Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux...
[deliverable/linux.git] / net / sunrpc / svcsock.c
1 /*
2 * linux/net/sunrpc/svcsock.c
3 *
4 * These are the RPC server socket internals.
5 *
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_xprt_enqueue procedure...
9 *
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
18 *
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/errno.h>
25 #include <linux/fcntl.h>
26 #include <linux/net.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/udp.h>
30 #include <linux/tcp.h>
31 #include <linux/unistd.h>
32 #include <linux/slab.h>
33 #include <linux/netdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/file.h>
36 #include <linux/freezer.h>
37 #include <net/sock.h>
38 #include <net/checksum.h>
39 #include <net/ip.h>
40 #include <net/ipv6.h>
41 #include <net/tcp.h>
42 #include <net/tcp_states.h>
43 #include <asm/uaccess.h>
44 #include <asm/ioctls.h>
45
46 #include <linux/sunrpc/types.h>
47 #include <linux/sunrpc/clnt.h>
48 #include <linux/sunrpc/xdr.h>
49 #include <linux/sunrpc/msg_prot.h>
50 #include <linux/sunrpc/svcsock.h>
51 #include <linux/sunrpc/stats.h>
52
53 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
54
55
56 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
57 int *errp, int flags);
58 static void svc_udp_data_ready(struct sock *, int);
59 static int svc_udp_recvfrom(struct svc_rqst *);
60 static int svc_udp_sendto(struct svc_rqst *);
61 static void svc_sock_detach(struct svc_xprt *);
62 static void svc_sock_free(struct svc_xprt *);
63
64 static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
65 struct sockaddr *, int, int);
66 #ifdef CONFIG_DEBUG_LOCK_ALLOC
67 static struct lock_class_key svc_key[2];
68 static struct lock_class_key svc_slock_key[2];
69
70 static void svc_reclassify_socket(struct socket *sock)
71 {
72 struct sock *sk = sock->sk;
73 BUG_ON(sock_owned_by_user(sk));
74 switch (sk->sk_family) {
75 case AF_INET:
76 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
77 &svc_slock_key[0],
78 "sk_xprt.xpt_lock-AF_INET-NFSD",
79 &svc_key[0]);
80 break;
81
82 case AF_INET6:
83 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
84 &svc_slock_key[1],
85 "sk_xprt.xpt_lock-AF_INET6-NFSD",
86 &svc_key[1]);
87 break;
88
89 default:
90 BUG();
91 }
92 }
93 #else
94 static void svc_reclassify_socket(struct socket *sock)
95 {
96 }
97 #endif
98
99 /*
100 * Release an skbuff after use
101 */
102 static void svc_release_skb(struct svc_rqst *rqstp)
103 {
104 struct sk_buff *skb = rqstp->rq_xprt_ctxt;
105 struct svc_deferred_req *dr = rqstp->rq_deferred;
106
107 if (skb) {
108 struct svc_sock *svsk =
109 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
110 rqstp->rq_xprt_ctxt = NULL;
111
112 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
113 skb_free_datagram(svsk->sk_sk, skb);
114 }
115 if (dr) {
116 rqstp->rq_deferred = NULL;
117 kfree(dr);
118 }
119 }
120
121 union svc_pktinfo_u {
122 struct in_pktinfo pkti;
123 struct in6_pktinfo pkti6;
124 };
125 #define SVC_PKTINFO_SPACE \
126 CMSG_SPACE(sizeof(union svc_pktinfo_u))
127
128 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
129 {
130 struct svc_sock *svsk =
131 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
132 switch (svsk->sk_sk->sk_family) {
133 case AF_INET: {
134 struct in_pktinfo *pki = CMSG_DATA(cmh);
135
136 cmh->cmsg_level = SOL_IP;
137 cmh->cmsg_type = IP_PKTINFO;
138 pki->ipi_ifindex = 0;
139 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
140 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
141 }
142 break;
143
144 case AF_INET6: {
145 struct in6_pktinfo *pki = CMSG_DATA(cmh);
146
147 cmh->cmsg_level = SOL_IPV6;
148 cmh->cmsg_type = IPV6_PKTINFO;
149 pki->ipi6_ifindex = 0;
150 ipv6_addr_copy(&pki->ipi6_addr,
151 &rqstp->rq_daddr.addr6);
152 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
153 }
154 break;
155 }
156 return;
157 }
158
159 /*
160 * Generic sendto routine
161 */
162 static int svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
163 {
164 struct svc_sock *svsk =
165 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
166 struct socket *sock = svsk->sk_sock;
167 int slen;
168 union {
169 struct cmsghdr hdr;
170 long all[SVC_PKTINFO_SPACE / sizeof(long)];
171 } buffer;
172 struct cmsghdr *cmh = &buffer.hdr;
173 int len = 0;
174 int result;
175 int size;
176 struct page **ppage = xdr->pages;
177 size_t base = xdr->page_base;
178 unsigned int pglen = xdr->page_len;
179 unsigned int flags = MSG_MORE;
