cfg80211: regulatory: simplify uevent sending
[deliverable/linux.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...) \
63 printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69 REG_REQ_OK,
70 REG_REQ_IGNORE,
71 REG_REQ_INTERSECT,
72 REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76 .initiator = NL80211_REGDOM_SET_BY_CORE,
77 .alpha2[0] = '0',
78 .alpha2[1] = '0',
79 .intersect = false,
80 .processed = true,
81 .country_ie_env = ENVIRON_ANY,
82 };
83
84 /*
85 * Receipt of information from last regulatory request,
86 * protected by RTNL (and can be accessed with RCU protection)
87 */
88 static struct regulatory_request __rcu *last_request =
89 (void __rcu *)&core_request_world;
90
91 /* To trigger userspace events */
92 static struct platform_device *reg_pdev;
93
94 /*
95 * Central wireless core regulatory domains, we only need two,
96 * the current one and a world regulatory domain in case we have no
97 * information to give us an alpha2.
98 * (protected by RTNL, can be read under RCU)
99 */
100 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
101
102 /*
103 * Number of devices that registered to the core
104 * that support cellular base station regulatory hints
105 * (protected by RTNL)
106 */
107 static int reg_num_devs_support_basehint;
108
109 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
110 {
111 return rtnl_dereference(cfg80211_regdomain);
112 }
113
114 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
115 {
116 return rtnl_dereference(wiphy->regd);
117 }
118
119 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
120 {
121 switch (dfs_region) {
122 case NL80211_DFS_UNSET:
123 return "unset";
124 case NL80211_DFS_FCC:
125 return "FCC";
126 case NL80211_DFS_ETSI:
127 return "ETSI";
128 case NL80211_DFS_JP:
129 return "JP";
130 }
131 return "Unknown";
132 }
133
134 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
135 {
136 const struct ieee80211_regdomain *regd = NULL;
137 const struct ieee80211_regdomain *wiphy_regd = NULL;
138
139 regd = get_cfg80211_regdom();
140 if (!wiphy)
141 goto out;
142
143 wiphy_regd = get_wiphy_regdom(wiphy);
144 if (!wiphy_regd)
145 goto out;
146
147 if (wiphy_regd->dfs_region == regd->dfs_region)
148 goto out;
149
150 REG_DBG_PRINT("%s: device specific dfs_region "
151 "(%s) disagrees with cfg80211's "
152 "central dfs_region (%s)\n",
153 dev_name(&wiphy->dev),
154 reg_dfs_region_str(wiphy_regd->dfs_region),
155 reg_dfs_region_str(regd->dfs_region));
156
157 out:
158 return regd->dfs_region;
159 }
160
161 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
162 {
163 if (!r)
164 return;
165 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
166 }
167
168 static struct regulatory_request *get_last_request(void)
169 {
170 return rcu_dereference_rtnl(last_request);
171 }
172
173 /* Used to queue up regulatory hints */
174 static LIST_HEAD(reg_requests_list);
175 static spinlock_t reg_requests_lock;
176
177 /* Used to queue up beacon hints for review */
178 static LIST_HEAD(reg_pending_beacons);
179 static spinlock_t reg_pending_beacons_lock;
180
181 /* Used to keep track of processed beacon hints */
182 static LIST_HEAD(reg_beacon_list);
183
184 struct reg_beacon {
185 struct list_head list;
186 struct ieee80211_channel chan;
187 };
188
189 static void reg_todo(struct work_struct *work);
190 static DECLARE_WORK(reg_work, reg_todo);
191
192 static void reg_timeout_work(struct work_struct *work);
193 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
194
195 /* We keep a static world regulatory domain in case of the absence of CRDA */
196 static const struct ieee80211_regdomain world_regdom = {
197 .n_reg_rules = 6,
198 .alpha2 = "00",
199 .reg_rules = {
200 /* IEEE 802.11b/g, channels 1..11 */
201 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
202 /* IEEE 802.11b/g, channels 12..13. */
203 REG_RULE(2467-10, 2472+10, 40, 6, 20,
204 NL80211_RRF_NO_IR),
205 /* IEEE 802.11 channel 14 - Only JP enables
206 * this and for 802.11b only */
207 REG_RULE(2484-10, 2484+10, 20, 6, 20,
