Merge branches 'for-4.4/upstream-fixes', 'for-4.5/async-suspend', 'for-4.5/container...
[deliverable/linux.git] / net / sunrpc / xprtrdma / svc_rdma_transport.c
1 /*
2 * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved.
3 * Copyright (c) 2005-2007 Network Appliance, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the BSD-type
9 * license below:
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 *
15 * Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 *
18 * Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials provided
21 * with the distribution.
22 *
23 * Neither the name of the Network Appliance, Inc. nor the names of
24 * its contributors may be used to endorse or promote products
25 * derived from this software without specific prior written
26 * permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Author: Tom Tucker <tom@opengridcomputing.com>
41 */
42
43 #include <linux/sunrpc/svc_xprt.h>
44 #include <linux/sunrpc/debug.h>
45 #include <linux/sunrpc/rpc_rdma.h>
46 #include <linux/interrupt.h>
47 #include <linux/sched.h>
48 #include <linux/slab.h>
49 #include <linux/spinlock.h>
50 #include <linux/workqueue.h>
51 #include <rdma/ib_verbs.h>
52 #include <rdma/rdma_cm.h>
53 #include <linux/sunrpc/svc_rdma.h>
54 #include <linux/export.h>
55 #include "xprt_rdma.h"
56
57 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
58
59 static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *, int);
60 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
61 struct net *net,
62 struct sockaddr *sa, int salen,
63 int flags);
64 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt);
65 static void svc_rdma_release_rqst(struct svc_rqst *);
66 static void dto_tasklet_func(unsigned long data);
67 static void svc_rdma_detach(struct svc_xprt *xprt);
68 static void svc_rdma_free(struct svc_xprt *xprt);
69 static int svc_rdma_has_wspace(struct svc_xprt *xprt);
70 static int svc_rdma_secure_port(struct svc_rqst *);
71 static void rq_cq_reap(struct svcxprt_rdma *xprt);
72 static void sq_cq_reap(struct svcxprt_rdma *xprt);
73
74 static DECLARE_TASKLET(dto_tasklet, dto_tasklet_func, 0UL);
75 static DEFINE_SPINLOCK(dto_lock);
76 static LIST_HEAD(dto_xprt_q);
77
78 static struct svc_xprt_ops svc_rdma_ops = {
79 .xpo_create = svc_rdma_create,
80 .xpo_recvfrom = svc_rdma_recvfrom,
81 .xpo_sendto = svc_rdma_sendto,
82 .xpo_release_rqst = svc_rdma_release_rqst,
83 .xpo_detach = svc_rdma_detach,
84 .xpo_free = svc_rdma_free,
85 .xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr,
86 .xpo_has_wspace = svc_rdma_has_wspace,
87 .xpo_accept = svc_rdma_accept,
88 .xpo_secure_port = svc_rdma_secure_port,
89 };
90
91 struct svc_xprt_class svc_rdma_class = {
92 .xcl_name = "rdma",
93 .xcl_owner = THIS_MODULE,
94 .xcl_ops = &svc_rdma_ops,
95 .xcl_max_payload = RPCSVC_MAXPAYLOAD_RDMA,
96 .xcl_ident = XPRT_TRANSPORT_RDMA,
97 };
98
99 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
100 static struct svc_xprt *svc_rdma_bc_create(struct svc_serv *, struct net *,
101 struct sockaddr *, int, int);
102 static void svc_rdma_bc_detach(struct svc_xprt *);
103 static void svc_rdma_bc_free(struct svc_xprt *);
104
105 static struct svc_xprt_ops svc_rdma_bc_ops = {
106 .xpo_create = svc_rdma_bc_create,
107 .xpo_detach = svc_rdma_bc_detach,
108 .xpo_free = svc_rdma_bc_free,
109 .xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr,
110 .xpo_secure_port = svc_rdma_secure_port,
111 };
112
113 struct svc_xprt_class svc_rdma_bc_class = {
114 .xcl_name = "rdma-bc",
115 .xcl_owner = THIS_MODULE,
116 .xcl_ops = &svc_rdma_bc_ops,
117 .xcl_max_payload = (1024 - RPCRDMA_HDRLEN_MIN)
118 };
119
120 static struct svc_xprt *svc_rdma_bc_create(struct svc_serv *serv,
121 struct net *net,
122 struct sockaddr *sa, int salen,
123 int flags)
124 {
125 struct svcxprt_rdma *cma_xprt;
126 struct svc_xprt *xprt;
127
128 cma_xprt = rdma_create_xprt(serv, 0);
129 if (!cma_xprt)
130 return ERR_PTR(-ENOMEM);
131 xprt = &cma_xprt->sc_xprt;
132
133 svc_xprt_init(net, &svc_rdma_bc_class, xprt, serv);
134 serv->sv_bc_xprt = xprt;
135
136 dprintk("svcrdma: %s(%p)\n", __func__, xprt);
137 return xprt;
138 }
139
140 static void svc_rdma_bc_detach(struct svc_xprt *xprt)
141 {
142 dprintk("svcrdma: %s(%p)\n", __func__, xprt);
143 }
144
145 static void svc_rdma_bc_free(struct svc_xprt *xprt)
146 {
147 struct svcxprt_rdma *rdma =
148 container_of(xprt, struct svcxprt_rdma, sc_xprt);
149
150 dprintk("svcrdma: %s(%p)\n", __func__, xprt);
151 if (xprt)
152 kfree(rdma);
153 }
154 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
155
156 struct svc_rdma_op_ctxt *svc_rdma_get_context(struct svcxprt_rdma *xprt)
157 {
158 struct svc_rdma_op_ctxt *ctxt;
159
160 ctxt = kmem_cache_alloc(svc_rdma_ctxt_cachep,
161 GFP_KERNEL | __GFP_NOFAIL);
162 ctxt->xprt = xprt;
163 INIT_LIST_HEAD(&ctxt->dto_q);
164 ctxt->count = 0;
165 ctxt->frmr = NULL;
166 atomic_inc(&xprt->sc_ctxt_used);
167 return ctxt;
168 }
169
170 void svc_rdma_unmap_dma(struct svc_rdma_op_ctxt *ctxt)
171 {
172 struct svcxprt_rdma *xprt = ctxt->xprt;
173 int i;
174 for (i = 0; i < ctxt->count && ctxt->sge[i].length; i++) {
175 /*
176 * Unmap the DMA addr in the SGE if the lkey matches
177 * the sc_dma_lkey, otherwise, ignore it since it is
178 * an FRMR lkey and will be unmapped later when the
179 * last WR that uses it completes.
