Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[deliverable/linux.git] / net / switchdev / switchdev.c
1 /*
2 * net/switchdev/switchdev.c - Switch device API
3 * Copyright (c) 2014-2015 Jiri Pirko <jiri@resnulli.us>
4 * Copyright (c) 2014-2015 Scott Feldman <sfeldma@gmail.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/init.h>
15 #include <linux/mutex.h>
16 #include <linux/notifier.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/if_bridge.h>
20 #include <linux/list.h>
21 #include <linux/workqueue.h>
22 #include <linux/if_vlan.h>
23 #include <net/ip_fib.h>
24 #include <net/switchdev.h>
25
26 /**
27 * switchdev_trans_item_enqueue - Enqueue data item to transaction queue
28 *
29 * @trans: transaction
30 * @data: pointer to data being queued
31 * @destructor: data destructor
32 * @tritem: transaction item being queued
33 *
34 * Enqeueue data item to transaction queue. tritem is typically placed in
35 * cointainter pointed at by data pointer. Destructor is called on
36 * transaction abort and after successful commit phase in case
37 * the caller did not dequeue the item before.
38 */
39 void switchdev_trans_item_enqueue(struct switchdev_trans *trans,
40 void *data, void (*destructor)(void const *),
41 struct switchdev_trans_item *tritem)
42 {
43 tritem->data = data;
44 tritem->destructor = destructor;
45 list_add_tail(&tritem->list, &trans->item_list);
46 }
47 EXPORT_SYMBOL_GPL(switchdev_trans_item_enqueue);
48
49 static struct switchdev_trans_item *
50 __switchdev_trans_item_dequeue(struct switchdev_trans *trans)
51 {
52 struct switchdev_trans_item *tritem;
53
54 if (list_empty(&trans->item_list))
55 return NULL;
56 tritem = list_first_entry(&trans->item_list,
57 struct switchdev_trans_item, list);
58 list_del(&tritem->list);
59 return tritem;
60 }
61
62 /**
63 * switchdev_trans_item_dequeue - Dequeue data item from transaction queue
64 *
65 * @trans: transaction
66 */
67 void *switchdev_trans_item_dequeue(struct switchdev_trans *trans)
68 {
69 struct switchdev_trans_item *tritem;
70
71 tritem = __switchdev_trans_item_dequeue(trans);
72 BUG_ON(!tritem);
73 return tritem->data;
74 }
75 EXPORT_SYMBOL_GPL(switchdev_trans_item_dequeue);
76
77 static void switchdev_trans_init(struct switchdev_trans *trans)
78 {
79 INIT_LIST_HEAD(&trans->item_list);
80 }
81
82 static void switchdev_trans_items_destroy(struct switchdev_trans *trans)
83 {
84 struct switchdev_trans_item *tritem;
85
86 while ((tritem = __switchdev_trans_item_dequeue(trans)))
87 tritem->destructor(tritem->data);
88 }
89
90 static void switchdev_trans_items_warn_destroy(struct net_device *dev,
91 struct switchdev_trans *trans)
92 {
93 WARN(!list_empty(&trans->item_list), "%s: transaction item queue is not empty.\n",
94 dev->name);
95 switchdev_trans_items_destroy(trans);
96 }
97
98 static LIST_HEAD(deferred);
99 static DEFINE_SPINLOCK(deferred_lock);
100
101 typedef void switchdev_deferred_func_t(struct net_device *dev,
102 const void *data);
103
104 struct switchdev_deferred_item {
105 struct list_head list;
106 struct net_device *dev;
107 switchdev_deferred_func_t *func;
108 unsigned long data[0];
109 };
110
111 static struct switchdev_deferred_item *switchdev_deferred_dequeue(void)
112 {
113 struct switchdev_deferred_item *dfitem;
114
115 spin_lock_bh(&deferred_lock);
116 if (list_empty(&deferred)) {
117 dfitem = NULL;
118 goto unlock;
119 }
120 dfitem = list_first_entry(&deferred,
121 struct switchdev_deferred_item, list);
122 list_del(&dfitem->list);
123 unlock:
124 spin_unlock_bh(&deferred_lock);
125 return dfitem;
126 }
127
128 /**
129 * switchdev_deferred_process - Process ops in deferred queue
130 *
131 * Called to flush the ops currently queued in deferred ops queue.
132 * rtnl_lock must be held.
133 */
134 void switchdev_deferred_process(void)
135 {
136 struct switchdev_deferred_item *dfitem;
137
138 ASSERT_RTNL();
139
140 while ((dfitem = switchdev_deferred_dequeue())) {
141 dfitem->func(dfitem->dev, dfitem->data);
142 dev_put(dfitem->dev);
143 kfree(dfitem);
144 }
145 }
146 EXPORT_SYMBOL_GPL(switchdev_deferred_process);
147
148 static void switchdev_deferred_process_work(struct work_struct *work)
149 {
150 rtnl_lock();
151 switchdev_deferred_process();
152 rtnl_unlock();
153 }
154
155 static DECLARE_WORK(deferred_process_work, switchdev_deferred_process_work);
156
157 static int switchdev_deferred_enqueue(struct net_device *dev,
158 const void *data, size_t data_len,
159 switchdev_deferred_func_t *func)
160 {
161 struct switchdev_deferred_item *dfitem;
162
163 dfitem = kmalloc(sizeof(*dfitem) + data_len, GFP_ATOMIC);
164 if (!dfitem)
165 return -ENOMEM;
166 dfitem->dev = dev;
167 dfitem->func = func;
168 memcpy(dfitem->data, data, data_len);
169 dev_hold(dev);
170 spin_lock_bh(&deferred_lock);
171 list_add_tail(&dfitem->list, &deferred);
172 spin_unlock_bh(&deferred_lock);
173 schedule_work(&deferred_process_work);
174 return 0;
175 }
176
177 /**
178 * switchdev_port_attr_get - Get port attribute
179 *
180 * @dev: port device
181 * @attr: attribute to get
182 */
183 int switchdev_port_attr_get(struct net_device *dev, struct switchdev_attr *attr)
184 {
185 const struct switchdev_ops *ops = dev->switchdev_ops;
186 struct net_device *lower_dev;
187 struct list_head *iter;
188 struct switchdev_attr first = {
189 .id = SWITCHDEV_ATTR_ID_UNDEFINED
190 };
191 int err = -EOPNOTSUPP;
192
193 if (ops && ops->switchdev_port_attr_get)
194 return ops->switchdev_port_attr_get(dev, attr);
195
196 if (attr->flags & SWITCHDEV_F_NO_RECURSE)
197 return err;
198
199 /* Switch device port(s) may be stacked under
200 * bond/team/vlan dev, so recurse down to get attr on
201 * each port. Return -ENODATA if attr values don't
202 * compare across ports.
