Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21
22 /**
23 * DOC: Wireless regulatory infrastructure
24 *
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
29 *
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
33 *
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
39 *
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
43 *
44 */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...) \
64 printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68
69 /**
70 * enum reg_request_treatment - regulatory request treatment
71 *
72 * @REG_REQ_OK: continue processing the regulatory request
73 * @REG_REQ_IGNORE: ignore the regulatory request
74 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
75 * be intersected with the current one.
76 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
77 * regulatory settings, and no further processing is required.
78 * @REG_REQ_USER_HINT_HANDLED: a non alpha2 user hint was handled and no
79 * further processing is required, i.e., not need to update last_request
80 * etc. This should be used for user hints that do not provide an alpha2
81 * but some other type of regulatory hint, i.e., indoor operation.
82 */
83 enum reg_request_treatment {
84 REG_REQ_OK,
85 REG_REQ_IGNORE,
86 REG_REQ_INTERSECT,
87 REG_REQ_ALREADY_SET,
88 REG_REQ_USER_HINT_HANDLED,
89 };
90
91 static struct regulatory_request core_request_world = {
92 .initiator = NL80211_REGDOM_SET_BY_CORE,
93 .alpha2[0] = '0',
94 .alpha2[1] = '0',
95 .intersect = false,
96 .processed = true,
97 .country_ie_env = ENVIRON_ANY,
98 };
99
100 /*
101 * Receipt of information from last regulatory request,
102 * protected by RTNL (and can be accessed with RCU protection)
103 */
104 static struct regulatory_request __rcu *last_request =
105 (void __rcu *)&core_request_world;
106
107 /* To trigger userspace events */
108 static struct platform_device *reg_pdev;
109
110 /*
111 * Central wireless core regulatory domains, we only need two,
112 * the current one and a world regulatory domain in case we have no
113 * information to give us an alpha2.
114 * (protected by RTNL, can be read under RCU)
115 */
116 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117
118 /*
119 * Number of devices that registered to the core
120 * that support cellular base station regulatory hints
121 * (protected by RTNL)
122 */
123 static int reg_num_devs_support_basehint;
124
125 /*
126 * State variable indicating if the platform on which the devices
127 * are attached is operating in an indoor environment. The state variable
128 * is relevant for all registered devices.
129 * (protected by RTNL)
130 */
131 static bool reg_is_indoor;
132
133 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
134 {
135 return rtnl_dereference(cfg80211_regdomain);
136 }
137
138 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
139 {
140 return rtnl_dereference(wiphy->regd);
141 }
142
143 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
144 {
145 switch (dfs_region) {
146 case NL80211_DFS_UNSET:
147 return "unset";
148 case NL80211_DFS_FCC:
149 return "FCC";
150 case NL80211_DFS_ETSI:
151 return "ETSI";
152 case NL80211_DFS_JP:
153 return "JP";
154 }
155 return "Unknown";
156 }
157
158 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
159 {
160 const struct ieee80211_regdomain *regd = NULL;
161 const struct ieee80211_regdomain *wiphy_regd = NULL;
162
163 regd = get_cfg80211_regdom();
164 if (!wiphy)
165 goto out;
166
167 wiphy_regd = get_wiphy_regdom(wiphy);
168 if (!wiphy_regd)
169 goto out;
170
171 if (wiphy_regd->dfs_region == regd->dfs_region)
172 goto out;
173
174 REG_DBG_PRINT("%s: device specific dfs_region "
175 "(%s) disagrees with cfg80211's "
176 "central dfs_region (%s)\n",
177 dev_name(&wiphy->dev),
178 reg_dfs_region_str(wiphy_regd->dfs_region),
179 reg_dfs_region_str(regd->dfs_region));
180
181 out:
182 return regd->dfs_region;
183 }
184
185 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
186 {
187 if (!r)
188 return;
189 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
190 }
191
192 static struct regulatory_request *get_last_request(void)
193 {
194 return rcu_dereference_rtnl(last_request);
195 }
196
197 /* Used to queue up regulatory hints */
198 static LIST_HEAD(reg_requests_list);
199 static spinlock_t reg_requests_lock;
200
201 /* Used to queue up beacon hints for review */
202 static LIST_HEAD(reg_pending_beacons);
203 static spinlock_t reg_pending_beacons_lock;
204
205 /* Used to keep track of processed beacon hints */
206 static LIST_HEAD(reg_beacon_list);
207
208 struct reg_beacon {
209 struct list_head list;
210 struct ieee80211_channel chan;
211 };
212
213 static void reg_todo(struct work_struct *work);
214 static DECLARE_WORK(reg_work, reg_todo);
215
216 static void reg_timeout_work(struct work_struct *work);
217 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
218
219 /* We keep a static world regulatory domain in case of the absence of CRDA */
220 static const struct ieee80211_regdomain world_regdom = {
221 .n_reg_rules = 6,
222 .alpha2 = "00",
223 .reg_rules = {
224 /* IEEE 802.11b/g, channels 1..11 */
225 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
226 /* IEEE 802.11b/g, channels 12..13. */
227 REG_RULE(2467-10, 2472+10, 40, 6, 20,
228 NL80211_RRF_NO_IR),
229 /* IEEE 802.11 channel 14 - Only JP enables
230 * this and for 802.11b only */
231 REG_RULE(2484-10, 2484+10, 20, 6, 20,
232 NL80211_RRF_NO_IR |
233 NL80211_RRF_NO_OFDM),
234 /* IEEE 802.11a, channel 36..48 */
235 REG_RULE(5180-10, 5240+10, 160, 6, 20,
236 NL80211_RRF_NO_IR),
237
238 /* IEEE 802.11a, channel 52..64 - DFS required */
239 REG_RULE(5260-10, 5320+10, 160, 6, 20,
240 NL80211_RRF_NO_IR |
241 NL80211_RRF_DFS),
242
243 /* IEEE 802.11a, channel 100..144 - DFS required */
244 REG_RULE(5500-10, 5720+10, 160, 6, 20,
245 NL80211_RRF_NO_IR |
246 NL80211_RRF_DFS),
247
248 /* IEEE 802.11a, channel 149..165 */
249 REG_RULE(5745-10, 5825+10, 80, 6, 20,
250 NL80211_RRF_NO_IR),
251
252 /* IEEE 802.11ad (60gHz), channels 1..3 */
253 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
254 }
255 };
256
257 /* protected by RTNL */
258 static const struct ieee80211_regdomain *cfg80211_world_regdom =
259 &world_regdom;
260
261 static char *ieee80211_regdom = "00";
262 static char user_alpha2[2];
263
264 module_param(ieee80211_regdom, charp, 0444);
265 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
266
267 static void reg_free_request(struct regulatory_request *request)
268 {
269 if (request != get_last_request())
270 kfree(request);
271 }
272
273 static void reg_free_last_request(void)
274 {
275 struct regulatory_request *lr = get_last_request();
276
277 if (lr != &core_request_world && lr)
278 kfree_rcu(lr, rcu_head);
279 }
280
281 static void reg_update_last_request(struct regulatory_request *request)
282 {
283 struct regulatory_request *lr;
284
285 lr = get_last_request();
286 if (lr == request)
287 return;
288
289 reg_free_last_request();
290 rcu_assign_pointer(last_request, request);
291 }
292
293 static void reset_regdomains(bool full_reset,
294 const struct ieee80211_regdomain *new_regdom)
295 {
296 const struct ieee80211_regdomain *r;
297
298 ASSERT_RTNL();
299
300 r = get_cfg80211_regdom();
301
302 /* avoid freeing static information or freeing something twice */
303 if (r == cfg80211_world_regdom)
304 r = NULL;
305 if (cfg80211_world_regdom == &world_regdom)
306 cfg80211_world_regdom = NULL;
307 if (r == &world_regdom)
308 r = NULL;
309
310 rcu_free_regdom(r);
311 rcu_free_regdom(cfg80211_world_regdom);
312
313 cfg80211_world_regdom = &world_regdom;
314 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
315
316 if (!full_reset)
317 return;
318
319 reg_update_last_request(&core_request_world);
320 }
321
322 /*
323 * Dynamic world regulatory domain requested by the wireless
324 * core upon initialization
325 */
326 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
327 {
328 struct regulatory_request *lr;
329
330 lr = get_last_request();
331
332 WARN_ON(!lr);
333
334 reset_regdomains(false, rd);
335
336 cfg80211_world_regdom = rd;
337 }
338
339 bool is_world_regdom(const char *alpha2)
340 {
341 if (!alpha2)
342 return false;
343 return alpha2[0] == '0' && alpha2[1] == '0';
344 }
345
346 static bool is_alpha2_set(const char *alpha2)
347 {
348 if (!alpha2)
349 return false;
350 return alpha2[0] && alpha2[1];
351 }
352
353 static bool is_unknown_alpha2(const char *alpha2)
354 {
355 if (!alpha2)
356 return false;
357 /*
358 * Special case where regulatory domain was built by driver
359 * but a specific alpha2 cannot be determined
360 */
361 return alpha2[0] == '9' && alpha2[1] == '9';
362 }
363
364 static bool is_intersected_alpha2(const char *alpha2)
365 {
366 if (!alpha2)
367 return false;
368 /*
369 * Special case where regulatory domain is the
370 * result of an intersection between two regulatory domain
371 * structures
372 */
373 return alpha2[0] == '9' && alpha2[1] == '8';
374 }
375
376 static bool is_an_alpha2(const char *alpha2)
377 {
378 if (!alpha2)
379 return false;
380 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
381 }
382
383 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
384 {
385 if (!alpha2_x || !alpha2_y)
386 return false;
387 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
388 }
389
390 static bool regdom_changes(const char *alpha2)
391 {
392 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
393
394 if (!r)
395 return true;
396 return !alpha2_equal(r->alpha2, alpha2);
397 }
398
399 /*
400 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
401 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
402 * has ever been issued.