180 */
181 if (ctxt->sge[i].lkey == xprt->sc_dma_lkey) {
182 atomic_dec(&xprt->sc_dma_used);
183 ib_dma_unmap_page(xprt->sc_cm_id->device,
184 ctxt->sge[i].addr,
185 ctxt->sge[i].length,
186 ctxt->direction);
187 }
188 }
189 }
190
191 void svc_rdma_put_context(struct svc_rdma_op_ctxt *ctxt, int free_pages)
192 {
193 struct svcxprt_rdma *xprt;
194 int i;
195
196 xprt = ctxt->xprt;
197 if (free_pages)
198 for (i = 0; i < ctxt->count; i++)
199 put_page(ctxt->pages[i]);
200
201 kmem_cache_free(svc_rdma_ctxt_cachep, ctxt);
202 atomic_dec(&xprt->sc_ctxt_used);
203 }
204
205 /*
206 * Temporary NFS req mappings are shared across all transport
207 * instances. These are short lived and should be bounded by the number
208 * of concurrent server threads * depth of the SQ.
209 */
210 struct svc_rdma_req_map *svc_rdma_get_req_map(void)
211 {
212 struct svc_rdma_req_map *map;
213 map = kmem_cache_alloc(svc_rdma_map_cachep,
214 GFP_KERNEL | __GFP_NOFAIL);
215 map->count = 0;
216 return map;
217 }
218
219 void svc_rdma_put_req_map(struct svc_rdma_req_map *map)
220 {
221 kmem_cache_free(svc_rdma_map_cachep, map);
222 }
223
224 /* ib_cq event handler */
225 static void cq_event_handler(struct ib_event *event, void *context)
226 {
227 struct svc_xprt *xprt = context;
228 dprintk("svcrdma: received CQ event %s (%d), context=%p\n",
229 ib_event_msg(event->event), event->event, context);
230 set_bit(XPT_CLOSE, &xprt->xpt_flags);
231 }
232
233 /* QP event handler */
234 static void qp_event_handler(struct ib_event *event, void *context)
235 {
236 struct svc_xprt *xprt = context;
237
238 switch (event->event) {
239 /* These are considered benign events */
240 case IB_EVENT_PATH_MIG:
241 case IB_EVENT_COMM_EST:
242 case IB_EVENT_SQ_DRAINED:
243 case IB_EVENT_QP_LAST_WQE_REACHED:
244 dprintk("svcrdma: QP event %s (%d) received for QP=%p\n",
245 ib_event_msg(event->event), event->event,
246 event->element.qp);
247 break;
248 /* These are considered fatal events */
249 case IB_EVENT_PATH_MIG_ERR:
250 case IB_EVENT_QP_FATAL:
251 case IB_EVENT_QP_REQ_ERR:
252 case IB_EVENT_QP_ACCESS_ERR:
253 case IB_EVENT_DEVICE_FATAL:
254 default:
255 dprintk("svcrdma: QP ERROR event %s (%d) received for QP=%p, "
256 "closing transport\n",
257 ib_event_msg(event->event), event->event,
258 event->element.qp);
259 set_bit(XPT_CLOSE, &xprt->xpt_flags);
260 break;
261 }
262 }
263
264 /*
265 * Data Transfer Operation Tasklet
266 *
267 * Walks a list of transports with I/O pending, removing entries as
268 * they are added to the server's I/O pending list. Two bits indicate
269 * if SQ, RQ, or both have I/O pending. The dto_lock is an irqsave
270 * spinlock that serializes access to the transport list with the RQ
271 * and SQ interrupt handlers.
272 */
273 static void dto_tasklet_func(unsigned long data)
274 {
275 struct svcxprt_rdma *xprt;
276 unsigned long flags;
277
278 spin_lock_irqsave(&dto_lock, flags);
279 while (!list_empty(&dto_xprt_q)) {
280 xprt = list_entry(dto_xprt_q.next,
281 struct svcxprt_rdma, sc_dto_q);
282 list_del_init(&xprt->sc_dto_q);
283 spin_unlock_irqrestore(&dto_lock, flags);
284
285 rq_cq_reap(xprt);
286 sq_cq_reap(xprt);
287
288 svc_xprt_put(&xprt->sc_xprt);
289 spin_lock_irqsave(&dto_lock, flags);
290 }
291 spin_unlock_irqrestore(&dto_lock, flags);
292 }
293
294 /*
295 * Receive Queue Completion Handler
296 *
297 * Since an RQ completion handler is called on interrupt context, we
298 * need to defer the handling of the I/O to a tasklet
299 */
300 static void rq_comp_handler(struct ib_cq *cq, void *cq_context)
301 {
302 struct svcxprt_rdma *xprt = cq_context;
303 unsigned long flags;
304
305 /* Guard against unconditional flush call for destroyed QP */
306 if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0)
307 return;
308
309 /*
310 * Set the bit regardless of whether or not it's on the list
311 * because it may be on the list already due to an SQ
312 * completion.
313 */
314 set_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags);
315
316 /*
317 * If this transport is not already on the DTO transport queue,
318 * add it
319 */
320 spin_lock_irqsave(&dto_lock, flags);
321 if (list_empty(&xprt->sc_dto_q)) {
322 svc_xprt_get(&xprt->sc_xprt);
323 list_add_tail(&xprt->sc_dto_q, &dto_xprt_q);
324 }
325 spin_unlock_irqrestore(&dto_lock, flags);
326
327 /* Tasklet does all the work to avoid irqsave locks. */
328 tasklet_schedule(&dto_tasklet);
329 }
330
331 /*
332 * rq_cq_reap - Process the RQ CQ.
333 *
334 * Take all completing WC off the CQE and enqueue the associated DTO
335 * context on the dto_q for the transport.
336 *
337 * Note that caller must hold a transport reference.
338 */
339 static void rq_cq_reap(struct svcxprt_rdma *xprt)
340 {
341 int ret;
342 struct ib_wc wc;
343 struct svc_rdma_op_ctxt *ctxt = NULL;
344
345 if (!test_and_clear_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags))
346 return;
347
348 ib_req_notify_cq(xprt->sc_rq_cq, IB_CQ_NEXT_COMP);
349 atomic_inc(&rdma_stat_rq_poll);
350
351 while ((ret = ib_poll_cq(xprt->sc_rq_cq, 1, &wc)) > 0) {
352 ctxt = (struct svc_rdma_op_ctxt *)(unsigned long)wc.wr_id;
353 ctxt->wc_status = wc.status;
354 ctxt->byte_len = wc.byte_len;
355 svc_rdma_unmap_dma(ctxt);
356 if (wc.status != IB_WC_SUCCESS) {
357 /* Close the transport */
358 dprintk("svcrdma: transport closing putting ctxt %p\n", ctxt);
359 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
360 svc_rdma_put_context(ctxt, 1);
361 svc_xprt_put(&xprt->sc_xprt);
362 continue;
363 }
364 spin_lock_bh(&xprt->sc_rq_dto_lock);
365 list_add_tail(&ctxt->dto_q, &xprt->sc_rq_dto_q);
366 spin_unlock_bh(&xprt->sc_rq_dto_lock);
367 svc_xprt_put(&xprt->sc_xprt);
368 }
369
370 if (ctxt)
371 atomic_inc(&rdma_stat_rq_prod);
372
373 set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
374 /*
375 * If data arrived before established event,
376 * don't enqueue. This defers RPC I/O until the
377 * RDMA connection is complete.