208 NL80211_RRF_NO_IR |
209 NL80211_RRF_NO_OFDM),
210 /* IEEE 802.11a, channel 36..48 */
211 REG_RULE(5180-10, 5240+10, 160, 6, 20,
212 NL80211_RRF_NO_IR),
213
214 /* IEEE 802.11a, channel 52..64 - DFS required */
215 REG_RULE(5260-10, 5320+10, 160, 6, 20,
216 NL80211_RRF_NO_IR |
217 NL80211_RRF_DFS),
218
219 /* IEEE 802.11a, channel 100..144 - DFS required */
220 REG_RULE(5500-10, 5720+10, 160, 6, 20,
221 NL80211_RRF_NO_IR |
222 NL80211_RRF_DFS),
223
224 /* IEEE 802.11a, channel 149..165 */
225 REG_RULE(5745-10, 5825+10, 80, 6, 20,
226 NL80211_RRF_NO_IR),
227
228 /* IEEE 802.11ad (60gHz), channels 1..3 */
229 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
230 }
231 };
232
233 /* protected by RTNL */
234 static const struct ieee80211_regdomain *cfg80211_world_regdom =
235 &world_regdom;
236
237 static char *ieee80211_regdom = "00";
238 static char user_alpha2[2];
239
240 module_param(ieee80211_regdom, charp, 0444);
241 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
242
243 static void reg_kfree_last_request(void)
244 {
245 struct regulatory_request *lr;
246
247 lr = get_last_request();
248
249 if (lr != &core_request_world && lr)
250 kfree_rcu(lr, rcu_head);
251 }
252
253 static void reg_update_last_request(struct regulatory_request *request)
254 {
255 reg_kfree_last_request();
256 rcu_assign_pointer(last_request, request);
257 }
258
259 static void reset_regdomains(bool full_reset,
260 const struct ieee80211_regdomain *new_regdom)
261 {
262 const struct ieee80211_regdomain *r;
263
264 ASSERT_RTNL();
265
266 r = get_cfg80211_regdom();
267
268 /* avoid freeing static information or freeing something twice */
269 if (r == cfg80211_world_regdom)
270 r = NULL;
271 if (cfg80211_world_regdom == &world_regdom)
272 cfg80211_world_regdom = NULL;
273 if (r == &world_regdom)
274 r = NULL;
275
276 rcu_free_regdom(r);
277 rcu_free_regdom(cfg80211_world_regdom);
278
279 cfg80211_world_regdom = &world_regdom;
280 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
281
282 if (!full_reset)
283 return;
284
285 reg_update_last_request(&core_request_world);
286 }
287
288 /*
289 * Dynamic world regulatory domain requested by the wireless
290 * core upon initialization
291 */
292 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
293 {
294 struct regulatory_request *lr;
295
296 lr = get_last_request();
297
298 WARN_ON(!lr);
299
300 reset_regdomains(false, rd);
301
302 cfg80211_world_regdom = rd;
303 }
304
305 bool is_world_regdom(const char *alpha2)
306 {
307 if (!alpha2)
308 return false;
309 return alpha2[0] == '0' && alpha2[1] == '0';
310 }
311
312 static bool is_alpha2_set(const char *alpha2)
313 {
314 if (!alpha2)
315 return false;
316 return alpha2[0] && alpha2[1];
317 }
318
319 static bool is_unknown_alpha2(const char *alpha2)
320 {
321 if (!alpha2)
322 return false;
323 /*
324 * Special case where regulatory domain was built by driver
325 * but a specific alpha2 cannot be determined
326 */
327 return alpha2[0] == '9' && alpha2[1] == '9';
328 }
329
330 static bool is_intersected_alpha2(const char *alpha2)
331 {
332 if (!alpha2)
333 return false;
334 /*
335 * Special case where regulatory domain is the
336 * result of an intersection between two regulatory domain
337 * structures
338 */
339 return alpha2[0] == '9' && alpha2[1] == '8';
340 }
341
342 static bool is_an_alpha2(const char *alpha2)
343 {
344 if (!alpha2)
345 return false;
346 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
347 }
348
349 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
350 {
351 if (!alpha2_x || !alpha2_y)
352 return false;
353 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
354 }
355
356 static bool regdom_changes(const char *alpha2)
357 {
358 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
359
360 if (!r)
361 return true;
362 return !alpha2_equal(r->alpha2, alpha2);
363 }
364
365 /*
366 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
367 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
368 * has ever been issued.
