the same IP first. But right now we don't even
1446 * record the client IP in svc_sock.
1447 */
1448 static void svc_check_conn_limits(struct svc_serv *serv)
1449 {
1450 if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
1451 struct svc_sock *svsk = NULL;
1452 spin_lock_bh(&serv->sv_lock);
1453 if (!list_empty(&serv->sv_tempsocks)) {
1454 if (net_ratelimit()) {
1455 /* Try to help the admin */
1456 printk(KERN_NOTICE "%s: too many open TCP "
1457 "sockets, consider increasing the "
1458 "number of nfsd threads\n",
1459 serv->sv_name);
1460 }
1461 /*
1462 * Always select the oldest socket. It's not fair,
1463 * but so is life
1464 */
1465 svsk = list_entry(serv->sv_tempsocks.prev,
1466 struct svc_sock,
1467 sk_xprt.xpt_list);
1468 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1469 svc_xprt_get(&svsk->sk_xprt);
1470 }
1471 spin_unlock_bh(&serv->sv_lock);
1472
1473 if (svsk) {
1474 svc_xprt_enqueue(&svsk->sk_xprt);
1475 svc_xprt_put(&svsk->sk_xprt);
1476 }
1477 }
1478 }
1479
1480 /*
1481 * Receive the next request on any socket. This code is carefully
1482 * organised not to touch any cachelines in the shared svc_serv
1483 * structure, only cachelines in the local svc_pool.
1484 */
1485 int
1486 svc_recv(struct svc_rqst *rqstp, long timeout)
1487 {
1488 struct svc_xprt *xprt = NULL;
1489 struct svc_serv *serv = rqstp->rq_server;
1490 struct svc_pool *pool = rqstp->rq_pool;
1491 int len, i;
1492 int pages;
1493 struct xdr_buf *arg;
1494 DECLARE_WAITQUEUE(wait, current);
1495
1496 dprintk("svc: server %p waiting for data (to = %ld)\n",
1497 rqstp, timeout);
1498
1499 if (rqstp->rq_xprt)
1500 printk(KERN_ERR
1501 "svc_recv: service %p, transport not NULL!\n",
1502 rqstp);
1503 if (waitqueue_active(&rqstp->rq_wait))
1504 printk(KERN_ERR
1505 "svc_recv: service %p, wait queue active!\n",
1506 rqstp);
1507
1508
1509 /* now allocate needed pages. If we get a failure, sleep briefly */
1510 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
1511 for (i=0; i < pages ; i++)
1512 while (rqstp->rq_pages[i] == NULL) {
1513 struct page *p = alloc_page(GFP_KERNEL);
1514 if (!p)
1515 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1516 rqstp->rq_pages[i] = p;
1517 }
1518 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
1519 BUG_ON(pages >= RPCSVC_MAXPAGES);
1520
1521 /* Make arg->head point to first page and arg->pages point to rest */
1522 arg = &rqstp->rq_arg;
1523 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
1524 arg->head[0].iov_len = PAGE_SIZE;
1525 arg->pages = rqstp->rq_pages + 1;
1526 arg->page_base = 0;
1527 /* save at least one page for response */
1528 arg->page_len = (pages-2)*PAGE_SIZE;
1529 arg->len = (pages-1)*PAGE_SIZE;
1530 arg->tail[0].iov_len = 0;
1531
1532 try_to_freeze();
1533 cond_resched();
1534 if (signalled())
1535 return -EINTR;
1536
1537 spin_lock_bh(&pool->sp_lock);
1538 xprt = svc_xprt_dequeue(pool);
1539 if (xprt) {
1540 rqstp->rq_xprt = xprt;
1541 svc_xprt_get(xprt);
1542 rqstp->rq_reserved = serv->sv_max_mesg;
1543 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
1544 } else {
1545 /* No data pending. Go to sleep */
1546 svc_thread_enqueue(pool, rqstp);
1547
1548 /*
1549 * We have to be able to interrupt this wait
1550 * to bring down the daemons ...
