spi: meson: Constify struct regmap_config
[deliverable/linux.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21
22 /**
23 * DOC: Wireless regulatory infrastructure
24 *
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
29 *
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
33 *
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
39 *
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
43 *
44 */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...) \
65 printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69
70 /*
71 * Grace period we give before making sure all current interfaces reside on
72 * channels allowed by the current regulatory domain.
73 */
74 #define REG_ENFORCE_GRACE_MS 60000
75
76 /**
77 * enum reg_request_treatment - regulatory request treatment
78 *
79 * @REG_REQ_OK: continue processing the regulatory request
80 * @REG_REQ_IGNORE: ignore the regulatory request
81 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82 * be intersected with the current one.
83 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84 * regulatory settings, and no further processing is required.
85 * @REG_REQ_USER_HINT_HANDLED: a non alpha2 user hint was handled and no
86 * further processing is required, i.e., not need to update last_request
87 * etc. This should be used for user hints that do not provide an alpha2
88 * but some other type of regulatory hint, i.e., indoor operation.
89 */
90 enum reg_request_treatment {
91 REG_REQ_OK,
92 REG_REQ_IGNORE,
93 REG_REQ_INTERSECT,
94 REG_REQ_ALREADY_SET,
95 REG_REQ_USER_HINT_HANDLED,
96 };
97
98 static struct regulatory_request core_request_world = {
99 .initiator = NL80211_REGDOM_SET_BY_CORE,
100 .alpha2[0] = '0',
101 .alpha2[1] = '0',
102 .intersect = false,
103 .processed = true,
104 .country_ie_env = ENVIRON_ANY,
105 };
106
107 /*
108 * Receipt of information from last regulatory request,
109 * protected by RTNL (and can be accessed with RCU protection)
110 */
111 static struct regulatory_request __rcu *last_request =
112 (void __rcu *)&core_request_world;
113
114 /* To trigger userspace events */
115 static struct platform_device *reg_pdev;
116
117 /*
118 * Central wireless core regulatory domains, we only need two,
119 * the current one and a world regulatory domain in case we have no
120 * information to give us an alpha2.
121 * (protected by RTNL, can be read under RCU)
122 */
123 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
124
125 /*
126 * Number of devices that registered to the core
127 * that support cellular base station regulatory hints
128 * (protected by RTNL)
129 */
130 static int reg_num_devs_support_basehint;
131
132 /*
133 * State variable indicating if the platform on which the devices
134 * are attached is operating in an indoor environment. The state variable
135 * is relevant for all registered devices.
136 * (protected by RTNL)
137 */
138 static bool reg_is_indoor;
139
140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142 return rtnl_dereference(cfg80211_regdomain);
143 }
144
145 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
146 {
147 return rtnl_dereference(wiphy->regd);
148 }
149
150 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
151 {
152 switch (dfs_region) {
153 case NL80211_DFS_UNSET:
154 return "unset";
155 case NL80211_DFS_FCC:
156 return "FCC";
157 case NL80211_DFS_ETSI:
158 return "ETSI";
159 case NL80211_DFS_JP:
160 return "JP";
161 }
162 return "Unknown";
163 }
164
165 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
166 {
167 const struct ieee80211_regdomain *regd = NULL;
168 const struct ieee80211_regdomain *wiphy_regd = NULL;
169
170 regd = get_cfg80211_regdom();
171 if (!wiphy)
172 goto out;
173
174 wiphy_regd = get_wiphy_regdom(wiphy);
175 if (!wiphy_regd)
176 goto out;
177
178 if (wiphy_regd->dfs_region == regd->dfs_region)
179 goto out;
180
181 REG_DBG_PRINT("%s: device specific dfs_region "
182 "(%s) disagrees with cfg80211's "
183 "central dfs_region (%s)\n",
184 dev_name(&wiphy->dev),
185 reg_dfs_region_str(wiphy_regd->dfs_region),
186 reg_dfs_region_str(regd->dfs_region));
187
188 out:
189 return regd->dfs_region;
190 }
191
192 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
193 {
194 if (!r)
195 return;
196 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
197 }
198
199 static struct regulatory_request *get_last_request(void)
200 {
201 return rcu_dereference_rtnl(last_request);
202 }
203
204 /* Used to queue up regulatory hints */
205 static LIST_HEAD(reg_requests_list);
206 static spinlock_t reg_requests_lock;
207
208 /* Used to queue up beacon hints for review */
209 static LIST_HEAD(reg_pending_beacons);
210 static spinlock_t reg_pending_beacons_lock;
211
212 /* Used to keep track of processed beacon hints */
213 static LIST_HEAD(reg_beacon_list);
214
215 struct reg_beacon {
216 struct list_head list;
217 struct ieee80211_channel chan;
218 };
219
220 static void reg_check_chans_work(struct work_struct *work);
221 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
222
223 static void reg_todo(struct work_struct *work);
224 static DECLARE_WORK(reg_work, reg_todo);
225
226 static void reg_timeout_work(struct work_struct *work);
227 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
228
229 /* We keep a static world regulatory domain in case of the absence of CRDA */
230 static const struct ieee80211_regdomain world_regdom = {
231 .n_reg_rules = 6,
232 .alpha2 = "00",
233 .reg_rules = {
234 /* IEEE 802.11b/g, channels 1..11 */
235 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
236 /* IEEE 802.11b/g, channels 12..13. */
237 REG_RULE(2467-10, 2472+10, 40, 6, 20,
238 NL80211_RRF_NO_IR),
239 /* IEEE 802.11 channel 14 - Only JP enables
240 * this and for 802.11b only */
241 REG_RULE(2484-10, 2484+10, 20, 6, 20,
242 NL80211_RRF_NO_IR |
243 NL80211_RRF_NO_OFDM),
244 /* IEEE 802.11a, channel 36..48 */
245 REG_RULE(5180-10, 5240+10, 160, 6, 20,
246 NL80211_RRF_NO_IR),
247
248 /* IEEE 802.11a, channel 52..64 - DFS required */
249 REG_RULE(5260-10, 5320+10, 160, 6, 20,
250 NL80211_RRF_NO_IR |
251 NL80211_RRF_DFS),
252
253 /* IEEE 802.11a, channel 100..144 - DFS required */
254 REG_RULE(5500-10, 5720+10, 160, 6, 20,
255 NL80211_RRF_NO_IR |
256 NL80211_RRF_DFS),
257
258 /* IEEE 802.11a, channel 149..165 */
259 REG_RULE(5745-10, 5825+10, 80, 6, 20,
260 NL80211_RRF_NO_IR),
261
262 /* IEEE 802.11ad (60gHz), channels 1..3 */
263 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
264 }
265 };
266
267 /* protected by RTNL */
268 static const struct ieee80211_regdomain *cfg80211_world_regdom =
269 &world_regdom;
270
271 static char *ieee80211_regdom = "00";
272 static char user_alpha2[2];
273
274 module_param(ieee80211_regdom, charp, 0444);
275 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
276
277 static void reg_free_request(struct regulatory_request *request)
278 {
279 if (request != get_last_request())
280 kfree(request);
281 }
282
283 static void reg_free_last_request(void)
284 {
285 struct regulatory_request *lr = get_last_request();
286
287 if (lr != &core_request_world && lr)
288 kfree_rcu(lr, rcu_head);
289 }
290
291 static void reg_update_last_request(struct regulatory_request *request)
292 {
293 struct regulatory_request *lr;
294
295 lr = get_last_request();
296 if (lr == request)
297 return;
298
299 reg_free_last_request();
300 rcu_assign_pointer(last_request, request);
301 }
302
303 static void reset_regdomains(bool full_reset,
304 const struct ieee80211_regdomain *new_regdom)
305 {
306 const struct ieee80211_regdomain *r;
307
308 ASSERT_RTNL();
309
310 r = get_cfg80211_regdom();
311
312 /* avoid freeing static information or freeing something twice */
313 if (r == cfg80211_world_regdom)
314 r = NULL;
315 if (cfg80211_world_regdom == &world_regdom)
316 cfg80211_world_regdom = NULL;
317 if (r == &world_regdom)
318 r = NULL;
319
320 rcu_free_regdom(r);
321 rcu_free_regdom(cfg80211_world_regdom);
322
323 cfg80211_world_regdom = &world_regdom;
324 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
325
326 if (!full_reset)
327 return;
328
329 reg_update_last_request(&core_request_world);
330 }
331
332 /*
333 * Dynamic world regulatory domain requested by the wireless
334 * core upon initialization
335 */
336 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
337 {
338 struct regulatory_request *lr;
339
340 lr = get_last_request();
341
342 WARN_ON(!lr);
343
344 reset_regdomains(false, rd);
345
346 cfg80211_world_regdom = rd;
347 }
348
349 bool is_world_regdom(const char *alpha2)
350 {
351 if (!alpha2)
352 return false;
353 return alpha2[0] == '0' && alpha2[1] == '0';
354 }
355
356 static bool is_alpha2_set(const char *alpha2)
357 {
358 if (!alpha2)
359 return false;
360 return alpha2[0] && alpha2[1];
361 }
362
363 static bool is_unknown_alpha2(const char *alpha2)
364 {
365 if (!alpha2)
366 return false;
367 /*
368 * Special case where regulatory domain was built by driver
369 * but a specific alpha2 cannot be determined
370 */
371 return alpha2[0] == '9' && alpha2[1] == '9';
372 }
373
374 static bool is_intersected_alpha2(const char *alpha2)
375 {
376 if (!alpha2)
377 return false;
378 /*
379 * Special case where regulatory domain is the
380 * result of an intersection between two regulatory domain
381 * structures
382 */
383 return alpha2[0] == '9' && alpha2[1] == '8';
384 }
385
386 static bool is_an_alpha2(const char *alpha2)
387 {
388 if (!alpha2)
389 return false;
390 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
391 }
392
393 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
394 {
395 if (!alpha2_x || !alpha2_y)
396 return false;
397 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
398 }
399
400 static bool regdom_changes(const char *alpha2)
401 {
402 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
403
404 if (!r)
405 return true;
406 return !alpha2_equal(r->alpha2, alpha2);
407 }
408
409 /*
410 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
411 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
412 * has ever been issued.