369 */
370 static bool is_user_regdom_saved(void)
371 {
372 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
373 return false;
374
375 /* This would indicate a mistake on the design */
376 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
377 "Unexpected user alpha2: %c%c\n",
378 user_alpha2[0], user_alpha2[1]))
379 return false;
380
381 return true;
382 }
383
384 static const struct ieee80211_regdomain *
385 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
386 {
387 struct ieee80211_regdomain *regd;
388 int size_of_regd;
389 unsigned int i;
390
391 size_of_regd =
392 sizeof(struct ieee80211_regdomain) +
393 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
394
395 regd = kzalloc(size_of_regd, GFP_KERNEL);
396 if (!regd)
397 return ERR_PTR(-ENOMEM);
398
399 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
400
401 for (i = 0; i < src_regd->n_reg_rules; i++)
402 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
403 sizeof(struct ieee80211_reg_rule));
404
405 return regd;
406 }
407
408 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
409 struct reg_regdb_search_request {
410 char alpha2[2];
411 struct list_head list;
412 };
413
414 static LIST_HEAD(reg_regdb_search_list);
415 static DEFINE_MUTEX(reg_regdb_search_mutex);
416
417 static void reg_regdb_search(struct work_struct *work)
418 {
419 struct reg_regdb_search_request *request;
420 const struct ieee80211_regdomain *curdom, *regdom = NULL;
421 int i;
422
423 rtnl_lock();
424
425 mutex_lock(&reg_regdb_search_mutex);
426 while (!list_empty(&reg_regdb_search_list)) {
427 request = list_first_entry(&reg_regdb_search_list,
428 struct reg_regdb_search_request,
429 list);
430 list_del(&request->list);
431
432 for (i = 0; i < reg_regdb_size; i++) {
433 curdom = reg_regdb[i];
434
435 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
436 regdom = reg_copy_regd(curdom);
437 break;
438 }
439 }
440
441 kfree(request);
442 }
443 mutex_unlock(&reg_regdb_search_mutex);
444
445 if (!IS_ERR_OR_NULL(regdom))
446 set_regdom(regdom);
447
448 rtnl_unlock();
449 }
450
451 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
452
453 static void reg_regdb_query(const char *alpha2)
454 {
455 struct reg_regdb_search_request *request;
456
457 if (!alpha2)
458 return;
459
460 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
461 if (!request)
462 return;
463
464 memcpy(request->alpha2, alpha2, 2);
465
466 mutex_lock(&reg_regdb_search_mutex);
467 list_add_tail(&request->list, &reg_regdb_search_list);
468 mutex_unlock(&reg_regdb_search_mutex);
469
470 schedule_work(&reg_regdb_work);
471 }
472
473 /* Feel free to add any other sanity checks here */
474 static void reg_regdb_size_check(void)
475 {
476 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
477 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
478 }
479 #else
480 static inline void reg_regdb_size_check(void) {}
481 static inline void reg_regdb_query(const char *alpha2) {}
482 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
483
484 /*
485 * This lets us keep regulatory code which is updated on a regulatory
486 * basis in userspace.