403 */
404 static bool is_user_regdom_saved(void)
405 {
406 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
407 return false;
408
409 /* This would indicate a mistake on the design */
410 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
411 "Unexpected user alpha2: %c%c\n",
412 user_alpha2[0], user_alpha2[1]))
413 return false;
414
415 return true;
416 }
417
418 static const struct ieee80211_regdomain *
419 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
420 {
421 struct ieee80211_regdomain *regd;
422 int size_of_regd;
423 unsigned int i;
424
425 size_of_regd =
426 sizeof(struct ieee80211_regdomain) +
427 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
428
429 regd = kzalloc(size_of_regd, GFP_KERNEL);
430 if (!regd)
431 return ERR_PTR(-ENOMEM);
432
433 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
434
435 for (i = 0; i < src_regd->n_reg_rules; i++)
436 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
437 sizeof(struct ieee80211_reg_rule));
438
439 return regd;
440 }
441
442 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
443 struct reg_regdb_search_request {
444 char alpha2[2];
445 struct list_head list;
446 };
447
448 static LIST_HEAD(reg_regdb_search_list);
449 static DEFINE_MUTEX(reg_regdb_search_mutex);
450
451 static void reg_regdb_search(struct work_struct *work)
452 {
453 struct reg_regdb_search_request *request;
454 const struct ieee80211_regdomain *curdom, *regdom = NULL;
455 int i;
456
457 rtnl_lock();
458
459 mutex_lock(&reg_regdb_search_mutex);
460 while (!list_empty(&reg_regdb_search_list)) {
461 request = list_first_entry(&reg_regdb_search_list,
462 struct reg_regdb_search_request,
463 list);
464 list_del(&request->list);
465
466 for (i = 0; i < reg_regdb_size; i++) {
467 curdom = reg_regdb[i];
468
469 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
470 regdom = reg_copy_regd(curdom);
471 break;
472 }
473 }
474
475 kfree(request);
476 }
477 mutex_unlock(&reg_regdb_search_mutex);
478
479 if (!IS_ERR_OR_NULL(regdom))
480 set_regdom(regdom);
481
482 rtnl_unlock();
483 }
484
485 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
486
487 static void reg_regdb_query(const char *alpha2)
488 {
489 struct reg_regdb_search_request *request;
490
491 if (!alpha2)
492 return;
493
494 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
495 if (!request)
496 return;
497
498 memcpy(request->alpha2, alpha2, 2);
499
500 mutex_lock(&reg_regdb_search_mutex);
501 list_add_tail(&request->list, &reg_regdb_search_list);
502 mutex_unlock(&reg_regdb_search_mutex);
503
504 schedule_work(&reg_regdb_work);
505 }
506
507 /* Feel free to add any other sanity checks here */
508 static void reg_regdb_size_check(void)
509 {
510 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
511 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
512 }
513 #else
514 static inline void reg_regdb_size_check(void) {}
515 static inline void reg_regdb_query(const char *alpha2) {}
516 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
517
518 /*
519 * This lets us keep regulatory code which is updated on a regulatory
520 * basis in userspace.
521 */
522 static int call_crda(const char *alpha2)
523 {
524 char country[12];
525 char *env[] = { country, NULL };
526
527 snprintf(country, sizeof(country), "COUNTRY=%c%c",
528 alpha2[0], alpha2[1]);
529
530 if (!is_world_regdom((char *) alpha2))
531 pr_info("Calling CRDA for country: %c%c\n",
532 alpha2[0], alpha2[1]);
533 else
534 pr_info("Calling CRDA to update world regulatory domain\n");
535
536 /* query internal regulatory database (if it exists) */
537 reg_regdb_query(alpha2);
538
539 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
540 }
541
542 static enum reg_request_treatment
543 reg_call_crda(struct regulatory_request *request)
544 {
545 if (call_crda(request->alpha2))
546 return REG_REQ_IGNORE;
547 return REG_REQ_OK;
548 }
549
550 bool reg_is_valid_request(const char *alpha2)
551 {
552 struct regulatory_request *lr = get_last_request();
553
554 if (!lr || lr->processed)
555 return false;
556
557 return alpha2_equal(lr->alpha2, alpha2);
558 }
559
560 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
561 {
562 struct regulatory_request *lr = get_last_request();
563
564 /*
565 * Follow the driver's regulatory domain, if present, unless a country
566 * IE has been processed or a user wants to help complaince further
567 */
568 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
569 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
570 wiphy->regd)
571 return get_wiphy_regdom(wiphy);
572
573 return get_cfg80211_regdom();
574 }
575
576 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
577 const struct ieee80211_reg_rule *rule)
578 {
579 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
580 const struct ieee80211_freq_range *freq_range_tmp;
581 const struct ieee80211_reg_rule *tmp;
582 u32 start_freq, end_freq, idx, no;
583
584 for (idx = 0; idx < rd->n_reg_rules; idx++)
585 if (rule == &rd->reg_rules[idx])
586 break;
587
588 if (idx == rd->n_reg_rules)
589 return 0;
590
591 /* get start_freq */
592 no = idx;
593
594 while (no) {
595 tmp = &rd->reg_rules[--no];
596 freq_range_tmp = &tmp->freq_range;
597
598 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
599 break;
600
601 freq_range = freq_range_tmp;
602 }
603
604 start_freq = freq_range->start_freq_khz;
605
606 /* get end_freq */
607 freq_range = &rule->freq_range;
608 no = idx;
609
610 while (no < rd->n_reg_rules - 1) {
611 tmp = &rd->reg_rules[++no];
612 freq_range_tmp = &tmp->freq_range;
613
614 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
615 break;
616
617 freq_range = freq_range_tmp;
618 }
619
620 end_freq = freq_range->end_freq_khz;
621
622 return end_freq - start_freq;
623 }
624
625 /* Sanity check on a regulatory rule */
626 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
627 {
628 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
629 u32 freq_diff;
630
631 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
632 return false;
633
634 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
635 return false;
636
637 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
638
639 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
640 freq_range->max_bandwidth_khz > freq_diff)
641 return false;
642
643 return true;
644 }
645
646 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
647 {
648 const struct ieee80211_reg_rule *reg_rule = NULL;
649 unsigned int i;
650
651 if (!rd->n_reg_rules)
652 return false;
653
654 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
655 return false;
656
657 for (i = 0; i < rd->n_reg_rules; i++) {
658 reg_rule = &rd->reg_rules[i];
659 if (!is_valid_reg_rule(reg_rule))
660 return false;
661 }
662
663 return true;
664 }
665
666 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
667 u32 center_freq_khz, u32 bw_khz)
668 {
669 u32 start_freq_khz, end_freq_khz;
670
671 start_freq_khz = center_freq_khz - (bw_khz/2);
672 end_freq_khz = center_freq_khz + (bw_khz/2);
673
674 if (start_freq_khz >= freq_range->start_freq_khz &&
675 end_freq_khz <= freq_range->end_freq_khz)
676 return true;
677
678 return false;
679 }
680
681 /**
682 * freq_in_rule_band - tells us if a frequency is in a frequency band
683 * @freq_range: frequency rule we want to query
684 * @freq_khz: frequency we are inquiring about
685 *
686 * This lets us know if a specific frequency rule is or is not relevant to
687 * a specific frequency's band. Bands are device specific and artificial
688 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
689 * however it is safe for now to assume that a frequency rule should not be
690 * part of a frequency's band if the start freq or end freq are off by more
691 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
692 * 60 GHz band.
693 * This resolution can be lowered and should be considered as we add
694 * regulatory rule support for other "bands".
695 **/
696 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
697 u32 freq_khz)
698 {
699 #define ONE_GHZ_IN_KHZ 1000000
700 /*
701 * From 802.11ad: directional multi-gigabit (DMG):
702 * Pertaining to operation in a frequency band containing a channel
703 * with the Channel starting frequency above 45 GHz.
704 */
705 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
706 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
707 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
708 return true;
709 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
710 return true;
711 return false;
712 #undef ONE_GHZ_IN_KHZ
713 }
714
715 /*
716 * Later on we can perhaps use the more restrictive DFS
717 * region but we don't have information for that yet so
718 * for now simply disallow conflicts.
719 */
720 static enum nl80211_dfs_regions
721 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
722 const enum nl80211_dfs_regions dfs_region2)
723 {
724 if (dfs_region1 != dfs_region2)
725 return NL80211_DFS_UNSET;
726 return dfs_region1;
727 }
728
729 /*
730 * Helper for regdom_intersect(), this does the real
731 * mathematical intersection fun
732 */
733 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
734 const struct ieee80211_regdomain *rd2,
735 const struct ieee80211_reg_rule *rule1,
736 const struct ieee80211_reg_rule *rule2,
737 struct ieee80211_reg_rule *intersected_rule)
738 {
739 const struct ieee80211_freq_range *freq_range1, *freq_range2;
740 struct ieee80211_freq_range *freq_range;
741 const struct ieee80211_power_rule *power_rule1, *power_rule2;
742 struct ieee80211_power_rule *power_rule;
743 u32 freq_diff, max_bandwidth1, max_bandwidth2;
744
745 freq_range1 = &rule1->freq_range;
746 freq_range2 = &rule2->freq_range;
747 freq_range = &intersected_rule->freq_range;
748
749 power_rule1 = &rule1->power_rule;
750 power_rule2 = &rule2->power_rule;
751 power_rule = &intersected_rule->power_rule;
752
753 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
754 freq_range2->start_freq_khz);
755 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
756 freq_range2->end_freq_khz);
757
758 max_bandwidth1 = freq_range1->max_bandwidth_khz;
759 max_bandwidth2 = freq_range2->max_bandwidth_khz;
760
761 if (rule1->flags & NL80211_RRF_AUTO_BW)
762 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
763 if (rule2->flags & NL80211_RRF_AUTO_BW)
764 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
765
766 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
767
768 intersected_rule->flags = rule1->flags | rule2->flags;
769
770 /*
771 * In case NL80211_RRF_AUTO_BW requested for both rules
772 * set AUTO_BW in intersected rule also. Next we will
773 * calculate BW correctly in handle_channel function.
774 * In other case remove AUTO_BW flag while we calculate
775 * maximum bandwidth correctly and auto calculation is
776 * not required.