180 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
181
182 slen = xdr->len;
183
184 if (rqstp->rq_prot == IPPROTO_UDP) {
185 struct msghdr msg = {
186 .msg_name = &rqstp->rq_addr,
187 .msg_namelen = rqstp->rq_addrlen,
188 .msg_control = cmh,
189 .msg_controllen = sizeof(buffer),
190 .msg_flags = MSG_MORE,
191 };
192
193 svc_set_cmsg_data(rqstp, cmh);
194
195 if (sock_sendmsg(sock, &msg, 0) < 0)
196 goto out;
197 }
198
199 /* send head */
200 if (slen == xdr->head[0].iov_len)
201 flags = 0;
202 len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
203 xdr->head[0].iov_len, flags);
204 if (len != xdr->head[0].iov_len)
205 goto out;
206 slen -= xdr->head[0].iov_len;
207 if (slen == 0)
208 goto out;
209
210 /* send page data */
211 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
212 while (pglen > 0) {
213 if (slen == size)
214 flags = 0;
215 result = kernel_sendpage(sock, *ppage, base, size, flags);
216 if (result > 0)
217 len += result;
218 if (result != size)
219 goto out;
220 slen -= size;
221 pglen -= size;
222 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
223 base = 0;
224 ppage++;
225 }
226 /* send tail */
227 if (xdr->tail[0].iov_len) {
228 result = kernel_sendpage(sock, rqstp->rq_respages[0],
229 ((unsigned long)xdr->tail[0].iov_base)
230 & (PAGE_SIZE-1),
231 xdr->tail[0].iov_len, 0);
232
233 if (result > 0)
234 len += result;
235 }
236 out:
237 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
238 svsk, xdr->head[0].iov_base, xdr->head[0].iov_len,
239 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
240
241 return len;
242 }
243
244 /*
245 * Report socket names for nfsdfs
246 */
247 static int one_sock_name(char *buf, struct svc_sock *svsk)
248 {
249 int len;
250
251 switch(svsk->sk_sk->sk_family) {
252 case AF_INET:
253 len = sprintf(buf, "ipv4 %s %pI4 %d\n",
254 svsk->sk_sk->sk_protocol == IPPROTO_UDP ?
255 "udp" : "tcp",
256 &inet_sk(svsk->sk_sk)->rcv_saddr,
257 inet_sk(svsk->sk_sk)->num);
258 break;
259 default:
260 len = sprintf(buf, "*unknown-%d*\n",
261 svsk->sk_sk->sk_family);
262 }
263 return len;
264 }
265
266 int
267 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
268 {
269 struct svc_sock *svsk, *closesk = NULL;
270 int len = 0;
271
272 if (!serv)
273 return 0;
274 spin_lock_bh(&serv->sv_lock);
275 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) {
276 int onelen = one_sock_name(buf+len, svsk);
277 if (toclose && strcmp(toclose, buf+len) == 0)
278 closesk = svsk;
279 else
280 len += onelen;
281 }
282 spin_unlock_bh(&serv->sv_lock);
283 if (closesk)
284 /* Should unregister with portmap, but you cannot
285 * unregister just one protocol...
286 */
287 svc_close_xprt(&closesk->sk_xprt);
288 else if (toclose)
289 return -ENOENT;
290 return len;
291 }
292 EXPORT_SYMBOL(svc_sock_names);
293
294 /*
295 * Check input queue length
296 */
297 static int svc_recv_available(struct svc_sock *svsk)
298 {
299 struct socket *sock = svsk->sk_sock;
300 int avail, err;
301
302 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
303
304 return (err >= 0)? avail : err;
305 }
306
307 /*
308 * Generic recvfrom routine.
309 */
310 static int svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr,
311 int buflen)
312 {
313 struct svc_sock *svsk =
314 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
315 struct msghdr msg = {
316 .msg_flags = MSG_DONTWAIT,
317 };
318 int len;
319
320 rqstp->rq_xprt_hlen = 0;
321
322 len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
323 msg.msg_flags);
324
325 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
326 svsk, iov[0].iov_base, iov[0].iov_len, len);
327 return len;
328 }
329
330 /*
331 * Set socket snd and rcv buffer lengths
332 */
333 static void svc_sock_setbufsize(struct socket *sock, unsigned int snd,
334 unsigned int rcv)
335 {
336 #if 0
337 mm_segment_t oldfs;
338 oldfs = get_fs(); set_fs(KERNEL_DS);
339 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
340 (char*)&snd, sizeof(snd));
341 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
342 (char*)&rcv, sizeof(rcv));
343 #else
344 /* sock_setsockopt limits use to sysctl_?mem_max,
345 * which isn't acceptable. Until that is made conditional
346 * on not having CAP_SYS_RESOURCE or similar, we go direct...
347 * DaveM said I could!
348 */
349 lock_sock(sock->sk);
350 sock->sk->sk_sndbuf = snd * 2;
351 sock->sk->sk_rcvbuf = rcv * 2;
352 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
353 release_sock(sock->sk);
354 #endif
355 }
356 /*
357 * INET callback when data has been received on the socket.