1551 */
1552 set_current_state(TASK_INTERRUPTIBLE);
1553 add_wait_queue(&rqstp->rq_wait, &wait);
1554 spin_unlock_bh(&pool->sp_lock);
1555
1556 schedule_timeout(timeout);
1557
1558 try_to_freeze();
1559
1560 spin_lock_bh(&pool->sp_lock);
1561 remove_wait_queue(&rqstp->rq_wait, &wait);
1562
1563 xprt = rqstp->rq_xprt;
1564 if (!xprt) {
1565 svc_thread_dequeue(pool, rqstp);
1566 spin_unlock_bh(&pool->sp_lock);
1567 dprintk("svc: server %p, no data yet\n", rqstp);
1568 return signalled()? -EINTR : -EAGAIN;
1569 }
1570 }
1571 spin_unlock_bh(&pool->sp_lock);
1572
1573 len = 0;
1574 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
1575 dprintk("svc_recv: found XPT_CLOSE\n");
1576 svc_delete_xprt(xprt);
1577 } else if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
1578 struct svc_xprt *newxpt;
1579 newxpt = xprt->xpt_ops->xpo_accept(xprt);
1580 if (newxpt) {
1581 /*
1582 * We know this module_get will succeed because the
1583 * listener holds a reference too
1584 */
1585 __module_get(newxpt->xpt_class->xcl_owner);
1586 svc_check_conn_limits(xprt->xpt_server);
1587 spin_lock_bh(&serv->sv_lock);
1588 set_bit(XPT_TEMP, &newxpt->xpt_flags);
1589 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
1590 serv->sv_tmpcnt++;
1591 if (serv->sv_temptimer.function == NULL) {
1592 /* setup timer to age temp sockets */
1593 setup_timer(&serv->sv_temptimer,
1594 svc_age_temp_xprts,
1595 (unsigned long)serv);
1596 mod_timer(&serv->sv_temptimer,
1597 jiffies + svc_conn_age_period * HZ);
1598 }
1599 spin_unlock_bh(&serv->sv_lock);
1600 svc_xprt_received(newxpt);
1601 }
1602 svc_xprt_received(xprt);
1603 } else {
1604 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
1605 rqstp, pool->sp_id, xprt,
1606 atomic_read(&xprt->xpt_ref.refcount));
1607 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
1608 if (rqstp->rq_deferred) {
1609 svc_xprt_received(xprt);
1610 len = svc_deferred_recv(rqstp);
1611 } else
1612 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
1613 dprintk("svc: got len=%d\n", len);
1614 }
1615
1616 /* No data, incomplete (TCP) read, or accept() */
1617 if (len == 0 || len == -EAGAIN) {
1618 rqstp->rq_res.len = 0;
1619 svc_xprt_release(rqstp);
1620 return -EAGAIN;
1621 }
1622 clear_bit(XPT_OLD, &xprt->xpt_flags);
1623
1624 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
1625 rqstp->rq_chandle.defer = svc_defer;
1626
1627 if (serv->sv_stats)
1628 serv->sv_stats->netcnt++;
1629 return len;
1630 }
1631
1632 /*
1633 * Drop request
1634 */
1635 void
1636 svc_drop(struct svc_rqst *rqstp)
1637 {
1638 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
1639 svc_xprt_release(rqstp);
1640 }
1641
1642 /*
1643 * Return reply to client.
1644 */
1645 int
1646 svc_send(struct svc_rqst *rqstp)
1647 {
1648 struct svc_xprt *xprt;
1649 int len;
1650 struct xdr_buf *xb;
1651
1652 xprt = rqstp->rq_xprt;
1653 if (!xprt)
1654 return -EFAULT;
1655
1656 /* release the receive skb before sending the reply */
1657 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
1658
1659 /* calculate over-all length */
1660 xb = & rqstp->rq_res;
1661 xb->len = xb->head[0].iov_len +
1662 xb->page_len +
1663 xb->tail[0].iov_len;
1664
1665 /* Grab mutex to serialize outgoing data. */
1666 mutex_lock(&xprt->xpt_mutex);
1667 if (test_bit(XPT_DEAD, &xprt->xpt_flags))
1668 len = -ENOTCONN;
1669 else
1670 len = xprt->xpt_ops->xpo_sendto(rqstp);
1671 mutex_unlock(&xprt->xpt_mutex);
1672 svc_xprt_release(rqstp);
1673
1674 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1675 return 0;
1676 return len;
1677 }
1678
1679 /*
1680 * Timer function to close old temporary sockets, using
1681 * a mark-and-sweep algorithm.