777 */
778 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
779 (rule2->flags & NL80211_RRF_AUTO_BW))
780 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
781 else
782 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
783
784 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
785 if (freq_range->max_bandwidth_khz > freq_diff)
786 freq_range->max_bandwidth_khz = freq_diff;
787
788 power_rule->max_eirp = min(power_rule1->max_eirp,
789 power_rule2->max_eirp);
790 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
791 power_rule2->max_antenna_gain);
792
793 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
794 rule2->dfs_cac_ms);
795
796 if (!is_valid_reg_rule(intersected_rule))
797 return -EINVAL;
798
799 return 0;
800 }
801
802 /* check whether old rule contains new rule */
803 static bool rule_contains(struct ieee80211_reg_rule *r1,
804 struct ieee80211_reg_rule *r2)
805 {
806 /* for simplicity, currently consider only same flags */
807 if (r1->flags != r2->flags)
808 return false;
809
810 /* verify r1 is more restrictive */
811 if ((r1->power_rule.max_antenna_gain >
812 r2->power_rule.max_antenna_gain) ||
813 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
814 return false;
815
816 /* make sure r2's range is contained within r1 */
817 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
818 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
819 return false;
820
821 /* and finally verify that r1.max_bw >= r2.max_bw */
822 if (r1->freq_range.max_bandwidth_khz <
823 r2->freq_range.max_bandwidth_khz)
824 return false;
825
826 return true;
827 }
828
829 /* add or extend current rules. do nothing if rule is already contained */
830 static void add_rule(struct ieee80211_reg_rule *rule,
831 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
832 {
833 struct ieee80211_reg_rule *tmp_rule;
834 int i;
835
836 for (i = 0; i < *n_rules; i++) {
837 tmp_rule = &reg_rules[i];
838 /* rule is already contained - do nothing */
839 if (rule_contains(tmp_rule, rule))
840 return;
841
842 /* extend rule if possible */
843 if (rule_contains(rule, tmp_rule)) {
844 memcpy(tmp_rule, rule, sizeof(*rule));
845 return;
846 }
847 }
848
849 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
850 (*n_rules)++;
851 }
852
853 /**
854 * regdom_intersect - do the intersection between two regulatory domains
855 * @rd1: first regulatory domain
856 * @rd2: second regulatory domain
857 *
858 * Use this function to get the intersection between two regulatory domains.
859 * Once completed we will mark the alpha2 for the rd as intersected, "98",
860 * as no one single alpha2 can represent this regulatory domain.
861 *
862 * Returns a pointer to the regulatory domain structure which will hold the
863 * resulting intersection of rules between rd1 and rd2. We will
864 * kzalloc() this structure for you.
865 */
866 static struct ieee80211_regdomain *
867 regdom_intersect(const struct ieee80211_regdomain *rd1,
868 const struct ieee80211_regdomain *rd2)
869 {
870 int r, size_of_regd;
871 unsigned int x, y;
872 unsigned int num_rules = 0;
873 const struct ieee80211_reg_rule *rule1, *rule2;
874 struct ieee80211_reg_rule intersected_rule;
875 struct ieee80211_regdomain *rd;
876
877 if (!rd1 || !rd2)
878 return NULL;
879
880 /*
881 * First we get a count of the rules we'll need, then we actually
882 * build them. This is to so we can malloc() and free() a
883 * regdomain once. The reason we use reg_rules_intersect() here
884 * is it will return -EINVAL if the rule computed makes no sense.
885 * All rules that do check out OK are valid.
886 */
887
888 for (x = 0; x < rd1->n_reg_rules; x++) {
889 rule1 = &rd1->reg_rules[x];
890 for (y = 0; y < rd2->n_reg_rules; y++) {
891 rule2 = &rd2->reg_rules[y];
892 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
893 &intersected_rule))
894 num_rules++;
895 }
896 }
897
898 if (!num_rules)
899 return NULL;
900
901 size_of_regd = sizeof(struct ieee80211_regdomain) +
902 num_rules * sizeof(struct ieee80211_reg_rule);
903
904 rd = kzalloc(size_of_regd, GFP_KERNEL);
905 if (!rd)
906 return NULL;
907
908 for (x = 0; x < rd1->n_reg_rules; x++) {
909 rule1 = &rd1->reg_rules[x];
910 for (y = 0; y < rd2->n_reg_rules; y++) {
911 rule2 = &rd2->reg_rules[y];
912 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
913 &intersected_rule);
914 /*
915 * No need to memset here the intersected rule here as
916 * we're not using the stack anymore
917 */
918 if (r)
919 continue;
920
921 add_rule(&intersected_rule, rd->reg_rules,
922 &rd->n_reg_rules);
923 }
924 }
925
926 rd->alpha2[0] = '9';
927 rd->alpha2[1] = '8';
928 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
929 rd2->dfs_region);
930
931 return rd;
932 }
933
934 /*
935 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
936 * want to just have the channel structure use these
937 */
938 static u32 map_regdom_flags(u32 rd_flags)
939 {
940 u32 channel_flags = 0;
941 if (rd_flags & NL80211_RRF_NO_IR_ALL)
942 channel_flags |= IEEE80211_CHAN_NO_IR;
943 if (rd_flags & NL80211_RRF_DFS)
944 channel_flags |= IEEE80211_CHAN_RADAR;
945 if (rd_flags & NL80211_RRF_NO_OFDM)
946 channel_flags |= IEEE80211_CHAN_NO_OFDM;
947 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
948 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
949 return channel_flags;
950 }
951
952 static const struct ieee80211_reg_rule *
953 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
954 const struct ieee80211_regdomain *regd)
955 {
956 int i;
957 bool band_rule_found = false;
958 bool bw_fits = false;
959
960 if (!regd)
961 return ERR_PTR(-EINVAL);
962
963 for (i = 0; i < regd->n_reg_rules; i++) {
964 const struct ieee80211_reg_rule *rr;
965 const struct ieee80211_freq_range *fr = NULL;
966
967 rr = &regd->reg_rules[i];
968 fr = &rr->freq_range;
969
970 /*
971 * We only need to know if one frequency rule was
972 * was in center_freq's band, that's enough, so lets
973 * not overwrite it once found
974 */
975 if (!band_rule_found)
976 band_rule_found = freq_in_rule_band(fr, center_freq);
977
978 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
979
980 if (band_rule_found && bw_fits)
981 return rr;
982 }
983
984 if (!band_rule_found)
985 return ERR_PTR(-ERANGE);
986
987 return ERR_PTR(-EINVAL);
988 }
989
990 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
991 u32 center_freq)
992 {
993 const struct ieee80211_regdomain *regd;
994
995 regd = reg_get_regdomain(wiphy);
996
997 return freq_reg_info_regd(wiphy, center_freq, regd);
998 }
999 EXPORT_SYMBOL(freq_reg_info);
1000
1001 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1002 {
1003 switch (initiator) {
1004 case NL80211_REGDOM_SET_BY_CORE:
1005 return "core";
1006 case NL80211_REGDOM_SET_BY_USER:
1007 return "user";
1008 case NL80211_REGDOM_SET_BY_DRIVER:
1009 return "driver";
1010 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1011 return "country IE";
1012 default:
1013 WARN_ON(1);
1014 return "bug";
1015 }
1016 }
1017 EXPORT_SYMBOL(reg_initiator_name);
1018
1019 #ifdef CONFIG_CFG80211_REG_DEBUG
1020 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1021 struct ieee80211_channel *chan,
1022 const struct ieee80211_reg_rule *reg_rule)
1023 {
1024 const struct ieee80211_power_rule *power_rule;
1025 const struct ieee80211_freq_range *freq_range;
1026 char max_antenna_gain[32], bw[32];
1027
1028 power_rule = &reg_rule->power_rule;
1029 freq_range = &reg_rule->freq_range;
1030
1031 if (!power_rule->max_antenna_gain)
1032 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1033 else
1034 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1035 power_rule->max_antenna_gain);
1036
1037 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1038 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1039 freq_range->max_bandwidth_khz,
1040 reg_get_max_bandwidth(regd, reg_rule));
1041 else
1042 snprintf(bw, sizeof(bw), "%d KHz",
1043 freq_range->max_bandwidth_khz);
1044
1045 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1046 chan->center_freq);
1047
1048 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1049 freq_range->start_freq_khz, freq_range->end_freq_khz,
1050 bw, max_antenna_gain,
1051 power_rule->max_eirp);
1052 }
1053 #else
1054 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1055 struct ieee80211_channel *chan,
1056 const struct ieee80211_reg_rule *reg_rule)
1057 {
1058 return;
1059 }
1060 #endif
1061
1062 /*
1063 * Note that right now we assume the desired channel bandwidth
1064 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1065 * per channel, the primary and the extension channel).
1066 */
1067 static void handle_channel(struct wiphy *wiphy,
1068 enum nl80211_reg_initiator initiator,
1069 struct ieee80211_channel *chan)
1070 {
1071 u32 flags, bw_flags = 0;
1072 const struct ieee80211_reg_rule *reg_rule = NULL;
1073 const struct ieee80211_power_rule *power_rule = NULL;
1074 const struct ieee80211_freq_range *freq_range = NULL;
1075 struct wiphy *request_wiphy = NULL;
1076 struct regulatory_request *lr = get_last_request();
1077 const struct ieee80211_regdomain *regd;
1078 u32 max_bandwidth_khz;
1079
1080 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1081
1082 flags = chan->orig_flags;
1083
1084 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1085 if (IS_ERR(reg_rule)) {
1086 /*
1087 * We will disable all channels that do not match our
1088 * received regulatory rule unless the hint is coming
1089 * from a Country IE and the Country IE had no information
1090 * about a band. The IEEE 802.11 spec allows for an AP
1091 * to send only a subset of the regulatory rules allowed,
1092 * so an AP in the US that only supports 2.4 GHz may only send
1093 * a country IE with information for the 2.4 GHz band
1094 * while 5 GHz is still supported.