358 */
359 static void svc_udp_data_ready(struct sock *sk, int count)
360 {
361 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
362
363 if (svsk) {
364 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
365 svsk, sk, count,
366 test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
367 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
368 svc_xprt_enqueue(&svsk->sk_xprt);
369 }
370 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
371 wake_up_interruptible(sk->sk_sleep);
372 }
373
374 /*
375 * INET callback when space is newly available on the socket.
376 */
377 static void svc_write_space(struct sock *sk)
378 {
379 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
380
381 if (svsk) {
382 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
383 svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
384 svc_xprt_enqueue(&svsk->sk_xprt);
385 }
386
387 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
388 dprintk("RPC svc_write_space: someone sleeping on %p\n",
389 svsk);
390 wake_up_interruptible(sk->sk_sleep);
391 }
392 }
393
394 /*
395 * Copy the UDP datagram's destination address to the rqstp structure.
396 * The 'destination' address in this case is the address to which the
397 * peer sent the datagram, i.e. our local address. For multihomed
398 * hosts, this can change from msg to msg. Note that only the IP
399 * address changes, the port number should remain the same.
400 */
401 static void svc_udp_get_dest_address(struct svc_rqst *rqstp,
402 struct cmsghdr *cmh)
403 {
404 struct svc_sock *svsk =
405 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
406 switch (svsk->sk_sk->sk_family) {
407 case AF_INET: {
408 struct in_pktinfo *pki = CMSG_DATA(cmh);
409 rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
410 break;
411 }
412 case AF_INET6: {
413 struct in6_pktinfo *pki = CMSG_DATA(cmh);
414 ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
415 break;
416 }
417 }
418 }
419
420 /*
421 * Receive a datagram from a UDP socket.
422 */
423 static int svc_udp_recvfrom(struct svc_rqst *rqstp)
424 {
425 struct svc_sock *svsk =
426 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
427 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
428 struct sk_buff *skb;
429 union {
430 struct cmsghdr hdr;
431 long all[SVC_PKTINFO_SPACE / sizeof(long)];
432 } buffer;
433 struct cmsghdr *cmh = &buffer.hdr;
434 int err, len;
435 struct msghdr msg = {
436 .msg_name = svc_addr(rqstp),
437 .msg_control = cmh,
438 .msg_controllen = sizeof(buffer),
439 .msg_flags = MSG_DONTWAIT,
440 };
441
442 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
443 /* udp sockets need large rcvbuf as all pending
444 * requests are still in that buffer. sndbuf must
445 * also be large enough that there is enough space
446 * for one reply per thread. We count all threads
447 * rather than threads in a particular pool, which
448 * provides an upper bound on the number of threads
449 * which will access the socket.
450 */
451 svc_sock_setbufsize(svsk->sk_sock,
452 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
453 (serv->sv_nrthreads+3) * serv->sv_max_mesg);
454
455 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
456 skb = NULL;
457 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
458 0, 0, MSG_PEEK | MSG_DONTWAIT);
459 if (err >= 0)
460 skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
461
462 if (skb == NULL) {
463 if (err != -EAGAIN) {
464 /* possibly an icmp error */
465 dprintk("svc: recvfrom returned error %d\n", -err);
466 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
467 }
468 svc_xprt_received(&svsk->sk_xprt);
469 return -EAGAIN;
470 }
471 len = svc_addr_len(svc_addr(rqstp));
472 if (len < 0)
473 return len;
474 rqstp->rq_addrlen = len;
475 if (skb->tstamp.tv64 == 0) {
476 skb->tstamp = ktime_get_real();
477 /* Don't enable netstamp, sunrpc doesn't
478 need that much accuracy */
479 }
480 svsk->sk_sk->sk_stamp = skb->tstamp;
481 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
482
483 /*
484 * Maybe more packets - kick another thread ASAP.