413 */
414 static bool is_user_regdom_saved(void)
415 {
416 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
417 return false;
418
419 /* This would indicate a mistake on the design */
420 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
421 "Unexpected user alpha2: %c%c\n",
422 user_alpha2[0], user_alpha2[1]))
423 return false;
424
425 return true;
426 }
427
428 static const struct ieee80211_regdomain *
429 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
430 {
431 struct ieee80211_regdomain *regd;
432 int size_of_regd;
433 unsigned int i;
434
435 size_of_regd =
436 sizeof(struct ieee80211_regdomain) +
437 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
438
439 regd = kzalloc(size_of_regd, GFP_KERNEL);
440 if (!regd)
441 return ERR_PTR(-ENOMEM);
442
443 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
444
445 for (i = 0; i < src_regd->n_reg_rules; i++)
446 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
447 sizeof(struct ieee80211_reg_rule));
448
449 return regd;
450 }
451
452 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
453 struct reg_regdb_search_request {
454 char alpha2[2];
455 struct list_head list;
456 };
457
458 static LIST_HEAD(reg_regdb_search_list);
459 static DEFINE_MUTEX(reg_regdb_search_mutex);
460
461 static void reg_regdb_search(struct work_struct *work)
462 {
463 struct reg_regdb_search_request *request;
464 const struct ieee80211_regdomain *curdom, *regdom = NULL;
465 int i;
466
467 rtnl_lock();
468
469 mutex_lock(&reg_regdb_search_mutex);
470 while (!list_empty(&reg_regdb_search_list)) {
471 request = list_first_entry(&reg_regdb_search_list,
472 struct reg_regdb_search_request,
473 list);
474 list_del(&request->list);
475
476 for (i = 0; i < reg_regdb_size; i++) {
477 curdom = reg_regdb[i];
478
479 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
480 regdom = reg_copy_regd(curdom);
481 break;
482 }
483 }
484
485 kfree(request);
486 }
487 mutex_unlock(&reg_regdb_search_mutex);
488
489 if (!IS_ERR_OR_NULL(regdom))
490 set_regdom(regdom);
491
492 rtnl_unlock();
493 }
494
495 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
496
497 static void reg_regdb_query(const char *alpha2)
498 {
499 struct reg_regdb_search_request *request;
500
501 if (!alpha2)
502 return;
503
504 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
505 if (!request)
506 return;
507
508 memcpy(request->alpha2, alpha2, 2);
509
510 mutex_lock(&reg_regdb_search_mutex);
511 list_add_tail(&request->list, &reg_regdb_search_list);
512 mutex_unlock(&reg_regdb_search_mutex);
513
514 schedule_work(&reg_regdb_work);
515 }
516
517 /* Feel free to add any other sanity checks here */
518 static void reg_regdb_size_check(void)
519 {
520 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
521 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
522 }
523 #else
524 static inline void reg_regdb_size_check(void) {}
525 static inline void reg_regdb_query(const char *alpha2) {}
526 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
527
528 /*
529 * This lets us keep regulatory code which is updated on a regulatory
530 * basis in userspace.
531 */
532 static int call_crda(const char *alpha2)
533 {
534 char country[12];
535 char *env[] = { country, NULL };
536
537 snprintf(country, sizeof(country), "COUNTRY=%c%c",
538 alpha2[0], alpha2[1]);
539
540 if (!is_world_regdom((char *) alpha2))
541 pr_info("Calling CRDA for country: %c%c\n",
542 alpha2[0], alpha2[1]);
543 else
544 pr_info("Calling CRDA to update world regulatory domain\n");
545
546 /* query internal regulatory database (if it exists) */
547 reg_regdb_query(alpha2);
548
549 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
550 }
551
552 static enum reg_request_treatment
553 reg_call_crda(struct regulatory_request *request)
554 {
555 if (call_crda(request->alpha2))
556 return REG_REQ_IGNORE;
557 return REG_REQ_OK;
558 }
559
560 bool reg_is_valid_request(const char *alpha2)
561 {
562 struct regulatory_request *lr = get_last_request();
563
564 if (!lr || lr->processed)
565 return false;
566
567 return alpha2_equal(lr->alpha2, alpha2);
568 }
569
570 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
571 {
572 struct regulatory_request *lr = get_last_request();
573
574 /*
575 * Follow the driver's regulatory domain, if present, unless a country
576 * IE has been processed or a user wants to help complaince further
577 */
578 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
579 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
580 wiphy->regd)
581 return get_wiphy_regdom(wiphy);
582
583 return get_cfg80211_regdom();
584 }
585
586 static unsigned int
587 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
588 const struct ieee80211_reg_rule *rule)
589 {
590 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
591 const struct ieee80211_freq_range *freq_range_tmp;
592 const struct ieee80211_reg_rule *tmp;
593 u32 start_freq, end_freq, idx, no;
594
595 for (idx = 0; idx < rd->n_reg_rules; idx++)
596 if (rule == &rd->reg_rules[idx])
597 break;
598
599 if (idx == rd->n_reg_rules)
600 return 0;
601
602 /* get start_freq */
603 no = idx;
604
605 while (no) {
606 tmp = &rd->reg_rules[--no];
607 freq_range_tmp = &tmp->freq_range;
608
609 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
610 break;
611
612 freq_range = freq_range_tmp;
613 }
614
615 start_freq = freq_range->start_freq_khz;
616
617 /* get end_freq */
618 freq_range = &rule->freq_range;
619 no = idx;
620
621 while (no < rd->n_reg_rules - 1) {
622 tmp = &rd->reg_rules[++no];
623 freq_range_tmp = &tmp->freq_range;
624
625 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
626 break;
627
628 freq_range = freq_range_tmp;
629 }
630
631 end_freq = freq_range->end_freq_khz;
632
633 return end_freq - start_freq;
634 }
635
636 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
637 const struct ieee80211_reg_rule *rule)
638 {
639 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
640
641 if (rule->flags & NL80211_RRF_NO_160MHZ)
642 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
643 if (rule->flags & NL80211_RRF_NO_80MHZ)
644 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
645
646 /*
647 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
648 * are not allowed.
649 */
650 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
651 rule->flags & NL80211_RRF_NO_HT40PLUS)
652 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
653
654 return bw;
655 }
656
657 /* Sanity check on a regulatory rule */
658 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
659 {
660 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
661 u32 freq_diff;
662
663 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
664 return false;
665
666 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
667 return false;
668
669 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
670
671 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
672 freq_range->max_bandwidth_khz > freq_diff)
673 return false;
674
675 return true;
676 }
677
678 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
679 {
680 const struct ieee80211_reg_rule *reg_rule = NULL;
681 unsigned int i;
682
683 if (!rd->n_reg_rules)
684 return false;
685
686 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
687 return false;
688
689 for (i = 0; i < rd->n_reg_rules; i++) {
690 reg_rule = &rd->reg_rules[i];
691 if (!is_valid_reg_rule(reg_rule))
692 return false;
693 }
694
695 return true;
696 }
697
698 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
699 u32 center_freq_khz, u32 bw_khz)
700 {
701 u32 start_freq_khz, end_freq_khz;
702
703 start_freq_khz = center_freq_khz - (bw_khz/2);
704 end_freq_khz = center_freq_khz + (bw_khz/2);
705
706 if (start_freq_khz >= freq_range->start_freq_khz &&
707 end_freq_khz <= freq_range->end_freq_khz)
708 return true;
709
710 return false;
711 }
712
713 /**
714 * freq_in_rule_band - tells us if a frequency is in a frequency band
715 * @freq_range: frequency rule we want to query
716 * @freq_khz: frequency we are inquiring about
717 *
718 * This lets us know if a specific frequency rule is or is not relevant to
719 * a specific frequency's band. Bands are device specific and artificial
720 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
721 * however it is safe for now to assume that a frequency rule should not be
722 * part of a frequency's band if the start freq or end freq are off by more
723 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
724 * 60 GHz band.
725 * This resolution can be lowered and should be considered as we add
726 * regulatory rule support for other "bands".
727 **/
728 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
729 u32 freq_khz)
730 {
731 #define ONE_GHZ_IN_KHZ 1000000
732 /*
733 * From 802.11ad: directional multi-gigabit (DMG):
734 * Pertaining to operation in a frequency band containing a channel
735 * with the Channel starting frequency above 45 GHz.
736 */
737 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
738 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
739 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
740 return true;
741 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
742 return true;
743 return false;
744 #undef ONE_GHZ_IN_KHZ
745 }
746
747 /*
748 * Later on we can perhaps use the more restrictive DFS
749 * region but we don't have information for that yet so
750 * for now simply disallow conflicts.
751 */
752 static enum nl80211_dfs_regions
753 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
754 const enum nl80211_dfs_regions dfs_region2)
755 {
756 if (dfs_region1 != dfs_region2)
757 return NL80211_DFS_UNSET;
758 return dfs_region1;
759 }
760
761 /*
762 * Helper for regdom_intersect(), this does the real
763 * mathematical intersection fun
764 */
765 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
766 const struct ieee80211_regdomain *rd2,
767 const struct ieee80211_reg_rule *rule1,
768 const struct ieee80211_reg_rule *rule2,
769 struct ieee80211_reg_rule *intersected_rule)
770 {
771 const struct ieee80211_freq_range *freq_range1, *freq_range2;
772 struct ieee80211_freq_range *freq_range;
773 const struct ieee80211_power_rule *power_rule1, *power_rule2;
774 struct ieee80211_power_rule *power_rule;
775 u32 freq_diff, max_bandwidth1, max_bandwidth2;
776
777 freq_range1 = &rule1->freq_range;
778 freq_range2 = &rule2->freq_range;
779 freq_range = &intersected_rule->freq_range;
780
781 power_rule1 = &rule1->power_rule;
782 power_rule2 = &rule2->power_rule;
783 power_rule = &intersected_rule->power_rule;
784
785 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
786 freq_range2->start_freq_khz);
787 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
788 freq_range2->end_freq_khz);
789
790 max_bandwidth1 = freq_range1->max_bandwidth_khz;
791 max_bandwidth2 = freq_range2->max_bandwidth_khz;
792
793 if (rule1->flags & NL80211_RRF_AUTO_BW)
794 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
795 if (rule2->flags & NL80211_RRF_AUTO_BW)
796 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
797
798 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
799
800 intersected_rule->flags = rule1->flags | rule2->flags;
801
802 /*
803 * In case NL80211_RRF_AUTO_BW requested for both rules
804 * set AUTO_BW in intersected rule also. Next we will
805 * calculate BW correctly in handle_channel function.
806 * In other case remove AUTO_BW flag while we calculate
807 * maximum bandwidth correctly and auto calculation is
808 * not required.
