Merge tag 'rtc-v4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[deliverable/linux.git] / net / sunrpc / xprtrdma / rpc_rdma.c
1 /*
2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
8 * license below:
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 *
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
21 *
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
25 * permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * rpc_rdma.c
42 *
43 * This file contains the guts of the RPC RDMA protocol, and
44 * does marshaling/unmarshaling, etc. It is also where interfacing
45 * to the Linux RPC framework lives.
46 */
47
48 #include "xprt_rdma.h"
49
50 #include <linux/highmem.h>
51
52 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
53 # define RPCDBG_FACILITY RPCDBG_TRANS
54 #endif
55
56 enum rpcrdma_chunktype {
57 rpcrdma_noch = 0,
58 rpcrdma_readch,
59 rpcrdma_areadch,
60 rpcrdma_writech,
61 rpcrdma_replych
62 };
63
64 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
65 static const char transfertypes[][12] = {
66 "pure inline", /* no chunks */
67 " read chunk", /* some argument via rdma read */
68 "*read chunk", /* entire request via rdma read */
69 "write chunk", /* some result via rdma write */
70 "reply chunk" /* entire reply via rdma write */
71 };
72 #endif
73
74 /* The client can send a request inline as long as the RPCRDMA header
75 * plus the RPC call fit under the transport's inline limit. If the
76 * combined call message size exceeds that limit, the client must use
77 * the read chunk list for this operation.
78 */
79 static bool rpcrdma_args_inline(struct rpc_rqst *rqst)
80 {
81 unsigned int callsize = RPCRDMA_HDRLEN_MIN + rqst->rq_snd_buf.len;
82
83 return callsize <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst);
84 }
85
86 /* The client can't know how large the actual reply will be. Thus it
87 * plans for the largest possible reply for that particular ULP
88 * operation. If the maximum combined reply message size exceeds that
89 * limit, the client must provide a write list or a reply chunk for
90 * this request.
91 */
92 static bool rpcrdma_results_inline(struct rpc_rqst *rqst)
93 {
94 unsigned int repsize = RPCRDMA_HDRLEN_MIN + rqst->rq_rcv_buf.buflen;
95
96 return repsize <= RPCRDMA_INLINE_READ_THRESHOLD(rqst);
97 }
98
99 static int
100 rpcrdma_tail_pullup(struct xdr_buf *buf)
101 {
102 size_t tlen = buf->tail[0].iov_len;
103 size_t skip = tlen & 3;
104
105 /* Do not include the tail if it is only an XDR pad */
106 if (tlen < 4)
107 return 0;
108
109 /* xdr_write_pages() adds a pad at the beginning of the tail
110 * if the content in "buf->pages" is unaligned. Force the
111 * tail's actual content to land at the next XDR position
112 * after the head instead.
113 */
114 if (skip) {
115 unsigned char *src, *dst;
116 unsigned int count;
117
118 src = buf->tail[0].iov_base;
119 dst = buf->head[0].iov_base;
120 dst += buf->head[0].iov_len;
121
122 src += skip;
123 tlen -= skip;
124
125 dprintk("RPC: %s: skip=%zu, memmove(%p, %p, %zu)\n",
126 __func__, skip, dst, src, tlen);
127
128 for (count = tlen; count; count--)
129 *dst++ = *src++;
130 }
131
132 return tlen;
133 }
134
135 /*
136 * Chunk assembly from upper layer xdr_buf.
137 *
138 * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
139 * elements. Segments are then coalesced when registered, if possible
140 * within the selected memreg mode.
141 *
142 * Returns positive number of segments converted, or a negative errno.