203 */
204
205 netdev_for_each_lower_dev(dev, lower_dev, iter) {
206 err = switchdev_port_attr_get(lower_dev, attr);
207 if (err)
208 break;
209 if (first.id == SWITCHDEV_ATTR_ID_UNDEFINED)
210 first = *attr;
211 else if (memcmp(&first, attr, sizeof(*attr)))
212 return -ENODATA;
213 }
214
215 return err;
216 }
217 EXPORT_SYMBOL_GPL(switchdev_port_attr_get);
218
219 static int __switchdev_port_attr_set(struct net_device *dev,
220 const struct switchdev_attr *attr,
221 struct switchdev_trans *trans)
222 {
223 const struct switchdev_ops *ops = dev->switchdev_ops;
224 struct net_device *lower_dev;
225 struct list_head *iter;
226 int err = -EOPNOTSUPP;
227
228 if (ops && ops->switchdev_port_attr_set) {
229 err = ops->switchdev_port_attr_set(dev, attr, trans);
230 goto done;
231 }
232
233 if (attr->flags & SWITCHDEV_F_NO_RECURSE)
234 goto done;
235
236 /* Switch device port(s) may be stacked under
237 * bond/team/vlan dev, so recurse down to set attr on
238 * each port.
239 */
240
241 netdev_for_each_lower_dev(dev, lower_dev, iter) {
242 err = __switchdev_port_attr_set(lower_dev, attr, trans);
243 if (err)
244 break;
245 }
246
247 done:
248 if (err == -EOPNOTSUPP && attr->flags & SWITCHDEV_F_SKIP_EOPNOTSUPP)
249 err = 0;
250
251 return err;
252 }
253
254 static int switchdev_port_attr_set_now(struct net_device *dev,
255 const struct switchdev_attr *attr)
256 {
257 struct switchdev_trans trans;
258 int err;
259
260 switchdev_trans_init(&trans);
261
262 /* Phase I: prepare for attr set. Driver/device should fail
263 * here if there are going to be issues in the commit phase,
264 * such as lack of resources or support. The driver/device
265 * should reserve resources needed for the commit phase here,
266 * but should not commit the attr.
267 */
268
269 trans.ph_prepare = true;
270 err = __switchdev_port_attr_set(dev, attr, &trans);
271 if (err) {
272 /* Prepare phase failed: abort the transaction. Any
273 * resources reserved in the prepare phase are
274 * released.
275 */
276
277 if (err != -EOPNOTSUPP)
278 switchdev_trans_items_destroy(&trans);
279
280 return err;
281 }
282
283 /* Phase II: commit attr set. This cannot fail as a fault
284 * of driver/device. If it does, it's a bug in the driver/device
285 * because the driver said everythings was OK in phase I.
286 */
287
288 trans.ph_prepare = false;
289 err = __switchdev_port_attr_set(dev, attr, &trans);
290 WARN(err, "%s: Commit of attribute (id=%d) failed.\n",
291 dev->name, attr->id);
292 switchdev_trans_items_warn_destroy(dev, &trans);
293
294 return err;
295 }
296
297 static void switchdev_port_attr_set_deferred(struct net_device *dev,
298 const void *data)
299 {
300 const struct switchdev_attr *attr = data;
301 int err;
302
303 err = switchdev_port_attr_set_now(dev, attr);
304 if (err && err != -EOPNOTSUPP)
305 netdev_err(dev, "failed (err=%d) to set attribute (id=%d)\n",
306 err, attr->id);
307 }
308
309 static int switchdev_port_attr_set_defer(struct net_device *dev,
310 const struct switchdev_attr *attr)
311 {
312 return switchdev_deferred_enqueue(dev, attr, sizeof(*attr),
313 switchdev_port_attr_set_deferred);
314 }
315
316 /**
317 * switchdev_port_attr_set - Set port attribute
318 *
319 * @dev: port device
320 * @attr: attribute to set
321 *
322 * Use a 2-phase prepare-commit transaction model to ensure
323 * system is not left in a partially updated state due to
324 * failure from driver/device.
325 *
326 * rtnl_lock must be held and must not be in atomic section,
327 * in case SWITCHDEV_F_DEFER flag is not set.
328 */
329 int switchdev_port_attr_set(struct net_device *dev,
330 const struct switchdev_attr *attr)
331 {
332 if (attr->flags & SWITCHDEV_F_DEFER)
333 return switchdev_port_attr_set_defer(dev, attr);
334 ASSERT_RTNL();
335 return switchdev_port_attr_set_now(dev, attr);
336 }
337 EXPORT_SYMBOL_GPL(switchdev_port_attr_set);
338
339 static size_t switchdev_obj_size(const struct switchdev_obj *obj)
340 {
341 switch (obj->id) {
342 case SWITCHDEV_OBJ_ID_PORT_VLAN:
343 return sizeof(struct switchdev_obj_port_vlan);
344 case SWITCHDEV_OBJ_ID_IPV4_FIB:
345 return sizeof(struct switchdev_obj_ipv4_fib);
346 case SWITCHDEV_OBJ_ID_PORT_FDB:
347 return sizeof(struct switchdev_obj_port_fdb);
348 case SWITCHDEV_OBJ_ID_PORT_MDB:
349 return sizeof(struct switchdev_obj_port_mdb);
350 default:
351 BUG();
352 }
353 return 0;
354 }
355
356 static int __switchdev_port_obj_add(struct net_device *dev,
357 const struct switchdev_obj *obj,
358 struct switchdev_trans *trans)
359 {
360 const struct switchdev_ops *ops = dev->switchdev_ops;
361 struct net_device *lower_dev;
362 struct list_head *iter;
363 int err = -EOPNOTSUPP;
364
365 if (ops && ops->switchdev_port_obj_add)
366 return ops->switchdev_port_obj_add(dev, obj, trans);
367
368 /* Switch device port(s) may be stacked under
369 * bond/team/vlan dev, so recurse down to add object on
370 * each port.