1095 */
1096 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1097 PTR_ERR(reg_rule) == -ERANGE)
1098 return;
1099
1100 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1101 request_wiphy && request_wiphy == wiphy &&
1102 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1103 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1104 chan->center_freq);
1105 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1106 chan->flags = chan->orig_flags;
1107 } else {
1108 REG_DBG_PRINT("Disabling freq %d MHz\n",
1109 chan->center_freq);
1110 chan->flags |= IEEE80211_CHAN_DISABLED;
1111 }
1112 return;
1113 }
1114
1115 regd = reg_get_regdomain(wiphy);
1116 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1117
1118 power_rule = &reg_rule->power_rule;
1119 freq_range = &reg_rule->freq_range;
1120
1121 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1122 /* Check if auto calculation requested */
1123 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1124 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1125
1126 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1127 bw_flags = IEEE80211_CHAN_NO_HT40;
1128 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1129 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1130 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1131 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1132
1133 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1134 request_wiphy && request_wiphy == wiphy &&
1135 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1136 /*
1137 * This guarantees the driver's requested regulatory domain
1138 * will always be used as a base for further regulatory
1139 * settings
1140 */
1141 chan->flags = chan->orig_flags =
1142 map_regdom_flags(reg_rule->flags) | bw_flags;
1143 chan->max_antenna_gain = chan->orig_mag =
1144 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1145 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1146 (int) MBM_TO_DBM(power_rule->max_eirp);
1147
1148 if (chan->flags & IEEE80211_CHAN_RADAR) {
1149 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1150 if (reg_rule->dfs_cac_ms)
1151 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1152 }
1153
1154 return;
1155 }
1156
1157 chan->dfs_state = NL80211_DFS_USABLE;
1158 chan->dfs_state_entered = jiffies;
1159
1160 chan->beacon_found = false;
1161 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1162 chan->max_antenna_gain =
1163 min_t(int, chan->orig_mag,
1164 MBI_TO_DBI(power_rule->max_antenna_gain));
1165 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1166
1167 if (chan->flags & IEEE80211_CHAN_RADAR) {
1168 if (reg_rule->dfs_cac_ms)
1169 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1170 else
1171 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1172 }
1173
1174 if (chan->orig_mpwr) {
1175 /*
1176 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1177 * will always follow the passed country IE power settings.
1178 */
1179 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1180 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1181 chan->max_power = chan->max_reg_power;
1182 else
1183 chan->max_power = min(chan->orig_mpwr,
1184 chan->max_reg_power);
1185 } else
1186 chan->max_power = chan->max_reg_power;
1187 }
1188
1189 static void handle_band(struct wiphy *wiphy,
1190 enum nl80211_reg_initiator initiator,
1191 struct ieee80211_supported_band *sband)
1192 {
1193 unsigned int i;
1194
1195 if (!sband)
1196 return;
1197
1198 for (i = 0; i < sband->n_channels; i++)
1199 handle_channel(wiphy, initiator, &sband->channels[i]);
1200 }
1201
1202 static bool reg_request_cell_base(struct regulatory_request *request)
1203 {
1204 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1205 return false;
1206 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1207 }
1208
1209 static bool reg_request_indoor(struct regulatory_request *request)
1210 {
1211 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1212 return false;
1213 return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
1214 }
1215
1216 bool reg_last_request_cell_base(void)
1217 {
1218 return reg_request_cell_base(get_last_request());
1219 }
1220
1221 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1222 /* Core specific check */
1223 static enum reg_request_treatment
1224 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1225 {
1226 struct regulatory_request *lr = get_last_request();
1227
1228 if (!reg_num_devs_support_basehint)
1229 return REG_REQ_IGNORE;
1230
1231 if (reg_request_cell_base(lr) &&
1232 !regdom_changes(pending_request->alpha2))
1233 return REG_REQ_ALREADY_SET;
1234
1235 return REG_REQ_OK;
1236 }
1237
1238 /* Device specific check */
1239 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1240 {
1241 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1242 }
1243 #else
1244 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1245 {
1246 return REG_REQ_IGNORE;
1247 }
1248
1249 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1250 {
1251 return true;
1252 }
1253 #endif
1254
1255 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1256 {
1257 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1258 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1259 return true;
1260 return false;
1261 }
1262
1263 static bool ignore_reg_update(struct wiphy *wiphy,
1264 enum nl80211_reg_initiator initiator)
1265 {
1266 struct regulatory_request *lr = get_last_request();
1267
1268 if (!lr) {
1269 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1270 "since last_request is not set\n",
1271 reg_initiator_name(initiator));
1272 return true;
1273 }
1274
1275 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1276 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1277 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1278 "since the driver uses its own custom "
1279 "regulatory domain\n",
1280 reg_initiator_name(initiator));
1281 return true;
1282 }
1283
1284 /*
1285 * wiphy->regd will be set once the device has its own
1286 * desired regulatory domain set
1287 */
1288 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1289 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1290 !is_world_regdom(lr->alpha2)) {
1291 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1292 "since the driver requires its own regulatory "
1293 "domain to be set first\n",
1294 reg_initiator_name(initiator));
1295 return true;
1296 }
1297
1298 if (reg_request_cell_base(lr))
1299 return reg_dev_ignore_cell_hint(wiphy);
1300
1301 return false;
1302 }
1303
1304 static bool reg_is_world_roaming(struct wiphy *wiphy)
1305 {
1306 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1307 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1308 struct regulatory_request *lr = get_last_request();
1309
1310 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1311 return true;
1312
1313 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1314 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1315 return true;
1316
1317 return false;
1318 }
1319
1320 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1321 struct reg_beacon *reg_beacon)
1322 {
1323 struct ieee80211_supported_band *sband;
1324 struct ieee80211_channel *chan;
1325 bool channel_changed = false;
1326 struct ieee80211_channel chan_before;
1327
1328 sband = wiphy->bands[reg_beacon->chan.band];
1329 chan = &sband->channels[chan_idx];
1330
1331 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1332 return;
1333
1334 if (chan->beacon_found)
1335 return;
1336
1337 chan->beacon_found = true;
1338
1339 if (!reg_is_world_roaming(wiphy))
1340 return;
1341
1342 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1343 return;
1344
1345 chan_before.center_freq = chan->center_freq;
1346 chan_before.flags = chan->flags;
1347
1348 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1349 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1350 channel_changed = true;
1351 }
1352
1353 if (channel_changed)
1354 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1355 }
1356
1357 /*
1358 * Called when a scan on a wiphy finds a beacon on
1359 * new channel
1360 */
1361 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1362 struct reg_beacon *reg_beacon)
1363 {
1364 unsigned int i;
1365 struct ieee80211_supported_band *sband;
1366
1367 if (!wiphy->bands[reg_beacon->chan.band])
1368 return;
1369
1370 sband = wiphy->bands[reg_beacon->chan.band];
1371
1372 for (i = 0; i < sband->n_channels; i++)
1373 handle_reg_beacon(wiphy, i, reg_beacon);
1374 }
1375
1376 /*
1377 * Called upon reg changes or a new wiphy is added
1378 */
1379 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1380 {
1381 unsigned int i;
1382 struct ieee80211_supported_band *sband;
1383 struct reg_beacon *reg_beacon;
1384
1385 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1386 if (!wiphy->bands[reg_beacon->chan.band])
1387 continue;
1388 sband = wiphy->bands[reg_beacon->chan.band];
1389 for (i = 0; i < sband->n_channels; i++)
1390 handle_reg_beacon(wiphy, i, reg_beacon);
1391 }
1392 }
1393
1394 /* Reap the advantages of previously found beacons */
1395 static void reg_process_beacons(struct wiphy *wiphy)
1396 {
1397 /*
1398 * Means we are just firing up cfg80211, so no beacons would
1399 * have been processed yet.
1400 */
1401 if (!last_request)
1402 return;
1403 wiphy_update_beacon_reg(wiphy);
1404 }
1405
1406 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1407 {
1408 if (!chan)
1409 return false;
1410 if (chan->flags & IEEE80211_CHAN_DISABLED)
1411 return false;
1412 /* This would happen when regulatory rules disallow HT40 completely */
1413 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1414 return false;
1415 return true;
1416 }
1417
1418 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1419 struct ieee80211_channel *channel)
1420 {
1421 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1422 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1423 unsigned int i;
1424
1425 if (!is_ht40_allowed(channel)) {
1426 channel->flags |= IEEE80211_CHAN_NO_HT40;
1427 return;
1428 }
1429
1430 /*
1431 * We need to ensure the extension channels exist to
1432 * be able to use HT40- or HT40+, this finds them (or not)
1433 */
1434 for (i = 0; i < sband->n_channels; i++) {
1435 struct ieee80211_channel *c = &sband->channels[i];
1436
1437 if (c->center_freq == (channel->center_freq - 20))
1438 channel_before = c;
1439 if (c->center_freq == (channel->center_freq + 20))
1440 channel_after = c;
1441 }
1442
1443 /*
1444 * Please note that this assumes target bandwidth is 20 MHz,
1445 * if that ever changes we also need to change the below logic
1446 * to include that as well.
1447 */
1448 if (!is_ht40_allowed(channel_before))
1449 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1450 else
1451 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1452
1453 if (!is_ht40_allowed(channel_after))
1454 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1455 else
1456 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1457 }
1458
1459 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1460 struct ieee80211_supported_band *sband)
1461 {
1462 unsigned int i;
1463
1464 if (!sband)
1465 return;
1466
1467 for (i = 0; i < sband->n_channels; i++)
1468 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1469 }
1470
1471 static void reg_process_ht_flags(struct wiphy *wiphy)
1472 {
1473 enum ieee80211_band band;
1474
1475 if (!wiphy)
1476 return;
1477
1478 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1479 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1480 }
1481
1482 static void reg_call_notifier(struct wiphy *wiphy,
1483 struct regulatory_request *request)
1484 {
1485 if (wiphy->reg_notifier)
1486 wiphy->reg_notifier(wiphy, request);
1487 }
1488
1489 static void wiphy_update_regulatory(struct wiphy *wiphy,
1490 enum nl80211_reg_initiator initiator)
1491 {
1492 enum ieee80211_band band;
1493 struct regulatory_request *lr = get_last_request();
1494
1495 if (ignore_reg_update(wiphy, initiator)) {
1496 /*
1497 * Regulatory updates set by CORE are ignored for custom
1498 * regulatory cards. Let us notify the changes to the driver,
1499 * as some drivers used this to restore its orig_* reg domain.