487 */
488 static int call_crda(const char *alpha2)
489 {
490 char country[12];
491 char *env[] = { country, NULL };
492
493 snprintf(country, sizeof(country), "COUNTRY=%c%c",
494 alpha2[0], alpha2[1]);
495
496 if (!is_world_regdom((char *) alpha2))
497 pr_info("Calling CRDA for country: %c%c\n",
498 alpha2[0], alpha2[1]);
499 else
500 pr_info("Calling CRDA to update world regulatory domain\n");
501
502 /* query internal regulatory database (if it exists) */
503 reg_regdb_query(alpha2);
504
505 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
506 }
507
508 static enum reg_request_treatment
509 reg_call_crda(struct regulatory_request *request)
510 {
511 if (call_crda(request->alpha2))
512 return REG_REQ_IGNORE;
513 return REG_REQ_OK;
514 }
515
516 bool reg_is_valid_request(const char *alpha2)
517 {
518 struct regulatory_request *lr = get_last_request();
519
520 if (!lr || lr->processed)
521 return false;
522
523 return alpha2_equal(lr->alpha2, alpha2);
524 }
525
526 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
527 {
528 struct regulatory_request *lr = get_last_request();
529
530 /*
531 * Follow the driver's regulatory domain, if present, unless a country
532 * IE has been processed or a user wants to help complaince further
533 */
534 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
535 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
536 wiphy->regd)
537 return get_wiphy_regdom(wiphy);
538
539 return get_cfg80211_regdom();
540 }
541
542 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
543 const struct ieee80211_reg_rule *rule)
544 {
545 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
546 const struct ieee80211_freq_range *freq_range_tmp;
547 const struct ieee80211_reg_rule *tmp;
548 u32 start_freq, end_freq, idx, no;
549
550 for (idx = 0; idx < rd->n_reg_rules; idx++)
551 if (rule == &rd->reg_rules[idx])
552 break;
553
554 if (idx == rd->n_reg_rules)
555 return 0;
556
557 /* get start_freq */
558 no = idx;
559
560 while (no) {
561 tmp = &rd->reg_rules[--no];
562 freq_range_tmp = &tmp->freq_range;
563
564 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
565 break;
566
567 freq_range = freq_range_tmp;
568 }
569
570 start_freq = freq_range->start_freq_khz;
571
572 /* get end_freq */
573 freq_range = &rule->freq_range;
574 no = idx;
575
576 while (no < rd->n_reg_rules - 1) {
577 tmp = &rd->reg_rules[++no];
578 freq_range_tmp = &tmp->freq_range;
579
580 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
581 break;
582
583 freq_range = freq_range_tmp;
584 }
585
586 end_freq = freq_range->end_freq_khz;
587
588 return end_freq - start_freq;
589 }
590
591 /* Sanity check on a regulatory rule */
592 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
593 {
594 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
595 u32 freq_diff;
596
597 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
598 return false;
599
600 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
601 return false;
602
603 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
604
605 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
606 freq_range->max_bandwidth_khz > freq_diff)
607 return false;
608
609 return true;
610 }
611
612 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
613 {
614 const struct ieee80211_reg_rule *reg_rule = NULL;
615 unsigned int i;
616
617 if (!rd->n_reg_rules)
618 return false;
619
620 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
621 return false;
622
623 for (i = 0; i < rd->n_reg_rules; i++) {
624 reg_rule = &rd->reg_rules[i];
625 if (!is_valid_reg_rule(reg_rule))
626 return false;
627 }
628
629 return true;
630 }
631
632 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
633 u32 center_freq_khz, u32 bw_khz)
634 {
635 u32 start_freq_khz, end_freq_khz;
636
637 start_freq_khz = center_freq_khz - (bw_khz/2);
638 end_freq_khz = center_freq_khz + (bw_khz/2);
639
640 if (start_freq_khz >= freq_range->start_freq_khz &&
641 end_freq_khz <= freq_range->end_freq_khz)
642 return true;
643
644 return false;
645 }
646
647 /**
648 * freq_in_rule_band - tells us if a frequency is in a frequency band
649 * @freq_range: frequency rule we want to query
650 * @freq_khz: frequency we are inquiring about
651 *
652 * This lets us know if a specific frequency rule is or is not relevant to
653 * a specific frequency's band. Bands are device specific and artificial
654 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
655 * however it is safe for now to assume that a frequency rule should not be
656 * part of a frequency's band if the start freq or end freq are off by more
657 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
658 * 60 GHz band.
659 * This resolution can be lowered and should be considered as we add
660 * regulatory rule support for other "bands".
661 **/
662 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
663 u32 freq_khz)
664 {
665 #define ONE_GHZ_IN_KHZ 1000000
666 /*
667 * From 802.11ad: directional multi-gigabit (DMG):
668 * Pertaining to operation in a frequency band containing a channel
669 * with the Channel starting frequency above 45 GHz.
670 */
671 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
672 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
673 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
674 return true;
675 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
676 return true;
677 return false;
678 #undef ONE_GHZ_IN_KHZ
679 }
680
681 /*
682 * Later on we can perhaps use the more restrictive DFS
683 * region but we don't have information for that yet so
684 * for now simply disallow conflicts.