378 */
379 if (!test_bit(RDMAXPRT_CONN_PENDING, &xprt->sc_flags))
380 svc_xprt_enqueue(&xprt->sc_xprt);
381 }
382
383 /*
384 * Process a completion context
385 */
386 static void process_context(struct svcxprt_rdma *xprt,
387 struct svc_rdma_op_ctxt *ctxt)
388 {
389 svc_rdma_unmap_dma(ctxt);
390
391 switch (ctxt->wr_op) {
392 case IB_WR_SEND:
393 if (ctxt->frmr)
394 pr_err("svcrdma: SEND: ctxt->frmr != NULL\n");
395 svc_rdma_put_context(ctxt, 1);
396 break;
397
398 case IB_WR_RDMA_WRITE:
399 if (ctxt->frmr)
400 pr_err("svcrdma: WRITE: ctxt->frmr != NULL\n");
401 svc_rdma_put_context(ctxt, 0);
402 break;
403
404 case IB_WR_RDMA_READ:
405 case IB_WR_RDMA_READ_WITH_INV:
406 svc_rdma_put_frmr(xprt, ctxt->frmr);
407 if (test_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags)) {
408 struct svc_rdma_op_ctxt *read_hdr = ctxt->read_hdr;
409 if (read_hdr) {
410 spin_lock_bh(&xprt->sc_rq_dto_lock);
411 set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
412 list_add_tail(&read_hdr->dto_q,
413 &xprt->sc_read_complete_q);
414 spin_unlock_bh(&xprt->sc_rq_dto_lock);
415 } else {
416 pr_err("svcrdma: ctxt->read_hdr == NULL\n");
417 }
418 svc_xprt_enqueue(&xprt->sc_xprt);
419 }
420 svc_rdma_put_context(ctxt, 0);
421 break;
422
423 default:
424 printk(KERN_ERR "svcrdma: unexpected completion type, "
425 "opcode=%d\n",
426 ctxt->wr_op);
427 break;
428 }
429 }
430
431 /*
432 * Send Queue Completion Handler - potentially called on interrupt context.
433 *
434 * Note that caller must hold a transport reference.
435 */
436 static void sq_cq_reap(struct svcxprt_rdma *xprt)
437 {
438 struct svc_rdma_op_ctxt *ctxt = NULL;
439 struct ib_wc wc_a[6];
440 struct ib_wc *wc;
441 struct ib_cq *cq = xprt->sc_sq_cq;
442 int ret;
443
444 memset(wc_a, 0, sizeof(wc_a));
445
446 if (!test_and_clear_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags))
447 return;
448
449 ib_req_notify_cq(xprt->sc_sq_cq, IB_CQ_NEXT_COMP);
450 atomic_inc(&rdma_stat_sq_poll);
451 while ((ret = ib_poll_cq(cq, ARRAY_SIZE(wc_a), wc_a)) > 0) {
452 int i;
453
454 for (i = 0; i < ret; i++) {
455 wc = &wc_a[i];
456 if (wc->status != IB_WC_SUCCESS) {
457 dprintk("svcrdma: sq wc err status %s (%d)\n",
458 ib_wc_status_msg(wc->status),
459 wc->status);
460
461 /* Close the transport */
462 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
463 }
464
465 /* Decrement used SQ WR count */
466 atomic_dec(&xprt->sc_sq_count);
467 wake_up(&xprt->sc_send_wait);
468
469 ctxt = (struct svc_rdma_op_ctxt *)
470 (unsigned long)wc->wr_id;
471 if (ctxt)
472 process_context(xprt, ctxt);
473
474 svc_xprt_put(&xprt->sc_xprt);
475 }
476 }
477
478 if (ctxt)
479 atomic_inc(&rdma_stat_sq_prod);
480 }
481
482 static void sq_comp_handler(struct ib_cq *cq, void *cq_context)
483 {
484 struct svcxprt_rdma *xprt = cq_context;
485 unsigned long flags;
486
487 /* Guard against unconditional flush call for destroyed QP */
488 if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0)
489 return;
490
491 /*
492 * Set the bit regardless of whether or not it's on the list
493 * because it may be on the list already due to an RQ
494 * completion.
495 */
496 set_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags);
497
498 /*
499 * If this transport is not already on the DTO transport queue,
500 * add it
501 */
502 spin_lock_irqsave(&dto_lock, flags);
503 if (list_empty(&xprt->sc_dto_q)) {
504 svc_xprt_get(&xprt->sc_xprt);
505 list_add_tail(&xprt->sc_dto_q, &dto_xprt_q);
506 }
507 spin_unlock_irqrestore(&dto_lock, flags);
508
509 /* Tasklet does all the work to avoid irqsave locks. */
510 tasklet_schedule(&dto_tasklet);
511 }
512
513 static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *serv,
514 int listener)
515 {
516 struct svcxprt_rdma *cma_xprt = kzalloc(sizeof *cma_xprt, GFP_KERNEL);
517
518 if (!cma_xprt)
519 return NULL;
520 svc_xprt_init(&init_net, &svc_rdma_class, &cma_xprt->sc_xprt, serv);
521 INIT_LIST_HEAD(&cma_xprt->sc_accept_q);
522 INIT_LIST_HEAD(&cma_xprt->sc_dto_q);
523 INIT_LIST_HEAD(&cma_xprt->sc_rq_dto_q);
524 INIT_LIST_HEAD(&cma_xprt->sc_read_complete_q);
525 INIT_LIST_HEAD(&cma_xprt->sc_frmr_q);
526 init_waitqueue_head(&cma_xprt->sc_send_wait);
527
528 spin_lock_init(&cma_xprt->sc_lock);
529 spin_lock_init(&cma_xprt->sc_rq_dto_lock);
530 spin_lock_init(&cma_xprt->sc_frmr_q_lock);
531
532 cma_xprt->sc_ord = svcrdma_ord;
533
534 cma_xprt->sc_max_req_size = svcrdma_max_req_size;
535 cma_xprt->sc_max_requests = svcrdma_max_requests;
536 cma_xprt->sc_sq_depth = svcrdma_max_requests * RPCRDMA_SQ_DEPTH_MULT;
537 atomic_set(&cma_xprt->sc_sq_count, 0);
538 atomic_set(&cma_xprt->sc_ctxt_used, 0);
539
540 if (listener)
541 set_bit(XPT_LISTENER, &cma_xprt->sc_xprt.xpt_flags);
542
543 return cma_xprt;
544 }
545
546 int svc_rdma_post_recv(struct svcxprt_rdma *xprt)
547 {
548 struct ib_recv_wr recv_wr, *bad_recv_wr;
549 struct svc_rdma_op_ctxt *ctxt;
550 struct page *page;
551 dma_addr_t pa;
552 int sge_no;
553 int buflen;
554 int ret;
555
556 ctxt = svc_rdma_get_context(xprt);
557 buflen = 0;
558 ctxt->direction = DMA_FROM_DEVICE;
559 for (sge_no = 0; buflen < xprt->sc_max_req_size; sge_no++) {
560 if (sge_no >= xprt->sc_max_sge) {
561 pr_err("svcrdma: Too many sges (%d)\n", sge_no);
562 goto err_put_ctxt;
563 }
564 page = alloc_page(GFP_KERNEL | __GFP_NOFAIL);
565 ctxt->pages[sge_no] = page;
566 pa = ib_dma_map_page(xprt->sc_cm_id->device,