371 */
372
373 netdev_for_each_lower_dev(dev, lower_dev, iter) {
374 err = __switchdev_port_obj_add(lower_dev, obj, trans);
375 if (err)
376 break;
377 }
378
379 return err;
380 }
381
382 static int switchdev_port_obj_add_now(struct net_device *dev,
383 const struct switchdev_obj *obj)
384 {
385 struct switchdev_trans trans;
386 int err;
387
388 ASSERT_RTNL();
389
390 switchdev_trans_init(&trans);
391
392 /* Phase I: prepare for obj add. Driver/device should fail
393 * here if there are going to be issues in the commit phase,
394 * such as lack of resources or support. The driver/device
395 * should reserve resources needed for the commit phase here,
396 * but should not commit the obj.
397 */
398
399 trans.ph_prepare = true;
400 err = __switchdev_port_obj_add(dev, obj, &trans);
401 if (err) {
402 /* Prepare phase failed: abort the transaction. Any
403 * resources reserved in the prepare phase are
404 * released.
405 */
406
407 if (err != -EOPNOTSUPP)
408 switchdev_trans_items_destroy(&trans);
409
410 return err;
411 }
412
413 /* Phase II: commit obj add. This cannot fail as a fault
414 * of driver/device. If it does, it's a bug in the driver/device
415 * because the driver said everythings was OK in phase I.
416 */
417
418 trans.ph_prepare = false;
419 err = __switchdev_port_obj_add(dev, obj, &trans);
420 WARN(err, "%s: Commit of object (id=%d) failed.\n", dev->name, obj->id);
421 switchdev_trans_items_warn_destroy(dev, &trans);
422
423 return err;
424 }
425
426 static void switchdev_port_obj_add_deferred(struct net_device *dev,
427 const void *data)
428 {
429 const struct switchdev_obj *obj = data;
430 int err;
431
432 err = switchdev_port_obj_add_now(dev, obj);
433 if (err && err != -EOPNOTSUPP)
434 netdev_err(dev, "failed (err=%d) to add object (id=%d)\n",
435 err, obj->id);
436 }
437
438 static int switchdev_port_obj_add_defer(struct net_device *dev,
439 const struct switchdev_obj *obj)
440 {
441 return switchdev_deferred_enqueue(dev, obj, switchdev_obj_size(obj),
442 switchdev_port_obj_add_deferred);
443 }
444
445 /**
446 * switchdev_port_obj_add - Add port object
447 *
448 * @dev: port device
449 * @id: object ID
450 * @obj: object to add
451 *
452 * Use a 2-phase prepare-commit transaction model to ensure
453 * system is not left in a partially updated state due to
454 * failure from driver/device.
455 *
456 * rtnl_lock must be held and must not be in atomic section,
457 * in case SWITCHDEV_F_DEFER flag is not set.
458 */
459 int switchdev_port_obj_add(struct net_device *dev,
460 const struct switchdev_obj *obj)
461 {
462 if (obj->flags & SWITCHDEV_F_DEFER)
463 return switchdev_port_obj_add_defer(dev, obj);
464 ASSERT_RTNL();
465 return switchdev_port_obj_add_now(dev, obj);
466 }
467 EXPORT_SYMBOL_GPL(switchdev_port_obj_add);
468
469 static int switchdev_port_obj_del_now(struct net_device *dev,
470 const struct switchdev_obj *obj)
471 {
472 const struct switchdev_ops *ops = dev->switchdev_ops;
473 struct net_device *lower_dev;
474 struct list_head *iter;
475 int err = -EOPNOTSUPP;
476
477 if (ops && ops->switchdev_port_obj_del)
478 return ops->switchdev_port_obj_del(dev, obj);
479
480 /* Switch device port(s) may be stacked under
481 * bond/team/vlan dev, so recurse down to delete object on
482 * each port.
483 */
484
485 netdev_for_each_lower_dev(dev, lower_dev, iter) {
486 err = switchdev_port_obj_del_now(lower_dev, obj);
487 if (err)
488 break;
489 }
490
491 return err;
492 }
493
494 static void switchdev_port_obj_del_deferred(struct net_device *dev,
495 const void *data)
496 {
497 const struct switchdev_obj *obj = data;
498 int err;
499
500 err = switchdev_port_obj_del_now(dev, obj);
501 if (err && err != -EOPNOTSUPP)
502 netdev_err(dev, "failed (err=%d) to del object (id=%d)\n",
503 err, obj->id);
504 }
505
506 static int switchdev_port_obj_del_defer(struct net_device *dev,
507 const struct switchdev_obj *obj)
508 {
509 return switchdev_deferred_enqueue(dev, obj, switchdev_obj_size(obj),
510 switchdev_port_obj_del_deferred);
511 }
512
513 /**
514 * switchdev_port_obj_del - Delete port object
515 *
516 * @dev: port device
517 * @id: object ID
518 * @obj: object to delete
519 *
520 * rtnl_lock must be held and must not be in atomic section,
521 * in case SWITCHDEV_F_DEFER flag is not set.
522 */
523 int switchdev_port_obj_del(struct net_device *dev,
524 const struct switchdev_obj *obj)
525 {
526 if (obj->flags & SWITCHDEV_F_DEFER)
527 return switchdev_port_obj_del_defer(dev, obj);
528 ASSERT_RTNL();
529 return switchdev_port_obj_del_now(dev, obj);
530 }
531 EXPORT_SYMBOL_GPL(switchdev_port_obj_del);
532
533 /**
534 * switchdev_port_obj_dump - Dump port objects
535 *
536 * @dev: port device
537 * @id: object ID
538 * @obj: object to dump
539 * @cb: function to call with a filled object
540 *
541 * rtnl_lock must be held.
542 */
543 int switchdev_port_obj_dump(struct net_device *dev, struct switchdev_obj *obj,
544 switchdev_obj_dump_cb_t *cb)
545 {
546 const struct switchdev_ops *ops = dev->switchdev_ops;
547 struct net_device *lower_dev;
548 struct list_head *iter;
549 int err = -EOPNOTSUPP;
550
551 ASSERT_RTNL();
552
553 if (ops && ops->switchdev_port_obj_dump)
554 return ops->switchdev_port_obj_dump(dev, obj, cb);
555
556 /* Switch device port(s) may be stacked under
557 * bond/team/vlan dev, so recurse down to dump objects on
558 * first port at bottom of stack.