485 */
486 svc_xprt_received(&svsk->sk_xprt);
487
488 len = skb->len - sizeof(struct udphdr);
489 rqstp->rq_arg.len = len;
490
491 rqstp->rq_prot = IPPROTO_UDP;
492
493 if (cmh->cmsg_level != IPPROTO_IP ||
494 cmh->cmsg_type != IP_PKTINFO) {
495 if (net_ratelimit())
496 printk("rpcsvc: received unknown control message:"
497 "%d/%d\n",
498 cmh->cmsg_level, cmh->cmsg_type);
499 skb_free_datagram(svsk->sk_sk, skb);
500 return 0;
501 }
502 svc_udp_get_dest_address(rqstp, cmh);
503
504 if (skb_is_nonlinear(skb)) {
505 /* we have to copy */
506 local_bh_disable();
507 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
508 local_bh_enable();
509 /* checksum error */
510 skb_free_datagram(svsk->sk_sk, skb);
511 return 0;
512 }
513 local_bh_enable();
514 skb_free_datagram(svsk->sk_sk, skb);
515 } else {
516 /* we can use it in-place */
517 rqstp->rq_arg.head[0].iov_base = skb->data +
518 sizeof(struct udphdr);
519 rqstp->rq_arg.head[0].iov_len = len;
520 if (skb_checksum_complete(skb)) {
521 skb_free_datagram(svsk->sk_sk, skb);
522 return 0;
523 }
524 rqstp->rq_xprt_ctxt = skb;
525 }
526
527 rqstp->rq_arg.page_base = 0;
528 if (len <= rqstp->rq_arg.head[0].iov_len) {
529 rqstp->rq_arg.head[0].iov_len = len;
530 rqstp->rq_arg.page_len = 0;
531 rqstp->rq_respages = rqstp->rq_pages+1;
532 } else {
533 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
534 rqstp->rq_respages = rqstp->rq_pages + 1 +
535 DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
536 }
537
538 if (serv->sv_stats)
539 serv->sv_stats->netudpcnt++;
540
541 return len;
542 }
543
544 static int
545 svc_udp_sendto(struct svc_rqst *rqstp)
546 {
547 int error;
548
549 error = svc_sendto(rqstp, &rqstp->rq_res);
550 if (error == -ECONNREFUSED)
551 /* ICMP error on earlier request. */
552 error = svc_sendto(rqstp, &rqstp->rq_res);
553
554 return error;
555 }
556
557 static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp)
558 {
559 }
560
561 static int svc_udp_has_wspace(struct svc_xprt *xprt)
562 {
563 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
564 struct svc_serv *serv = xprt->xpt_server;
565 unsigned long required;
566
567 /*
568 * Set the SOCK_NOSPACE flag before checking the available
569 * sock space.
570 */
571 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
572 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
573 if (required*2 > sock_wspace(svsk->sk_sk))
574 return 0;
575 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
576 return 1;
577 }
578
579 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
580 {
581 BUG();
582 return NULL;
583 }
584
585 static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
586 struct sockaddr *sa, int salen,
587 int flags)
588 {
589 return svc_create_socket(serv, IPPROTO_UDP, sa, salen, flags);
590 }
591
592 static struct svc_xprt_ops svc_udp_ops = {
593 .xpo_create = svc_udp_create,
594 .xpo_recvfrom = svc_udp_recvfrom,
595 .xpo_sendto = svc_udp_sendto,
596 .xpo_release_rqst = svc_release_skb,
597 .xpo_detach = svc_sock_detach,
598 .xpo_free = svc_sock_free,
599 .xpo_prep_reply_hdr = svc_udp_prep_reply_hdr,
600 .xpo_has_wspace = svc_udp_has_wspace,
601 .xpo_accept = svc_udp_accept,
602 };
603
604 static struct svc_xprt_class svc_udp_class = {
605 .xcl_name = "udp",
606 .xcl_owner = THIS_MODULE,
607 .xcl_ops = &svc_udp_ops,
608 .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
609 };
610
611 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
612 {
613 int one = 1;
614 mm_segment_t oldfs;
615
616 svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv);
617 clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
618 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
619 svsk->sk_sk->sk_write_space = svc_write_space;
620
621 /* initialise setting must have enough space to
622 * receive and respond to one request.
623 * svc_udp_recvfrom will re-adjust if necessary
624 */
625 svc_sock_setbufsize(svsk->sk_sock,
626 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
627 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
628
629 /* data might have come in before data_ready set up */
630 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
631 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
632
633 oldfs = get_fs();
634 set_fs(KERNEL_DS);
635 /* make sure we get destination address info */
636 svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
637 (char __user *)&one, sizeof(one));
638 set_fs(oldfs);
639 }
640
641 /*
642 * A data_ready event on a listening socket means there's a connection
643 * pending. Do not use state_change as a substitute for it.
644 */
645 static void svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
646 {
647 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
648
649 dprintk("svc: socket %p TCP (listen) state change %d\n",
650 sk, sk->sk_state);
651
652 /*
653 * This callback may called twice when a new connection
654 * is established as a child socket inherits everything
655 * from a parent LISTEN socket.
656 * 1) data_ready method of the parent socket will be called
657 * when one of child sockets become ESTABLISHED.
658 * 2) data_ready method of the child socket may be called
659 * when it receives data before the socket is accepted.
660 * In case of 2, we should ignore it silently.
661 */
662 if (sk->sk_state == TCP_LISTEN) {
663 if (svsk) {
664 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
665 svc_xprt_enqueue(&svsk->sk_xprt);
666 } else
667 printk("svc: socket %p: no user data\n", sk);
668 }
669
670 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
671 wake_up_interruptible_all(sk->sk_sleep);
672 }
673
674 /*
675 * A state change on a connected socket means it's dying or dead.