1500 */
1501 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1502 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1503 reg_call_notifier(wiphy, lr);
1504 return;
1505 }
1506
1507 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1508
1509 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1510 handle_band(wiphy, initiator, wiphy->bands[band]);
1511
1512 reg_process_beacons(wiphy);
1513 reg_process_ht_flags(wiphy);
1514 reg_call_notifier(wiphy, lr);
1515 }
1516
1517 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1518 {
1519 struct cfg80211_registered_device *rdev;
1520 struct wiphy *wiphy;
1521
1522 ASSERT_RTNL();
1523
1524 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1525 wiphy = &rdev->wiphy;
1526 wiphy_update_regulatory(wiphy, initiator);
1527 }
1528 }
1529
1530 static void handle_channel_custom(struct wiphy *wiphy,
1531 struct ieee80211_channel *chan,
1532 const struct ieee80211_regdomain *regd)
1533 {
1534 u32 bw_flags = 0;
1535 const struct ieee80211_reg_rule *reg_rule = NULL;
1536 const struct ieee80211_power_rule *power_rule = NULL;
1537 const struct ieee80211_freq_range *freq_range = NULL;
1538 u32 max_bandwidth_khz;
1539
1540 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1541 regd);
1542
1543 if (IS_ERR(reg_rule)) {
1544 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1545 chan->center_freq);
1546 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1547 chan->flags = chan->orig_flags;
1548 return;
1549 }
1550
1551 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1552
1553 power_rule = &reg_rule->power_rule;
1554 freq_range = &reg_rule->freq_range;
1555
1556 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1557 /* Check if auto calculation requested */
1558 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1559 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1560
1561 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1562 bw_flags = IEEE80211_CHAN_NO_HT40;
1563 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1564 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1565 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1566 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1567
1568 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1569 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1570 chan->max_reg_power = chan->max_power =
1571 (int) MBM_TO_DBM(power_rule->max_eirp);
1572 }
1573
1574 static void handle_band_custom(struct wiphy *wiphy,
1575 struct ieee80211_supported_band *sband,
1576 const struct ieee80211_regdomain *regd)
1577 {
1578 unsigned int i;
1579
1580 if (!sband)
1581 return;
1582
1583 for (i = 0; i < sband->n_channels; i++)
1584 handle_channel_custom(wiphy, &sband->channels[i], regd);
1585 }
1586
1587 /* Used by drivers prior to wiphy registration */
1588 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1589 const struct ieee80211_regdomain *regd)
1590 {
1591 enum ieee80211_band band;
1592 unsigned int bands_set = 0;
1593
1594 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1595 "wiphy should have REGULATORY_CUSTOM_REG\n");
1596 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1597
1598 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1599 if (!wiphy->bands[band])
1600 continue;
1601 handle_band_custom(wiphy, wiphy->bands[band], regd);
1602 bands_set++;
1603 }
1604
1605 /*
1606 * no point in calling this if it won't have any effect
1607 * on your device's supported bands.
1608 */
1609 WARN_ON(!bands_set);
1610 }
1611 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1612
1613 static void reg_set_request_processed(void)
1614 {
1615 bool need_more_processing = false;
1616 struct regulatory_request *lr = get_last_request();
1617
1618 lr->processed = true;
1619
1620 spin_lock(&reg_requests_lock);
1621 if (!list_empty(&reg_requests_list))
1622 need_more_processing = true;
1623 spin_unlock(&reg_requests_lock);
1624
1625 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1626 cancel_delayed_work(&reg_timeout);
1627
1628 if (need_more_processing)
1629 schedule_work(&reg_work);
1630 }
1631
1632 /**
1633 * reg_process_hint_core - process core regulatory requests
1634 * @pending_request: a pending core regulatory request
1635 *
1636 * The wireless subsystem can use this function to process
1637 * a regulatory request issued by the regulatory core.
1638 *
1639 * Returns one of the different reg request treatment values.
1640 */
1641 static enum reg_request_treatment
1642 reg_process_hint_core(struct regulatory_request *core_request)
1643 {
1644
1645 core_request->intersect = false;
1646 core_request->processed = false;
1647
1648 reg_update_last_request(core_request);
1649
1650 return reg_call_crda(core_request);
1651 }
1652
1653 static enum reg_request_treatment
1654 __reg_process_hint_user(struct regulatory_request *user_request)
1655 {
1656 struct regulatory_request *lr = get_last_request();
1657
1658 if (reg_request_indoor(user_request)) {
1659 reg_is_indoor = true;
1660 return REG_REQ_USER_HINT_HANDLED;
1661 }
1662
1663 if (reg_request_cell_base(user_request))
1664 return reg_ignore_cell_hint(user_request);
1665
1666 if (reg_request_cell_base(lr))
1667 return REG_REQ_IGNORE;
1668
1669 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1670 return REG_REQ_INTERSECT;
1671 /*
1672 * If the user knows better the user should set the regdom
1673 * to their country before the IE is picked up
1674 */
1675 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1676 lr->intersect)
1677 return REG_REQ_IGNORE;
1678 /*
1679 * Process user requests only after previous user/driver/core
1680 * requests have been processed
1681 */
1682 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1683 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1684 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1685 regdom_changes(lr->alpha2))
1686 return REG_REQ_IGNORE;
1687
1688 if (!regdom_changes(user_request->alpha2))
1689 return REG_REQ_ALREADY_SET;
1690
1691 return REG_REQ_OK;
1692 }
1693
1694 /**
1695 * reg_process_hint_user - process user regulatory requests
1696 * @user_request: a pending user regulatory request
1697 *
1698 * The wireless subsystem can use this function to process
1699 * a regulatory request initiated by userspace.
1700 *
1701 * Returns one of the different reg request treatment values.
1702 */
1703 static enum reg_request_treatment
1704 reg_process_hint_user(struct regulatory_request *user_request)
1705 {
1706 enum reg_request_treatment treatment;
1707
1708 treatment = __reg_process_hint_user(user_request);
1709 if (treatment == REG_REQ_IGNORE ||
1710 treatment == REG_REQ_ALREADY_SET ||
1711 treatment == REG_REQ_USER_HINT_HANDLED) {
1712 reg_free_request(user_request);
1713 return treatment;
1714 }
1715
1716 user_request->intersect = treatment == REG_REQ_INTERSECT;
1717 user_request->processed = false;
1718
1719 reg_update_last_request(user_request);
1720
1721 user_alpha2[0] = user_request->alpha2[0];
1722 user_alpha2[1] = user_request->alpha2[1];
1723
1724 return reg_call_crda(user_request);
1725 }
1726
1727 static enum reg_request_treatment
1728 __reg_process_hint_driver(struct regulatory_request *driver_request)
1729 {
1730 struct regulatory_request *lr = get_last_request();
1731
1732 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1733 if (regdom_changes(driver_request->alpha2))
1734 return REG_REQ_OK;
1735 return REG_REQ_ALREADY_SET;
1736 }
1737
1738 /*
1739 * This would happen if you unplug and plug your card
1740 * back in or if you add a new device for which the previously
1741 * loaded card also agrees on the regulatory domain.
1742 */
1743 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1744 !regdom_changes(driver_request->alpha2))
1745 return REG_REQ_ALREADY_SET;
1746
1747 return REG_REQ_INTERSECT;
1748 }
1749
1750 /**
1751 * reg_process_hint_driver - process driver regulatory requests
1752 * @driver_request: a pending driver regulatory request
1753 *
1754 * The wireless subsystem can use this function to process
1755 * a regulatory request issued by an 802.11 driver.
1756 *
1757 * Returns one of the different reg request treatment values.
1758 */
1759 static enum reg_request_treatment
1760 reg_process_hint_driver(struct wiphy *wiphy,
1761 struct regulatory_request *driver_request)
1762 {
1763 const struct ieee80211_regdomain *regd;
1764 enum reg_request_treatment treatment;
1765
1766 treatment = __reg_process_hint_driver(driver_request);
1767
1768 switch (treatment) {
1769 case REG_REQ_OK:
1770 break;
1771 case REG_REQ_IGNORE:
1772 case REG_REQ_USER_HINT_HANDLED:
1773 reg_free_request(driver_request);
1774 return treatment;
1775 case REG_REQ_INTERSECT:
1776 /* fall through */
1777 case REG_REQ_ALREADY_SET:
1778 regd = reg_copy_regd(get_cfg80211_regdom());
1779 if (IS_ERR(regd)) {
1780 reg_free_request(driver_request);
1781 return REG_REQ_IGNORE;
1782 }
1783 rcu_assign_pointer(wiphy->regd, regd);
1784 }
1785
1786
1787 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1788 driver_request->processed = false;
1789
1790 reg_update_last_request(driver_request);
1791
1792 /*
1793 * Since CRDA will not be called in this case as we already
1794 * have applied the requested regulatory domain before we just
1795 * inform userspace we have processed the request
1796 */
1797 if (treatment == REG_REQ_ALREADY_SET) {
1798 nl80211_send_reg_change_event(driver_request);
1799 reg_set_request_processed();
1800 return treatment;
1801 }
1802
1803 return reg_call_crda(driver_request);
1804 }
1805
1806 static enum reg_request_treatment
1807 __reg_process_hint_country_ie(struct wiphy *wiphy,
1808 struct regulatory_request *country_ie_request)
1809 {
1810 struct wiphy *last_wiphy = NULL;
1811 struct regulatory_request *lr = get_last_request();
1812
1813 if (reg_request_cell_base(lr)) {
1814 /* Trust a Cell base station over the AP's country IE */
1815 if (regdom_changes(country_ie_request->alpha2))
1816 return REG_REQ_IGNORE;
1817 return REG_REQ_ALREADY_SET;
1818 } else {
1819 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1820 return REG_REQ_IGNORE;
1821 }
1822
1823 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1824 return -EINVAL;
1825
1826 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1827 return REG_REQ_OK;
1828
1829 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1830
1831 if (last_wiphy != wiphy) {
1832 /*
1833 * Two cards with two APs claiming different
1834 * Country IE alpha2s. We could
1835 * intersect them, but that seems unlikely
1836 * to be correct. Reject second one for now.