1682 */
1683 static void svc_age_temp_xprts(unsigned long closure)
1684 {
1685 struct svc_serv *serv = (struct svc_serv *)closure;
1686 struct svc_xprt *xprt;
1687 struct list_head *le, *next;
1688 LIST_HEAD(to_be_aged);
1689
1690 dprintk("svc_age_temp_xprts\n");
1691
1692 if (!spin_trylock_bh(&serv->sv_lock)) {
1693 /* busy, try again 1 sec later */
1694 dprintk("svc_age_temp_xprts: busy\n");
1695 mod_timer(&serv->sv_temptimer, jiffies + HZ);
1696 return;
1697 }
1698
1699 list_for_each_safe(le, next, &serv->sv_tempsocks) {
1700 xprt = list_entry(le, struct svc_xprt, xpt_list);
1701
1702 /* First time through, just mark it OLD. Second time
1703 * through, close it. */
1704 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
1705 continue;
1706 if (atomic_read(&xprt->xpt_ref.refcount) > 1
1707 || test_bit(XPT_BUSY, &xprt->xpt_flags))
1708 continue;
1709 svc_xprt_get(xprt);
1710 list_move(le, &to_be_aged);
1711 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1712 set_bit(XPT_DETACHED, &xprt->xpt_flags);
1713 }
1714 spin_unlock_bh(&serv->sv_lock);
1715
1716 while (!list_empty(&to_be_aged)) {
1717 le = to_be_aged.next;
1718 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
1719 list_del_init(le);
1720 xprt = list_entry(le, struct svc_xprt, xpt_list);
1721
1722 dprintk("queuing xprt %p for closing\n", xprt);
1723
1724 /* a thread will dequeue and close it soon */
1725 svc_xprt_enqueue(xprt);
1726 svc_xprt_put(xprt);
1727 }
1728
1729 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
1730 }
1731
1732 /*
1733 * Initialize socket for RPC use and create svc_sock struct
1734 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1735 */
1736 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1737 struct socket *sock,
1738 int *errp, int flags)
1739 {
1740 struct svc_sock *svsk;
1741 struct sock *inet;
1742 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1743
1744 dprintk("svc: svc_setup_socket %p\n", sock);
1745 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1746 *errp = -ENOMEM;
1747 return NULL;
1748 }
1749
1750 inet = sock->sk;
1751
1752 /* Register socket with portmapper */
1753 if (*errp >= 0 && pmap_register)
1754 *errp = svc_register(serv, inet->sk_protocol,
1755 ntohs(inet_sk(inet)->sport));
1756
1757 if (*errp < 0) {
1758 kfree(svsk);
1759 return NULL;
1760 }
1761
1762 inet->sk_user_data = svsk;
1763 svsk->sk_sock = sock;
1764 svsk->sk_sk = inet;
1765 svsk->sk_ostate = inet->sk_state_change;
1766 svsk->sk_odata = inet->sk_data_ready;
1767 svsk->sk_owspace = inet->sk_write_space;
1768
1769 /* Initialize the socket */
1770 if (sock->type == SOCK_DGRAM)
1771 svc_udp_init(svsk, serv);
1772 else
1773 svc_tcp_init(svsk, serv);
1774
1775 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1776 svsk, svsk->sk_sk);
1777
1778 return svsk;
1779 }
1780
1781 int svc_addsock(struct svc_serv *serv,
1782 int fd,
1783 char *name_return,
1784 int *proto)
1785 {
1786 int err = 0;
1787 struct socket *so = sockfd_lookup(fd, &err);
1788 struct svc_sock *svsk = NULL;
1789
1790 if (!so)
1791 return err;
1792 if (so->sk->sk_family != AF_INET)
1793 err = -EAFNOSUPPORT;
1794 else if (so->sk->sk_protocol != IPPROTO_TCP &&
1795 so->sk->sk_protocol != IPPROTO_UDP)
1796 err = -EPROTONOSUPPORT;
1797 else if (so->state > SS_UNCONNECTED)
1798 err = -EISCONN;
1799 else {
1800 svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS);
1801 if (svsk) {
1802 struct sockaddr_storage addr;
1803 struct sockaddr *sin = (struct sockaddr *)&addr;
1804 int salen;
1805 if (kernel_getsockname(svsk->sk_sock, sin, &salen) == 0)
1806 svc_xprt_set_local(&svsk->sk_xprt, sin, salen);
1807 clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
1808 spin_lock_bh(&serv->sv_lock);
1809 list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks);
1810 spin_unlock_bh(&serv->sv_lock);
1811 svc_xprt_received(&svsk->sk_xprt);
1812 err = 0;
1813 }
1814 }
1815 if (err) {
1816 sockfd_put(so);
1817 return err;
1818 }
1819 if (proto) *proto = so->sk->sk_protocol;
1820 return one_sock_name(name_return, svsk);
1821 }
1822 EXPORT_SYMBOL_GPL(svc_addsock);
1823
1824 /*
1825 * Create socket for RPC service.