143 */
144
145 static int
146 rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
147 enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
148 {
149 int len, n = 0, p;
150 int page_base;
151 struct page **ppages;
152
153 if (pos == 0 && xdrbuf->head[0].iov_len) {
154 seg[n].mr_page = NULL;
155 seg[n].mr_offset = xdrbuf->head[0].iov_base;
156 seg[n].mr_len = xdrbuf->head[0].iov_len;
157 ++n;
158 }
159
160 len = xdrbuf->page_len;
161 ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
162 page_base = xdrbuf->page_base & ~PAGE_MASK;
163 p = 0;
164 while (len && n < nsegs) {
165 if (!ppages[p]) {
166 /* alloc the pagelist for receiving buffer */
167 ppages[p] = alloc_page(GFP_ATOMIC);
168 if (!ppages[p])
169 return -ENOMEM;
170 }
171 seg[n].mr_page = ppages[p];
172 seg[n].mr_offset = (void *)(unsigned long) page_base;
173 seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
174 if (seg[n].mr_len > PAGE_SIZE)
175 return -EIO;
176 len -= seg[n].mr_len;
177 ++n;
178 ++p;
179 page_base = 0; /* page offset only applies to first page */
180 }
181
182 /* Message overflows the seg array */
183 if (len && n == nsegs)
184 return -EIO;
185
186 /* When encoding the read list, the tail is always sent inline */
187 if (type == rpcrdma_readch)
188 return n;
189
190 if (xdrbuf->tail[0].iov_len) {
191 /* the rpcrdma protocol allows us to omit any trailing
192 * xdr pad bytes, saving the server an RDMA operation. */
193 if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
194 return n;
195 if (n == nsegs)
196 /* Tail remains, but we're out of segments */
197 return -EIO;
198 seg[n].mr_page = NULL;
199 seg[n].mr_offset = xdrbuf->tail[0].iov_base;
200 seg[n].mr_len = xdrbuf->tail[0].iov_len;
201 ++n;
202 }
203
204 return n;
205 }
206
207 /*
208 * Create read/write chunk lists, and reply chunks, for RDMA
209 *
210 * Assume check against THRESHOLD has been done, and chunks are required.
211 * Assume only encoding one list entry for read|write chunks. The NFSv3
212 * protocol is simple enough to allow this as it only has a single "bulk
213 * result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
214 * RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
215 *
216 * When used for a single reply chunk (which is a special write
217 * chunk used for the entire reply, rather than just the data), it
218 * is used primarily for READDIR and READLINK which would otherwise
219 * be severely size-limited by a small rdma inline read max. The server
220 * response will come back as an RDMA Write, followed by a message
221 * of type RDMA_NOMSG carrying the xid and length. As a result, reply
222 * chunks do not provide data alignment, however they do not require
223 * "fixup" (moving the response to the upper layer buffer) either.
224 *
225 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
226 *
227 * Read chunklist (a linked list):
228 * N elements, position P (same P for all chunks of same arg!):
229 * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
230 *
231 * Write chunklist (a list of (one) counted array):
232 * N elements:
233 * 1 - N - HLOO - HLOO - ... - HLOO - 0
234 *
235 * Reply chunk (a counted array):
236 * N elements:
237 * 1 - N - HLOO - HLOO - ... - HLOO
238 *
239 * Returns positive RPC/RDMA header size, or negative errno.