559 */
560
561 netdev_for_each_lower_dev(dev, lower_dev, iter) {
562 err = switchdev_port_obj_dump(lower_dev, obj, cb);
563 break;
564 }
565
566 return err;
567 }
568 EXPORT_SYMBOL_GPL(switchdev_port_obj_dump);
569
570 static DEFINE_MUTEX(switchdev_mutex);
571 static RAW_NOTIFIER_HEAD(switchdev_notif_chain);
572
573 /**
574 * register_switchdev_notifier - Register notifier
575 * @nb: notifier_block
576 *
577 * Register switch device notifier. This should be used by code
578 * which needs to monitor events happening in particular device.
579 * Return values are same as for atomic_notifier_chain_register().
580 */
581 int register_switchdev_notifier(struct notifier_block *nb)
582 {
583 int err;
584
585 mutex_lock(&switchdev_mutex);
586 err = raw_notifier_chain_register(&switchdev_notif_chain, nb);
587 mutex_unlock(&switchdev_mutex);
588 return err;
589 }
590 EXPORT_SYMBOL_GPL(register_switchdev_notifier);
591
592 /**
593 * unregister_switchdev_notifier - Unregister notifier
594 * @nb: notifier_block
595 *
596 * Unregister switch device notifier.
597 * Return values are same as for atomic_notifier_chain_unregister().
598 */
599 int unregister_switchdev_notifier(struct notifier_block *nb)
600 {
601 int err;
602
603 mutex_lock(&switchdev_mutex);
604 err = raw_notifier_chain_unregister(&switchdev_notif_chain, nb);
605 mutex_unlock(&switchdev_mutex);
606 return err;
607 }
608 EXPORT_SYMBOL_GPL(unregister_switchdev_notifier);
609
610 /**
611 * call_switchdev_notifiers - Call notifiers
612 * @val: value passed unmodified to notifier function
613 * @dev: port device
614 * @info: notifier information data
615 *
616 * Call all network notifier blocks. This should be called by driver
617 * when it needs to propagate hardware event.
618 * Return values are same as for atomic_notifier_call_chain().
619 */
620 int call_switchdev_notifiers(unsigned long val, struct net_device *dev,
621 struct switchdev_notifier_info *info)
622 {
623 int err;
624
625 info->dev = dev;
626 mutex_lock(&switchdev_mutex);
627 err = raw_notifier_call_chain(&switchdev_notif_chain, val, info);
628 mutex_unlock(&switchdev_mutex);
629 return err;
630 }
631 EXPORT_SYMBOL_GPL(call_switchdev_notifiers);
632
633 struct switchdev_vlan_dump {
634 struct switchdev_obj_port_vlan vlan;
635 struct sk_buff *skb;
636 u32 filter_mask;
637 u16 flags;
638 u16 begin;
639 u16 end;
640 };
641
642 static int switchdev_port_vlan_dump_put(struct switchdev_vlan_dump *dump)
643 {
644 struct bridge_vlan_info vinfo;
645
646 vinfo.flags = dump->flags;
647
648 if (dump->begin == 0 && dump->end == 0) {
649 return 0;
650 } else if (dump->begin == dump->end) {
651 vinfo.vid = dump->begin;
652 if (nla_put(dump->skb, IFLA_BRIDGE_VLAN_INFO,
653 sizeof(vinfo), &vinfo))
654 return -EMSGSIZE;
655 } else {
656 vinfo.vid = dump->begin;
657 vinfo.flags |= BRIDGE_VLAN_INFO_RANGE_BEGIN;
658 if (nla_put(dump->skb, IFLA_BRIDGE_VLAN_INFO,
659 sizeof(vinfo), &vinfo))
660 return -EMSGSIZE;
661 vinfo.vid = dump->end;
662 vinfo.flags &= ~BRIDGE_VLAN_INFO_RANGE_BEGIN;
663 vinfo.flags |= BRIDGE_VLAN_INFO_RANGE_END;
664 if (nla_put(dump->skb, IFLA_BRIDGE_VLAN_INFO,
665 sizeof(vinfo), &vinfo))
666 return -EMSGSIZE;
667 }
668
669 return 0;
670 }
671
672 static int switchdev_port_vlan_dump_cb(struct switchdev_obj *obj)
673 {
674 struct switchdev_obj_port_vlan *vlan = SWITCHDEV_OBJ_PORT_VLAN(obj);
675 struct switchdev_vlan_dump *dump =
676 container_of(vlan, struct switchdev_vlan_dump, vlan);
677 int err = 0;
678
679 if (vlan->vid_begin > vlan->vid_end)
680 return -EINVAL;
681
682 if (dump->filter_mask & RTEXT_FILTER_BRVLAN) {
683 dump->flags = vlan->flags;
684 for (dump->begin = dump->end = vlan->vid_begin;
685 dump->begin <= vlan->vid_end;
686 dump->begin++, dump->end++) {
687 err = switchdev_port_vlan_dump_put(dump);
688 if (err)
689 return err;
690 }
691 } else if (dump->filter_mask & RTEXT_FILTER_BRVLAN_COMPRESSED) {
692 if (dump->begin > vlan->vid_begin &&
693 dump->begin >= vlan->vid_end) {
694 if ((dump->begin - 1) == vlan->vid_end &&
695 dump->flags == vlan->flags) {
696 /* prepend */
697 dump->begin = vlan->vid_begin;
698 } else {
699 err = switchdev_port_vlan_dump_put(dump);
700 dump->flags = vlan->flags;
701 dump->begin = vlan->vid_begin;
702 dump->end = vlan->vid_end;
703 }
704 } else if (dump->end <= vlan->vid_begin &&
705 dump->end < vlan->vid_end) {
706 if ((dump->end + 1) == vlan->vid_begin &&
707 dump->flags == vlan->flags) {
708 /* append */
709 dump->end = vlan->vid_end;
710 } else {
711 err = switchdev_port_vlan_dump_put(dump);
712 dump->flags = vlan->flags;
713 dump->begin = vlan->vid_begin;
714 dump->end = vlan->vid_end;
715 }
716 } else {
717 err = -EINVAL;
718 }
719 }
720
721 return err;
722 }
723
724 static int switchdev_port_vlan_fill(struct sk_buff *skb, struct net_device *dev,
725 u32 filter_mask)
726 {
727 struct switchdev_vlan_dump dump = {
728 .vlan.obj.orig_dev = dev,
729 .vlan.obj.id = SWITCHDEV_OBJ_ID_PORT_VLAN,
730 .skb = skb,
731 .filter_mask = filter_mask,
732 };
733 int err = 0;
734
735 if ((filter_mask & RTEXT_FILTER_BRVLAN) ||
736 (filter_mask & RTEXT_FILTER_BRVLAN_COMPRESSED)) {
737 err = switchdev_port_obj_dump(dev, &dump.vlan.obj,
738 switchdev_port_vlan_dump_cb);
739 if (err)
740 goto err_out;
741 if (filter_mask & RTEXT_FILTER_BRVLAN_COMPRESSED)
742 /* last one */
743 err = switchdev_port_vlan_dump_put(&dump);
744 }
745
746 err_out:
747 return err == -EOPNOTSUPP ? 0 : err;
748 }
749
750 /**
751 * switchdev_port_bridge_getlink - Get bridge port attributes
752 *
753 * @dev: port device
754 *
755 * Called for SELF on rtnl_bridge_getlink to get bridge port
756 * attributes.