809 */
810 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
811 (rule2->flags & NL80211_RRF_AUTO_BW))
812 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
813 else
814 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
815
816 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
817 if (freq_range->max_bandwidth_khz > freq_diff)
818 freq_range->max_bandwidth_khz = freq_diff;
819
820 power_rule->max_eirp = min(power_rule1->max_eirp,
821 power_rule2->max_eirp);
822 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
823 power_rule2->max_antenna_gain);
824
825 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
826 rule2->dfs_cac_ms);
827
828 if (!is_valid_reg_rule(intersected_rule))
829 return -EINVAL;
830
831 return 0;
832 }
833
834 /* check whether old rule contains new rule */
835 static bool rule_contains(struct ieee80211_reg_rule *r1,
836 struct ieee80211_reg_rule *r2)
837 {
838 /* for simplicity, currently consider only same flags */
839 if (r1->flags != r2->flags)
840 return false;
841
842 /* verify r1 is more restrictive */
843 if ((r1->power_rule.max_antenna_gain >
844 r2->power_rule.max_antenna_gain) ||
845 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
846 return false;
847
848 /* make sure r2's range is contained within r1 */
849 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
850 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
851 return false;
852
853 /* and finally verify that r1.max_bw >= r2.max_bw */
854 if (r1->freq_range.max_bandwidth_khz <
855 r2->freq_range.max_bandwidth_khz)
856 return false;
857
858 return true;
859 }
860
861 /* add or extend current rules. do nothing if rule is already contained */
862 static void add_rule(struct ieee80211_reg_rule *rule,
863 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
864 {
865 struct ieee80211_reg_rule *tmp_rule;
866 int i;
867
868 for (i = 0; i < *n_rules; i++) {
869 tmp_rule = &reg_rules[i];
870 /* rule is already contained - do nothing */
871 if (rule_contains(tmp_rule, rule))
872 return;
873
874 /* extend rule if possible */
875 if (rule_contains(rule, tmp_rule)) {
876 memcpy(tmp_rule, rule, sizeof(*rule));
877 return;
878 }
879 }
880
881 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
882 (*n_rules)++;
883 }
884
885 /**
886 * regdom_intersect - do the intersection between two regulatory domains
887 * @rd1: first regulatory domain
888 * @rd2: second regulatory domain
889 *
890 * Use this function to get the intersection between two regulatory domains.
891 * Once completed we will mark the alpha2 for the rd as intersected, "98",
892 * as no one single alpha2 can represent this regulatory domain.
893 *
894 * Returns a pointer to the regulatory domain structure which will hold the
895 * resulting intersection of rules between rd1 and rd2. We will
896 * kzalloc() this structure for you.
897 */
898 static struct ieee80211_regdomain *
899 regdom_intersect(const struct ieee80211_regdomain *rd1,
900 const struct ieee80211_regdomain *rd2)
901 {
902 int r, size_of_regd;
903 unsigned int x, y;
904 unsigned int num_rules = 0;
905 const struct ieee80211_reg_rule *rule1, *rule2;
906 struct ieee80211_reg_rule intersected_rule;
907 struct ieee80211_regdomain *rd;
908
909 if (!rd1 || !rd2)
910 return NULL;
911
912 /*
913 * First we get a count of the rules we'll need, then we actually
914 * build them. This is to so we can malloc() and free() a
915 * regdomain once. The reason we use reg_rules_intersect() here
916 * is it will return -EINVAL if the rule computed makes no sense.
917 * All rules that do check out OK are valid.
918 */
919
920 for (x = 0; x < rd1->n_reg_rules; x++) {
921 rule1 = &rd1->reg_rules[x];
922 for (y = 0; y < rd2->n_reg_rules; y++) {
923 rule2 = &rd2->reg_rules[y];
924 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
925 &intersected_rule))
926 num_rules++;
927 }
928 }
929
930 if (!num_rules)
931 return NULL;
932
933 size_of_regd = sizeof(struct ieee80211_regdomain) +
934 num_rules * sizeof(struct ieee80211_reg_rule);
935
936 rd = kzalloc(size_of_regd, GFP_KERNEL);
937 if (!rd)
938 return NULL;
939
940 for (x = 0; x < rd1->n_reg_rules; x++) {
941 rule1 = &rd1->reg_rules[x];
942 for (y = 0; y < rd2->n_reg_rules; y++) {
943 rule2 = &rd2->reg_rules[y];
944 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
945 &intersected_rule);
946 /*
947 * No need to memset here the intersected rule here as
948 * we're not using the stack anymore
949 */
950 if (r)
951 continue;
952
953 add_rule(&intersected_rule, rd->reg_rules,
954 &rd->n_reg_rules);
955 }
956 }
957
958 rd->alpha2[0] = '9';
959 rd->alpha2[1] = '8';
960 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
961 rd2->dfs_region);
962
963 return rd;
964 }
965
966 /*
967 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
968 * want to just have the channel structure use these
969 */
970 static u32 map_regdom_flags(u32 rd_flags)
971 {
972 u32 channel_flags = 0;
973 if (rd_flags & NL80211_RRF_NO_IR_ALL)
974 channel_flags |= IEEE80211_CHAN_NO_IR;
975 if (rd_flags & NL80211_RRF_DFS)
976 channel_flags |= IEEE80211_CHAN_RADAR;
977 if (rd_flags & NL80211_RRF_NO_OFDM)
978 channel_flags |= IEEE80211_CHAN_NO_OFDM;
979 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
980 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
981 if (rd_flags & NL80211_RRF_GO_CONCURRENT)
982 channel_flags |= IEEE80211_CHAN_GO_CONCURRENT;
983 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
984 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
985 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
986 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
987 if (rd_flags & NL80211_RRF_NO_80MHZ)
988 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
989 if (rd_flags & NL80211_RRF_NO_160MHZ)
990 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
991 return channel_flags;
992 }
993
994 static const struct ieee80211_reg_rule *
995 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
996 const struct ieee80211_regdomain *regd)
997 {
998 int i;
999 bool band_rule_found = false;
1000 bool bw_fits = false;
1001
1002 if (!regd)
1003 return ERR_PTR(-EINVAL);
1004
1005 for (i = 0; i < regd->n_reg_rules; i++) {
1006 const struct ieee80211_reg_rule *rr;
1007 const struct ieee80211_freq_range *fr = NULL;
1008
1009 rr = &regd->reg_rules[i];
1010 fr = &rr->freq_range;
1011
1012 /*
1013 * We only need to know if one frequency rule was
1014 * was in center_freq's band, that's enough, so lets
1015 * not overwrite it once found
1016 */
1017 if (!band_rule_found)
1018 band_rule_found = freq_in_rule_band(fr, center_freq);
1019
1020 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
1021
1022 if (band_rule_found && bw_fits)
1023 return rr;
1024 }
1025
1026 if (!band_rule_found)
1027 return ERR_PTR(-ERANGE);
1028
1029 return ERR_PTR(-EINVAL);
1030 }
1031
1032 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1033 u32 center_freq)
1034 {
1035 const struct ieee80211_regdomain *regd;
1036
1037 regd = reg_get_regdomain(wiphy);
1038
1039 return freq_reg_info_regd(wiphy, center_freq, regd);
1040 }
1041 EXPORT_SYMBOL(freq_reg_info);
1042
1043 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1044 {
1045 switch (initiator) {
1046 case NL80211_REGDOM_SET_BY_CORE:
1047 return "core";
1048 case NL80211_REGDOM_SET_BY_USER:
1049 return "user";
1050 case NL80211_REGDOM_SET_BY_DRIVER:
1051 return "driver";
1052 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1053 return "country IE";
1054 default:
1055 WARN_ON(1);
1056 return "bug";
1057 }
1058 }
1059 EXPORT_SYMBOL(reg_initiator_name);
1060
1061 #ifdef CONFIG_CFG80211_REG_DEBUG
1062 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1063 struct ieee80211_channel *chan,
1064 const struct ieee80211_reg_rule *reg_rule)
1065 {
1066 const struct ieee80211_power_rule *power_rule;
1067 const struct ieee80211_freq_range *freq_range;
1068 char max_antenna_gain[32], bw[32];
1069
1070 power_rule = &reg_rule->power_rule;
1071 freq_range = &reg_rule->freq_range;
1072
1073 if (!power_rule->max_antenna_gain)
1074 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1075 else
1076 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1077 power_rule->max_antenna_gain);
1078
1079 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1080 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1081 freq_range->max_bandwidth_khz,
1082 reg_get_max_bandwidth(regd, reg_rule));
1083 else
1084 snprintf(bw, sizeof(bw), "%d KHz",
1085 freq_range->max_bandwidth_khz);
1086
1087 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1088 chan->center_freq);
1089
1090 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1091 freq_range->start_freq_khz, freq_range->end_freq_khz,
1092 bw, max_antenna_gain,
1093 power_rule->max_eirp);
1094 }
1095 #else
1096 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1097 struct ieee80211_channel *chan,
1098 const struct ieee80211_reg_rule *reg_rule)
1099 {
1100 return;
1101 }
1102 #endif
1103
1104 /*
1105 * Note that right now we assume the desired channel bandwidth
1106 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1107 * per channel, the primary and the extension channel).
1108 */
1109 static void handle_channel(struct wiphy *wiphy,
1110 enum nl80211_reg_initiator initiator,
1111 struct ieee80211_channel *chan)
1112 {
1113 u32 flags, bw_flags = 0;
1114 const struct ieee80211_reg_rule *reg_rule = NULL;
1115 const struct ieee80211_power_rule *power_rule = NULL;
1116 const struct ieee80211_freq_range *freq_range = NULL;
1117 struct wiphy *request_wiphy = NULL;
1118 struct regulatory_request *lr = get_last_request();
1119 const struct ieee80211_regdomain *regd;
1120 u32 max_bandwidth_khz;
1121
1122 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1123
1124 flags = chan->orig_flags;
1125
1126 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1127 if (IS_ERR(reg_rule)) {
1128 /*
1129 * We will disable all channels that do not match our
1130 * received regulatory rule unless the hint is coming
1131 * from a Country IE and the Country IE had no information
1132 * about a band. The IEEE 802.11 spec allows for an AP
1133 * to send only a subset of the regulatory rules allowed,
1134 * so an AP in the US that only supports 2.4 GHz may only send
1135 * a country IE with information for the 2.4 GHz band
1136 * while 5 GHz is still supported.