1837 */
1838 if (regdom_changes(country_ie_request->alpha2))
1839 return REG_REQ_IGNORE;
1840 return REG_REQ_ALREADY_SET;
1841 }
1842 /*
1843 * Two consecutive Country IE hints on the same wiphy.
1844 * This should be picked up early by the driver/stack
1845 */
1846 if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1847 return REG_REQ_OK;
1848 return REG_REQ_ALREADY_SET;
1849 }
1850
1851 /**
1852 * reg_process_hint_country_ie - process regulatory requests from country IEs
1853 * @country_ie_request: a regulatory request from a country IE
1854 *
1855 * The wireless subsystem can use this function to process
1856 * a regulatory request issued by a country Information Element.
1857 *
1858 * Returns one of the different reg request treatment values.
1859 */
1860 static enum reg_request_treatment
1861 reg_process_hint_country_ie(struct wiphy *wiphy,
1862 struct regulatory_request *country_ie_request)
1863 {
1864 enum reg_request_treatment treatment;
1865
1866 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1867
1868 switch (treatment) {
1869 case REG_REQ_OK:
1870 break;
1871 case REG_REQ_IGNORE:
1872 case REG_REQ_USER_HINT_HANDLED:
1873 /* fall through */
1874 case REG_REQ_ALREADY_SET:
1875 reg_free_request(country_ie_request);
1876 return treatment;
1877 case REG_REQ_INTERSECT:
1878 reg_free_request(country_ie_request);
1879 /*
1880 * This doesn't happen yet, not sure we
1881 * ever want to support it for this case.
1882 */
1883 WARN_ONCE(1, "Unexpected intersection for country IEs");
1884 return REG_REQ_IGNORE;
1885 }
1886
1887 country_ie_request->intersect = false;
1888 country_ie_request->processed = false;
1889
1890 reg_update_last_request(country_ie_request);
1891
1892 return reg_call_crda(country_ie_request);
1893 }
1894
1895 /* This processes *all* regulatory hints */
1896 static void reg_process_hint(struct regulatory_request *reg_request)
1897 {
1898 struct wiphy *wiphy = NULL;
1899 enum reg_request_treatment treatment;
1900
1901 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1902 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1903
1904 switch (reg_request->initiator) {
1905 case NL80211_REGDOM_SET_BY_CORE:
1906 reg_process_hint_core(reg_request);
1907 return;
1908 case NL80211_REGDOM_SET_BY_USER:
1909 treatment = reg_process_hint_user(reg_request);
1910 if (treatment == REG_REQ_IGNORE ||
1911 treatment == REG_REQ_ALREADY_SET ||
1912 treatment == REG_REQ_USER_HINT_HANDLED)
1913 return;
1914 queue_delayed_work(system_power_efficient_wq,
1915 &reg_timeout, msecs_to_jiffies(3142));
1916 return;
1917 case NL80211_REGDOM_SET_BY_DRIVER:
1918 if (!wiphy)
1919 goto out_free;
1920 treatment = reg_process_hint_driver(wiphy, reg_request);
1921 break;
1922 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1923 if (!wiphy)
1924 goto out_free;
1925 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1926 break;
1927 default:
1928 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1929 goto out_free;
1930 }
1931
1932 /* This is required so that the orig_* parameters are saved */
1933 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1934 wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1935 wiphy_update_regulatory(wiphy, reg_request->initiator);
1936
1937 return;
1938
1939 out_free:
1940 reg_free_request(reg_request);
1941 }
1942
1943 /*
1944 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1945 * Regulatory hints come on a first come first serve basis and we
1946 * must process each one atomically.
1947 */
1948 static void reg_process_pending_hints(void)
1949 {
1950 struct regulatory_request *reg_request, *lr;
1951
1952 lr = get_last_request();
1953
1954 /* When last_request->processed becomes true this will be rescheduled */
1955 if (lr && !lr->processed) {
1956 reg_process_hint(lr);
1957 return;
1958 }
1959
1960 spin_lock(&reg_requests_lock);
1961
1962 if (list_empty(&reg_requests_list)) {
1963 spin_unlock(&reg_requests_lock);
1964 return;
1965 }
1966
1967 reg_request = list_first_entry(&reg_requests_list,
1968 struct regulatory_request,
1969 list);
1970 list_del_init(&reg_request->list);
1971
1972 spin_unlock(&reg_requests_lock);
1973
1974 reg_process_hint(reg_request);
1975 }
1976
1977 /* Processes beacon hints -- this has nothing to do with country IEs */
1978 static void reg_process_pending_beacon_hints(void)
1979 {
1980 struct cfg80211_registered_device *rdev;
1981 struct reg_beacon *pending_beacon, *tmp;
1982
1983 /* This goes through the _pending_ beacon list */
1984 spin_lock_bh(&reg_pending_beacons_lock);
1985
1986 list_for_each_entry_safe(pending_beacon, tmp,
1987 &reg_pending_beacons, list) {
1988 list_del_init(&pending_beacon->list);
1989
1990 /* Applies the beacon hint to current wiphys */
1991 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1992 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1993
1994 /* Remembers the beacon hint for new wiphys or reg changes */
1995 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1996 }
1997
1998 spin_unlock_bh(&reg_pending_beacons_lock);
1999 }
2000
2001 static void reg_todo(struct work_struct *work)
2002 {
2003 rtnl_lock();
2004 reg_process_pending_hints();
2005 reg_process_pending_beacon_hints();
2006 rtnl_unlock();
2007 }
2008
2009 static void queue_regulatory_request(struct regulatory_request *request)
2010 {
2011 request->alpha2[0] = toupper(request->alpha2[0]);
2012 request->alpha2[1] = toupper(request->alpha2[1]);
2013
2014 spin_lock(&reg_requests_lock);
2015 list_add_tail(&request->list, &reg_requests_list);
2016 spin_unlock(&reg_requests_lock);
2017
2018 schedule_work(&reg_work);
2019 }
2020
2021 /*
2022 * Core regulatory hint -- happens during cfg80211_init()
2023 * and when we restore regulatory settings.
2024 */
2025 static int regulatory_hint_core(const char *alpha2)
2026 {
2027 struct regulatory_request *request;
2028
2029 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2030 if (!request)
2031 return -ENOMEM;
2032
2033 request->alpha2[0] = alpha2[0];
2034 request->alpha2[1] = alpha2[1];
2035 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2036
2037 queue_regulatory_request(request);
2038
2039 return 0;
2040 }
2041
2042 /* User hints */
2043 int regulatory_hint_user(const char *alpha2,
2044 enum nl80211_user_reg_hint_type user_reg_hint_type)
2045 {
2046 struct regulatory_request *request;
2047
2048 if (WARN_ON(!alpha2))
2049 return -EINVAL;
2050
2051 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2052 if (!request)
2053 return -ENOMEM;
2054
2055 request->wiphy_idx = WIPHY_IDX_INVALID;
2056 request->alpha2[0] = alpha2[0];
2057 request->alpha2[1] = alpha2[1];
2058 request->initiator = NL80211_REGDOM_SET_BY_USER;
2059 request->user_reg_hint_type = user_reg_hint_type;
2060
2061 queue_regulatory_request(request);
2062
2063 return 0;
2064 }
2065
2066 int regulatory_hint_indoor_user(void)
2067 {
2068 struct regulatory_request *request;
2069
2070 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2071 if (!request)
2072 return -ENOMEM;
2073
2074 request->wiphy_idx = WIPHY_IDX_INVALID;
2075 request->initiator = NL80211_REGDOM_SET_BY_USER;
2076 request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2077 queue_regulatory_request(request);
2078
2079 return 0;
2080 }
2081
2082 /* Driver hints */
2083 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2084 {
2085 struct regulatory_request *request;
2086
2087 if (WARN_ON(!alpha2 || !wiphy))
2088 return -EINVAL;
2089
2090 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2091
2092 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2093 if (!request)
2094 return -ENOMEM;
2095
2096 request->wiphy_idx = get_wiphy_idx(wiphy);
2097
2098 request->alpha2[0] = alpha2[0];
2099 request->alpha2[1] = alpha2[1];
2100 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2101
2102 queue_regulatory_request(request);
2103
2104 return 0;
2105 }
2106 EXPORT_SYMBOL(regulatory_hint);
2107
2108 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2109 const u8 *country_ie, u8 country_ie_len)
2110 {
2111 char alpha2[2];
2112 enum environment_cap env = ENVIRON_ANY;
2113 struct regulatory_request *request = NULL, *lr;
2114
2115 /* IE len must be evenly divisible by 2 */
2116 if (country_ie_len & 0x01)
2117 return;
2118
2119 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2120 return;
2121
2122 request = kzalloc(sizeof(*request), GFP_KERNEL);
2123 if (!request)
2124 return;
2125
2126 alpha2[0] = country_ie[0];
2127 alpha2[1] = country_ie[1];
2128
2129 if (country_ie[2] == 'I')
2130 env = ENVIRON_INDOOR;
2131 else if (country_ie[2] == 'O')
2132 env = ENVIRON_OUTDOOR;
2133
2134 rcu_read_lock();
2135 lr = get_last_request();
2136
2137 if (unlikely(!lr))
2138 goto out;
2139
2140 /*
2141 * We will run this only upon a successful connection on cfg80211.
2142 * We leave conflict resolution to the workqueue, where can hold
2143 * the RTNL.