240 */
241
242 static ssize_t
243 rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
244 struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
245 {
246 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
247 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
248 int n, nsegs, nchunks = 0;
249 unsigned int pos;
250 struct rpcrdma_mr_seg *seg = req->rl_segments;
251 struct rpcrdma_read_chunk *cur_rchunk = NULL;
252 struct rpcrdma_write_array *warray = NULL;
253 struct rpcrdma_write_chunk *cur_wchunk = NULL;
254 __be32 *iptr = headerp->rm_body.rm_chunks;
255 int (*map)(struct rpcrdma_xprt *, struct rpcrdma_mr_seg *, int, bool);
256
257 if (type == rpcrdma_readch || type == rpcrdma_areadch) {
258 /* a read chunk - server will RDMA Read our memory */
259 cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
260 } else {
261 /* a write or reply chunk - server will RDMA Write our memory */
262 *iptr++ = xdr_zero; /* encode a NULL read chunk list */
263 if (type == rpcrdma_replych)
264 *iptr++ = xdr_zero; /* a NULL write chunk list */
265 warray = (struct rpcrdma_write_array *) iptr;
266 cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
267 }
268
269 if (type == rpcrdma_replych || type == rpcrdma_areadch)
270 pos = 0;
271 else
272 pos = target->head[0].iov_len;
273
274 nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
275 if (nsegs < 0)
276 return nsegs;
277
278 map = r_xprt->rx_ia.ri_ops->ro_map;
279 do {
280 n = map(r_xprt, seg, nsegs, cur_wchunk != NULL);
281 if (n <= 0)
282 goto out;
283 if (cur_rchunk) { /* read */
284 cur_rchunk->rc_discrim = xdr_one;
285 /* all read chunks have the same "position" */
286 cur_rchunk->rc_position = cpu_to_be32(pos);
287 cur_rchunk->rc_target.rs_handle =
288 cpu_to_be32(seg->mr_rkey);
289 cur_rchunk->rc_target.rs_length =
290 cpu_to_be32(seg->mr_len);
291 xdr_encode_hyper(
292 (__be32 *)&cur_rchunk->rc_target.rs_offset,
293 seg->mr_base);
294 dprintk("RPC: %s: read chunk "
295 "elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
296 seg->mr_len, (unsigned long long)seg->mr_base,
297 seg->mr_rkey, pos, n < nsegs ? "more" : "last");
298 cur_rchunk++;
299 r_xprt->rx_stats.read_chunk_count++;
300 } else { /* write/reply */
301 cur_wchunk->wc_target.rs_handle =
302 cpu_to_be32(seg->mr_rkey);
303 cur_wchunk->wc_target.rs_length =
304 cpu_to_be32(seg->mr_len);
305 xdr_encode_hyper(
306 (__be32 *)&cur_wchunk->wc_target.rs_offset,
307 seg->mr_base);
308 dprintk("RPC: %s: %s chunk "
309 "elem %d@0x%llx:0x%x (%s)\n", __func__,
310 (type == rpcrdma_replych) ? "reply" : "write",
311 seg->mr_len, (unsigned long long)seg->mr_base,
312 seg->mr_rkey, n < nsegs ? "more" : "last");
313 cur_wchunk++;
314 if (type == rpcrdma_replych)
315 r_xprt->rx_stats.reply_chunk_count++;
316 else
317 r_xprt->rx_stats.write_chunk_count++;
318 r_xprt->rx_stats.total_rdma_request += seg->mr_len;
319 }
320 nchunks++;
321 seg += n;
322 nsegs -= n;
323 } while (nsegs);
324
325 /* success. all failures return above */
326 req->rl_nchunks = nchunks;
327
328 /*
329 * finish off header. If write, marshal discrim and nchunks.
330 */
331 if (cur_rchunk) {
332 iptr = (__be32 *) cur_rchunk;
333 *iptr++ = xdr_zero; /* finish the read chunk list */
334 *iptr++ = xdr_zero; /* encode a NULL write chunk list */
335 *iptr++ = xdr_zero; /* encode a NULL reply chunk */
336 } else {
337 warray->wc_discrim = xdr_one;
338 warray->wc_nchunks = cpu_to_be32(nchunks);
339 iptr = (__be32 *) cur_wchunk;
340 if (type == rpcrdma_writech) {
341 *iptr++ = xdr_zero; /* finish the write chunk list */
342 *iptr++ = xdr_zero; /* encode a NULL reply chunk */
343 }
344 }
345
346 /*
347 * Return header size.
348 */
349 return (unsigned char *)iptr - (unsigned char *)headerp;
350
351 out:
352 for (pos = 0; nchunks--;)
353 pos += r_xprt->rx_ia.ri_ops->ro_unmap(r_xprt,
354 &req->rl_segments[pos]);
355 return n;
356 }
357
358 /*
359 * Copy write data inline.
360 * This function is used for "small" requests. Data which is passed
361 * to RPC via iovecs (or page list) is copied directly into the
362 * pre-registered memory buffer for this request. For small amounts
363 * of data, this is efficient. The cutoff value is tunable.