1137 */
1138 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139 PTR_ERR(reg_rule) == -ERANGE)
1140 return;
1141
1142 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1143 request_wiphy && request_wiphy == wiphy &&
1144 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1145 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1146 chan->center_freq);
1147 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1148 chan->flags = chan->orig_flags;
1149 } else {
1150 REG_DBG_PRINT("Disabling freq %d MHz\n",
1151 chan->center_freq);
1152 chan->flags |= IEEE80211_CHAN_DISABLED;
1153 }
1154 return;
1155 }
1156
1157 regd = reg_get_regdomain(wiphy);
1158 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1159
1160 power_rule = &reg_rule->power_rule;
1161 freq_range = &reg_rule->freq_range;
1162
1163 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1164 /* Check if auto calculation requested */
1165 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1166 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1167
1168 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1169 bw_flags = IEEE80211_CHAN_NO_HT40;
1170 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1171 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1172 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1173 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1174
1175 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1176 request_wiphy && request_wiphy == wiphy &&
1177 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1178 /*
1179 * This guarantees the driver's requested regulatory domain
1180 * will always be used as a base for further regulatory
1181 * settings
1182 */
1183 chan->flags = chan->orig_flags =
1184 map_regdom_flags(reg_rule->flags) | bw_flags;
1185 chan->max_antenna_gain = chan->orig_mag =
1186 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1187 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1188 (int) MBM_TO_DBM(power_rule->max_eirp);
1189
1190 if (chan->flags & IEEE80211_CHAN_RADAR) {
1191 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1192 if (reg_rule->dfs_cac_ms)
1193 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1194 }
1195
1196 return;
1197 }
1198
1199 chan->dfs_state = NL80211_DFS_USABLE;
1200 chan->dfs_state_entered = jiffies;
1201
1202 chan->beacon_found = false;
1203 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1204 chan->max_antenna_gain =
1205 min_t(int, chan->orig_mag,
1206 MBI_TO_DBI(power_rule->max_antenna_gain));
1207 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1208
1209 if (chan->flags & IEEE80211_CHAN_RADAR) {
1210 if (reg_rule->dfs_cac_ms)
1211 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1212 else
1213 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1214 }
1215
1216 if (chan->orig_mpwr) {
1217 /*
1218 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1219 * will always follow the passed country IE power settings.
1220 */
1221 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1222 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1223 chan->max_power = chan->max_reg_power;
1224 else
1225 chan->max_power = min(chan->orig_mpwr,
1226 chan->max_reg_power);
1227 } else
1228 chan->max_power = chan->max_reg_power;
1229 }
1230
1231 static void handle_band(struct wiphy *wiphy,
1232 enum nl80211_reg_initiator initiator,
1233 struct ieee80211_supported_band *sband)
1234 {
1235 unsigned int i;
1236
1237 if (!sband)
1238 return;
1239
1240 for (i = 0; i < sband->n_channels; i++)
1241 handle_channel(wiphy, initiator, &sband->channels[i]);
1242 }
1243
1244 static bool reg_request_cell_base(struct regulatory_request *request)
1245 {
1246 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1247 return false;
1248 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1249 }
1250
1251 static bool reg_request_indoor(struct regulatory_request *request)
1252 {
1253 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1254 return false;
1255 return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
1256 }
1257
1258 bool reg_last_request_cell_base(void)
1259 {
1260 return reg_request_cell_base(get_last_request());
1261 }
1262
1263 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1264 /* Core specific check */
1265 static enum reg_request_treatment
1266 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1267 {
1268 struct regulatory_request *lr = get_last_request();
1269
1270 if (!reg_num_devs_support_basehint)
1271 return REG_REQ_IGNORE;
1272
1273 if (reg_request_cell_base(lr) &&
1274 !regdom_changes(pending_request->alpha2))
1275 return REG_REQ_ALREADY_SET;
1276
1277 return REG_REQ_OK;
1278 }
1279
1280 /* Device specific check */
1281 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1282 {
1283 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1284 }
1285 #else
1286 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1287 {
1288 return REG_REQ_IGNORE;
1289 }
1290
1291 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1292 {
1293 return true;
1294 }
1295 #endif
1296
1297 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1298 {
1299 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1300 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1301 return true;
1302 return false;
1303 }
1304
1305 static bool ignore_reg_update(struct wiphy *wiphy,
1306 enum nl80211_reg_initiator initiator)
1307 {
1308 struct regulatory_request *lr = get_last_request();
1309
1310 if (!lr) {
1311 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1312 "since last_request is not set\n",
1313 reg_initiator_name(initiator));
1314 return true;
1315 }
1316
1317 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1318 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1319 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1320 "since the driver uses its own custom "
1321 "regulatory domain\n",
1322 reg_initiator_name(initiator));
1323 return true;
1324 }
1325
1326 /*
1327 * wiphy->regd will be set once the device has its own
1328 * desired regulatory domain set
1329 */
1330 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1331 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1332 !is_world_regdom(lr->alpha2)) {
1333 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1334 "since the driver requires its own regulatory "
1335 "domain to be set first\n",
1336 reg_initiator_name(initiator));
1337 return true;
1338 }
1339
1340 if (reg_request_cell_base(lr))
1341 return reg_dev_ignore_cell_hint(wiphy);
1342
1343 return false;
1344 }
1345
1346 static bool reg_is_world_roaming(struct wiphy *wiphy)
1347 {
1348 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1349 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1350 struct regulatory_request *lr = get_last_request();
1351
1352 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1353 return true;
1354
1355 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1356 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1357 return true;
1358
1359 return false;
1360 }
1361
1362 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1363 struct reg_beacon *reg_beacon)
1364 {
1365 struct ieee80211_supported_band *sband;
1366 struct ieee80211_channel *chan;
1367 bool channel_changed = false;
1368 struct ieee80211_channel chan_before;
1369
1370 sband = wiphy->bands[reg_beacon->chan.band];
1371 chan = &sband->channels[chan_idx];
1372
1373 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1374 return;
1375
1376 if (chan->beacon_found)
1377 return;
1378
1379 chan->beacon_found = true;
1380
1381 if (!reg_is_world_roaming(wiphy))
1382 return;
1383
1384 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1385 return;
1386
1387 chan_before.center_freq = chan->center_freq;
1388 chan_before.flags = chan->flags;
1389
1390 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1391 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1392 channel_changed = true;
1393 }
1394
1395 if (channel_changed)
1396 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1397 }
1398
1399 /*
1400 * Called when a scan on a wiphy finds a beacon on
1401 * new channel
1402 */
1403 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1404 struct reg_beacon *reg_beacon)
1405 {
1406 unsigned int i;
1407 struct ieee80211_supported_band *sband;
1408
1409 if (!wiphy->bands[reg_beacon->chan.band])
1410 return;
1411
1412 sband = wiphy->bands[reg_beacon->chan.band];
1413
1414 for (i = 0; i < sband->n_channels; i++)
1415 handle_reg_beacon(wiphy, i, reg_beacon);
1416 }
1417
1418 /*
1419 * Called upon reg changes or a new wiphy is added
1420 */
1421 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1422 {
1423 unsigned int i;
1424 struct ieee80211_supported_band *sband;
1425 struct reg_beacon *reg_beacon;
1426
1427 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1428 if (!wiphy->bands[reg_beacon->chan.band])
1429 continue;
1430 sband = wiphy->bands[reg_beacon->chan.band];
1431 for (i = 0; i < sband->n_channels; i++)
1432 handle_reg_beacon(wiphy, i, reg_beacon);
1433 }
1434 }
1435
1436 /* Reap the advantages of previously found beacons */
1437 static void reg_process_beacons(struct wiphy *wiphy)
1438 {
1439 /*
1440 * Means we are just firing up cfg80211, so no beacons would
1441 * have been processed yet.
1442 */
1443 if (!last_request)
1444 return;
1445 wiphy_update_beacon_reg(wiphy);
1446 }
1447
1448 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1449 {
1450 if (!chan)
1451 return false;
1452 if (chan->flags & IEEE80211_CHAN_DISABLED)
1453 return false;
1454 /* This would happen when regulatory rules disallow HT40 completely */
1455 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1456 return false;
1457 return true;
1458 }
1459
1460 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1461 struct ieee80211_channel *channel)
1462 {
1463 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1464 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1465 unsigned int i;
1466
1467 if (!is_ht40_allowed(channel)) {
1468 channel->flags |= IEEE80211_CHAN_NO_HT40;
1469 return;
1470 }
1471
1472 /*
1473 * We need to ensure the extension channels exist to
1474 * be able to use HT40- or HT40+, this finds them (or not)
1475 */
1476 for (i = 0; i < sband->n_channels; i++) {
1477 struct ieee80211_channel *c = &sband->channels[i];
1478
1479 if (c->center_freq == (channel->center_freq - 20))
1480 channel_before = c;
1481 if (c->center_freq == (channel->center_freq + 20))
1482 channel_after = c;
1483 }
1484
1485 /*
1486 * Please note that this assumes target bandwidth is 20 MHz,
1487 * if that ever changes we also need to change the below logic
1488 * to include that as well.
1489 */
1490 if (!is_ht40_allowed(channel_before))
1491 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1492 else
1493 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1494
1495 if (!is_ht40_allowed(channel_after))
1496 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1497 else
1498 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1499 }
1500
1501 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1502 struct ieee80211_supported_band *sband)
1503 {
1504 unsigned int i;
1505
1506 if (!sband)
1507 return;
1508
1509 for (i = 0; i < sband->n_channels; i++)
1510 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1511 }
1512
1513 static void reg_process_ht_flags(struct wiphy *wiphy)
1514 {
1515 enum ieee80211_band band;
1516
1517 if (!wiphy)
1518 return;
1519
1520 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1521 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1522 }
1523
1524 static void reg_call_notifier(struct wiphy *wiphy,
1525 struct regulatory_request *request)
1526 {
1527 if (wiphy->reg_notifier)
1528 wiphy->reg_notifier(wiphy, request);
1529 }
1530
1531 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1532 {
1533 struct ieee80211_channel *ch;
1534 struct cfg80211_chan_def chandef;
1535 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1536 bool ret = true;
1537
1538 wdev_lock(wdev);
1539
1540 if (!wdev->netdev || !netif_running(wdev->netdev))
1541 goto out;
1542
1543 switch (wdev->iftype) {
1544 case NL80211_IFTYPE_AP:
1545 case NL80211_IFTYPE_P2P_GO:
1546 if (!wdev->beacon_interval)
1547 goto out;
1548
1549 ret = cfg80211_reg_can_beacon(wiphy,
1550 &wdev->chandef, wdev->iftype);
1551 break;
1552 case NL80211_IFTYPE_ADHOC:
1553 if (!wdev->ssid_len)
1554 goto out;
1555
1556 ret = cfg80211_reg_can_beacon(wiphy,
1557 &wdev->chandef, wdev->iftype);
1558 break;
1559 case NL80211_IFTYPE_STATION:
1560 case NL80211_IFTYPE_P2P_CLIENT:
1561 if (!wdev->current_bss ||
1562 !wdev->current_bss->pub.channel)
1563 goto out;
1564
1565 ch = wdev->current_bss->pub.channel;
1566 if (rdev->ops->get_channel &&
1567 !rdev_get_channel(rdev, wdev, &chandef))
1568 ret = cfg80211_chandef_usable(wiphy, &chandef,
1569 IEEE80211_CHAN_DISABLED);
1570 else
1571 ret = !(ch->flags & IEEE80211_CHAN_DISABLED);
1572 break;
1573 case NL80211_IFTYPE_MONITOR:
1574 case NL80211_IFTYPE_AP_VLAN:
1575 case NL80211_IFTYPE_P2P_DEVICE:
1576 /* no enforcement required */
1577 break;
1578 default:
1579 /* others not implemented for now */
1580 WARN_ON(1);
1581 break;
1582 }
1583
1584 out:
1585 wdev_unlock(wdev);
1586 return ret;
1587 }
1588
1589 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1590 {
1591 struct wireless_dev *wdev;
1592 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1593
1594 ASSERT_RTNL();
1595
1596 list_for_each_entry(wdev, &rdev->wdev_list, list)
1597 if (!reg_wdev_chan_valid(wiphy, wdev))
1598 cfg80211_leave(rdev, wdev);
1599 }
1600
1601 static void reg_check_chans_work(struct work_struct *work)
1602 {
1603 struct cfg80211_registered_device *rdev;
1604
1605 REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1606 rtnl_lock();
1607
1608 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1609 if (!(rdev->wiphy.regulatory_flags &
1610 REGULATORY_IGNORE_STALE_KICKOFF))
1611 reg_leave_invalid_chans(&rdev->wiphy);
1612
1613 rtnl_unlock();
1614 }
1615
1616 static void reg_check_channels(void)
1617 {
1618 /*
1619 * Give usermode a chance to do something nicer (move to another
1620 * channel, orderly disconnection), before forcing a disconnection.