567 page, 0, PAGE_SIZE,
568 DMA_FROM_DEVICE);
569 if (ib_dma_mapping_error(xprt->sc_cm_id->device, pa))
570 goto err_put_ctxt;
571 atomic_inc(&xprt->sc_dma_used);
572 ctxt->sge[sge_no].addr = pa;
573 ctxt->sge[sge_no].length = PAGE_SIZE;
574 ctxt->sge[sge_no].lkey = xprt->sc_dma_lkey;
575 ctxt->count = sge_no + 1;
576 buflen += PAGE_SIZE;
577 }
578 recv_wr.next = NULL;
579 recv_wr.sg_list = &ctxt->sge[0];
580 recv_wr.num_sge = ctxt->count;
581 recv_wr.wr_id = (u64)(unsigned long)ctxt;
582
583 svc_xprt_get(&xprt->sc_xprt);
584 ret = ib_post_recv(xprt->sc_qp, &recv_wr, &bad_recv_wr);
585 if (ret) {
586 svc_rdma_unmap_dma(ctxt);
587 svc_rdma_put_context(ctxt, 1);
588 svc_xprt_put(&xprt->sc_xprt);
589 }
590 return ret;
591
592 err_put_ctxt:
593 svc_rdma_unmap_dma(ctxt);
594 svc_rdma_put_context(ctxt, 1);
595 return -ENOMEM;
596 }
597
598 /*
599 * This function handles the CONNECT_REQUEST event on a listening
600 * endpoint. It is passed the cma_id for the _new_ connection. The context in
601 * this cma_id is inherited from the listening cma_id and is the svc_xprt
602 * structure for the listening endpoint.
603 *
604 * This function creates a new xprt for the new connection and enqueues it on
605 * the accept queue for the listent xprt. When the listen thread is kicked, it
606 * will call the recvfrom method on the listen xprt which will accept the new
607 * connection.
608 */
609 static void handle_connect_req(struct rdma_cm_id *new_cma_id, size_t client_ird)
610 {
611 struct svcxprt_rdma *listen_xprt = new_cma_id->context;
612 struct svcxprt_rdma *newxprt;
613 struct sockaddr *sa;
614
615 /* Create a new transport */
616 newxprt = rdma_create_xprt(listen_xprt->sc_xprt.xpt_server, 0);
617 if (!newxprt) {
618 dprintk("svcrdma: failed to create new transport\n");
619 return;
620 }
621 newxprt->sc_cm_id = new_cma_id;
622 new_cma_id->context = newxprt;
623 dprintk("svcrdma: Creating newxprt=%p, cm_id=%p, listenxprt=%p\n",
624 newxprt, newxprt->sc_cm_id, listen_xprt);
625
626 /* Save client advertised inbound read limit for use later in accept. */
627 newxprt->sc_ord = client_ird;
628
629 /* Set the local and remote addresses in the transport */
630 sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr;
631 svc_xprt_set_remote(&newxprt->sc_xprt, sa, svc_addr_len(sa));
632 sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr;
633 svc_xprt_set_local(&newxprt->sc_xprt, sa, svc_addr_len(sa));
634
635 /*
636 * Enqueue the new transport on the accept queue of the listening
637 * transport
638 */
639 spin_lock_bh(&listen_xprt->sc_lock);
640 list_add_tail(&newxprt->sc_accept_q, &listen_xprt->sc_accept_q);
641 spin_unlock_bh(&listen_xprt->sc_lock);
642
643 set_bit(XPT_CONN, &listen_xprt->sc_xprt.xpt_flags);
644 svc_xprt_enqueue(&listen_xprt->sc_xprt);
645 }
646
647 /*
648 * Handles events generated on the listening endpoint. These events will be
649 * either be incoming connect requests or adapter removal events.
650 */
651 static int rdma_listen_handler(struct rdma_cm_id *cma_id,
652 struct rdma_cm_event *event)
653 {
654 struct svcxprt_rdma *xprt = cma_id->context;
655 int ret = 0;
656
657 switch (event->event) {
658 case RDMA_CM_EVENT_CONNECT_REQUEST:
659 dprintk("svcrdma: Connect request on cma_id=%p, xprt = %p, "
660 "event = %s (%d)\n", cma_id, cma_id->context,
661 rdma_event_msg(event->event), event->event);
662 handle_connect_req(cma_id,
663 event->param.conn.initiator_depth);
664 break;
665
666 case RDMA_CM_EVENT_ESTABLISHED:
667 /* Accept complete */
668 dprintk("svcrdma: Connection completed on LISTEN xprt=%p, "
669 "cm_id=%p\n", xprt, cma_id);
670 break;
671
672 case RDMA_CM_EVENT_DEVICE_REMOVAL:
673 dprintk("svcrdma: Device removal xprt=%p, cm_id=%p\n",
674 xprt, cma_id);
675 if (xprt)
676 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
677 break;
678
679 default:
680 dprintk("svcrdma: Unexpected event on listening endpoint %p, "
681 "event = %s (%d)\n", cma_id,
682 rdma_event_msg(event->event), event->event);
683 break;
684 }
685
686 return ret;
687 }
688
689 static int rdma_cma_handler(struct rdma_cm_id *cma_id,
690 struct rdma_cm_event *event)
691 {
692 struct svc_xprt *xprt = cma_id->context;
693 struct svcxprt_rdma *rdma =
694 container_of(xprt, struct svcxprt_rdma, sc_xprt);
695 switch (event->event) {
696 case RDMA_CM_EVENT_ESTABLISHED:
697 /* Accept complete */
698 svc_xprt_get(xprt);
699 dprintk("svcrdma: Connection completed on DTO xprt=%p, "
700 "cm_id=%p\n", xprt, cma_id);
701 clear_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags);
702 svc_xprt_enqueue(xprt);
703 break;
704 case RDMA_CM_EVENT_DISCONNECTED:
705 dprintk("svcrdma: Disconnect on DTO xprt=%p, cm_id=%p\n",
706 xprt, cma_id);
707 if (xprt) {
708 set_bit(XPT_CLOSE, &xprt->xpt_flags);
709 svc_xprt_enqueue(xprt);
710 svc_xprt_put(xprt);
711 }
712 break;
713 case RDMA_CM_EVENT_DEVICE_REMOVAL:
714 dprintk("svcrdma: Device removal cma_id=%p, xprt = %p, "
715 "event = %s (%d)\n", cma_id, xprt,
716 rdma_event_msg(event->event), event->event);
717 if (xprt) {
718 set_bit(XPT_CLOSE, &xprt->xpt_flags);
719 svc_xprt_enqueue(xprt);
720 svc_xprt_put(xprt);
721 }
722 break;
723 default:
724 dprintk("svcrdma: Unexpected event on DTO endpoint %p, "
725 "event = %s (%d)\n", cma_id,
726 rdma_event_msg(event->event), event->event);
727 break;
728 }
729 return 0;
730 }
731
732 /*
733 * Create a listening RDMA service endpoint.