364 */
365 static void rpcrdma_inline_pullup(struct rpc_rqst *rqst)
366 {
367 int i, npages, curlen;
368 int copy_len;
369 unsigned char *srcp, *destp;
370 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
371 int page_base;
372 struct page **ppages;
373
374 destp = rqst->rq_svec[0].iov_base;
375 curlen = rqst->rq_svec[0].iov_len;
376 destp += curlen;
377
378 dprintk("RPC: %s: destp 0x%p len %d hdrlen %d\n",
379 __func__, destp, rqst->rq_slen, curlen);
380
381 copy_len = rqst->rq_snd_buf.page_len;
382
383 if (rqst->rq_snd_buf.tail[0].iov_len) {
384 curlen = rqst->rq_snd_buf.tail[0].iov_len;
385 if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
386 memmove(destp + copy_len,
387 rqst->rq_snd_buf.tail[0].iov_base, curlen);
388 r_xprt->rx_stats.pullup_copy_count += curlen;
389 }
390 dprintk("RPC: %s: tail destp 0x%p len %d\n",
391 __func__, destp + copy_len, curlen);
392 rqst->rq_svec[0].iov_len += curlen;
393 }
394 r_xprt->rx_stats.pullup_copy_count += copy_len;
395
396 page_base = rqst->rq_snd_buf.page_base;
397 ppages = rqst->rq_snd_buf.pages + (page_base >> PAGE_SHIFT);
398 page_base &= ~PAGE_MASK;
399 npages = PAGE_ALIGN(page_base+copy_len) >> PAGE_SHIFT;
400 for (i = 0; copy_len && i < npages; i++) {
401 curlen = PAGE_SIZE - page_base;
402 if (curlen > copy_len)
403 curlen = copy_len;
404 dprintk("RPC: %s: page %d destp 0x%p len %d curlen %d\n",
405 __func__, i, destp, copy_len, curlen);
406 srcp = kmap_atomic(ppages[i]);
407 memcpy(destp, srcp+page_base, curlen);
408 kunmap_atomic(srcp);
409 rqst->rq_svec[0].iov_len += curlen;
410 destp += curlen;
411 copy_len -= curlen;
412 page_base = 0;
413 }
414 /* header now contains entire send message */
415 }
416
417 /*
418 * Marshal a request: the primary job of this routine is to choose
419 * the transfer modes. See comments below.
420 *
421 * Uses multiple RDMA IOVs for a request:
422 * [0] -- RPC RDMA header, which uses memory from the *start* of the
423 * preregistered buffer that already holds the RPC data in
424 * its middle.
425 * [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
426 * [2] -- optional padding.
427 * [3] -- if padded, header only in [1] and data here.
428 *
429 * Returns zero on success, otherwise a negative errno.
430 */
431
432 int
433 rpcrdma_marshal_req(struct rpc_rqst *rqst)
434 {
435 struct rpc_xprt *xprt = rqst->rq_xprt;
436 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
437 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
438 char *base;
439 size_t rpclen;
440 ssize_t hdrlen;
441 enum rpcrdma_chunktype rtype, wtype;
442 struct rpcrdma_msg *headerp;
443
444 /*
445 * rpclen gets amount of data in first buffer, which is the
446 * pre-registered buffer.
447 */
448 base = rqst->rq_svec[0].iov_base;
449 rpclen = rqst->rq_svec[0].iov_len;
450
451 headerp = rdmab_to_msg(req->rl_rdmabuf);
452 /* don't byte-swap XID, it's already done in request */
453 headerp->rm_xid = rqst->rq_xid;
454 headerp->rm_vers = rpcrdma_version;
455 headerp->rm_credit = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
456 headerp->rm_type = rdma_msg;
457
458 /*
459 * Chunks needed for results?
460 *
461 * o Read ops return data as write chunk(s), header as inline.
462 * o If the expected result is under the inline threshold, all ops
463 * return as inline.
464 * o Large non-read ops return as a single reply chunk.