676 */
677 static void svc_tcp_state_change(struct sock *sk)
678 {
679 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
680
681 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
682 sk, sk->sk_state, sk->sk_user_data);
683
684 if (!svsk)
685 printk("svc: socket %p: no user data\n", sk);
686 else {
687 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
688 svc_xprt_enqueue(&svsk->sk_xprt);
689 }
690 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
691 wake_up_interruptible_all(sk->sk_sleep);
692 }
693
694 static void svc_tcp_data_ready(struct sock *sk, int count)
695 {
696 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
697
698 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
699 sk, sk->sk_user_data);
700 if (svsk) {
701 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
702 svc_xprt_enqueue(&svsk->sk_xprt);
703 }
704 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
705 wake_up_interruptible(sk->sk_sleep);
706 }
707
708 /*
709 * Accept a TCP connection
710 */
711 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
712 {
713 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
714 struct sockaddr_storage addr;
715 struct sockaddr *sin = (struct sockaddr *) &addr;
716 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
717 struct socket *sock = svsk->sk_sock;
718 struct socket *newsock;
719 struct svc_sock *newsvsk;
720 int err, slen;
721 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
722
723 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
724 if (!sock)
725 return NULL;
726
727 clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
728 err = kernel_accept(sock, &newsock, O_NONBLOCK);
729 if (err < 0) {
730 if (err == -ENOMEM)
731 printk(KERN_WARNING "%s: no more sockets!\n",
732 serv->sv_name);
733 else if (err != -EAGAIN && net_ratelimit())
734 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
735 serv->sv_name, -err);
736 return NULL;
737 }
738 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
739
740 err = kernel_getpeername(newsock, sin, &slen);
741 if (err < 0) {
742 if (net_ratelimit())
743 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
744 serv->sv_name, -err);
745 goto failed; /* aborted connection or whatever */
746 }
747
748 /* Ideally, we would want to reject connections from unauthorized
749 * hosts here, but when we get encryption, the IP of the host won't
750 * tell us anything. For now just warn about unpriv connections.
751 */
752 if (!svc_port_is_privileged(sin)) {
753 dprintk(KERN_WARNING
754 "%s: connect from unprivileged port: %s\n",
755 serv->sv_name,
756 __svc_print_addr(sin, buf, sizeof(buf)));
757 }
758 dprintk("%s: connect from %s\n", serv->sv_name,
759 __svc_print_addr(sin, buf, sizeof(buf)));
760
761 /* make sure that a write doesn't block forever when
762 * low on memory
763 */
764 newsock->sk->sk_sndtimeo = HZ*30;
765
766 if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
767 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
768 goto failed;
769 svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen);
770 err = kernel_getsockname(newsock, sin, &slen);
771 if (unlikely(err < 0)) {
772 dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
773 slen = offsetof(struct sockaddr, sa_data);
774 }
775 svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen);
776
777 if (serv->sv_stats)
778 serv->sv_stats->nettcpconn++;
779
780 return &newsvsk->sk_xprt;
781
782 failed:
783 sock_release(newsock);
784 return NULL;
785 }
786
787 /*
788 * Receive data from a TCP socket.
789 */
790 static int svc_tcp_recvfrom(struct svc_rqst *rqstp)
791 {
792 struct svc_sock *svsk =
793 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
794 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
795 int len;
796 struct kvec *vec;
797 int pnum, vlen;
798
799 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
800 svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags),
801 test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags),
802 test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags));
803
804 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
805 /* sndbuf needs to have room for one request
806 * per thread, otherwise we can stall even when the
807 * network isn't a bottleneck.
808 *
809 * We count all threads rather than threads in a
810 * particular pool, which provides an upper bound
811 * on the number of threads which will access the socket.
812 *
813 * rcvbuf just needs to be able to hold a few requests.
814 * Normally they will be removed from the queue
815 * as soon a a complete request arrives.
816 */
817 svc_sock_setbufsize(svsk->sk_sock,
818 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
819 3 * serv->sv_max_mesg);
820
821 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
822
823 /* Receive data. If we haven't got the record length yet, get
824 * the next four bytes. Otherwise try to gobble up as much as
825 * possible up to the complete record length.
826 */
827 if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) {
828 int want = sizeof(rpc_fraghdr) - svsk->sk_tcplen;
829 struct kvec iov;
830
831 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
832 iov.iov_len = want;
833 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
834 goto error;
835 svsk->sk_tcplen += len;
836
837 if (len < want) {
838 dprintk("svc: short recvfrom while reading record "
839 "length (%d of %d)\n", len, want);
840 svc_xprt_received(&svsk->sk_xprt);
841 return -EAGAIN; /* record header not complete */
842 }
843
844 svsk->sk_reclen = ntohl(svsk->sk_reclen);
845 if (!(svsk->sk_reclen & RPC_LAST_STREAM_FRAGMENT)) {
846 /* FIXME: technically, a record can be fragmented,
847 * and non-terminal fragments will not have the top
848 * bit set in the fragment length header.