734 */
735 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
736 struct net *net,
737 struct sockaddr *sa, int salen,
738 int flags)
739 {
740 struct rdma_cm_id *listen_id;
741 struct svcxprt_rdma *cma_xprt;
742 int ret;
743
744 dprintk("svcrdma: Creating RDMA socket\n");
745 if (sa->sa_family != AF_INET) {
746 dprintk("svcrdma: Address family %d is not supported.\n", sa->sa_family);
747 return ERR_PTR(-EAFNOSUPPORT);
748 }
749 cma_xprt = rdma_create_xprt(serv, 1);
750 if (!cma_xprt)
751 return ERR_PTR(-ENOMEM);
752
753 listen_id = rdma_create_id(&init_net, rdma_listen_handler, cma_xprt,
754 RDMA_PS_TCP, IB_QPT_RC);
755 if (IS_ERR(listen_id)) {
756 ret = PTR_ERR(listen_id);
757 dprintk("svcrdma: rdma_create_id failed = %d\n", ret);
758 goto err0;
759 }
760
761 ret = rdma_bind_addr(listen_id, sa);
762 if (ret) {
763 dprintk("svcrdma: rdma_bind_addr failed = %d\n", ret);
764 goto err1;
765 }
766 cma_xprt->sc_cm_id = listen_id;
767
768 ret = rdma_listen(listen_id, RPCRDMA_LISTEN_BACKLOG);
769 if (ret) {
770 dprintk("svcrdma: rdma_listen failed = %d\n", ret);
771 goto err1;
772 }
773
774 /*
775 * We need to use the address from the cm_id in case the
776 * caller specified 0 for the port number.
777 */
778 sa = (struct sockaddr *)&cma_xprt->sc_cm_id->route.addr.src_addr;
779 svc_xprt_set_local(&cma_xprt->sc_xprt, sa, salen);
780
781 return &cma_xprt->sc_xprt;
782
783 err1:
784 rdma_destroy_id(listen_id);
785 err0:
786 kfree(cma_xprt);
787 return ERR_PTR(ret);
788 }
789
790 static struct svc_rdma_fastreg_mr *rdma_alloc_frmr(struct svcxprt_rdma *xprt)
791 {
792 struct ib_mr *mr;
793 struct scatterlist *sg;
794 struct svc_rdma_fastreg_mr *frmr;
795 u32 num_sg;
796
797 frmr = kmalloc(sizeof(*frmr), GFP_KERNEL);
798 if (!frmr)
799 goto err;
800
801 num_sg = min_t(u32, RPCSVC_MAXPAGES, xprt->sc_frmr_pg_list_len);
802 mr = ib_alloc_mr(xprt->sc_pd, IB_MR_TYPE_MEM_REG, num_sg);
803 if (IS_ERR(mr))
804 goto err_free_frmr;
805
806 sg = kcalloc(RPCSVC_MAXPAGES, sizeof(*sg), GFP_KERNEL);
807 if (!sg)
808 goto err_free_mr;
809
810 sg_init_table(sg, RPCSVC_MAXPAGES);
811
812 frmr->mr = mr;
813 frmr->sg = sg;
814 INIT_LIST_HEAD(&frmr->frmr_list);
815 return frmr;
816
817 err_free_mr:
818 ib_dereg_mr(mr);
819 err_free_frmr:
820 kfree(frmr);
821 err:
822 return ERR_PTR(-ENOMEM);
823 }
824
825 static void rdma_dealloc_frmr_q(struct svcxprt_rdma *xprt)
826 {
827 struct svc_rdma_fastreg_mr *frmr;
828
829 while (!list_empty(&xprt->sc_frmr_q)) {
830 frmr = list_entry(xprt->sc_frmr_q.next,
831 struct svc_rdma_fastreg_mr, frmr_list);
832 list_del_init(&frmr->frmr_list);
833 kfree(frmr->sg);
834 ib_dereg_mr(frmr->mr);
835 kfree(frmr);
836 }
837 }
838
839 struct svc_rdma_fastreg_mr *svc_rdma_get_frmr(struct svcxprt_rdma *rdma)
840 {
841 struct svc_rdma_fastreg_mr *frmr = NULL;
842
843 spin_lock_bh(&rdma->sc_frmr_q_lock);
844 if (!list_empty(&rdma->sc_frmr_q)) {
845 frmr = list_entry(rdma->sc_frmr_q.next,
846 struct svc_rdma_fastreg_mr, frmr_list);
847 list_del_init(&frmr->frmr_list);
848 frmr->sg_nents = 0;
849 }
850 spin_unlock_bh(&rdma->sc_frmr_q_lock);
851 if (frmr)
852 return frmr;
853
854 return rdma_alloc_frmr(rdma);
855 }
856
857 void svc_rdma_put_frmr(struct svcxprt_rdma *rdma,
858 struct svc_rdma_fastreg_mr *frmr)
859 {
860 if (frmr) {
861 ib_dma_unmap_sg(rdma->sc_cm_id->device,
862 frmr->sg, frmr->sg_nents, frmr->direction);
863 atomic_dec(&rdma->sc_dma_used);
864 spin_lock_bh(&rdma->sc_frmr_q_lock);
865 WARN_ON_ONCE(!list_empty(&frmr->frmr_list));
866 list_add(&frmr->frmr_list, &rdma->sc_frmr_q);
867 spin_unlock_bh(&rdma->sc_frmr_q_lock);
868 }
869 }
870
871 /*
872 * This is the xpo_recvfrom function for listening endpoints. Its
873 * purpose is to accept incoming connections. The CMA callback handler
874 * has already created a new transport and attached it to the new CMA
875 * ID.
876 *
877 * There is a queue of pending connections hung on the listening
878 * transport. This queue contains the new svc_xprt structure. This
879 * function takes svc_xprt structures off the accept_q and completes
880 * the connection.