685 */
686 static enum nl80211_dfs_regions
687 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
688 const enum nl80211_dfs_regions dfs_region2)
689 {
690 if (dfs_region1 != dfs_region2)
691 return NL80211_DFS_UNSET;
692 return dfs_region1;
693 }
694
695 /*
696 * Helper for regdom_intersect(), this does the real
697 * mathematical intersection fun
698 */
699 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
700 const struct ieee80211_regdomain *rd2,
701 const struct ieee80211_reg_rule *rule1,
702 const struct ieee80211_reg_rule *rule2,
703 struct ieee80211_reg_rule *intersected_rule)
704 {
705 const struct ieee80211_freq_range *freq_range1, *freq_range2;
706 struct ieee80211_freq_range *freq_range;
707 const struct ieee80211_power_rule *power_rule1, *power_rule2;
708 struct ieee80211_power_rule *power_rule;
709 u32 freq_diff, max_bandwidth1, max_bandwidth2;
710
711 freq_range1 = &rule1->freq_range;
712 freq_range2 = &rule2->freq_range;
713 freq_range = &intersected_rule->freq_range;
714
715 power_rule1 = &rule1->power_rule;
716 power_rule2 = &rule2->power_rule;
717 power_rule = &intersected_rule->power_rule;
718
719 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
720 freq_range2->start_freq_khz);
721 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
722 freq_range2->end_freq_khz);
723
724 max_bandwidth1 = freq_range1->max_bandwidth_khz;
725 max_bandwidth2 = freq_range2->max_bandwidth_khz;
726
727 if (rule1->flags & NL80211_RRF_AUTO_BW)
728 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
729 if (rule2->flags & NL80211_RRF_AUTO_BW)
730 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
731
732 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
733
734 intersected_rule->flags = rule1->flags | rule2->flags;
735
736 /*
737 * In case NL80211_RRF_AUTO_BW requested for both rules
738 * set AUTO_BW in intersected rule also. Next we will
739 * calculate BW correctly in handle_channel function.
740 * In other case remove AUTO_BW flag while we calculate
741 * maximum bandwidth correctly and auto calculation is
742 * not required.
743 */
744 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
745 (rule2->flags & NL80211_RRF_AUTO_BW))
746 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
747 else
748 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
749
750 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
751 if (freq_range->max_bandwidth_khz > freq_diff)
752 freq_range->max_bandwidth_khz = freq_diff;
753
754 power_rule->max_eirp = min(power_rule1->max_eirp,
755 power_rule2->max_eirp);
756 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
757 power_rule2->max_antenna_gain);
758
759 if (!is_valid_reg_rule(intersected_rule))
760 return -EINVAL;
761
762 return 0;
763 }
764
765 /**
766 * regdom_intersect - do the intersection between two regulatory domains
767 * @rd1: first regulatory domain
768 * @rd2: second regulatory domain
769 *
770 * Use this function to get the intersection between two regulatory domains.
771 * Once completed we will mark the alpha2 for the rd as intersected, "98",
772 * as no one single alpha2 can represent this regulatory domain.
773 *
774 * Returns a pointer to the regulatory domain structure which will hold the
775 * resulting intersection of rules between rd1 and rd2. We will
776 * kzalloc() this structure for you.
777 */
778 static struct ieee80211_regdomain *
779 regdom_intersect(const struct ieee80211_regdomain *rd1,
780 const struct ieee80211_regdomain *rd2)
781 {
782 int r, size_of_regd;
783 unsigned int x, y;
784 unsigned int num_rules = 0, rule_idx = 0;
785 const struct ieee80211_reg_rule *rule1, *rule2;
786 struct ieee80211_reg_rule *intersected_rule;
787 struct ieee80211_regdomain *rd;
788 /* This is just a dummy holder to help us count */
789 struct ieee80211_reg_rule dummy_rule;
790
791 if (!rd1 || !rd2)
792 return NULL;
793
794 /*
795 * First we get a count of the rules we'll need, then we actually
796 * build them. This is to so we can malloc() and free() a
797 * regdomain once. The reason we use reg_rules_intersect() here
798 * is it will return -EINVAL if the rule computed makes no sense.
799 * All rules that do check out OK are valid.