757 */
758 int switchdev_port_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
759 struct net_device *dev, u32 filter_mask,
760 int nlflags)
761 {
762 struct switchdev_attr attr = {
763 .orig_dev = dev,
764 .id = SWITCHDEV_ATTR_ID_PORT_BRIDGE_FLAGS,
765 };
766 u16 mode = BRIDGE_MODE_UNDEF;
767 u32 mask = BR_LEARNING | BR_LEARNING_SYNC | BR_FLOOD;
768 int err;
769
770 err = switchdev_port_attr_get(dev, &attr);
771 if (err && err != -EOPNOTSUPP)
772 return err;
773
774 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode,
775 attr.u.brport_flags, mask, nlflags,
776 filter_mask, switchdev_port_vlan_fill);
777 }
778 EXPORT_SYMBOL_GPL(switchdev_port_bridge_getlink);
779
780 static int switchdev_port_br_setflag(struct net_device *dev,
781 struct nlattr *nlattr,
782 unsigned long brport_flag)
783 {
784 struct switchdev_attr attr = {
785 .orig_dev = dev,
786 .id = SWITCHDEV_ATTR_ID_PORT_BRIDGE_FLAGS,
787 };
788 u8 flag = nla_get_u8(nlattr);
789 int err;
790
791 err = switchdev_port_attr_get(dev, &attr);
792 if (err)
793 return err;
794
795 if (flag)
796 attr.u.brport_flags |= brport_flag;
797 else
798 attr.u.brport_flags &= ~brport_flag;
799
800 return switchdev_port_attr_set(dev, &attr);
801 }
802
803 static const struct nla_policy
804 switchdev_port_bridge_policy[IFLA_BRPORT_MAX + 1] = {
805 [IFLA_BRPORT_STATE] = { .type = NLA_U8 },
806 [IFLA_BRPORT_COST] = { .type = NLA_U32 },
807 [IFLA_BRPORT_PRIORITY] = { .type = NLA_U16 },
808 [IFLA_BRPORT_MODE] = { .type = NLA_U8 },
809 [IFLA_BRPORT_GUARD] = { .type = NLA_U8 },
810 [IFLA_BRPORT_PROTECT] = { .type = NLA_U8 },
811 [IFLA_BRPORT_FAST_LEAVE] = { .type = NLA_U8 },
812 [IFLA_BRPORT_LEARNING] = { .type = NLA_U8 },
813 [IFLA_BRPORT_LEARNING_SYNC] = { .type = NLA_U8 },
814 [IFLA_BRPORT_UNICAST_FLOOD] = { .type = NLA_U8 },
815 };
816
817 static int switchdev_port_br_setlink_protinfo(struct net_device *dev,
818 struct nlattr *protinfo)
819 {
820 struct nlattr *attr;
821 int rem;
822 int err;
823
824 err = nla_validate_nested(protinfo, IFLA_BRPORT_MAX,
825 switchdev_port_bridge_policy);
826 if (err)
827 return err;
828
829 nla_for_each_nested(attr, protinfo, rem) {
830 switch (nla_type(attr)) {
831 case IFLA_BRPORT_LEARNING:
832 err = switchdev_port_br_setflag(dev, attr,
833 BR_LEARNING);
834 break;
835 case IFLA_BRPORT_LEARNING_SYNC:
836 err = switchdev_port_br_setflag(dev, attr,
837 BR_LEARNING_SYNC);
838 break;
839 case IFLA_BRPORT_UNICAST_FLOOD:
840 err = switchdev_port_br_setflag(dev, attr, BR_FLOOD);
841 break;
842 default:
843 err = -EOPNOTSUPP;
844 break;
845 }
846 if (err)
847 return err;
848 }
849
850 return 0;
851 }
852
853 static int switchdev_port_br_afspec(struct net_device *dev,
854 struct nlattr *afspec,
855 int (*f)(struct net_device *dev,
856 const struct switchdev_obj *obj))
857 {
858 struct nlattr *attr;
859 struct bridge_vlan_info *vinfo;
860 struct switchdev_obj_port_vlan vlan = {
861 .obj.orig_dev = dev,
862 .obj.id = SWITCHDEV_OBJ_ID_PORT_VLAN,
863 };
864 int rem;
865 int err;
866
867 nla_for_each_nested(attr, afspec, rem) {
868 if (nla_type(attr) != IFLA_BRIDGE_VLAN_INFO)
869 continue;
870 if (nla_len(attr) != sizeof(struct bridge_vlan_info))
871 return -EINVAL;
872 vinfo = nla_data(attr);
873 if (!vinfo->vid || vinfo->vid >= VLAN_VID_MASK)
874 return -EINVAL;
875 vlan.flags = vinfo->flags;
876 if (vinfo->flags & BRIDGE_VLAN_INFO_RANGE_BEGIN) {
877 if (vlan.vid_begin)
878 return -EINVAL;
879 vlan.vid_begin = vinfo->vid;
880 /* don't allow range of pvids */
881 if (vlan.flags & BRIDGE_VLAN_INFO_PVID)
882 return -EINVAL;
883 } else if (vinfo->flags & BRIDGE_VLAN_INFO_RANGE_END) {
884 if (!vlan.vid_begin)
885 return -EINVAL;
886 vlan.vid_end = vinfo->vid;
887 if (vlan.vid_end <= vlan.vid_begin)
888 return -EINVAL;
889 err = f(dev, &vlan.obj);
890 if (err)
891 return err;
892 vlan.vid_begin = 0;
893 } else {
894 if (vlan.vid_begin)
895 return -EINVAL;
896 vlan.vid_begin = vinfo->vid;
897 vlan.vid_end = vinfo->vid;
898 err = f(dev, &vlan.obj);
899 if (err)
900 return err;
901 vlan.vid_begin = 0;
902 }
903 }
904
905 return 0;
906 }
907
908 /**
909 * switchdev_port_bridge_setlink - Set bridge port attributes
910 *
911 * @dev: port device
912 * @nlh: netlink header
913 * @flags: netlink flags
914 *
915 * Called for SELF on rtnl_bridge_setlink to set bridge port
916 * attributes.