881 */
882 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt)
883 {
884 struct svcxprt_rdma *listen_rdma;
885 struct svcxprt_rdma *newxprt = NULL;
886 struct rdma_conn_param conn_param;
887 struct ib_cq_init_attr cq_attr = {};
888 struct ib_qp_init_attr qp_attr;
889 struct ib_device_attr devattr;
890 int uninitialized_var(dma_mr_acc);
891 int need_dma_mr = 0;
892 int ret;
893 int i;
894
895 listen_rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt);
896 clear_bit(XPT_CONN, &xprt->xpt_flags);
897 /* Get the next entry off the accept list */
898 spin_lock_bh(&listen_rdma->sc_lock);
899 if (!list_empty(&listen_rdma->sc_accept_q)) {
900 newxprt = list_entry(listen_rdma->sc_accept_q.next,
901 struct svcxprt_rdma, sc_accept_q);
902 list_del_init(&newxprt->sc_accept_q);
903 }
904 if (!list_empty(&listen_rdma->sc_accept_q))
905 set_bit(XPT_CONN, &listen_rdma->sc_xprt.xpt_flags);
906 spin_unlock_bh(&listen_rdma->sc_lock);
907 if (!newxprt)
908 return NULL;
909
910 dprintk("svcrdma: newxprt from accept queue = %p, cm_id=%p\n",
911 newxprt, newxprt->sc_cm_id);
912
913 ret = ib_query_device(newxprt->sc_cm_id->device, &devattr);
914 if (ret) {
915 dprintk("svcrdma: could not query device attributes on "
916 "device %p, rc=%d\n", newxprt->sc_cm_id->device, ret);
917 goto errout;
918 }
919
920 /* Qualify the transport resource defaults with the
921 * capabilities of this particular device */
922 newxprt->sc_max_sge = min((size_t)devattr.max_sge,
923 (size_t)RPCSVC_MAXPAGES);
924 newxprt->sc_max_sge_rd = min_t(size_t, devattr.max_sge_rd,
925 RPCSVC_MAXPAGES);
926 newxprt->sc_max_requests = min((size_t)devattr.max_qp_wr,
927 (size_t)svcrdma_max_requests);
928 newxprt->sc_sq_depth = RPCRDMA_SQ_DEPTH_MULT * newxprt->sc_max_requests;
929
930 /*
931 * Limit ORD based on client limit, local device limit, and
932 * configured svcrdma limit.
933 */
934 newxprt->sc_ord = min_t(size_t, devattr.max_qp_rd_atom, newxprt->sc_ord);
935 newxprt->sc_ord = min_t(size_t, svcrdma_ord, newxprt->sc_ord);
936
937 newxprt->sc_pd = ib_alloc_pd(newxprt->sc_cm_id->device);
938 if (IS_ERR(newxprt->sc_pd)) {
939 dprintk("svcrdma: error creating PD for connect request\n");
940 goto errout;
941 }
942 cq_attr.cqe = newxprt->sc_sq_depth;
943 newxprt->sc_sq_cq = ib_create_cq(newxprt->sc_cm_id->device,
944 sq_comp_handler,
945 cq_event_handler,
946 newxprt,
947 &cq_attr);
948 if (IS_ERR(newxprt->sc_sq_cq)) {
949 dprintk("svcrdma: error creating SQ CQ for connect request\n");
950 goto errout;
951 }
952 cq_attr.cqe = newxprt->sc_max_requests;
953 newxprt->sc_rq_cq = ib_create_cq(newxprt->sc_cm_id->device,
954 rq_comp_handler,
955 cq_event_handler,
956 newxprt,
957 &cq_attr);
958 if (IS_ERR(newxprt->sc_rq_cq)) {
959 dprintk("svcrdma: error creating RQ CQ for connect request\n");
960 goto errout;
961 }
962
963 memset(&qp_attr, 0, sizeof qp_attr);
964 qp_attr.event_handler = qp_event_handler;
965 qp_attr.qp_context = &newxprt->sc_xprt;
966 qp_attr.cap.max_send_wr = newxprt->sc_sq_depth;
967 qp_attr.cap.max_recv_wr = newxprt->sc_max_requests;
968 qp_attr.cap.max_send_sge = newxprt->sc_max_sge;
969 qp_attr.cap.max_recv_sge = newxprt->sc_max_sge;
970 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
971 qp_attr.qp_type = IB_QPT_RC;
972 qp_attr.send_cq = newxprt->sc_sq_cq;
973 qp_attr.recv_cq = newxprt->sc_rq_cq;
974 dprintk("svcrdma: newxprt->sc_cm_id=%p, newxprt->sc_pd=%p\n"
975 " cm_id->device=%p, sc_pd->device=%p\n"
976 " cap.max_send_wr = %d\n"
977 " cap.max_recv_wr = %d\n"
978 " cap.max_send_sge = %d\n"
979 " cap.max_recv_sge = %d\n",
980 newxprt->sc_cm_id, newxprt->sc_pd,
981 newxprt->sc_cm_id->device, newxprt->sc_pd->device,
982 qp_attr.cap.max_send_wr,
983 qp_attr.cap.max_recv_wr,
984 qp_attr.cap.max_send_sge,
985 qp_attr.cap.max_recv_sge);
986
987 ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd, &qp_attr);
988 if (ret) {
989 dprintk("svcrdma: failed to create QP, ret=%d\n", ret);
990 goto errout;
991 }
992 newxprt->sc_qp = newxprt->sc_cm_id->qp;
993
994 /*
995 * Use the most secure set of MR resources based on the
996 * transport type and available memory management features in
997 * the device. Here's the table implemented below:
998 *
999 * Fast Global DMA Remote WR
1000 * Reg LKEY MR Access
1001 * Sup'd Sup'd Needed Needed
1002 *
1003 * IWARP N N Y Y
1004 * N Y Y Y
1005 * Y N Y N
1006 * Y Y N -
1007 *
1008 * IB N N Y N
1009 * N Y N -
1010 * Y N Y N
1011 * Y Y N -
1012 *
1013 * NB: iWARP requires remote write access for the data sink
1014 * of an RDMA_READ. IB does not.