1621 */
1622 mod_delayed_work(system_power_efficient_wq,
1623 &reg_check_chans,
1624 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1625 }
1626
1627 static void wiphy_update_regulatory(struct wiphy *wiphy,
1628 enum nl80211_reg_initiator initiator)
1629 {
1630 enum ieee80211_band band;
1631 struct regulatory_request *lr = get_last_request();
1632
1633 if (ignore_reg_update(wiphy, initiator)) {
1634 /*
1635 * Regulatory updates set by CORE are ignored for custom
1636 * regulatory cards. Let us notify the changes to the driver,
1637 * as some drivers used this to restore its orig_* reg domain.
1638 */
1639 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1640 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1641 reg_call_notifier(wiphy, lr);
1642 return;
1643 }
1644
1645 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1646
1647 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1648 handle_band(wiphy, initiator, wiphy->bands[band]);
1649
1650 reg_process_beacons(wiphy);
1651 reg_process_ht_flags(wiphy);
1652 reg_call_notifier(wiphy, lr);
1653 }
1654
1655 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1656 {
1657 struct cfg80211_registered_device *rdev;
1658 struct wiphy *wiphy;
1659
1660 ASSERT_RTNL();
1661
1662 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1663 wiphy = &rdev->wiphy;
1664 wiphy_update_regulatory(wiphy, initiator);
1665 }
1666
1667 reg_check_channels();
1668 }
1669
1670 static void handle_channel_custom(struct wiphy *wiphy,
1671 struct ieee80211_channel *chan,
1672 const struct ieee80211_regdomain *regd)
1673 {
1674 u32 bw_flags = 0;
1675 const struct ieee80211_reg_rule *reg_rule = NULL;
1676 const struct ieee80211_power_rule *power_rule = NULL;
1677 const struct ieee80211_freq_range *freq_range = NULL;
1678 u32 max_bandwidth_khz;
1679
1680 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1681 regd);
1682
1683 if (IS_ERR(reg_rule)) {
1684 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1685 chan->center_freq);
1686 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1687 chan->flags = chan->orig_flags;
1688 return;
1689 }
1690
1691 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1692
1693 power_rule = &reg_rule->power_rule;
1694 freq_range = &reg_rule->freq_range;
1695
1696 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1697 /* Check if auto calculation requested */
1698 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1699 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1700
1701 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1702 bw_flags = IEEE80211_CHAN_NO_HT40;
1703 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1704 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1705 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1706 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1707
1708 chan->dfs_state_entered = jiffies;
1709 chan->dfs_state = NL80211_DFS_USABLE;
1710
1711 chan->beacon_found = false;
1712 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1713 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1714 chan->max_reg_power = chan->max_power =
1715 (int) MBM_TO_DBM(power_rule->max_eirp);
1716
1717 if (chan->flags & IEEE80211_CHAN_RADAR) {
1718 if (reg_rule->dfs_cac_ms)
1719 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1720 else
1721 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1722 }
1723
1724 chan->max_power = chan->max_reg_power;
1725 }
1726
1727 static void handle_band_custom(struct wiphy *wiphy,
1728 struct ieee80211_supported_band *sband,
1729 const struct ieee80211_regdomain *regd)
1730 {
1731 unsigned int i;
1732
1733 if (!sband)
1734 return;
1735
1736 for (i = 0; i < sband->n_channels; i++)
1737 handle_channel_custom(wiphy, &sband->channels[i], regd);
1738 }
1739
1740 /* Used by drivers prior to wiphy registration */
1741 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1742 const struct ieee80211_regdomain *regd)
1743 {
1744 enum ieee80211_band band;
1745 unsigned int bands_set = 0;
1746
1747 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1748 "wiphy should have REGULATORY_CUSTOM_REG\n");
1749 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1750
1751 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1752 if (!wiphy->bands[band])
1753 continue;
1754 handle_band_custom(wiphy, wiphy->bands[band], regd);
1755 bands_set++;
1756 }
1757
1758 /*
1759 * no point in calling this if it won't have any effect
1760 * on your device's supported bands.
1761 */
1762 WARN_ON(!bands_set);
1763 }
1764 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1765
1766 static void reg_set_request_processed(void)
1767 {
1768 bool need_more_processing = false;
1769 struct regulatory_request *lr = get_last_request();
1770
1771 lr->processed = true;
1772
1773 spin_lock(&reg_requests_lock);
1774 if (!list_empty(&reg_requests_list))
1775 need_more_processing = true;
1776 spin_unlock(&reg_requests_lock);
1777
1778 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1779 cancel_delayed_work(&reg_timeout);
1780
1781 if (need_more_processing)
1782 schedule_work(&reg_work);
1783 }
1784
1785 /**
1786 * reg_process_hint_core - process core regulatory requests
1787 * @pending_request: a pending core regulatory request
1788 *
1789 * The wireless subsystem can use this function to process
1790 * a regulatory request issued by the regulatory core.
1791 *
1792 * Returns one of the different reg request treatment values.
1793 */
1794 static enum reg_request_treatment
1795 reg_process_hint_core(struct regulatory_request *core_request)
1796 {
1797
1798 core_request->intersect = false;
1799 core_request->processed = false;
1800
1801 reg_update_last_request(core_request);
1802
1803 return reg_call_crda(core_request);
1804 }
1805
1806 static enum reg_request_treatment
1807 __reg_process_hint_user(struct regulatory_request *user_request)
1808 {
1809 struct regulatory_request *lr = get_last_request();
1810
1811 if (reg_request_indoor(user_request)) {
1812 reg_is_indoor = true;
1813 return REG_REQ_USER_HINT_HANDLED;
1814 }
1815
1816 if (reg_request_cell_base(user_request))
1817 return reg_ignore_cell_hint(user_request);
1818
1819 if (reg_request_cell_base(lr))
1820 return REG_REQ_IGNORE;
1821
1822 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1823 return REG_REQ_INTERSECT;
1824 /*
1825 * If the user knows better the user should set the regdom
1826 * to their country before the IE is picked up
1827 */
1828 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1829 lr->intersect)
1830 return REG_REQ_IGNORE;
1831 /*
1832 * Process user requests only after previous user/driver/core
1833 * requests have been processed
1834 */
1835 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1836 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1837 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1838 regdom_changes(lr->alpha2))
1839 return REG_REQ_IGNORE;
1840
1841 if (!regdom_changes(user_request->alpha2))
1842 return REG_REQ_ALREADY_SET;
1843
1844 return REG_REQ_OK;
1845 }
1846
1847 /**
1848 * reg_process_hint_user - process user regulatory requests
1849 * @user_request: a pending user regulatory request
1850 *
1851 * The wireless subsystem can use this function to process
1852 * a regulatory request initiated by userspace.
1853 *
1854 * Returns one of the different reg request treatment values.
1855 */
1856 static enum reg_request_treatment
1857 reg_process_hint_user(struct regulatory_request *user_request)
1858 {
1859 enum reg_request_treatment treatment;
1860
1861 treatment = __reg_process_hint_user(user_request);
1862 if (treatment == REG_REQ_IGNORE ||
1863 treatment == REG_REQ_ALREADY_SET ||
1864 treatment == REG_REQ_USER_HINT_HANDLED) {
1865 reg_free_request(user_request);
1866 return treatment;
1867 }
1868
1869 user_request->intersect = treatment == REG_REQ_INTERSECT;
1870 user_request->processed = false;
1871
1872 reg_update_last_request(user_request);
1873
1874 user_alpha2[0] = user_request->alpha2[0];
1875 user_alpha2[1] = user_request->alpha2[1];
1876
1877 return reg_call_crda(user_request);
1878 }
1879
1880 static enum reg_request_treatment
1881 __reg_process_hint_driver(struct regulatory_request *driver_request)
1882 {
1883 struct regulatory_request *lr = get_last_request();
1884
1885 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1886 if (regdom_changes(driver_request->alpha2))
1887 return REG_REQ_OK;
1888 return REG_REQ_ALREADY_SET;
1889 }
1890
1891 /*
1892 * This would happen if you unplug and plug your card
1893 * back in or if you add a new device for which the previously
1894 * loaded card also agrees on the regulatory domain.
1895 */
1896 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1897 !regdom_changes(driver_request->alpha2))
1898 return REG_REQ_ALREADY_SET;
1899
1900 return REG_REQ_INTERSECT;
1901 }
1902
1903 /**
1904 * reg_process_hint_driver - process driver regulatory requests
1905 * @driver_request: a pending driver regulatory request
1906 *
1907 * The wireless subsystem can use this function to process
1908 * a regulatory request issued by an 802.11 driver.
1909 *
1910 * Returns one of the different reg request treatment values.