465 */
466 if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
467 wtype = rpcrdma_writech;
468 else if (rpcrdma_results_inline(rqst))
469 wtype = rpcrdma_noch;
470 else
471 wtype = rpcrdma_replych;
472
473 /*
474 * Chunks needed for arguments?
475 *
476 * o If the total request is under the inline threshold, all ops
477 * are sent as inline.
478 * o Large write ops transmit data as read chunk(s), header as
479 * inline.
480 * o Large non-write ops are sent with the entire message as a
481 * single read chunk (protocol 0-position special case).
482 *
483 * This assumes that the upper layer does not present a request
484 * that both has a data payload, and whose non-data arguments
485 * by themselves are larger than the inline threshold.
486 */
487 if (rpcrdma_args_inline(rqst)) {
488 rtype = rpcrdma_noch;
489 } else if (rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
490 rtype = rpcrdma_readch;
491 } else {
492 r_xprt->rx_stats.nomsg_call_count++;
493 headerp->rm_type = htonl(RDMA_NOMSG);
494 rtype = rpcrdma_areadch;
495 rpclen = 0;
496 }
497
498 /* The following simplification is not true forever */
499 if (rtype != rpcrdma_noch && wtype == rpcrdma_replych)
500 wtype = rpcrdma_noch;
501 if (rtype != rpcrdma_noch && wtype != rpcrdma_noch) {
502 dprintk("RPC: %s: cannot marshal multiple chunk lists\n",
503 __func__);
504 return -EIO;
505 }
506
507 hdrlen = RPCRDMA_HDRLEN_MIN;
508
509 /*
510 * Pull up any extra send data into the preregistered buffer.
511 * When padding is in use and applies to the transfer, insert
512 * it and change the message type.
513 */
514 if (rtype == rpcrdma_noch) {
515
516 rpcrdma_inline_pullup(rqst);
517
518 headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
519 headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
520 headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
521 /* new length after pullup */
522 rpclen = rqst->rq_svec[0].iov_len;
523 } else if (rtype == rpcrdma_readch)
524 rpclen += rpcrdma_tail_pullup(&rqst->rq_snd_buf);
525 if (rtype != rpcrdma_noch) {
526 hdrlen = rpcrdma_create_chunks(rqst, &rqst->rq_snd_buf,
527 headerp, rtype);
528 wtype = rtype; /* simplify dprintk */
529
530 } else if (wtype != rpcrdma_noch) {
531 hdrlen = rpcrdma_create_chunks(rqst, &rqst->rq_rcv_buf,
532 headerp, wtype);
533 }
534 if (hdrlen < 0)
535 return hdrlen;
536
537 dprintk("RPC: %s: %s: hdrlen %zd rpclen %zd"
538 " headerp 0x%p base 0x%p lkey 0x%x\n",
539 __func__, transfertypes[wtype], hdrlen, rpclen,
540 headerp, base, rdmab_lkey(req->rl_rdmabuf));
541
542 /*
543 * initialize send_iov's - normally only two: rdma chunk header and
544 * single preregistered RPC header buffer, but if padding is present,
545 * then use a preregistered (and zeroed) pad buffer between the RPC
546 * header and any write data. In all non-rdma cases, any following
547 * data has been copied into the RPC header buffer.