800 */
801
802 for (x = 0; x < rd1->n_reg_rules; x++) {
803 rule1 = &rd1->reg_rules[x];
804 for (y = 0; y < rd2->n_reg_rules; y++) {
805 rule2 = &rd2->reg_rules[y];
806 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
807 &dummy_rule))
808 num_rules++;
809 }
810 }
811
812 if (!num_rules)
813 return NULL;
814
815 size_of_regd = sizeof(struct ieee80211_regdomain) +
816 num_rules * sizeof(struct ieee80211_reg_rule);
817
818 rd = kzalloc(size_of_regd, GFP_KERNEL);
819 if (!rd)
820 return NULL;
821
822 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
823 rule1 = &rd1->reg_rules[x];
824 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
825 rule2 = &rd2->reg_rules[y];
826 /*
827 * This time around instead of using the stack lets
828 * write to the target rule directly saving ourselves
829 * a memcpy()
830 */
831 intersected_rule = &rd->reg_rules[rule_idx];
832 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
833 intersected_rule);
834 /*
835 * No need to memset here the intersected rule here as
836 * we're not using the stack anymore
837 */
838 if (r)
839 continue;
840 rule_idx++;
841 }
842 }
843
844 if (rule_idx != num_rules) {
845 kfree(rd);
846 return NULL;
847 }
848
849 rd->n_reg_rules = num_rules;
850 rd->alpha2[0] = '9';
851 rd->alpha2[1] = '8';
852 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
853 rd2->dfs_region);
854
855 return rd;
856 }
857
858 /*
859 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
860 * want to just have the channel structure use these
861 */
862 static u32 map_regdom_flags(u32 rd_flags)
863 {
864 u32 channel_flags = 0;
865 if (rd_flags & NL80211_RRF_NO_IR_ALL)
866 channel_flags |= IEEE80211_CHAN_NO_IR;
867 if (rd_flags & NL80211_RRF_DFS)
868 channel_flags |= IEEE80211_CHAN_RADAR;
869 if (rd_flags & NL80211_RRF_NO_OFDM)
870 channel_flags |= IEEE80211_CHAN_NO_OFDM;
871 return channel_flags;
872 }
873
874 static const struct ieee80211_reg_rule *
875 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
876 const struct ieee80211_regdomain *regd)
877 {
878 int i;
879 bool band_rule_found = false;
880 bool bw_fits = false;
881
882 if (!regd)
883 return ERR_PTR(-EINVAL);
884
885 for (i = 0; i < regd->n_reg_rules; i++) {
886 const struct ieee80211_reg_rule *rr;
887 const struct ieee80211_freq_range *fr = NULL;
888
889 rr = &regd->reg_rules[i];
890 fr = &rr->freq_range;
891
892 /*
893 * We only need to know if one frequency rule was
894 * was in center_freq's band, that's enough, so lets
895 * not overwrite it once found
896 */
897 if (!band_rule_found)
898 band_rule_found = freq_in_rule_band(fr, center_freq);
899
900 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
901
902 if (band_rule_found && bw_fits)
903 return rr;
904 }
905
906 if (!band_rule_found)
907 return ERR_PTR(-ERANGE);
908
909 return ERR_PTR(-EINVAL);
910 }
911
912 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
913 u32 center_freq)
914 {
915 const struct ieee80211_regdomain *regd;
916
917 regd = reg_get_regdomain(wiphy);
918
919 return freq_reg_info_regd(wiphy, center_freq, regd);
920 }
921 EXPORT_SYMBOL(freq_reg_info);
922
923 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
924 {
925 switch (initiator) {
926 case NL80211_REGDOM_SET_BY_CORE:
927 return "core";
928 case NL80211_REGDOM_SET_BY_USER:
929 return "user";
930 case NL80211_REGDOM_SET_BY_DRIVER:
931 return "driver";
932 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
933 return "country IE";
934 default:
935 WARN_ON(1);
936 return "bug";
937 }
938 }
939 EXPORT_SYMBOL(reg_initiator_name);
940
941 #ifdef CONFIG_CFG80211_REG_DEBUG
942 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
943 struct ieee80211_channel *chan,
944 const struct ieee80211_reg_rule *reg_rule)
945 {
946 const struct ieee80211_power_rule *power_rule;
947 const struct ieee80211_freq_range *freq_range;
948 char max_antenna_gain[32], bw[32];
949
950 power_rule = &reg_rule->power_rule;
951 freq_range = &reg_rule->freq_range;
952
953 if (!power_rule->max_antenna_gain)
954 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
955 else
956 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
957 power_rule->max_antenna_gain);
958
959 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
960 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
961 freq_range->max_bandwidth_khz,
962 reg_get_max_bandwidth(regd, reg_rule));
963 else
964 snprintf(bw, sizeof(bw), "%d KHz",
965 freq_range->max_bandwidth_khz);
966
967 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
968 chan->center_freq);
969
970 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
971 freq_range->start_freq_khz, freq_range->end_freq_khz,
972 bw, max_antenna_gain,
973 power_rule->max_eirp);
974 }
975 #else
976 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
977 struct ieee80211_channel *chan,
978 const struct ieee80211_reg_rule *reg_rule)
979 {
980 return;
981 }
982 #endif
983
984 /*
985 * Note that right now we assume the desired channel bandwidth
986 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
987 * per channel, the primary and the extension channel).