1911 */
1912 static enum reg_request_treatment
1913 reg_process_hint_driver(struct wiphy *wiphy,
1914 struct regulatory_request *driver_request)
1915 {
1916 const struct ieee80211_regdomain *regd, *tmp;
1917 enum reg_request_treatment treatment;
1918
1919 treatment = __reg_process_hint_driver(driver_request);
1920
1921 switch (treatment) {
1922 case REG_REQ_OK:
1923 break;
1924 case REG_REQ_IGNORE:
1925 case REG_REQ_USER_HINT_HANDLED:
1926 reg_free_request(driver_request);
1927 return treatment;
1928 case REG_REQ_INTERSECT:
1929 /* fall through */
1930 case REG_REQ_ALREADY_SET:
1931 regd = reg_copy_regd(get_cfg80211_regdom());
1932 if (IS_ERR(regd)) {
1933 reg_free_request(driver_request);
1934 return REG_REQ_IGNORE;
1935 }
1936
1937 tmp = get_wiphy_regdom(wiphy);
1938 rcu_assign_pointer(wiphy->regd, regd);
1939 rcu_free_regdom(tmp);
1940 }
1941
1942
1943 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1944 driver_request->processed = false;
1945
1946 reg_update_last_request(driver_request);
1947
1948 /*
1949 * Since CRDA will not be called in this case as we already
1950 * have applied the requested regulatory domain before we just
1951 * inform userspace we have processed the request
1952 */
1953 if (treatment == REG_REQ_ALREADY_SET) {
1954 nl80211_send_reg_change_event(driver_request);
1955 reg_set_request_processed();
1956 return treatment;
1957 }
1958
1959 return reg_call_crda(driver_request);
1960 }
1961
1962 static enum reg_request_treatment
1963 __reg_process_hint_country_ie(struct wiphy *wiphy,
1964 struct regulatory_request *country_ie_request)
1965 {
1966 struct wiphy *last_wiphy = NULL;
1967 struct regulatory_request *lr = get_last_request();
1968
1969 if (reg_request_cell_base(lr)) {
1970 /* Trust a Cell base station over the AP's country IE */
1971 if (regdom_changes(country_ie_request->alpha2))
1972 return REG_REQ_IGNORE;
1973 return REG_REQ_ALREADY_SET;
1974 } else {
1975 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1976 return REG_REQ_IGNORE;
1977 }
1978
1979 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1980 return -EINVAL;
1981
1982 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1983 return REG_REQ_OK;
1984
1985 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1986
1987 if (last_wiphy != wiphy) {
1988 /*
1989 * Two cards with two APs claiming different
1990 * Country IE alpha2s. We could
1991 * intersect them, but that seems unlikely
1992 * to be correct. Reject second one for now.
1993 */
1994 if (regdom_changes(country_ie_request->alpha2))
1995 return REG_REQ_IGNORE;
1996 return REG_REQ_ALREADY_SET;
1997 }
1998
1999 if (regdom_changes(country_ie_request->alpha2))
2000 return REG_REQ_OK;
2001 return REG_REQ_ALREADY_SET;
2002 }
2003
2004 /**
2005 * reg_process_hint_country_ie - process regulatory requests from country IEs
2006 * @country_ie_request: a regulatory request from a country IE
2007 *
2008 * The wireless subsystem can use this function to process
2009 * a regulatory request issued by a country Information Element.
2010 *
2011 * Returns one of the different reg request treatment values.
2012 */
2013 static enum reg_request_treatment
2014 reg_process_hint_country_ie(struct wiphy *wiphy,
2015 struct regulatory_request *country_ie_request)
2016 {
2017 enum reg_request_treatment treatment;
2018
2019 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2020
2021 switch (treatment) {
2022 case REG_REQ_OK:
2023 break;
2024 case REG_REQ_IGNORE:
2025 case REG_REQ_USER_HINT_HANDLED:
2026 /* fall through */
2027 case REG_REQ_ALREADY_SET:
2028 reg_free_request(country_ie_request);
2029 return treatment;
2030 case REG_REQ_INTERSECT:
2031 reg_free_request(country_ie_request);
2032 /*
2033 * This doesn't happen yet, not sure we
2034 * ever want to support it for this case.
2035 */
2036 WARN_ONCE(1, "Unexpected intersection for country IEs");
2037 return REG_REQ_IGNORE;
2038 }
2039
2040 country_ie_request->intersect = false;
2041 country_ie_request->processed = false;
2042
2043 reg_update_last_request(country_ie_request);
2044
2045 return reg_call_crda(country_ie_request);
2046 }
2047
2048 /* This processes *all* regulatory hints */
2049 static void reg_process_hint(struct regulatory_request *reg_request)
2050 {
2051 struct wiphy *wiphy = NULL;
2052 enum reg_request_treatment treatment;
2053
2054 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2055 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2056
2057 switch (reg_request->initiator) {
2058 case NL80211_REGDOM_SET_BY_CORE:
2059 reg_process_hint_core(reg_request);
2060 return;
2061 case NL80211_REGDOM_SET_BY_USER:
2062 treatment = reg_process_hint_user(reg_request);
2063 if (treatment == REG_REQ_IGNORE ||
2064 treatment == REG_REQ_ALREADY_SET ||
2065 treatment == REG_REQ_USER_HINT_HANDLED)
2066 return;
2067 queue_delayed_work(system_power_efficient_wq,
2068 &reg_timeout, msecs_to_jiffies(3142));
2069 return;
2070 case NL80211_REGDOM_SET_BY_DRIVER:
2071 if (!wiphy)
2072 goto out_free;
2073 treatment = reg_process_hint_driver(wiphy, reg_request);
2074 break;
2075 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2076 if (!wiphy)
2077 goto out_free;
2078 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2079 break;
2080 default:
2081 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2082 goto out_free;
2083 }
2084
2085 /* This is required so that the orig_* parameters are saved */
2086 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2087 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2088 wiphy_update_regulatory(wiphy, reg_request->initiator);
2089 reg_check_channels();
2090 }
2091
2092 return;
2093
2094 out_free:
2095 reg_free_request(reg_request);
2096 }
2097
2098 /*
2099 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2100 * Regulatory hints come on a first come first serve basis and we
2101 * must process each one atomically.
2102 */
2103 static void reg_process_pending_hints(void)
2104 {
2105 struct regulatory_request *reg_request, *lr;
2106
2107 lr = get_last_request();
2108
2109 /* When last_request->processed becomes true this will be rescheduled */
2110 if (lr && !lr->processed) {
2111 reg_process_hint(lr);
2112 return;
2113 }
2114
2115 spin_lock(&reg_requests_lock);
2116
2117 if (list_empty(&reg_requests_list)) {
2118 spin_unlock(&reg_requests_lock);
2119 return;
2120 }
2121
2122 reg_request = list_first_entry(&reg_requests_list,
2123 struct regulatory_request,
2124 list);
2125 list_del_init(&reg_request->list);
2126
2127 spin_unlock(&reg_requests_lock);
2128
2129 reg_process_hint(reg_request);
2130 }
2131
2132 /* Processes beacon hints -- this has nothing to do with country IEs */
2133 static void reg_process_pending_beacon_hints(void)
2134 {
2135 struct cfg80211_registered_device *rdev;
2136 struct reg_beacon *pending_beacon, *tmp;
2137
2138 /* This goes through the _pending_ beacon list */
2139 spin_lock_bh(&reg_pending_beacons_lock);
2140
2141 list_for_each_entry_safe(pending_beacon, tmp,
2142 &reg_pending_beacons, list) {
2143 list_del_init(&pending_beacon->list);
2144
2145 /* Applies the beacon hint to current wiphys */
2146 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2147 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2148
2149 /* Remembers the beacon hint for new wiphys or reg changes */
2150 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2151 }
2152
2153 spin_unlock_bh(&reg_pending_beacons_lock);
2154 }
2155
2156 static void reg_todo(struct work_struct *work)
2157 {
2158 rtnl_lock();
2159 reg_process_pending_hints();
2160 reg_process_pending_beacon_hints();
2161 rtnl_unlock();
2162 }
2163
2164 static void queue_regulatory_request(struct regulatory_request *request)
2165 {
2166 request->alpha2[0] = toupper(request->alpha2[0]);
2167 request->alpha2[1] = toupper(request->alpha2[1]);
2168
2169 spin_lock(&reg_requests_lock);
2170 list_add_tail(&request->list, &reg_requests_list);
2171 spin_unlock(&reg_requests_lock);
2172
2173 schedule_work(&reg_work);
2174 }
2175
2176 /*
2177 * Core regulatory hint -- happens during cfg80211_init()
2178 * and when we restore regulatory settings.
2179 */
2180 static int regulatory_hint_core(const char *alpha2)
2181 {
2182 struct regulatory_request *request;
2183
2184 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2185 if (!request)
2186 return -ENOMEM;
2187
2188 request->alpha2[0] = alpha2[0];
2189 request->alpha2[1] = alpha2[1];
2190 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2191
2192 queue_regulatory_request(request);
2193
2194 return 0;
2195 }
2196
2197 /* User hints */
2198 int regulatory_hint_user(const char *alpha2,
2199 enum nl80211_user_reg_hint_type user_reg_hint_type)
2200 {
2201 struct regulatory_request *request;
2202
2203 if (WARN_ON(!alpha2))
2204 return -EINVAL;
2205
2206 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2207 if (!request)
2208 return -ENOMEM;
2209
2210 request->wiphy_idx = WIPHY_IDX_INVALID;
2211 request->alpha2[0] = alpha2[0];
2212 request->alpha2[1] = alpha2[1];
2213 request->initiator = NL80211_REGDOM_SET_BY_USER;
2214 request->user_reg_hint_type = user_reg_hint_type;
2215
2216 queue_regulatory_request(request);
2217
2218 return 0;
2219 }
2220
2221 int regulatory_hint_indoor_user(void)
2222 {
2223 struct regulatory_request *request;
2224
2225 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2226 if (!request)
2227 return -ENOMEM;
2228
2229 request->wiphy_idx = WIPHY_IDX_INVALID;
2230 request->initiator = NL80211_REGDOM_SET_BY_USER;
2231 request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2232 queue_regulatory_request(request);
2233
2234 return 0;
2235 }
2236
2237 /* Driver hints */
2238 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2239 {
2240 struct regulatory_request *request;
2241
2242 if (WARN_ON(!alpha2 || !wiphy))
2243 return -EINVAL;
2244
2245 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2246
2247 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2248 if (!request)
2249 return -ENOMEM;
2250
2251 request->wiphy_idx = get_wiphy_idx(wiphy);
2252
2253 request->alpha2[0] = alpha2[0];
2254 request->alpha2[1] = alpha2[1];
2255 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2256
2257 queue_regulatory_request(request);
2258
2259 return 0;
2260 }
2261 EXPORT_SYMBOL(regulatory_hint);
2262
2263 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2264 const u8 *country_ie, u8 country_ie_len)
2265 {
2266 char alpha2[2];
2267 enum environment_cap env = ENVIRON_ANY;
2268 struct regulatory_request *request = NULL, *lr;
2269
2270 /* IE len must be evenly divisible by 2 */
2271 if (country_ie_len & 0x01)
2272 return;
2273
2274 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2275 return;
2276
2277 request = kzalloc(sizeof(*request), GFP_KERNEL);
2278 if (!request)
2279 return;
2280
2281 alpha2[0] = country_ie[0];
2282 alpha2[1] = country_ie[1];
2283
2284 if (country_ie[2] == 'I')
2285 env = ENVIRON_INDOOR;
2286 else if (country_ie[2] == 'O')
2287 env = ENVIRON_OUTDOOR;
2288
2289 rcu_read_lock();
2290 lr = get_last_request();
2291
2292 if (unlikely(!lr))
2293 goto out;
2294
2295 /*
2296 * We will run this only upon a successful connection on cfg80211.