548 */
549 req->rl_send_iov[0].addr = rdmab_addr(req->rl_rdmabuf);
550 req->rl_send_iov[0].length = hdrlen;
551 req->rl_send_iov[0].lkey = rdmab_lkey(req->rl_rdmabuf);
552
553 req->rl_niovs = 1;
554 if (rtype == rpcrdma_areadch)
555 return 0;
556
557 req->rl_send_iov[1].addr = rdmab_addr(req->rl_sendbuf);
558 req->rl_send_iov[1].length = rpclen;
559 req->rl_send_iov[1].lkey = rdmab_lkey(req->rl_sendbuf);
560
561 req->rl_niovs = 2;
562 return 0;
563 }
564
565 /*
566 * Chase down a received write or reply chunklist to get length
567 * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
568 */
569 static int
570 rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
571 {
572 unsigned int i, total_len;
573 struct rpcrdma_write_chunk *cur_wchunk;
574 char *base = (char *)rdmab_to_msg(rep->rr_rdmabuf);
575
576 i = be32_to_cpu(**iptrp);
577 if (i > max)
578 return -1;
579 cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
580 total_len = 0;
581 while (i--) {
582 struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
583 ifdebug(FACILITY) {
584 u64 off;
585 xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
586 dprintk("RPC: %s: chunk %d@0x%llx:0x%x\n",
587 __func__,
588 be32_to_cpu(seg->rs_length),
589 (unsigned long long)off,
590 be32_to_cpu(seg->rs_handle));
591 }
592 total_len += be32_to_cpu(seg->rs_length);
593 ++cur_wchunk;
594 }
595 /* check and adjust for properly terminated write chunk */
596 if (wrchunk) {
597 __be32 *w = (__be32 *) cur_wchunk;
598 if (*w++ != xdr_zero)
599 return -1;
600 cur_wchunk = (struct rpcrdma_write_chunk *) w;
601 }
602 if ((char *)cur_wchunk > base + rep->rr_len)
603 return -1;
604
605 *iptrp = (__be32 *) cur_wchunk;
606 return total_len;
607 }
608
609 /*
610 * Scatter inline received data back into provided iov's.
611 */
612 static void
613 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
614 {
615 int i, npages, curlen, olen;
616 char *destp;
617 struct page **ppages;
618 int page_base;
619
620 curlen = rqst->rq_rcv_buf.head[0].iov_len;
621 if (curlen > copy_len) { /* write chunk header fixup */
622 curlen = copy_len;
623 rqst->rq_rcv_buf.head[0].iov_len = curlen;
624 }
625
626 dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n",
627 __func__, srcp, copy_len, curlen);
628
629 /* Shift pointer for first receive segment only */
630 rqst->rq_rcv_buf.head[0].iov_base = srcp;
631 srcp += curlen;
632 copy_len -= curlen;
633
634 olen = copy_len;
635 i = 0;
636 rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
637 page_base = rqst->rq_rcv_buf.page_base;
638 ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
639 page_base &= ~PAGE_MASK;
640
641 if (copy_len && rqst->rq_rcv_buf.page_len) {
642 npages = PAGE_ALIGN(page_base +
643 rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
644 for (; i < npages; i++) {
645 curlen = PAGE_SIZE - page_base;
646 if (curlen > copy_len)
647 curlen = copy_len;
648 dprintk("RPC: %s: page %d"
649 " srcp 0x%p len %d curlen %d\n",
650 __func__, i, srcp, copy_len, curlen);
651 destp = kmap_atomic(ppages[i]);
652 memcpy(destp + page_base, srcp, curlen);
653 flush_dcache_page(ppages[i]);
654 kunmap_atomic(destp);
655 srcp += curlen;
656 copy_len -= curlen;
657 if (copy_len == 0)
658 break;
659 page_base = 0;
660 }
661 }
662
663 if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
664 curlen = copy_len;
665 if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
666 curlen = rqst->rq_rcv_buf.tail[0].iov_len;
667 if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
668 memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
669 dprintk("RPC: %s: tail srcp 0x%p len %d curlen %d\n",
670 __func__, srcp, copy_len, curlen);
671 rqst->rq_rcv_buf.tail[0].iov_len = curlen;
672 copy_len -= curlen; ++i;
673 } else
674 rqst->rq_rcv_buf.tail[0].iov_len = 0;
675
676 if (pad) {
677 /* implicit padding on terminal chunk */
678 unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
679 while (pad--)
680 p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
681 }
682
683 if (copy_len)
684 dprintk("RPC: %s: %d bytes in"
685 " %d extra segments (%d lost)\n",
686 __func__, olen, i, copy_len);
687
688 /* TBD avoid a warning from call_decode() */
689 rqst->rq_private_buf = rqst->rq_rcv_buf;
690 }
691
692 void
693 rpcrdma_connect_worker(struct work_struct *work)
694 {
695 struct rpcrdma_ep *ep =
696 container_of(work, struct rpcrdma_ep, rep_connect_worker.work);
697 struct rpcrdma_xprt *r_xprt =
698 container_of(ep, struct rpcrdma_xprt, rx_ep);
699 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
700
701 spin_lock_bh(&xprt->transport_lock);
702 if (++xprt->connect_cookie == 0) /* maintain a reserved value */
703 ++xprt->connect_cookie;
704 if (ep->rep_connected > 0) {
705 if (!xprt_test_and_set_connected(xprt))
706 xprt_wake_pending_tasks(xprt, 0);
707 } else {
708 if (xprt_test_and_clear_connected(xprt))
709 xprt_wake_pending_tasks(xprt, -ENOTCONN);
710 }
711 spin_unlock_bh(&xprt->transport_lock);
712 }
713
714 /*
715 * This function is called when an async event is posted to
716 * the connection which changes the connection state. All it
717 * does at this point is mark the connection up/down, the rpc
718 * timers do the rest.