849 * But apparently no known nfs clients send fragmented
850 * records. */
851 if (net_ratelimit())
852 printk(KERN_NOTICE "RPC: multiple fragments "
853 "per record not supported\n");
854 goto err_delete;
855 }
856 svsk->sk_reclen &= RPC_FRAGMENT_SIZE_MASK;
857 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
858 if (svsk->sk_reclen > serv->sv_max_mesg) {
859 if (net_ratelimit())
860 printk(KERN_NOTICE "RPC: "
861 "fragment too large: 0x%08lx\n",
862 (unsigned long)svsk->sk_reclen);
863 goto err_delete;
864 }
865 }
866
867 /* Check whether enough data is available */
868 len = svc_recv_available(svsk);
869 if (len < 0)
870 goto error;
871
872 if (len < svsk->sk_reclen) {
873 dprintk("svc: incomplete TCP record (%d of %d)\n",
874 len, svsk->sk_reclen);
875 svc_xprt_received(&svsk->sk_xprt);
876 return -EAGAIN; /* record not complete */
877 }
878 len = svsk->sk_reclen;
879 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
880
881 vec = rqstp->rq_vec;
882 vec[0] = rqstp->rq_arg.head[0];
883 vlen = PAGE_SIZE;
884 pnum = 1;
885 while (vlen < len) {
886 vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
887 vec[pnum].iov_len = PAGE_SIZE;
888 pnum++;
889 vlen += PAGE_SIZE;
890 }
891 rqstp->rq_respages = &rqstp->rq_pages[pnum];
892
893 /* Now receive data */
894 len = svc_recvfrom(rqstp, vec, pnum, len);
895 if (len < 0)
896 goto error;
897
898 dprintk("svc: TCP complete record (%d bytes)\n", len);
899 rqstp->rq_arg.len = len;
900 rqstp->rq_arg.page_base = 0;
901 if (len <= rqstp->rq_arg.head[0].iov_len) {
902 rqstp->rq_arg.head[0].iov_len = len;
903 rqstp->rq_arg.page_len = 0;
904 } else {
905 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
906 }
907
908 rqstp->rq_xprt_ctxt = NULL;
909 rqstp->rq_prot = IPPROTO_TCP;
910
911 /* Reset TCP read info */
912 svsk->sk_reclen = 0;
913 svsk->sk_tcplen = 0;
914
915 svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt);
916 svc_xprt_received(&svsk->sk_xprt);
917 if (serv->sv_stats)
918 serv->sv_stats->nettcpcnt++;
919
920 return len;
921
922 err_delete:
923 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
924 return -EAGAIN;
925
926 error:
927 if (len == -EAGAIN) {
928 dprintk("RPC: TCP recvfrom got EAGAIN\n");
929 svc_xprt_received(&svsk->sk_xprt);
930 } else {
931 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
932 svsk->sk_xprt.xpt_server->sv_name, -len);
933 goto err_delete;
934 }
935
936 return len;
937 }
938
939 /*
940 * Send out data on TCP socket.
941 */
942 static int svc_tcp_sendto(struct svc_rqst *rqstp)
943 {
944 struct xdr_buf *xbufp = &rqstp->rq_res;
945 int sent;
946 __be32 reclen;
947
948 /* Set up the first element of the reply kvec.
949 * Any other kvecs that may be in use have been taken
950 * care of by the server implementation itself.
951 */
952 reclen = htonl(0x80000000|((xbufp->len ) - 4));
953 memcpy(xbufp->head[0].iov_base, &reclen, 4);
954
955 if (test_bit(XPT_DEAD, &rqstp->rq_xprt->xpt_flags))
956 return -ENOTCONN;
957
958 sent = svc_sendto(rqstp, &rqstp->rq_res);
959 if (sent != xbufp->len) {
960 printk(KERN_NOTICE
961 "rpc-srv/tcp: %s: %s %d when sending %d bytes "
962 "- shutting down socket\n",
963 rqstp->rq_xprt->xpt_server->sv_name,
964 (sent<0)?"got error":"sent only",
965 sent, xbufp->len);
966 set_bit(XPT_CLOSE, &rqstp->rq_xprt->xpt_flags);
967 svc_xprt_enqueue(rqstp->rq_xprt);
968 sent = -EAGAIN;
969 }
970 return sent;
971 }
972
973 /*
974 * Setup response header. TCP has a 4B record length field.
975 */
976 static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp)
977 {
978 struct kvec *resv = &rqstp->rq_res.head[0];
979
980 /* tcp needs a space for the record length... */
981 svc_putnl(resv, 0);
982 }
983
984 static int svc_tcp_has_wspace(struct svc_xprt *xprt)
985 {
986 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
987 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
988 int required;
989 int wspace;
990
991 /*
992 * Set the SOCK_NOSPACE flag before checking the available
993 * sock space.