1826 */
1827 static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
1828 int protocol,
1829 struct sockaddr *sin, int len,
1830 int flags)
1831 {
1832 struct svc_sock *svsk;
1833 struct socket *sock;
1834 int error;
1835 int type;
1836 char buf[RPC_MAX_ADDRBUFLEN];
1837 struct sockaddr_storage addr;
1838 struct sockaddr *newsin = (struct sockaddr *)&addr;
1839 int newlen;
1840
1841 dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1842 serv->sv_program->pg_name, protocol,
1843 __svc_print_addr(sin, buf, sizeof(buf)));
1844
1845 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1846 printk(KERN_WARNING "svc: only UDP and TCP "
1847 "sockets supported\n");
1848 return ERR_PTR(-EINVAL);
1849 }
1850 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1851
1852 error = sock_create_kern(sin->sa_family, type, protocol, &sock);
1853 if (error < 0)
1854 return ERR_PTR(error);
1855
1856 svc_reclassify_socket(sock);
1857
1858 if (type == SOCK_STREAM)
1859 sock->sk->sk_reuse = 1; /* allow address reuse */
1860 error = kernel_bind(sock, sin, len);
1861 if (error < 0)
1862 goto bummer;
1863
1864 newlen = len;
1865 error = kernel_getsockname(sock, newsin, &newlen);
1866 if (error < 0)
1867 goto bummer;
1868
1869 if (protocol == IPPROTO_TCP) {
1870 if ((error = kernel_listen(sock, 64)) < 0)
1871 goto bummer;
1872 }
1873
1874 if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1875 svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen);
1876 return (struct svc_xprt *)svsk;
1877 }
1878
1879 bummer:
1880 dprintk("svc: svc_create_socket error = %d\n", -error);
1881 sock_release(sock);
1882 return ERR_PTR(error);
1883 }
1884
1885 /*
1886 * Detach the svc_sock from the socket so that no
1887 * more callbacks occur.
1888 */
1889 static void svc_sock_detach(struct svc_xprt *xprt)
1890 {
1891 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1892 struct sock *sk = svsk->sk_sk;
1893
1894 dprintk("svc: svc_sock_detach(%p)\n", svsk);
1895
1896 /* put back the old socket callbacks */
1897 sk->sk_state_change = svsk->sk_ostate;
1898 sk->sk_data_ready = svsk->sk_odata;
1899 sk->sk_write_space = svsk->sk_owspace;
1900 }
1901
1902 /*
1903 * Free the svc_sock's socket resources and the svc_sock itself.
1904 */
1905 static void svc_sock_free(struct svc_xprt *xprt)
1906 {
1907 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1908 dprintk("svc: svc_sock_free(%p)\n", svsk);
1909
1910 if (svsk->sk_sock->file)
1911 sockfd_put(svsk->sk_sock);
1912 else
1913 sock_release(svsk->sk_sock);
1914 kfree(svsk);
1915 }
1916
1917 /*
1918 * Remove a dead transport
1919 */
1920 static void svc_delete_xprt(struct svc_xprt *xprt)
1921 {
1922 struct svc_serv *serv = xprt->xpt_server;
1923
1924 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1925 xprt->xpt_ops->xpo_detach(xprt);
1926
1927 spin_lock_bh(&serv->sv_lock);
1928 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
1929 list_del_init(&xprt->xpt_list);
1930 /*
1931 * We used to delete the transport from whichever list
1932 * it's sk_xprt.xpt_ready node was on, but we don't actually
1933 * need to. This is because the only time we're called
1934 * while still attached to a queue, the queue itself
1935 * is about to be destroyed (in svc_destroy).