1015 */
1016 newxprt->sc_reader = rdma_read_chunk_lcl;
1017 if (devattr.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) {
1018 newxprt->sc_frmr_pg_list_len =
1019 devattr.max_fast_reg_page_list_len;
1020 newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_FAST_REG;
1021 newxprt->sc_reader = rdma_read_chunk_frmr;
1022 }
1023
1024 /*
1025 * Determine if a DMA MR is required and if so, what privs are required
1026 */
1027 if (!rdma_protocol_iwarp(newxprt->sc_cm_id->device,
1028 newxprt->sc_cm_id->port_num) &&
1029 !rdma_ib_or_roce(newxprt->sc_cm_id->device,
1030 newxprt->sc_cm_id->port_num))
1031 goto errout;
1032
1033 if (!(newxprt->sc_dev_caps & SVCRDMA_DEVCAP_FAST_REG) ||
1034 !(devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) {
1035 need_dma_mr = 1;
1036 dma_mr_acc = IB_ACCESS_LOCAL_WRITE;
1037 if (rdma_protocol_iwarp(newxprt->sc_cm_id->device,
1038 newxprt->sc_cm_id->port_num) &&
1039 !(newxprt->sc_dev_caps & SVCRDMA_DEVCAP_FAST_REG))
1040 dma_mr_acc |= IB_ACCESS_REMOTE_WRITE;
1041 }
1042
1043 if (rdma_protocol_iwarp(newxprt->sc_cm_id->device,
1044 newxprt->sc_cm_id->port_num))
1045 newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_READ_W_INV;
1046
1047 /* Create the DMA MR if needed, otherwise, use the DMA LKEY */
1048 if (need_dma_mr) {
1049 /* Register all of physical memory */
1050 newxprt->sc_phys_mr =
1051 ib_get_dma_mr(newxprt->sc_pd, dma_mr_acc);
1052 if (IS_ERR(newxprt->sc_phys_mr)) {
1053 dprintk("svcrdma: Failed to create DMA MR ret=%d\n",
1054 ret);
1055 goto errout;
1056 }
1057 newxprt->sc_dma_lkey = newxprt->sc_phys_mr->lkey;
1058 } else
1059 newxprt->sc_dma_lkey =
1060 newxprt->sc_cm_id->device->local_dma_lkey;
1061
1062 /* Post receive buffers */
1063 for (i = 0; i < newxprt->sc_max_requests; i++) {
1064 ret = svc_rdma_post_recv(newxprt);
1065 if (ret) {
1066 dprintk("svcrdma: failure posting receive buffers\n");
1067 goto errout;
1068 }
1069 }
1070
1071 /* Swap out the handler */
1072 newxprt->sc_cm_id->event_handler = rdma_cma_handler;
1073
1074 /*
1075 * Arm the CQs for the SQ and RQ before accepting so we can't
1076 * miss the first message
1077 */
1078 ib_req_notify_cq(newxprt->sc_sq_cq, IB_CQ_NEXT_COMP);
1079 ib_req_notify_cq(newxprt->sc_rq_cq, IB_CQ_NEXT_COMP);
1080
1081 /* Accept Connection */
1082 set_bit(RDMAXPRT_CONN_PENDING, &newxprt->sc_flags);
1083 memset(&conn_param, 0, sizeof conn_param);
1084 conn_param.responder_resources = 0;
1085 conn_param.initiator_depth = newxprt->sc_ord;
1086 ret = rdma_accept(newxprt->sc_cm_id, &conn_param);
1087 if (ret) {
1088 dprintk("svcrdma: failed to accept new connection, ret=%d\n",
1089 ret);
1090 goto errout;
1091 }
1092
1093 dprintk("svcrdma: new connection %p accepted with the following "
1094 "attributes:\n"
1095 " local_ip : %pI4\n"
1096 " local_port : %d\n"
1097 " remote_ip : %pI4\n"
1098 " remote_port : %d\n"
1099 " max_sge : %d\n"
1100 " max_sge_rd : %d\n"
1101 " sq_depth : %d\n"
1102 " max_requests : %d\n"
1103 " ord : %d\n",
1104 newxprt,
1105 &((struct sockaddr_in *)&newxprt->sc_cm_id->
1106 route.addr.src_addr)->sin_addr.s_addr,
1107 ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id->
1108 route.addr.src_addr)->sin_port),
1109 &((struct sockaddr_in *)&newxprt->sc_cm_id->
1110 route.addr.dst_addr)->sin_addr.s_addr,
1111 ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id->
1112 route.addr.dst_addr)->sin_port),
1113 newxprt->sc_max_sge,
1114 newxprt->sc_max_sge_rd,
1115 newxprt->sc_sq_depth,
1116 newxprt->sc_max_requests,
1117 newxprt->sc_ord);
1118
1119 return &newxprt->sc_xprt;
1120
1121 errout:
1122 dprintk("svcrdma: failure accepting new connection rc=%d.\n", ret);
1123 /* Take a reference in case the DTO handler runs */
1124 svc_xprt_get(&newxprt->sc_xprt);
1125 if (newxprt->sc_qp && !IS_ERR(newxprt->sc_qp))
1126 ib_destroy_qp(newxprt->sc_qp);
1127 rdma_destroy_id(newxprt->sc_cm_id);
1128 /* This call to put will destroy the transport */
1129 svc_xprt_put(&newxprt->sc_xprt);
1130 return NULL;
1131 }
1132
1133 static void svc_rdma_release_rqst(struct svc_rqst *rqstp)
1134 {
1135 }
1136
1137 /*
1138 * When connected, an svc_xprt has at least two references:
1139 *
1140 * - A reference held by the cm_id between the ESTABLISHED and
1141 * DISCONNECTED events. If the remote peer disconnected first, this
1142 * reference could be gone.
1143 *
1144 * - A reference held by the svc_recv code that called this function
1145 * as part of close processing.
1146 *
1147 * At a minimum one references should still be held.
1148 */
1149 static void svc_rdma_detach(struct svc_xprt *xprt)
1150 {
1151 struct svcxprt_rdma *rdma =
1152 container_of(xprt, struct svcxprt_rdma, sc_xprt);
1153 dprintk("svc: svc_rdma_detach(%p)\n", xprt);
1154
1155 /* Disconnect and flush posted WQE */
1156 rdma_disconnect(rdma->sc_cm_id);
1157 }
1158
1159 static void __svc_rdma_free(struct work_struct *work)
1160 {
1161 struct svcxprt_rdma *rdma =
1162 container_of(work, struct svcxprt_rdma, sc_work);
1163 dprintk("svcrdma: svc_rdma_free(%p)\n", rdma);
1164
1165 /* We should only be called from kref_put */
1166 if (atomic_read(&rdma->sc_xprt.xpt_ref.refcount) != 0)
1167 pr_err("svcrdma: sc_xprt still in use? (%d)\n",
1168 atomic_read(&rdma->sc_xprt.xpt_ref.refcount));
1169
1170 /*
1171 * Destroy queued, but not processed read completions. Note
1172 * that this cleanup has to be done before destroying the
1173 * cm_id because the device ptr is needed to unmap the dma in
1174 * svc_rdma_put_context.