917 */
918 int switchdev_port_bridge_setlink(struct net_device *dev,
919 struct nlmsghdr *nlh, u16 flags)
920 {
921 struct nlattr *protinfo;
922 struct nlattr *afspec;
923 int err = 0;
924
925 protinfo = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg),
926 IFLA_PROTINFO);
927 if (protinfo) {
928 err = switchdev_port_br_setlink_protinfo(dev, protinfo);
929 if (err)
930 return err;
931 }
932
933 afspec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg),
934 IFLA_AF_SPEC);
935 if (afspec)
936 err = switchdev_port_br_afspec(dev, afspec,
937 switchdev_port_obj_add);
938
939 return err;
940 }
941 EXPORT_SYMBOL_GPL(switchdev_port_bridge_setlink);
942
943 /**
944 * switchdev_port_bridge_dellink - Set bridge port attributes
945 *
946 * @dev: port device
947 * @nlh: netlink header
948 * @flags: netlink flags
949 *
950 * Called for SELF on rtnl_bridge_dellink to set bridge port
951 * attributes.
952 */
953 int switchdev_port_bridge_dellink(struct net_device *dev,
954 struct nlmsghdr *nlh, u16 flags)
955 {
956 struct nlattr *afspec;
957
958 afspec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg),
959 IFLA_AF_SPEC);
960 if (afspec)
961 return switchdev_port_br_afspec(dev, afspec,
962 switchdev_port_obj_del);
963
964 return 0;
965 }
966 EXPORT_SYMBOL_GPL(switchdev_port_bridge_dellink);
967
968 /**
969 * switchdev_port_fdb_add - Add FDB (MAC/VLAN) entry to port
970 *
971 * @ndmsg: netlink hdr
972 * @nlattr: netlink attributes
973 * @dev: port device
974 * @addr: MAC address to add
975 * @vid: VLAN to add
976 *
977 * Add FDB entry to switch device.
978 */
979 int switchdev_port_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
980 struct net_device *dev, const unsigned char *addr,
981 u16 vid, u16 nlm_flags)
982 {
983 struct switchdev_obj_port_fdb fdb = {
984 .obj.orig_dev = dev,
985 .obj.id = SWITCHDEV_OBJ_ID_PORT_FDB,
986 .vid = vid,
987 };
988
989 ether_addr_copy(fdb.addr, addr);
990 return switchdev_port_obj_add(dev, &fdb.obj);
991 }
992 EXPORT_SYMBOL_GPL(switchdev_port_fdb_add);
993
994 /**
995 * switchdev_port_fdb_del - Delete FDB (MAC/VLAN) entry from port
996 *
997 * @ndmsg: netlink hdr
998 * @nlattr: netlink attributes
999 * @dev: port device
1000 * @addr: MAC address to delete
1001 * @vid: VLAN to delete
1002 *
1003 * Delete FDB entry from switch device.
1004 */
1005 int switchdev_port_fdb_del(struct ndmsg *ndm, struct nlattr *tb[],
1006 struct net_device *dev, const unsigned char *addr,
1007 u16 vid)
1008 {
1009 struct switchdev_obj_port_fdb fdb = {
1010 .obj.orig_dev = dev,
1011 .obj.id = SWITCHDEV_OBJ_ID_PORT_FDB,
1012 .vid = vid,
1013 };
1014
1015 ether_addr_copy(fdb.addr, addr);
1016 return switchdev_port_obj_del(dev, &fdb.obj);
1017 }
1018 EXPORT_SYMBOL_GPL(switchdev_port_fdb_del);
1019
1020 struct switchdev_fdb_dump {
1021 struct switchdev_obj_port_fdb fdb;
1022 struct net_device *dev;
1023 struct sk_buff *skb;
1024 struct netlink_callback *cb;
1025 int idx;
1026 };
1027
1028 static int switchdev_port_fdb_dump_cb(struct switchdev_obj *obj)
1029 {
1030 struct switchdev_obj_port_fdb *fdb = SWITCHDEV_OBJ_PORT_FDB(obj);
1031 struct switchdev_fdb_dump *dump =
1032 container_of(fdb, struct switchdev_fdb_dump, fdb);
1033 u32 portid = NETLINK_CB(dump->cb->skb).portid;
1034 u32 seq = dump->cb->nlh->nlmsg_seq;
1035 struct nlmsghdr *nlh;
1036 struct ndmsg *ndm;
1037
1038 if (dump->idx < dump->cb->args[0])
1039 goto skip;
1040
1041 nlh = nlmsg_put(dump->skb, portid, seq, RTM_NEWNEIGH,
1042 sizeof(*ndm), NLM_F_MULTI);
1043 if (!nlh)
1044 return -EMSGSIZE;
1045
1046 ndm = nlmsg_data(nlh);
1047 ndm->ndm_family = AF_BRIDGE;
1048 ndm->ndm_pad1 = 0;
1049 ndm->ndm_pad2 = 0;
1050 ndm->ndm_flags = NTF_SELF;
1051 ndm->ndm_type = 0;
1052 ndm->ndm_ifindex = dump->dev->ifindex;
1053 ndm->ndm_state = fdb->ndm_state;
1054
1055 if (nla_put(dump->skb, NDA_LLADDR, ETH_ALEN, fdb->addr))
1056 goto nla_put_failure;
1057
1058 if (fdb->vid && nla_put_u16(dump->skb, NDA_VLAN, fdb->vid))
1059 goto nla_put_failure;
1060
1061 nlmsg_end(dump->skb, nlh);
1062
1063 skip:
1064 dump->idx++;
1065 return 0;
1066
1067 nla_put_failure:
1068 nlmsg_cancel(dump->skb, nlh);
1069 return -EMSGSIZE;
1070 }
1071
1072 /**
1073 * switchdev_port_fdb_dump - Dump port FDB (MAC/VLAN) entries
1074 *
1075 * @skb: netlink skb
1076 * @cb: netlink callback
1077 * @dev: port device
1078 * @filter_dev: filter device
1079 * @idx:
1080 *
1081 * Delete FDB entry from switch device.