2144 */
2145 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2146 lr->wiphy_idx != WIPHY_IDX_INVALID)
2147 goto out;
2148
2149 request->wiphy_idx = get_wiphy_idx(wiphy);
2150 request->alpha2[0] = alpha2[0];
2151 request->alpha2[1] = alpha2[1];
2152 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2153 request->country_ie_env = env;
2154
2155 queue_regulatory_request(request);
2156 request = NULL;
2157 out:
2158 kfree(request);
2159 rcu_read_unlock();
2160 }
2161
2162 static void restore_alpha2(char *alpha2, bool reset_user)
2163 {
2164 /* indicates there is no alpha2 to consider for restoration */
2165 alpha2[0] = '9';
2166 alpha2[1] = '7';
2167
2168 /* The user setting has precedence over the module parameter */
2169 if (is_user_regdom_saved()) {
2170 /* Unless we're asked to ignore it and reset it */
2171 if (reset_user) {
2172 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2173 user_alpha2[0] = '9';
2174 user_alpha2[1] = '7';
2175
2176 /*
2177 * If we're ignoring user settings, we still need to
2178 * check the module parameter to ensure we put things
2179 * back as they were for a full restore.
2180 */
2181 if (!is_world_regdom(ieee80211_regdom)) {
2182 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2183 ieee80211_regdom[0], ieee80211_regdom[1]);
2184 alpha2[0] = ieee80211_regdom[0];
2185 alpha2[1] = ieee80211_regdom[1];
2186 }
2187 } else {
2188 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2189 user_alpha2[0], user_alpha2[1]);
2190 alpha2[0] = user_alpha2[0];
2191 alpha2[1] = user_alpha2[1];
2192 }
2193 } else if (!is_world_regdom(ieee80211_regdom)) {
2194 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2195 ieee80211_regdom[0], ieee80211_regdom[1]);
2196 alpha2[0] = ieee80211_regdom[0];
2197 alpha2[1] = ieee80211_regdom[1];
2198 } else
2199 REG_DBG_PRINT("Restoring regulatory settings\n");
2200 }
2201
2202 static void restore_custom_reg_settings(struct wiphy *wiphy)
2203 {
2204 struct ieee80211_supported_band *sband;
2205 enum ieee80211_band band;
2206 struct ieee80211_channel *chan;
2207 int i;
2208
2209 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2210 sband = wiphy->bands[band];
2211 if (!sband)
2212 continue;
2213 for (i = 0; i < sband->n_channels; i++) {
2214 chan = &sband->channels[i];
2215 chan->flags = chan->orig_flags;
2216 chan->max_antenna_gain = chan->orig_mag;
2217 chan->max_power = chan->orig_mpwr;
2218 chan->beacon_found = false;
2219 }
2220 }
2221 }
2222
2223 /*
2224 * Restoring regulatory settings involves ingoring any
2225 * possibly stale country IE information and user regulatory
2226 * settings if so desired, this includes any beacon hints
2227 * learned as we could have traveled outside to another country
2228 * after disconnection. To restore regulatory settings we do
2229 * exactly what we did at bootup:
2230 *
2231 * - send a core regulatory hint
2232 * - send a user regulatory hint if applicable
2233 *
2234 * Device drivers that send a regulatory hint for a specific country
2235 * keep their own regulatory domain on wiphy->regd so that does does
2236 * not need to be remembered.
2237 */
2238 static void restore_regulatory_settings(bool reset_user)
2239 {
2240 char alpha2[2];
2241 char world_alpha2[2];
2242 struct reg_beacon *reg_beacon, *btmp;
2243 struct regulatory_request *reg_request, *tmp;
2244 LIST_HEAD(tmp_reg_req_list);
2245 struct cfg80211_registered_device *rdev;
2246
2247 ASSERT_RTNL();
2248
2249 reg_is_indoor = false;
2250
2251 reset_regdomains(true, &world_regdom);
2252 restore_alpha2(alpha2, reset_user);
2253
2254 /*
2255 * If there's any pending requests we simply
2256 * stash them to a temporary pending queue and
2257 * add then after we've restored regulatory
2258 * settings.
2259 */
2260 spin_lock(&reg_requests_lock);
2261 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2262 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2263 continue;
2264 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2265 }
2266 spin_unlock(&reg_requests_lock);
2267
2268 /* Clear beacon hints */
2269 spin_lock_bh(&reg_pending_beacons_lock);
2270 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2271 list_del(&reg_beacon->list);
2272 kfree(reg_beacon);
2273 }
2274 spin_unlock_bh(&reg_pending_beacons_lock);
2275
2276 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2277 list_del(&reg_beacon->list);
2278 kfree(reg_beacon);
2279 }
2280
2281 /* First restore to the basic regulatory settings */
2282 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2283 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2284
2285 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2286 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2287 restore_custom_reg_settings(&rdev->wiphy);
2288 }
2289
2290 regulatory_hint_core(world_alpha2);
2291
2292 /*
2293 * This restores the ieee80211_regdom module parameter
2294 * preference or the last user requested regulatory
2295 * settings, user regulatory settings takes precedence.
2296 */
2297 if (is_an_alpha2(alpha2))
2298 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2299
2300 spin_lock(&reg_requests_lock);
2301 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2302 spin_unlock(&reg_requests_lock);
2303
2304 REG_DBG_PRINT("Kicking the queue\n");
2305
2306 schedule_work(&reg_work);
2307 }
2308
2309 void regulatory_hint_disconnect(void)
2310 {
2311 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2312 restore_regulatory_settings(false);
2313 }
2314
2315 static bool freq_is_chan_12_13_14(u16 freq)
2316 {
2317 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2318 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2319 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2320 return true;
2321 return false;
2322 }
2323
2324 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2325 {
2326 struct reg_beacon *pending_beacon;
2327
2328 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2329 if (beacon_chan->center_freq ==
2330 pending_beacon->chan.center_freq)
2331 return true;
2332 return false;
2333 }
2334
2335 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2336 struct ieee80211_channel *beacon_chan,
2337 gfp_t gfp)
2338 {
2339 struct reg_beacon *reg_beacon;
2340 bool processing;
2341
2342 if (beacon_chan->beacon_found ||
2343 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2344 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2345 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2346 return 0;
2347
2348 spin_lock_bh(&reg_pending_beacons_lock);
2349 processing = pending_reg_beacon(beacon_chan);
2350 spin_unlock_bh(&reg_pending_beacons_lock);
2351
2352 if (processing)
2353 return 0;
2354
2355 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2356 if (!reg_beacon)
2357 return -ENOMEM;
2358
2359 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2360 beacon_chan->center_freq,
2361 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2362 wiphy_name(wiphy));
2363
2364 memcpy(&reg_beacon->chan, beacon_chan,
2365 sizeof(struct ieee80211_channel));
2366
2367 /*
2368 * Since we can be called from BH or and non-BH context
2369 * we must use spin_lock_bh()
2370 */
2371 spin_lock_bh(&reg_pending_beacons_lock);
2372 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2373 spin_unlock_bh(&reg_pending_beacons_lock);
2374
2375 schedule_work(&reg_work);
2376
2377 return 0;
2378 }
2379
2380 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2381 {
2382 unsigned int i;
2383 const struct ieee80211_reg_rule *reg_rule = NULL;
2384 const struct ieee80211_freq_range *freq_range = NULL;
2385 const struct ieee80211_power_rule *power_rule = NULL;
2386 char bw[32], cac_time[32];
2387
2388 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2389
2390 for (i = 0; i < rd->n_reg_rules; i++) {
2391 reg_rule = &rd->reg_rules[i];
2392 freq_range = &reg_rule->freq_range;
2393 power_rule = &reg_rule->power_rule;
2394
2395 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2396 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2397 freq_range->max_bandwidth_khz,
2398 reg_get_max_bandwidth(rd, reg_rule));
2399 else
2400 snprintf(bw, sizeof(bw), "%d KHz",
2401 freq_range->max_bandwidth_khz);
2402
2403 if (reg_rule->flags & NL80211_RRF_DFS)
2404 scnprintf(cac_time, sizeof(cac_time), "%u s",
2405 reg_rule->dfs_cac_ms/1000);
2406 else
2407 scnprintf(cac_time, sizeof(cac_time), "N/A");
2408
2409
2410 /*
2411 * There may not be documentation for max antenna gain
2412 * in certain regions
2413 */
2414 if (power_rule->max_antenna_gain)
2415 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2416 freq_range->start_freq_khz,
2417 freq_range->end_freq_khz,
2418 bw,
2419 power_rule->max_antenna_gain,
2420 power_rule->max_eirp,
2421 cac_time);
2422 else
2423 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2424 freq_range->start_freq_khz,
2425 freq_range->end_freq_khz,
2426 bw,
2427 power_rule->max_eirp,
2428 cac_time);
2429 }
2430 }
2431
2432 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2433 {
2434 switch (dfs_region) {
2435 case NL80211_DFS_UNSET:
2436 case NL80211_DFS_FCC:
2437 case NL80211_DFS_ETSI:
2438 case NL80211_DFS_JP:
2439 return true;
2440 default:
2441 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2442 dfs_region);
2443 return false;
2444 }
2445 }
2446
2447 static void print_regdomain(const struct ieee80211_regdomain *rd)
2448 {
2449 struct regulatory_request *lr = get_last_request();
2450
2451 if (is_intersected_alpha2(rd->alpha2)) {
2452 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2453 struct cfg80211_registered_device *rdev;
2454 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2455 if (rdev) {
2456 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2457 rdev->country_ie_alpha2[0],
2458 rdev->country_ie_alpha2[1]);
2459 } else
2460 pr_info("Current regulatory domain intersected:\n");
2461 } else
2462 pr_info("Current regulatory domain intersected:\n");
2463 } else if (is_world_regdom(rd->alpha2)) {
2464 pr_info("World regulatory domain updated:\n");
2465 } else {
2466 if (is_unknown_alpha2(rd->alpha2))
2467 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2468 else {
2469 if (reg_request_cell_base(lr))
2470 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2471 rd->alpha2[0], rd->alpha2[1]);
2472 else
2473 pr_info("Regulatory domain changed to country: %c%c\n",
2474 rd->alpha2[0], rd->alpha2[1]);
2475 }
2476 }
2477
2478 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2479 print_rd_rules(rd);
2480 }
2481
2482 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2483 {
2484 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2485 print_rd_rules(rd);
2486 }
2487
2488 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2489 {
2490 if (!is_world_regdom(rd->alpha2))
2491 return -EINVAL;
2492 update_world_regdomain(rd);
2493 return 0;
2494 }
2495
2496 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2497 struct regulatory_request *user_request)
2498 {
2499 const struct ieee80211_regdomain *intersected_rd = NULL;
2500
2501 if (!regdom_changes(rd->alpha2))
2502 return -EALREADY;
2503
2504 if (!is_valid_rd(rd)) {
2505 pr_err("Invalid regulatory domain detected:\n");
2506 print_regdomain_info(rd);
2507 return -EINVAL;
2508 }
2509
2510 if (!user_request->intersect) {
2511 reset_regdomains(false, rd);
2512 return 0;
2513 }
2514
2515 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2516 if (!intersected_rd)
2517 return -EINVAL;
2518
2519 kfree(rd);
2520 rd = NULL;
2521 reset_regdomains(false, intersected_rd);
2522
2523 return 0;
2524 }
2525
2526 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2527 struct regulatory_request *driver_request)
2528 {
2529 const struct ieee80211_regdomain *regd;
2530 const struct ieee80211_regdomain *intersected_rd = NULL;
2531 const struct ieee80211_regdomain *tmp;
2532 struct wiphy *request_wiphy;
2533
2534 if (is_world_regdom(rd->alpha2))
2535 return -EINVAL;
2536
2537 if (!regdom_changes(rd->alpha2))
2538 return -EALREADY;
2539
2540 if (!is_valid_rd(rd)) {
2541 pr_err("Invalid regulatory domain detected:\n");
2542 print_regdomain_info(rd);
2543 return -EINVAL;
2544 }
2545
2546 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2547 if (!request_wiphy) {
2548 queue_delayed_work(system_power_efficient_wq,
2549 &reg_timeout, 0);
2550 return -ENODEV;
2551 }
2552
2553 if (!driver_request->intersect) {
2554 if (request_wiphy->regd)
2555 return -EALREADY;
2556
2557 regd = reg_copy_regd(rd);
2558 if (IS_ERR(regd))
2559 return PTR_ERR(regd);
2560
2561 rcu_assign_pointer(request_wiphy->regd, regd);
2562 reset_regdomains(false, rd);
2563 return 0;
2564 }
2565
2566 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2567 if (!intersected_rd)
2568 return -EINVAL;
2569
2570 /*
2571 * We can trash what CRDA provided now.