1936 */
1937 if (!test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) {
1938 BUG_ON(atomic_read(&xprt->xpt_ref.refcount) < 2);
1939 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1940 serv->sv_tmpcnt--;
1941 svc_xprt_put(xprt);
1942 }
1943 spin_unlock_bh(&serv->sv_lock);
1944 }
1945
1946 static void svc_close_xprt(struct svc_xprt *xprt)
1947 {
1948 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1949 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1950 /* someone else will have to effect the close */
1951 return;
1952
1953 svc_xprt_get(xprt);
1954 svc_delete_xprt(xprt);
1955 clear_bit(XPT_BUSY, &xprt->xpt_flags);
1956 svc_xprt_put(xprt);
1957 }
1958
1959 void svc_close_all(struct list_head *xprt_list)
1960 {
1961 struct svc_xprt *xprt;
1962 struct svc_xprt *tmp;
1963
1964 list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
1965 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1966 if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
1967 /* Waiting to be processed, but no threads left,
1968 * So just remove it from the waiting list
1969 */
1970 list_del_init(&xprt->xpt_ready);
1971 clear_bit(XPT_BUSY, &xprt->xpt_flags);
1972 }
1973 svc_close_xprt(xprt);
1974 }
1975 }
1976
1977 /*
1978 * Handle defer and revisit of requests
1979 */
1980
1981 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1982 {
1983 struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1984 struct svc_xprt *xprt = dr->xprt;
1985
1986 if (too_many) {
1987 svc_xprt_put(xprt);
1988 kfree(dr);
1989 return;
1990 }
1991 dprintk("revisit queued\n");
1992 dr->xprt = NULL;
1993 spin_lock(&xprt->xpt_lock);
1994 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1995 spin_unlock(&xprt->xpt_lock);
1996 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1997 svc_xprt_enqueue(xprt);
1998 svc_xprt_put(xprt);
1999 }
2000
2001 static struct cache_deferred_req *
2002 svc_defer(struct cache_req *req)
2003 {
2004 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
2005 int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
2006 struct svc_deferred_req *dr;
2007
2008 if (rqstp->rq_arg.page_len)
2009 return NULL; /* if more than a page, give up FIXME */
2010 if (rqstp->rq_deferred) {
2011 dr = rqstp->rq_deferred;
2012 rqstp->rq_deferred = NULL;
2013 } else {
2014 int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
2015 /* FIXME maybe discard if size too large */
2016 dr = kmalloc(size, GFP_KERNEL);
2017 if (dr == NULL)
2018 return NULL;
2019
2020 dr->handle.owner = rqstp->rq_server;
2021 dr->prot = rqstp->rq_prot;
2022 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
2023 dr->addrlen = rqstp->rq_addrlen;
2024 dr->daddr = rqstp->rq_daddr;
2025 dr->argslen = rqstp->rq_arg.len >> 2;
2026 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
2027 }
2028 svc_xprt_get(rqstp->rq_xprt);
2029 dr->xprt = rqstp->rq_xprt;
2030
2031 dr->handle.revisit = svc_revisit;
2032 return &dr->handle;
2033 }
2034
2035 /*
2036 * recv data from a deferred request into an active one
2037 */
2038 static int svc_deferred_recv(struct svc_rqst *rqstp)
2039 {
2040 struct svc_deferred_req *dr = rqstp->rq_deferred;
2041
2042 rqstp->rq_arg.head[0].iov_base = dr->args;
2043 rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
2044 rqstp->rq_arg.page_len = 0;
2045 rqstp->rq_arg.len = dr->argslen<<2;
2046 rqstp->rq_prot = dr->prot;
2047 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
2048 rqstp->rq_addrlen = dr->addrlen;
2049 rqstp->rq_daddr = dr->daddr;
2050 rqstp->rq_respages = rqstp->rq_pages;
2051 return dr->argslen<<2;
2052 }
2053
2054
2055 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
2056 {
2057 struct svc_deferred_req *dr = NULL;
2058
2059 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
2060 return NULL;
2061 spin_lock(&xprt->xpt_lock);
2062 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
2063 if (!list_empty(&xprt->xpt_deferred)) {
2064 dr = list_entry(xprt->xpt_deferred.next,
2065 struct svc_deferred_req,
2066 handle.recent);
2067 list_del_init(&dr->handle.recent);
2068 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
2069 }
2070 spin_unlock(&xprt->xpt_lock);
2071 return dr;
2072 }
This page took 0.074725 seconds and 6 git commands to generate.