2297 * We leave conflict resolution to the workqueue, where can hold
2298 * the RTNL.
2299 */
2300 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2301 lr->wiphy_idx != WIPHY_IDX_INVALID)
2302 goto out;
2303
2304 request->wiphy_idx = get_wiphy_idx(wiphy);
2305 request->alpha2[0] = alpha2[0];
2306 request->alpha2[1] = alpha2[1];
2307 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2308 request->country_ie_env = env;
2309
2310 queue_regulatory_request(request);
2311 request = NULL;
2312 out:
2313 kfree(request);
2314 rcu_read_unlock();
2315 }
2316
2317 static void restore_alpha2(char *alpha2, bool reset_user)
2318 {
2319 /* indicates there is no alpha2 to consider for restoration */
2320 alpha2[0] = '9';
2321 alpha2[1] = '7';
2322
2323 /* The user setting has precedence over the module parameter */
2324 if (is_user_regdom_saved()) {
2325 /* Unless we're asked to ignore it and reset it */
2326 if (reset_user) {
2327 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2328 user_alpha2[0] = '9';
2329 user_alpha2[1] = '7';
2330
2331 /*
2332 * If we're ignoring user settings, we still need to
2333 * check the module parameter to ensure we put things
2334 * back as they were for a full restore.
2335 */
2336 if (!is_world_regdom(ieee80211_regdom)) {
2337 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2338 ieee80211_regdom[0], ieee80211_regdom[1]);
2339 alpha2[0] = ieee80211_regdom[0];
2340 alpha2[1] = ieee80211_regdom[1];
2341 }
2342 } else {
2343 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2344 user_alpha2[0], user_alpha2[1]);
2345 alpha2[0] = user_alpha2[0];
2346 alpha2[1] = user_alpha2[1];
2347 }
2348 } else if (!is_world_regdom(ieee80211_regdom)) {
2349 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2350 ieee80211_regdom[0], ieee80211_regdom[1]);
2351 alpha2[0] = ieee80211_regdom[0];
2352 alpha2[1] = ieee80211_regdom[1];
2353 } else
2354 REG_DBG_PRINT("Restoring regulatory settings\n");
2355 }
2356
2357 static void restore_custom_reg_settings(struct wiphy *wiphy)
2358 {
2359 struct ieee80211_supported_band *sband;
2360 enum ieee80211_band band;
2361 struct ieee80211_channel *chan;
2362 int i;
2363
2364 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2365 sband = wiphy->bands[band];
2366 if (!sband)
2367 continue;
2368 for (i = 0; i < sband->n_channels; i++) {
2369 chan = &sband->channels[i];
2370 chan->flags = chan->orig_flags;
2371 chan->max_antenna_gain = chan->orig_mag;
2372 chan->max_power = chan->orig_mpwr;
2373 chan->beacon_found = false;
2374 }
2375 }
2376 }
2377
2378 /*
2379 * Restoring regulatory settings involves ingoring any
2380 * possibly stale country IE information and user regulatory
2381 * settings if so desired, this includes any beacon hints
2382 * learned as we could have traveled outside to another country
2383 * after disconnection. To restore regulatory settings we do
2384 * exactly what we did at bootup:
2385 *
2386 * - send a core regulatory hint
2387 * - send a user regulatory hint if applicable
2388 *
2389 * Device drivers that send a regulatory hint for a specific country
2390 * keep their own regulatory domain on wiphy->regd so that does does
2391 * not need to be remembered.
2392 */
2393 static void restore_regulatory_settings(bool reset_user)
2394 {
2395 char alpha2[2];
2396 char world_alpha2[2];
2397 struct reg_beacon *reg_beacon, *btmp;
2398 struct regulatory_request *reg_request, *tmp;
2399 LIST_HEAD(tmp_reg_req_list);
2400 struct cfg80211_registered_device *rdev;
2401
2402 ASSERT_RTNL();
2403
2404 reg_is_indoor = false;
2405
2406 reset_regdomains(true, &world_regdom);
2407 restore_alpha2(alpha2, reset_user);
2408
2409 /*
2410 * If there's any pending requests we simply
2411 * stash them to a temporary pending queue and
2412 * add then after we've restored regulatory
2413 * settings.
2414 */
2415 spin_lock(&reg_requests_lock);
2416 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2417 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2418 continue;
2419 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2420 }
2421 spin_unlock(&reg_requests_lock);
2422
2423 /* Clear beacon hints */
2424 spin_lock_bh(&reg_pending_beacons_lock);
2425 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2426 list_del(&reg_beacon->list);
2427 kfree(reg_beacon);
2428 }
2429 spin_unlock_bh(&reg_pending_beacons_lock);
2430
2431 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2432 list_del(&reg_beacon->list);
2433 kfree(reg_beacon);
2434 }
2435
2436 /* First restore to the basic regulatory settings */
2437 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2438 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2439
2440 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2441 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2442 restore_custom_reg_settings(&rdev->wiphy);
2443 }
2444
2445 regulatory_hint_core(world_alpha2);
2446
2447 /*
2448 * This restores the ieee80211_regdom module parameter
2449 * preference or the last user requested regulatory
2450 * settings, user regulatory settings takes precedence.
2451 */
2452 if (is_an_alpha2(alpha2))
2453 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2454
2455 spin_lock(&reg_requests_lock);
2456 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2457 spin_unlock(&reg_requests_lock);
2458
2459 REG_DBG_PRINT("Kicking the queue\n");
2460
2461 schedule_work(&reg_work);
2462 }
2463
2464 void regulatory_hint_disconnect(void)
2465 {
2466 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2467 restore_regulatory_settings(false);
2468 }
2469
2470 static bool freq_is_chan_12_13_14(u16 freq)
2471 {
2472 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2473 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2474 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2475 return true;
2476 return false;
2477 }
2478
2479 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2480 {
2481 struct reg_beacon *pending_beacon;
2482
2483 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2484 if (beacon_chan->center_freq ==
2485 pending_beacon->chan.center_freq)
2486 return true;
2487 return false;
2488 }
2489
2490 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2491 struct ieee80211_channel *beacon_chan,
2492 gfp_t gfp)
2493 {
2494 struct reg_beacon *reg_beacon;
2495 bool processing;
2496
2497 if (beacon_chan->beacon_found ||
2498 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2499 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2500 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2501 return 0;
2502
2503 spin_lock_bh(&reg_pending_beacons_lock);
2504 processing = pending_reg_beacon(beacon_chan);
2505 spin_unlock_bh(&reg_pending_beacons_lock);
2506
2507 if (processing)
2508 return 0;
2509
2510 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2511 if (!reg_beacon)
2512 return -ENOMEM;
2513
2514 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2515 beacon_chan->center_freq,
2516 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2517 wiphy_name(wiphy));
2518
2519 memcpy(&reg_beacon->chan, beacon_chan,
2520 sizeof(struct ieee80211_channel));
2521
2522 /*
2523 * Since we can be called from BH or and non-BH context
2524 * we must use spin_lock_bh()
2525 */
2526 spin_lock_bh(&reg_pending_beacons_lock);
2527 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2528 spin_unlock_bh(&reg_pending_beacons_lock);
2529
2530 schedule_work(&reg_work);
2531
2532 return 0;
2533 }
2534
2535 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2536 {
2537 unsigned int i;
2538 const struct ieee80211_reg_rule *reg_rule = NULL;
2539 const struct ieee80211_freq_range *freq_range = NULL;
2540 const struct ieee80211_power_rule *power_rule = NULL;
2541 char bw[32], cac_time[32];
2542
2543 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2544
2545 for (i = 0; i < rd->n_reg_rules; i++) {
2546 reg_rule = &rd->reg_rules[i];
2547 freq_range = &reg_rule->freq_range;
2548 power_rule = &reg_rule->power_rule;
2549
2550 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2551 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2552 freq_range->max_bandwidth_khz,
2553 reg_get_max_bandwidth(rd, reg_rule));
2554 else
2555 snprintf(bw, sizeof(bw), "%d KHz",
2556 freq_range->max_bandwidth_khz);
2557
2558 if (reg_rule->flags & NL80211_RRF_DFS)
2559 scnprintf(cac_time, sizeof(cac_time), "%u s",
2560 reg_rule->dfs_cac_ms/1000);
2561 else
2562 scnprintf(cac_time, sizeof(cac_time), "N/A");
2563
2564
2565 /*
2566 * There may not be documentation for max antenna gain
2567 * in certain regions
2568 */
2569 if (power_rule->max_antenna_gain)
2570 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2571 freq_range->start_freq_khz,
2572 freq_range->end_freq_khz,
2573 bw,
2574 power_rule->max_antenna_gain,
2575 power_rule->max_eirp,
2576 cac_time);
2577 else
2578 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2579 freq_range->start_freq_khz,
2580 freq_range->end_freq_khz,
2581 bw,
2582 power_rule->max_eirp,
2583 cac_time);
2584 }
2585 }
2586
2587 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2588 {
2589 switch (dfs_region) {
2590 case NL80211_DFS_UNSET:
2591 case NL80211_DFS_FCC:
2592 case NL80211_DFS_ETSI:
2593 case NL80211_DFS_JP:
2594 return true;
2595 default:
2596 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2597 dfs_region);
2598 return false;
2599 }
2600 }
2601
2602 static void print_regdomain(const struct ieee80211_regdomain *rd)
2603 {
2604 struct regulatory_request *lr = get_last_request();
2605
2606 if (is_intersected_alpha2(rd->alpha2)) {
2607 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2608 struct cfg80211_registered_device *rdev;
2609 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2610 if (rdev) {
2611 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2612 rdev->country_ie_alpha2[0],
2613 rdev->country_ie_alpha2[1]);
2614 } else
2615 pr_info("Current regulatory domain intersected:\n");
2616 } else
2617 pr_info("Current regulatory domain intersected:\n");
2618 } else if (is_world_regdom(rd->alpha2)) {
2619 pr_info("World regulatory domain updated:\n");
2620 } else {
2621 if (is_unknown_alpha2(rd->alpha2))
2622 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2623 else {
2624 if (reg_request_cell_base(lr))
2625 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2626 rd->alpha2[0], rd->alpha2[1]);
2627 else
2628 pr_info("Regulatory domain changed to country: %c%c\n",
2629 rd->alpha2[0], rd->alpha2[1]);
2630 }
2631 }
2632
2633 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2634 print_rd_rules(rd);
2635 }
2636
2637 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2638 {
2639 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2640 print_rd_rules(rd);
2641 }
2642
2643 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2644 {
2645 if (!is_world_regdom(rd->alpha2))
2646 return -EINVAL;
2647 update_world_regdomain(rd);
2648 return 0;
2649 }
2650
2651 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2652 struct regulatory_request *user_request)
2653 {
2654 const struct ieee80211_regdomain *intersected_rd = NULL;
2655
2656 if (!regdom_changes(rd->alpha2))
2657 return -EALREADY;
2658
2659 if (!is_valid_rd(rd)) {
2660 pr_err("Invalid regulatory domain detected:\n");
2661 print_regdomain_info(rd);
2662 return -EINVAL;
2663 }
2664
2665 if (!user_request->intersect) {
2666 reset_regdomains(false, rd);
2667 return 0;
2668 }
2669
2670 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2671 if (!intersected_rd)
2672 return -EINVAL;
2673
2674 kfree(rd);
2675 rd = NULL;
2676 reset_regdomains(false, intersected_rd);
2677
2678 return 0;
2679 }
2680
2681 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2682 struct regulatory_request *driver_request)
2683 {
2684 const struct ieee80211_regdomain *regd;
2685 const struct ieee80211_regdomain *intersected_rd = NULL;
2686 const struct ieee80211_regdomain *tmp;
2687 struct wiphy *request_wiphy;
2688
2689 if (is_world_regdom(rd->alpha2))
2690 return -EINVAL;
2691
2692 if (!regdom_changes(rd->alpha2))
2693 return -EALREADY;
2694
2695 if (!is_valid_rd(rd)) {
2696 pr_err("Invalid regulatory domain detected:\n");
2697 print_regdomain_info(rd);
2698 return -EINVAL;
2699 }
2700
2701 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2702 if (!request_wiphy) {
2703 queue_delayed_work(system_power_efficient_wq,
2704 &reg_timeout, 0);
2705 return -ENODEV;
2706 }
2707
2708 if (!driver_request->intersect) {
2709 if (request_wiphy->regd)
2710 return -EALREADY;
2711
2712 regd = reg_copy_regd(rd);
2713 if (IS_ERR(regd))
2714 return PTR_ERR(regd);
2715
2716 rcu_assign_pointer(request_wiphy->regd, regd);
2717 reset_regdomains(false, rd);
2718 return 0;
2719 }
2720
2721 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2722 if (!intersected_rd)
2723 return -EINVAL;
2724
2725 /*
2726 * We can trash what CRDA provided now.