2572 * However if a driver requested this specific regulatory
2573 * domain we keep it for its private use
2574 */
2575 tmp = get_wiphy_regdom(request_wiphy);
2576 rcu_assign_pointer(request_wiphy->regd, rd);
2577 rcu_free_regdom(tmp);
2578
2579 rd = NULL;
2580
2581 reset_regdomains(false, intersected_rd);
2582
2583 return 0;
2584 }
2585
2586 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2587 struct regulatory_request *country_ie_request)
2588 {
2589 struct wiphy *request_wiphy;
2590
2591 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2592 !is_unknown_alpha2(rd->alpha2))
2593 return -EINVAL;
2594
2595 /*
2596 * Lets only bother proceeding on the same alpha2 if the current
2597 * rd is non static (it means CRDA was present and was used last)
2598 * and the pending request came in from a country IE
2599 */
2600
2601 if (!is_valid_rd(rd)) {
2602 pr_err("Invalid regulatory domain detected:\n");
2603 print_regdomain_info(rd);
2604 return -EINVAL;
2605 }
2606
2607 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2608 if (!request_wiphy) {
2609 queue_delayed_work(system_power_efficient_wq,
2610 &reg_timeout, 0);
2611 return -ENODEV;
2612 }
2613
2614 if (country_ie_request->intersect)
2615 return -EINVAL;
2616
2617 reset_regdomains(false, rd);
2618 return 0;
2619 }
2620
2621 /*
2622 * Use this call to set the current regulatory domain. Conflicts with
2623 * multiple drivers can be ironed out later. Caller must've already
2624 * kmalloc'd the rd structure.
2625 */
2626 int set_regdom(const struct ieee80211_regdomain *rd)
2627 {
2628 struct regulatory_request *lr;
2629 bool user_reset = false;
2630 int r;
2631
2632 if (!reg_is_valid_request(rd->alpha2)) {
2633 kfree(rd);
2634 return -EINVAL;
2635 }
2636
2637 lr = get_last_request();
2638
2639 /* Note that this doesn't update the wiphys, this is done below */
2640 switch (lr->initiator) {
2641 case NL80211_REGDOM_SET_BY_CORE:
2642 r = reg_set_rd_core(rd);
2643 break;
2644 case NL80211_REGDOM_SET_BY_USER:
2645 r = reg_set_rd_user(rd, lr);
2646 user_reset = true;
2647 break;
2648 case NL80211_REGDOM_SET_BY_DRIVER:
2649 r = reg_set_rd_driver(rd, lr);
2650 break;
2651 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2652 r = reg_set_rd_country_ie(rd, lr);
2653 break;
2654 default:
2655 WARN(1, "invalid initiator %d\n", lr->initiator);
2656 return -EINVAL;
2657 }
2658
2659 if (r) {
2660 switch (r) {
2661 case -EALREADY:
2662 reg_set_request_processed();
2663 break;
2664 default:
2665 /* Back to world regulatory in case of errors */
2666 restore_regulatory_settings(user_reset);
2667 }
2668
2669 kfree(rd);
2670 return r;
2671 }
2672
2673 /* This would make this whole thing pointless */
2674 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2675 return -EINVAL;
2676
2677 /* update all wiphys now with the new established regulatory domain */
2678 update_all_wiphy_regulatory(lr->initiator);
2679
2680 print_regdomain(get_cfg80211_regdom());
2681
2682 nl80211_send_reg_change_event(lr);
2683
2684 reg_set_request_processed();
2685
2686 return 0;
2687 }
2688
2689 void wiphy_regulatory_register(struct wiphy *wiphy)
2690 {
2691 struct regulatory_request *lr;
2692
2693 if (!reg_dev_ignore_cell_hint(wiphy))
2694 reg_num_devs_support_basehint++;
2695
2696 lr = get_last_request();
2697 wiphy_update_regulatory(wiphy, lr->initiator);
2698 }
2699
2700 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2701 {
2702 struct wiphy *request_wiphy = NULL;
2703 struct regulatory_request *lr;
2704
2705 lr = get_last_request();
2706
2707 if (!reg_dev_ignore_cell_hint(wiphy))
2708 reg_num_devs_support_basehint--;
2709
2710 rcu_free_regdom(get_wiphy_regdom(wiphy));
2711 RCU_INIT_POINTER(wiphy->regd, NULL);
2712
2713 if (lr)
2714 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2715
2716 if (!request_wiphy || request_wiphy != wiphy)
2717 return;
2718
2719 lr->wiphy_idx = WIPHY_IDX_INVALID;
2720 lr->country_ie_env = ENVIRON_ANY;
2721 }
2722
2723 static void reg_timeout_work(struct work_struct *work)
2724 {
2725 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2726 rtnl_lock();
2727 restore_regulatory_settings(true);
2728 rtnl_unlock();
2729 }
2730
2731 /*
2732 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
2733 * UNII band definitions
2734 */
2735 int cfg80211_get_unii(int freq)
2736 {
2737 /* UNII-1 */
2738 if (freq >= 5150 && freq <= 5250)
2739 return 0;
2740
2741 /* UNII-2A */
2742 if (freq > 5250 && freq <= 5350)
2743 return 1;
2744
2745 /* UNII-2B */
2746 if (freq > 5350 && freq <= 5470)
2747 return 2;
2748
2749 /* UNII-2C */
2750 if (freq > 5470 && freq <= 5725)
2751 return 3;
2752
2753 /* UNII-3 */
2754 if (freq > 5725 && freq <= 5825)
2755 return 4;
2756
2757 return -EINVAL;
2758 }
2759
2760 bool regulatory_indoor_allowed(void)
2761 {
2762 return reg_is_indoor;
2763 }
2764
2765 int __init regulatory_init(void)
2766 {
2767 int err = 0;
2768
2769 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2770 if (IS_ERR(reg_pdev))
2771 return PTR_ERR(reg_pdev);
2772
2773 spin_lock_init(&reg_requests_lock);
2774 spin_lock_init(&reg_pending_beacons_lock);
2775
2776 reg_regdb_size_check();
2777
2778 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2779
2780 user_alpha2[0] = '9';
2781 user_alpha2[1] = '7';
2782
2783 /* We always try to get an update for the static regdomain */
2784 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2785 if (err) {
2786 if (err == -ENOMEM)
2787 return err;
2788 /*
2789 * N.B. kobject_uevent_env() can fail mainly for when we're out
2790 * memory which is handled and propagated appropriately above
2791 * but it can also fail during a netlink_broadcast() or during
2792 * early boot for call_usermodehelper(). For now treat these
2793 * errors as non-fatal.
2794 */
2795 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2796 }
2797
2798 /*
2799 * Finally, if the user set the module parameter treat it
2800 * as a user hint.
2801 */
2802 if (!is_world_regdom(ieee80211_regdom))
2803 regulatory_hint_user(ieee80211_regdom,
2804 NL80211_USER_REG_HINT_USER);
2805
2806 return 0;
2807 }
2808
2809 void regulatory_exit(void)
2810 {
2811 struct regulatory_request *reg_request, *tmp;
2812 struct reg_beacon *reg_beacon, *btmp;
2813
2814 cancel_work_sync(&reg_work);
2815 cancel_delayed_work_sync(&reg_timeout);
2816
2817 /* Lock to suppress warnings */
2818 rtnl_lock();
2819 reset_regdomains(true, NULL);
2820 rtnl_unlock();
2821
2822 dev_set_uevent_suppress(&reg_pdev->dev, true);
2823
2824 platform_device_unregister(reg_pdev);
2825
2826 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2827 list_del(&reg_beacon->list);
2828 kfree(reg_beacon);
2829 }
2830
2831 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2832 list_del(&reg_beacon->list);
2833 kfree(reg_beacon);
2834 }
2835
2836 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2837 list_del(&reg_request->list);
2838 kfree(reg_request);
2839 }
2840 }
This page took 0.089218 seconds and 5 git commands to generate.