994 */
995 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
996 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
997 wspace = sk_stream_wspace(svsk->sk_sk);
998
999 if (wspace < sk_stream_min_wspace(svsk->sk_sk))
1000 return 0;
1001 if (required * 2 > wspace)
1002 return 0;
1003
1004 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
1005 return 1;
1006 }
1007
1008 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
1009 struct sockaddr *sa, int salen,
1010 int flags)
1011 {
1012 return svc_create_socket(serv, IPPROTO_TCP, sa, salen, flags);
1013 }
1014
1015 static struct svc_xprt_ops svc_tcp_ops = {
1016 .xpo_create = svc_tcp_create,
1017 .xpo_recvfrom = svc_tcp_recvfrom,
1018 .xpo_sendto = svc_tcp_sendto,
1019 .xpo_release_rqst = svc_release_skb,
1020 .xpo_detach = svc_sock_detach,
1021 .xpo_free = svc_sock_free,
1022 .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr,
1023 .xpo_has_wspace = svc_tcp_has_wspace,
1024 .xpo_accept = svc_tcp_accept,
1025 };
1026
1027 static struct svc_xprt_class svc_tcp_class = {
1028 .xcl_name = "tcp",
1029 .xcl_owner = THIS_MODULE,
1030 .xcl_ops = &svc_tcp_ops,
1031 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1032 };
1033
1034 void svc_init_xprt_sock(void)
1035 {
1036 svc_reg_xprt_class(&svc_tcp_class);
1037 svc_reg_xprt_class(&svc_udp_class);
1038 }
1039
1040 void svc_cleanup_xprt_sock(void)
1041 {
1042 svc_unreg_xprt_class(&svc_tcp_class);
1043 svc_unreg_xprt_class(&svc_udp_class);
1044 }
1045
1046 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
1047 {
1048 struct sock *sk = svsk->sk_sk;
1049
1050 svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv);
1051 set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
1052 if (sk->sk_state == TCP_LISTEN) {
1053 dprintk("setting up TCP socket for listening\n");
1054 set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
1055 sk->sk_data_ready = svc_tcp_listen_data_ready;
1056 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1057 } else {
1058 dprintk("setting up TCP socket for reading\n");
1059 sk->sk_state_change = svc_tcp_state_change;
1060 sk->sk_data_ready = svc_tcp_data_ready;
1061 sk->sk_write_space = svc_write_space;
1062
1063 svsk->sk_reclen = 0;
1064 svsk->sk_tcplen = 0;
1065
1066 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF;
1067
1068 /* initialise setting must have enough space to
1069 * receive and respond to one request.
1070 * svc_tcp_recvfrom will re-adjust if necessary
1071 */
1072 svc_sock_setbufsize(svsk->sk_sock,
1073 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
1074 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
1075
1076 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1077 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1078 if (sk->sk_state != TCP_ESTABLISHED)
1079 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1080 }
1081 }
1082
1083 void svc_sock_update_bufs(struct svc_serv *serv)
1084 {
1085 /*
1086 * The number of server threads has changed. Update
1087 * rcvbuf and sndbuf accordingly on all sockets
1088 */
1089 struct list_head *le;
1090
1091 spin_lock_bh(&serv->sv_lock);
1092 list_for_each(le, &serv->sv_permsocks) {
1093 struct svc_sock *svsk =
1094 list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1095 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1096 }
1097 list_for_each(le, &serv->sv_tempsocks) {
1098 struct svc_sock *svsk =
1099 list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1100 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1101 }
1102 spin_unlock_bh(&serv->sv_lock);
1103 }
1104 EXPORT_SYMBOL(svc_sock_update_bufs);
1105
1106 /*
1107 * Initialize socket for RPC use and create svc_sock struct
1108 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1109 */
1110 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1111 struct socket *sock,
1112 int *errp, int flags)
1113 {
1114 struct svc_sock *svsk;
1115 struct sock *inet;
1116 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1117 int val;
1118
1119 dprintk("svc: svc_setup_socket %p\n", sock);
1120 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1121 *errp = -ENOMEM;
1122 return NULL;
1123 }
1124
1125 inet = sock->sk;
1126
1127 /* Register socket with portmapper */
1128 if (*errp >= 0 && pmap_register)
1129 *errp = svc_register(serv, inet->sk_protocol,
1130 ntohs(inet_sk(inet)->sport));
1131
1132 if (*errp < 0) {
1133 kfree(svsk);
1134 return NULL;
1135 }
1136
1137 inet->sk_user_data = svsk;
1138 svsk->sk_sock = sock;
1139 svsk->sk_sk = inet;
1140 svsk->sk_ostate = inet->sk_state_change;
1141 svsk->sk_odata = inet->sk_data_ready;
1142 svsk->sk_owspace = inet->sk_write_space;
1143
1144 /* Initialize the socket */
1145 if (sock->type == SOCK_DGRAM)
1146 svc_udp_init(svsk, serv);
1147 else
1148 svc_tcp_init(svsk, serv);
1149
1150 /*
1151 * We start one listener per sv_serv. We want AF_INET
1152 * requests to be automatically shunted to our AF_INET6
1153 * listener using a mapped IPv4 address. Make sure
1154 * no-one starts an equivalent IPv4 listener, which
1155 * would steal our incoming connections.