2727 * However if a driver requested this specific regulatory
2728 * domain we keep it for its private use
2729 */
2730 tmp = get_wiphy_regdom(request_wiphy);
2731 rcu_assign_pointer(request_wiphy->regd, rd);
2732 rcu_free_regdom(tmp);
2733
2734 rd = NULL;
2735
2736 reset_regdomains(false, intersected_rd);
2737
2738 return 0;
2739 }
2740
2741 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2742 struct regulatory_request *country_ie_request)
2743 {
2744 struct wiphy *request_wiphy;
2745
2746 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2747 !is_unknown_alpha2(rd->alpha2))
2748 return -EINVAL;
2749
2750 /*
2751 * Lets only bother proceeding on the same alpha2 if the current
2752 * rd is non static (it means CRDA was present and was used last)
2753 * and the pending request came in from a country IE
2754 */
2755
2756 if (!is_valid_rd(rd)) {
2757 pr_err("Invalid regulatory domain detected:\n");
2758 print_regdomain_info(rd);
2759 return -EINVAL;
2760 }
2761
2762 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2763 if (!request_wiphy) {
2764 queue_delayed_work(system_power_efficient_wq,
2765 &reg_timeout, 0);
2766 return -ENODEV;
2767 }
2768
2769 if (country_ie_request->intersect)
2770 return -EINVAL;
2771
2772 reset_regdomains(false, rd);
2773 return 0;
2774 }
2775
2776 /*
2777 * Use this call to set the current regulatory domain. Conflicts with
2778 * multiple drivers can be ironed out later. Caller must've already
2779 * kmalloc'd the rd structure.
2780 */
2781 int set_regdom(const struct ieee80211_regdomain *rd)
2782 {
2783 struct regulatory_request *lr;
2784 bool user_reset = false;
2785 int r;
2786
2787 if (!reg_is_valid_request(rd->alpha2)) {
2788 kfree(rd);
2789 return -EINVAL;
2790 }
2791
2792 lr = get_last_request();
2793
2794 /* Note that this doesn't update the wiphys, this is done below */
2795 switch (lr->initiator) {
2796 case NL80211_REGDOM_SET_BY_CORE:
2797 r = reg_set_rd_core(rd);
2798 break;
2799 case NL80211_REGDOM_SET_BY_USER:
2800 r = reg_set_rd_user(rd, lr);
2801 user_reset = true;
2802 break;
2803 case NL80211_REGDOM_SET_BY_DRIVER:
2804 r = reg_set_rd_driver(rd, lr);
2805 break;
2806 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2807 r = reg_set_rd_country_ie(rd, lr);
2808 break;
2809 default:
2810 WARN(1, "invalid initiator %d\n", lr->initiator);
2811 return -EINVAL;
2812 }
2813
2814 if (r) {
2815 switch (r) {
2816 case -EALREADY:
2817 reg_set_request_processed();
2818 break;
2819 default:
2820 /* Back to world regulatory in case of errors */
2821 restore_regulatory_settings(user_reset);
2822 }
2823
2824 kfree(rd);
2825 return r;
2826 }
2827
2828 /* This would make this whole thing pointless */
2829 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2830 return -EINVAL;
2831
2832 /* update all wiphys now with the new established regulatory domain */
2833 update_all_wiphy_regulatory(lr->initiator);
2834
2835 print_regdomain(get_cfg80211_regdom());
2836
2837 nl80211_send_reg_change_event(lr);
2838
2839 reg_set_request_processed();
2840
2841 return 0;
2842 }
2843
2844 void wiphy_regulatory_register(struct wiphy *wiphy)
2845 {
2846 struct regulatory_request *lr;
2847
2848 if (!reg_dev_ignore_cell_hint(wiphy))
2849 reg_num_devs_support_basehint++;
2850
2851 lr = get_last_request();
2852 wiphy_update_regulatory(wiphy, lr->initiator);
2853 }
2854
2855 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2856 {
2857 struct wiphy *request_wiphy = NULL;
2858 struct regulatory_request *lr;
2859
2860 lr = get_last_request();
2861
2862 if (!reg_dev_ignore_cell_hint(wiphy))
2863 reg_num_devs_support_basehint--;
2864
2865 rcu_free_regdom(get_wiphy_regdom(wiphy));
2866 RCU_INIT_POINTER(wiphy->regd, NULL);
2867
2868 if (lr)
2869 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2870
2871 if (!request_wiphy || request_wiphy != wiphy)
2872 return;
2873
2874 lr->wiphy_idx = WIPHY_IDX_INVALID;
2875 lr->country_ie_env = ENVIRON_ANY;
2876 }
2877
2878 static void reg_timeout_work(struct work_struct *work)
2879 {
2880 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2881 rtnl_lock();
2882 restore_regulatory_settings(true);
2883 rtnl_unlock();
2884 }
2885
2886 /*
2887 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
2888 * UNII band definitions
2889 */
2890 int cfg80211_get_unii(int freq)
2891 {
2892 /* UNII-1 */
2893 if (freq >= 5150 && freq <= 5250)
2894 return 0;
2895
2896 /* UNII-2A */
2897 if (freq > 5250 && freq <= 5350)
2898 return 1;
2899
2900 /* UNII-2B */
2901 if (freq > 5350 && freq <= 5470)
2902 return 2;
2903
2904 /* UNII-2C */
2905 if (freq > 5470 && freq <= 5725)
2906 return 3;
2907
2908 /* UNII-3 */
2909 if (freq > 5725 && freq <= 5825)
2910 return 4;
2911
2912 return -EINVAL;
2913 }
2914
2915 bool regulatory_indoor_allowed(void)
2916 {
2917 return reg_is_indoor;
2918 }
2919
2920 int __init regulatory_init(void)
2921 {
2922 int err = 0;
2923
2924 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2925 if (IS_ERR(reg_pdev))
2926 return PTR_ERR(reg_pdev);
2927
2928 spin_lock_init(&reg_requests_lock);
2929 spin_lock_init(&reg_pending_beacons_lock);
2930
2931 reg_regdb_size_check();
2932
2933 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2934
2935 user_alpha2[0] = '9';
2936 user_alpha2[1] = '7';
2937
2938 /* We always try to get an update for the static regdomain */
2939 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2940 if (err) {
2941 if (err == -ENOMEM)
2942 return err;
2943 /*
2944 * N.B. kobject_uevent_env() can fail mainly for when we're out
2945 * memory which is handled and propagated appropriately above
2946 * but it can also fail during a netlink_broadcast() or during
2947 * early boot for call_usermodehelper(). For now treat these
2948 * errors as non-fatal.
2949 */
2950 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2951 }
2952
2953 /*
2954 * Finally, if the user set the module parameter treat it
2955 * as a user hint.
2956 */
2957 if (!is_world_regdom(ieee80211_regdom))
2958 regulatory_hint_user(ieee80211_regdom,
2959 NL80211_USER_REG_HINT_USER);
2960
2961 return 0;
2962 }
2963
2964 void regulatory_exit(void)
2965 {
2966 struct regulatory_request *reg_request, *tmp;
2967 struct reg_beacon *reg_beacon, *btmp;
2968
2969 cancel_work_sync(&reg_work);
2970 cancel_delayed_work_sync(&reg_timeout);
2971 cancel_delayed_work_sync(&reg_check_chans);
2972
2973 /* Lock to suppress warnings */
2974 rtnl_lock();
2975 reset_regdomains(true, NULL);
2976 rtnl_unlock();
2977
2978 dev_set_uevent_suppress(&reg_pdev->dev, true);
2979
2980 platform_device_unregister(reg_pdev);
2981
2982 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2983 list_del(&reg_beacon->list);
2984 kfree(reg_beacon);
2985 }
2986
2987 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2988 list_del(&reg_beacon->list);
2989 kfree(reg_beacon);
2990 }
2991
2992 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2993 list_del(&reg_request->list);
2994 kfree(reg_request);
2995 }
2996 }
This page took 0.091688 seconds and 5 git commands to generate.