719 */
720 void
721 rpcrdma_conn_func(struct rpcrdma_ep *ep)
722 {
723 schedule_delayed_work(&ep->rep_connect_worker, 0);
724 }
725
726 /*
727 * Called as a tasklet to do req/reply match and complete a request
728 * Errors must result in the RPC task either being awakened, or
729 * allowed to timeout, to discover the errors at that time.
730 */
731 void
732 rpcrdma_reply_handler(struct rpcrdma_rep *rep)
733 {
734 struct rpcrdma_msg *headerp;
735 struct rpcrdma_req *req;
736 struct rpc_rqst *rqst;
737 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
738 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
739 __be32 *iptr;
740 int rdmalen, status;
741 unsigned long cwnd;
742 u32 credits;
743
744 /* Check status. If bad, signal disconnect and return rep to pool */
745 if (rep->rr_len == ~0U) {
746 rpcrdma_recv_buffer_put(rep);
747 if (r_xprt->rx_ep.rep_connected == 1) {
748 r_xprt->rx_ep.rep_connected = -EIO;
749 rpcrdma_conn_func(&r_xprt->rx_ep);
750 }
751 return;
752 }
753 if (rep->rr_len < RPCRDMA_HDRLEN_MIN) {
754 dprintk("RPC: %s: short/invalid reply\n", __func__);
755 goto repost;
756 }
757 headerp = rdmab_to_msg(rep->rr_rdmabuf);
758 if (headerp->rm_vers != rpcrdma_version) {
759 dprintk("RPC: %s: invalid version %d\n",
760 __func__, be32_to_cpu(headerp->rm_vers));
761 goto repost;
762 }
763
764 /* Get XID and try for a match. */
765 spin_lock(&xprt->transport_lock);
766 rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
767 if (rqst == NULL) {
768 spin_unlock(&xprt->transport_lock);
769 dprintk("RPC: %s: reply 0x%p failed "
770 "to match any request xid 0x%08x len %d\n",
771 __func__, rep, be32_to_cpu(headerp->rm_xid),
772 rep->rr_len);
773 repost:
774 r_xprt->rx_stats.bad_reply_count++;
775 if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
776 rpcrdma_recv_buffer_put(rep);
777
778 return;
779 }
780
781 /* get request object */
782 req = rpcr_to_rdmar(rqst);
783 if (req->rl_reply) {
784 spin_unlock(&xprt->transport_lock);
785 dprintk("RPC: %s: duplicate reply 0x%p to RPC "
786 "request 0x%p: xid 0x%08x\n", __func__, rep, req,
787 be32_to_cpu(headerp->rm_xid));
788 goto repost;
789 }
790
791 dprintk("RPC: %s: reply 0x%p completes request 0x%p\n"
792 " RPC request 0x%p xid 0x%08x\n",
793 __func__, rep, req, rqst,
794 be32_to_cpu(headerp->rm_xid));
795
796 /* from here on, the reply is no longer an orphan */
797 req->rl_reply = rep;
798 xprt->reestablish_timeout = 0;
799
800 /* check for expected message types */
801 /* The order of some of these tests is important. */
802 switch (headerp->rm_type) {
803 case rdma_msg:
804 /* never expect read chunks */
805 /* never expect reply chunks (two ways to check) */
806 /* never expect write chunks without having offered RDMA */
807 if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