1082 */
1083 int switchdev_port_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb,
1084 struct net_device *dev,
1085 struct net_device *filter_dev, int idx)
1086 {
1087 struct switchdev_fdb_dump dump = {
1088 .fdb.obj.orig_dev = dev,
1089 .fdb.obj.id = SWITCHDEV_OBJ_ID_PORT_FDB,
1090 .dev = dev,
1091 .skb = skb,
1092 .cb = cb,
1093 .idx = idx,
1094 };
1095
1096 switchdev_port_obj_dump(dev, &dump.fdb.obj, switchdev_port_fdb_dump_cb);
1097 return dump.idx;
1098 }
1099 EXPORT_SYMBOL_GPL(switchdev_port_fdb_dump);
1100
1101 static struct net_device *switchdev_get_lowest_dev(struct net_device *dev)
1102 {
1103 const struct switchdev_ops *ops = dev->switchdev_ops;
1104 struct net_device *lower_dev;
1105 struct net_device *port_dev;
1106 struct list_head *iter;
1107
1108 /* Recusively search down until we find a sw port dev.
1109 * (A sw port dev supports switchdev_port_attr_get).
1110 */
1111
1112 if (ops && ops->switchdev_port_attr_get)
1113 return dev;
1114
1115 netdev_for_each_lower_dev(dev, lower_dev, iter) {
1116 port_dev = switchdev_get_lowest_dev(lower_dev);
1117 if (port_dev)
1118 return port_dev;
1119 }
1120
1121 return NULL;
1122 }
1123
1124 static struct net_device *switchdev_get_dev_by_nhs(struct fib_info *fi)
1125 {
1126 struct switchdev_attr attr = {
1127 .id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID,
1128 };
1129 struct switchdev_attr prev_attr;
1130 struct net_device *dev = NULL;
1131 int nhsel;
1132
1133 ASSERT_RTNL();
1134
1135 /* For this route, all nexthop devs must be on the same switch. */
1136
1137 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1138 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1139
1140 if (!nh->nh_dev)
1141 return NULL;
1142
1143 dev = switchdev_get_lowest_dev(nh->nh_dev);
1144 if (!dev)
1145 return NULL;
1146
1147 attr.orig_dev = dev;
1148 if (switchdev_port_attr_get(dev, &attr))
1149 return NULL;
1150
1151 if (nhsel > 0 &&
1152 !netdev_phys_item_id_same(&prev_attr.u.ppid, &attr.u.ppid))
1153 return NULL;
1154
1155 prev_attr = attr;
1156 }
1157
1158 return dev;
1159 }
1160
1161 /**
1162 * switchdev_fib_ipv4_add - Add/modify switch IPv4 route entry
1163 *
1164 * @dst: route's IPv4 destination address
1165 * @dst_len: destination address length (prefix length)
1166 * @fi: route FIB info structure
1167 * @tos: route TOS
1168 * @type: route type
1169 * @nlflags: netlink flags passed in (NLM_F_*)
1170 * @tb_id: route table ID
1171 *
1172 * Add/modify switch IPv4 route entry.
1173 */
1174 int switchdev_fib_ipv4_add(u32 dst, int dst_len, struct fib_info *fi,
1175 u8 tos, u8 type, u32 nlflags, u32 tb_id)
1176 {
1177 struct switchdev_obj_ipv4_fib ipv4_fib = {
1178 .obj.id = SWITCHDEV_OBJ_ID_IPV4_FIB,
1179 .dst = dst,
1180 .dst_len = dst_len,
1181 .tos = tos,
1182 .type = type,
1183 .nlflags = nlflags,
1184 .tb_id = tb_id,
1185 };
1186 struct net_device *dev;
1187 int err = 0;
1188
1189 memcpy(&ipv4_fib.fi, fi, sizeof(ipv4_fib.fi));
1190
1191 /* Don't offload route if using custom ip rules or if
1192 * IPv4 FIB offloading has been disabled completely.
1193 */
1194
1195 #ifdef CONFIG_IP_MULTIPLE_TABLES
1196 if (fi->fib_net->ipv4.fib_has_custom_rules)
1197 return 0;
1198 #endif
1199
1200 if (fi->fib_net->ipv4.fib_offload_disabled)
1201 return 0;
1202
1203 dev = switchdev_get_dev_by_nhs(fi);
1204 if (!dev)
1205 return 0;
1206
1207 ipv4_fib.obj.orig_dev = dev;
1208 err = switchdev_port_obj_add(dev, &ipv4_fib.obj);
1209 if (!err)
1210 fi->fib_flags |= RTNH_F_OFFLOAD;
1211
1212 return err == -EOPNOTSUPP ? 0 : err;
1213 }
1214 EXPORT_SYMBOL_GPL(switchdev_fib_ipv4_add);
1215
1216 /**
1217 * switchdev_fib_ipv4_del - Delete IPv4 route entry from switch
1218 *
1219 * @dst: route's IPv4 destination address
1220 * @dst_len: destination address length (prefix length)
1221 * @fi: route FIB info structure
1222 * @tos: route TOS
1223 * @type: route type
1224 * @tb_id: route table ID
1225 *
1226 * Delete IPv4 route entry from switch device.