1175 */
1176 while (!list_empty(&rdma->sc_read_complete_q)) {
1177 struct svc_rdma_op_ctxt *ctxt;
1178 ctxt = list_entry(rdma->sc_read_complete_q.next,
1179 struct svc_rdma_op_ctxt,
1180 dto_q);
1181 list_del_init(&ctxt->dto_q);
1182 svc_rdma_put_context(ctxt, 1);
1183 }
1184
1185 /* Destroy queued, but not processed recv completions */
1186 while (!list_empty(&rdma->sc_rq_dto_q)) {
1187 struct svc_rdma_op_ctxt *ctxt;
1188 ctxt = list_entry(rdma->sc_rq_dto_q.next,
1189 struct svc_rdma_op_ctxt,
1190 dto_q);
1191 list_del_init(&ctxt->dto_q);
1192 svc_rdma_put_context(ctxt, 1);
1193 }
1194
1195 /* Warn if we leaked a resource or under-referenced */
1196 if (atomic_read(&rdma->sc_ctxt_used) != 0)
1197 pr_err("svcrdma: ctxt still in use? (%d)\n",
1198 atomic_read(&rdma->sc_ctxt_used));
1199 if (atomic_read(&rdma->sc_dma_used) != 0)
1200 pr_err("svcrdma: dma still in use? (%d)\n",
1201 atomic_read(&rdma->sc_dma_used));
1202
1203 /* De-allocate fastreg mr */
1204 rdma_dealloc_frmr_q(rdma);
1205
1206 /* Destroy the QP if present (not a listener) */
1207 if (rdma->sc_qp && !IS_ERR(rdma->sc_qp))
1208 ib_destroy_qp(rdma->sc_qp);
1209
1210 if (rdma->sc_sq_cq && !IS_ERR(rdma->sc_sq_cq))
1211 ib_destroy_cq(rdma->sc_sq_cq);
1212
1213 if (rdma->sc_rq_cq && !IS_ERR(rdma->sc_rq_cq))
1214 ib_destroy_cq(rdma->sc_rq_cq);
1215
1216 if (rdma->sc_phys_mr && !IS_ERR(rdma->sc_phys_mr))
1217 ib_dereg_mr(rdma->sc_phys_mr);
1218
1219 if (rdma->sc_pd && !IS_ERR(rdma->sc_pd))
1220 ib_dealloc_pd(rdma->sc_pd);
1221
1222 /* Destroy the CM ID */
1223 rdma_destroy_id(rdma->sc_cm_id);
1224
1225 kfree(rdma);
1226 }
1227
1228 static void svc_rdma_free(struct svc_xprt *xprt)
1229 {
1230 struct svcxprt_rdma *rdma =
1231 container_of(xprt, struct svcxprt_rdma, sc_xprt);
1232 INIT_WORK(&rdma->sc_work, __svc_rdma_free);
1233 queue_work(svc_rdma_wq, &rdma->sc_work);
1234 }
1235
1236 static int svc_rdma_has_wspace(struct svc_xprt *xprt)
1237 {
1238 struct svcxprt_rdma *rdma =
1239 container_of(xprt, struct svcxprt_rdma, sc_xprt);
1240
1241 /*
1242 * If there are already waiters on the SQ,
1243 * return false.
1244 */
1245 if (waitqueue_active(&rdma->sc_send_wait))
1246 return 0;
1247
1248 /* Otherwise return true. */
1249 return 1;
1250 }
1251
1252 static int svc_rdma_secure_port(struct svc_rqst *rqstp)
1253 {
1254 return 1;
1255 }
1256
1257 int svc_rdma_send(struct svcxprt_rdma *xprt, struct ib_send_wr *wr)
1258 {
1259 struct ib_send_wr *bad_wr, *n_wr;
1260 int wr_count;
1261 int i;
1262 int ret;
1263
1264 if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
1265 return -ENOTCONN;
1266
1267 wr_count = 1;
1268 for (n_wr = wr->next; n_wr; n_wr = n_wr->next)
1269 wr_count++;
1270
1271 /* If the SQ is full, wait until an SQ entry is available */
1272 while (1) {
1273 spin_lock_bh(&xprt->sc_lock);
1274 if (xprt->sc_sq_depth < atomic_read(&xprt->sc_sq_count) + wr_count) {
1275 spin_unlock_bh(&xprt->sc_lock);
1276 atomic_inc(&rdma_stat_sq_starve);
1277
1278 /* See if we can opportunistically reap SQ WR to make room */
1279 sq_cq_reap(xprt);
1280
1281 /* Wait until SQ WR available if SQ still full */
1282 wait_event(xprt->sc_send_wait,
1283 atomic_read(&xprt->sc_sq_count) <
1284 xprt->sc_sq_depth);
1285 if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
1286 return -ENOTCONN;
1287 continue;
1288 }
1289 /* Take a transport ref for each WR posted */
1290 for (i = 0; i < wr_count; i++)
1291 svc_xprt_get(&xprt->sc_xprt);
1292
1293 /* Bump used SQ WR count and post */
1294 atomic_add(wr_count, &xprt->sc_sq_count);
1295 ret = ib_post_send(xprt->sc_qp, wr, &bad_wr);
1296 if (ret) {
1297 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
1298 atomic_sub(wr_count, &xprt->sc_sq_count);
1299 for (i = 0; i < wr_count; i ++)
1300 svc_xprt_put(&xprt->sc_xprt);
1301 dprintk("svcrdma: failed to post SQ WR rc=%d, "
1302 "sc_sq_count=%d, sc_sq_depth=%d\n",
1303 ret, atomic_read(&xprt->sc_sq_count),
1304 xprt->sc_sq_depth);
1305 }
1306 spin_unlock_bh(&xprt->sc_lock);
1307 if (ret)
1308 wake_up(&xprt->sc_send_wait);
1309 break;
1310 }
1311 return ret;
1312 }
1313
1314 void svc_rdma_send_error(struct svcxprt_rdma *xprt, struct rpcrdma_msg *rmsgp,
1315 enum rpcrdma_errcode err)
1316 {
1317 struct ib_send_wr err_wr;
1318 struct page *p;
1319 struct svc_rdma_op_ctxt *ctxt;
1320 __be32 *va;
1321 int length;
1322 int ret;
1323
1324 p = alloc_page(GFP_KERNEL | __GFP_NOFAIL);
1325 va = page_address(p);
1326
1327 /* XDR encode error */
1328 length = svc_rdma_xdr_encode_error(xprt, rmsgp, err, va);
1329
1330 ctxt = svc_rdma_get_context(xprt);
1331 ctxt->direction = DMA_FROM_DEVICE;
1332 ctxt->count = 1;
1333 ctxt->pages[0] = p;
1334
1335 /* Prepare SGE for local address */
1336 ctxt->sge[0].addr = ib_dma_map_page(xprt->sc_cm_id->device,
1337 p, 0, length, DMA_FROM_DEVICE);
1338 if (ib_dma_mapping_error(xprt->sc_cm_id->device, ctxt->sge[0].addr)) {
1339 put_page(p);
1340 svc_rdma_put_context(ctxt, 1);
1341 return;
1342 }
1343 atomic_inc(&xprt->sc_dma_used);
1344 ctxt->sge[0].lkey = xprt->sc_dma_lkey;
1345 ctxt->sge[0].length = length;
1346
1347 /* Prepare SEND WR */
1348 memset(&err_wr, 0, sizeof err_wr);
1349 ctxt->wr_op = IB_WR_SEND;
1350 err_wr.wr_id = (unsigned long)ctxt;
1351 err_wr.sg_list = ctxt->sge;
1352 err_wr.num_sge = 1;
1353 err_wr.opcode = IB_WR_SEND;
1354 err_wr.send_flags = IB_SEND_SIGNALED;
1355
1356 /* Post It */
1357 ret = svc_rdma_send(xprt, &err_wr);
1358 if (ret) {
1359 dprintk("svcrdma: Error %d posting send for protocol error\n",
1360 ret);
1361 svc_rdma_unmap_dma(ctxt);
1362 svc_rdma_put_context(ctxt, 1);
1363 }
1364 }
This page took 0.065904 seconds and 6 git commands to generate.