988 */
989 static void handle_channel(struct wiphy *wiphy,
990 enum nl80211_reg_initiator initiator,
991 struct ieee80211_channel *chan)
992 {
993 u32 flags, bw_flags = 0;
994 const struct ieee80211_reg_rule *reg_rule = NULL;
995 const struct ieee80211_power_rule *power_rule = NULL;
996 const struct ieee80211_freq_range *freq_range = NULL;
997 struct wiphy *request_wiphy = NULL;
998 struct regulatory_request *lr = get_last_request();
999 const struct ieee80211_regdomain *regd;
1000 u32 max_bandwidth_khz;
1001
1002 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1003
1004 flags = chan->orig_flags;
1005
1006 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1007 if (IS_ERR(reg_rule)) {
1008 /*
1009 * We will disable all channels that do not match our
1010 * received regulatory rule unless the hint is coming
1011 * from a Country IE and the Country IE had no information
1012 * about a band. The IEEE 802.11 spec allows for an AP
1013 * to send only a subset of the regulatory rules allowed,
1014 * so an AP in the US that only supports 2.4 GHz may only send
1015 * a country IE with information for the 2.4 GHz band
1016 * while 5 GHz is still supported.
1017 */
1018 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1019 PTR_ERR(reg_rule) == -ERANGE)
1020 return;
1021
1022 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1023 request_wiphy && request_wiphy == wiphy &&
1024 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1025 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1026 chan->center_freq);
1027 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1028 chan->flags = chan->orig_flags;
1029 } else {
1030 REG_DBG_PRINT("Disabling freq %d MHz\n",
1031 chan->center_freq);
1032 chan->flags |= IEEE80211_CHAN_DISABLED;
1033 }
1034 return;
1035 }
1036
1037 regd = reg_get_regdomain(wiphy);
1038 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1039
1040 power_rule = &reg_rule->power_rule;
1041 freq_range = &reg_rule->freq_range;
1042
1043 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1044 /* Check if auto calculation requested */
1045 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1046 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1047
1048 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1049 bw_flags = IEEE80211_CHAN_NO_HT40;
1050 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1051 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1052 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1053 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1054
1055 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1056 request_wiphy && request_wiphy == wiphy &&
1057 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1058 /*
1059 * This guarantees the driver's requested regulatory domain
1060 * will always be used as a base for further regulatory
1061 * settings
1062 */
1063 chan->flags = chan->orig_flags =
1064 map_regdom_flags(reg_rule->flags) | bw_flags;
1065 chan->max_antenna_gain = chan->orig_mag =
1066 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1067 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1068 (int) MBM_TO_DBM(power_rule->max_eirp);
1069 return;
1070 }
1071
1072 chan->dfs_state = NL80211_DFS_USABLE;
1073 chan->dfs_state_entered = jiffies;
1074
1075 chan->beacon_found = false;
1076 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1077 chan->max_antenna_gain =
1078 min_t(int, chan->orig_mag,
1079 MBI_TO_DBI(power_rule->max_antenna_gain));
1080 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1081 if (chan->orig_mpwr) {
1082 /*
1083 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1084 * will always follow the passed country IE power settings.