808 (headerp->rm_body.rm_chunks[1] == xdr_zero &&
809 headerp->rm_body.rm_chunks[2] != xdr_zero) ||
810 (headerp->rm_body.rm_chunks[1] != xdr_zero &&
811 req->rl_nchunks == 0))
812 goto badheader;
813 if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
814 /* count any expected write chunks in read reply */
815 /* start at write chunk array count */
816 iptr = &headerp->rm_body.rm_chunks[2];
817 rdmalen = rpcrdma_count_chunks(rep,
818 req->rl_nchunks, 1, &iptr);
819 /* check for validity, and no reply chunk after */
820 if (rdmalen < 0 || *iptr++ != xdr_zero)
821 goto badheader;
822 rep->rr_len -=
823 ((unsigned char *)iptr - (unsigned char *)headerp);
824 status = rep->rr_len + rdmalen;
825 r_xprt->rx_stats.total_rdma_reply += rdmalen;
826 /* special case - last chunk may omit padding */
827 if (rdmalen &= 3) {
828 rdmalen = 4 - rdmalen;
829 status += rdmalen;
830 }
831 } else {
832 /* else ordinary inline */
833 rdmalen = 0;
834 iptr = (__be32 *)((unsigned char *)headerp +
835 RPCRDMA_HDRLEN_MIN);
836 rep->rr_len -= RPCRDMA_HDRLEN_MIN;
837 status = rep->rr_len;
838 }
839 /* Fix up the rpc results for upper layer */
840 rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
841 break;
842
843 case rdma_nomsg:
844 /* never expect read or write chunks, always reply chunks */
845 if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
846 headerp->rm_body.rm_chunks[1] != xdr_zero ||
847 headerp->rm_body.rm_chunks[2] != xdr_one ||
848 req->rl_nchunks == 0)
849 goto badheader;
850 iptr = (__be32 *)((unsigned char *)headerp +
851 RPCRDMA_HDRLEN_MIN);
852 rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
853 if (rdmalen < 0)
854 goto badheader;
855 r_xprt->rx_stats.total_rdma_reply += rdmalen;
856 /* Reply chunk buffer already is the reply vector - no fixup. */
857 status = rdmalen;
858 break;
859
860 badheader:
861 default:
862 dprintk("%s: invalid rpcrdma reply header (type %d):"
863 " chunks[012] == %d %d %d"
864 " expected chunks <= %d\n",
865 __func__, be32_to_cpu(headerp->rm_type),
866 headerp->rm_body.rm_chunks[0],
867 headerp->rm_body.rm_chunks[1],
868 headerp->rm_body.rm_chunks[2],
869 req->rl_nchunks);
870 status = -EIO;
871 r_xprt->rx_stats.bad_reply_count++;
872 break;
873 }
874
875 credits = be32_to_cpu(headerp->rm_credit);
876 if (credits == 0)
877 credits = 1; /* don't deadlock */
878 else if (credits > r_xprt->rx_buf.rb_max_requests)
879 credits = r_xprt->rx_buf.rb_max_requests;
880
881 cwnd = xprt->cwnd;
882 xprt->cwnd = credits << RPC_CWNDSHIFT;
883 if (xprt->cwnd > cwnd)
884 xprt_release_rqst_cong(rqst->rq_task);
885
886 dprintk("RPC: %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
887 __func__, xprt, rqst, status);
888 xprt_complete_rqst(rqst->rq_task, status);
889 spin_unlock(&xprt->transport_lock);
890 }
This page took 0.073366 seconds and 6 git commands to generate.