1156 */
1157 val = 0;
1158 if (serv->sv_family == AF_INET6)
1159 kernel_setsockopt(sock, SOL_IPV6, IPV6_V6ONLY,
1160 (char *)&val, sizeof(val));
1161
1162 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1163 svsk, svsk->sk_sk);
1164
1165 return svsk;
1166 }
1167
1168 int svc_addsock(struct svc_serv *serv,
1169 int fd,
1170 char *name_return)
1171 {
1172 int err = 0;
1173 struct socket *so = sockfd_lookup(fd, &err);
1174 struct svc_sock *svsk = NULL;
1175
1176 if (!so)
1177 return err;
1178 if (so->sk->sk_family != AF_INET)
1179 err = -EAFNOSUPPORT;
1180 else if (so->sk->sk_protocol != IPPROTO_TCP &&
1181 so->sk->sk_protocol != IPPROTO_UDP)
1182 err = -EPROTONOSUPPORT;
1183 else if (so->state > SS_UNCONNECTED)
1184 err = -EISCONN;
1185 else {
1186 if (!try_module_get(THIS_MODULE))
1187 err = -ENOENT;
1188 else
1189 svsk = svc_setup_socket(serv, so, &err,
1190 SVC_SOCK_DEFAULTS);
1191 if (svsk) {
1192 struct sockaddr_storage addr;
1193 struct sockaddr *sin = (struct sockaddr *)&addr;
1194 int salen;
1195 if (kernel_getsockname(svsk->sk_sock, sin, &salen) == 0)
1196 svc_xprt_set_local(&svsk->sk_xprt, sin, salen);
1197 clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
1198 spin_lock_bh(&serv->sv_lock);
1199 list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks);
1200 spin_unlock_bh(&serv->sv_lock);
1201 svc_xprt_received(&svsk->sk_xprt);
1202 err = 0;
1203 } else
1204 module_put(THIS_MODULE);
1205 }
1206 if (err) {
1207 sockfd_put(so);
1208 return err;
1209 }
1210 return one_sock_name(name_return, svsk);
1211 }
1212 EXPORT_SYMBOL_GPL(svc_addsock);
1213
1214 /*
1215 * Create socket for RPC service.
1216 */
1217 static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
1218 int protocol,
1219 struct sockaddr *sin, int len,
1220 int flags)
1221 {
1222 struct svc_sock *svsk;
1223 struct socket *sock;
1224 int error;
1225 int type;
1226 struct sockaddr_storage addr;
1227 struct sockaddr *newsin = (struct sockaddr *)&addr;
1228 int newlen;
1229 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
1230
1231 dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1232 serv->sv_program->pg_name, protocol,
1233 __svc_print_addr(sin, buf, sizeof(buf)));
1234
1235 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1236 printk(KERN_WARNING "svc: only UDP and TCP "
1237 "sockets supported\n");
1238 return ERR_PTR(-EINVAL);
1239 }
1240 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1241
1242 error = sock_create_kern(sin->sa_family, type, protocol, &sock);
1243 if (error < 0)
1244 return ERR_PTR(error);
1245
1246 svc_reclassify_socket(sock);
1247
1248 if (type == SOCK_STREAM)
1249 sock->sk->sk_reuse = 1; /* allow address reuse */
1250 error = kernel_bind(sock, sin, len);
1251 if (error < 0)
1252 goto bummer;
1253
1254 newlen = len;
1255 error = kernel_getsockname(sock, newsin, &newlen);
1256 if (error < 0)
1257 goto bummer;
1258
1259 if (protocol == IPPROTO_TCP) {
1260 if ((error = kernel_listen(sock, 64)) < 0)
1261 goto bummer;
1262 }
1263
1264 if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1265 svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen);
1266 return (struct svc_xprt *)svsk;
1267 }
1268
1269 bummer:
1270 dprintk("svc: svc_create_socket error = %d\n", -error);
1271 sock_release(sock);
1272 return ERR_PTR(error);
1273 }
1274
1275 /*
1276 * Detach the svc_sock from the socket so that no
1277 * more callbacks occur.
1278 */
1279 static void svc_sock_detach(struct svc_xprt *xprt)
1280 {
1281 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1282 struct sock *sk = svsk->sk_sk;
1283
1284 dprintk("svc: svc_sock_detach(%p)\n", svsk);
1285
1286 /* put back the old socket callbacks */
1287 sk->sk_state_change = svsk->sk_ostate;
1288 sk->sk_data_ready = svsk->sk_odata;
1289 sk->sk_write_space = svsk->sk_owspace;
1290 }
1291
1292 /*
1293 * Free the svc_sock's socket resources and the svc_sock itself.
1294 */
1295 static void svc_sock_free(struct svc_xprt *xprt)
1296 {
1297 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1298 dprintk("svc: svc_sock_free(%p)\n", svsk);
1299
1300 if (svsk->sk_sock->file)
1301 sockfd_put(svsk->sk_sock);
1302 else
1303 sock_release(svsk->sk_sock);
1304 kfree(svsk);
1305 }
This page took 0.056966 seconds and 6 git commands to generate.