1227 */
1228 int switchdev_fib_ipv4_del(u32 dst, int dst_len, struct fib_info *fi,
1229 u8 tos, u8 type, u32 tb_id)
1230 {
1231 struct switchdev_obj_ipv4_fib ipv4_fib = {
1232 .obj.id = SWITCHDEV_OBJ_ID_IPV4_FIB,
1233 .dst = dst,
1234 .dst_len = dst_len,
1235 .tos = tos,
1236 .type = type,
1237 .nlflags = 0,
1238 .tb_id = tb_id,
1239 };
1240 struct net_device *dev;
1241 int err = 0;
1242
1243 memcpy(&ipv4_fib.fi, fi, sizeof(ipv4_fib.fi));
1244
1245 if (!(fi->fib_flags & RTNH_F_OFFLOAD))
1246 return 0;
1247
1248 dev = switchdev_get_dev_by_nhs(fi);
1249 if (!dev)
1250 return 0;
1251
1252 ipv4_fib.obj.orig_dev = dev;
1253 err = switchdev_port_obj_del(dev, &ipv4_fib.obj);
1254 if (!err)
1255 fi->fib_flags &= ~RTNH_F_OFFLOAD;
1256
1257 return err == -EOPNOTSUPP ? 0 : err;
1258 }
1259 EXPORT_SYMBOL_GPL(switchdev_fib_ipv4_del);
1260
1261 /**
1262 * switchdev_fib_ipv4_abort - Abort an IPv4 FIB operation
1263 *
1264 * @fi: route FIB info structure
1265 */
1266 void switchdev_fib_ipv4_abort(struct fib_info *fi)
1267 {
1268 /* There was a problem installing this route to the offload
1269 * device. For now, until we come up with more refined
1270 * policy handling, abruptly end IPv4 fib offloading for
1271 * for entire net by flushing offload device(s) of all
1272 * IPv4 routes, and mark IPv4 fib offloading broken from
1273 * this point forward.
1274 */
1275
1276 fib_flush_external(fi->fib_net);
1277 fi->fib_net->ipv4.fib_offload_disabled = true;
1278 }
1279 EXPORT_SYMBOL_GPL(switchdev_fib_ipv4_abort);
1280
1281 static bool switchdev_port_same_parent_id(struct net_device *a,
1282 struct net_device *b)
1283 {
1284 struct switchdev_attr a_attr = {
1285 .orig_dev = a,
1286 .id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID,
1287 .flags = SWITCHDEV_F_NO_RECURSE,
1288 };
1289 struct switchdev_attr b_attr = {
1290 .orig_dev = b,
1291 .id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID,
1292 .flags = SWITCHDEV_F_NO_RECURSE,
1293 };
1294
1295 if (switchdev_port_attr_get(a, &a_attr) ||
1296 switchdev_port_attr_get(b, &b_attr))
1297 return false;
1298
1299 return netdev_phys_item_id_same(&a_attr.u.ppid, &b_attr.u.ppid);
1300 }
1301
1302 static u32 switchdev_port_fwd_mark_get(struct net_device *dev,
1303 struct net_device *group_dev)
1304 {
1305 struct net_device *lower_dev;
1306 struct list_head *iter;
1307
1308 netdev_for_each_lower_dev(group_dev, lower_dev, iter) {
1309 if (lower_dev == dev)
1310 continue;
1311 if (switchdev_port_same_parent_id(dev, lower_dev))
1312 return lower_dev->offload_fwd_mark;
1313 return switchdev_port_fwd_mark_get(dev, lower_dev);
1314 }
1315
1316 return dev->ifindex;
1317 }
1318
1319 static void switchdev_port_fwd_mark_reset(struct net_device *group_dev,
1320 u32 old_mark, u32 *reset_mark)
1321 {
1322 struct net_device *lower_dev;
1323 struct list_head *iter;
1324
1325 netdev_for_each_lower_dev(group_dev, lower_dev, iter) {
1326 if (lower_dev->offload_fwd_mark == old_mark) {
1327 if (!*reset_mark)
1328 *reset_mark = lower_dev->ifindex;
1329 lower_dev->offload_fwd_mark = *reset_mark;
1330 }
1331 switchdev_port_fwd_mark_reset(lower_dev, old_mark, reset_mark);
1332 }
1333 }
1334
1335 /**
1336 * switchdev_port_fwd_mark_set - Set port offload forwarding mark
1337 *
1338 * @dev: port device
1339 * @group_dev: containing device
1340 * @joining: true if dev is joining group; false if leaving group
1341 *
1342 * An ungrouped port's offload mark is just its ifindex. A grouped
1343 * port's (member of a bridge, for example) offload mark is the ifindex
1344 * of one of the ports in the group with the same parent (switch) ID.
1345 * Ports on the same device in the same group will have the same mark.
1346 *
1347 * Example:
1348 *
1349 * br0 ifindex=9
1350 * sw1p1 ifindex=2 mark=2
1351 * sw1p2 ifindex=3 mark=2
1352 * sw2p1 ifindex=4 mark=5
1353 * sw2p2 ifindex=5 mark=5
1354 *
1355 * If sw2p2 leaves the bridge, we'll have:
1356 *
1357 * br0 ifindex=9
1358 * sw1p1 ifindex=2 mark=2
1359 * sw1p2 ifindex=3 mark=2
1360 * sw2p1 ifindex=4 mark=4
1361 * sw2p2 ifindex=5 mark=5
1362 */
1363 void switchdev_port_fwd_mark_set(struct net_device *dev,
1364 struct net_device *group_dev,
1365 bool joining)
1366 {
1367 u32 mark = dev->ifindex;
1368 u32 reset_mark = 0;
1369
1370 if (group_dev) {
1371 ASSERT_RTNL();
1372 if (joining)
1373 mark = switchdev_port_fwd_mark_get(dev, group_dev);
1374 else if (dev->offload_fwd_mark == mark)
1375 /* Ohoh, this port was the mark reference port,
1376 * but it's leaving the group, so reset the
1377 * mark for the remaining ports in the group.
1378 */
1379 switchdev_port_fwd_mark_reset(group_dev, mark,
1380 &reset_mark);
1381 }
1382
1383 dev->offload_fwd_mark = mark;
1384 }
1385 EXPORT_SYMBOL_GPL(switchdev_port_fwd_mark_set);
This page took 0.059903 seconds and 5 git commands to generate.