1085 */
1086 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1087 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1088 chan->max_power = chan->max_reg_power;
1089 else
1090 chan->max_power = min(chan->orig_mpwr,
1091 chan->max_reg_power);
1092 } else
1093 chan->max_power = chan->max_reg_power;
1094 }
1095
1096 static void handle_band(struct wiphy *wiphy,
1097 enum nl80211_reg_initiator initiator,
1098 struct ieee80211_supported_band *sband)
1099 {
1100 unsigned int i;
1101
1102 if (!sband)
1103 return;
1104
1105 for (i = 0; i < sband->n_channels; i++)
1106 handle_channel(wiphy, initiator, &sband->channels[i]);
1107 }
1108
1109 static bool reg_request_cell_base(struct regulatory_request *request)
1110 {
1111 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1112 return false;
1113 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1114 }
1115
1116 bool reg_last_request_cell_base(void)
1117 {
1118 return reg_request_cell_base(get_last_request());
1119 }
1120
1121 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
1122 /* Core specific check */
1123 static enum reg_request_treatment
1124 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1125 {
1126 struct regulatory_request *lr = get_last_request();
1127
1128 if (!reg_num_devs_support_basehint)
1129 return REG_REQ_IGNORE;
1130
1131 if (reg_request_cell_base(lr) &&
1132 !regdom_changes(pending_request->alpha2))
1133 return REG_REQ_ALREADY_SET;
1134
1135 return REG_REQ_OK;
1136 }
1137
1138 /* Device specific check */
1139 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1140 {
1141 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1142 }
1143 #else
1144 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1145 {
1146 return REG_REQ_IGNORE;
1147 }
1148
1149 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1150 {
1151 return true;
1152 }
1153 #endif
1154
1155 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1156 {
1157 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1158 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1159 return true;
1160 return false;
1161 }
1162
1163 static bool ignore_reg_update(struct wiphy *wiphy,
1164 enum nl80211_reg_initiator initiator)
1165 {
1166 struct regulatory_request *lr = get_last_request();
1167
1168 if (!lr) {
1169 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1170 "since last_request is not set\n",
1171 reg_initiator_name(initiator));
1172 return true;
1173 }
1174
1175 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1176 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1177 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1178 "since the driver uses its own custom "
1179 "regulatory domain\n",
1180 reg_initiator_name(initiator));
1181 return true;
1182 }
1183
1184 /*
1185 * wiphy->regd will be set once the device has its own
1186 * desired regulatory domain set
1187 */
1188 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1189 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1190 !is_world_regdom(lr->alpha2)) {
1191 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1192 "since the driver requires its own regulatory "
1193 "domain to be set first\n",
1194 reg_initiator_name(initiator));
1195 return true;
1196 }
1197
1198 if (reg_request_cell_base(lr))
1199 return reg_dev_ignore_cell_hint(wiphy);
1200
1201 return false;
1202 }
1203
1204 static bool reg_is_world_roaming(struct wiphy *wiphy)
1205 {
1206 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1207 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1208 struct regulatory_request *lr = get_last_request();
1209
1210 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1211 return true;
1212
1213 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1214 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1215 return true;
1216
1217 return false;
1218 }
1219
1220 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1221 struct reg_beacon *reg_beacon)
1222 {
1223 struct ieee80211_supported_band *sband;
1224 struct ieee80211_channel *chan;
1225 bool channel_changed = false;
1226 struct ieee80211_channel chan_before;
1227
1228 sband = wiphy->bands[reg_beacon->chan.band];
1229 chan = &sband->channels[chan_idx];
1230
1231 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1232 return;
1233
1234 if (chan->beacon_found)
1235 return;
1236
1237 chan->beacon_found = true;
1238
1239 if (!reg_is_world_roaming(wiphy))
1240 return;
1241
1242 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1243 return;
1244
1245 chan_before.center_freq = chan->center_freq;
1246 chan_before.flags = chan->flags;
1247
1248 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1249 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1250 channel_changed = true;
1251 }
1252
1253 if (channel_changed)
1254 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1255 }
1256
1257 /*
1258 * Called when a scan on a wiphy finds a beacon on
1259 * new channel
1260 */
1261 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1262 struct reg_beacon *reg_beacon)
1263 {
1264 unsigned int i;
1265 struct ieee80211_supported_band *sband;
1266
1267 if (!wiphy->bands[reg_beacon->chan.band])
1268 return;
1269
1270 sband = wiphy->bands[reg_beacon->chan.band];
1271
1272 for (i = 0; i < sband->n_channels; i++)
1273 handle_reg_beacon(wiphy, i, reg_beacon);
1274 }
1275
1276 /*
1277 * Called upon reg changes or a new wiphy is added
1278 */
1279 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1280 {
1281 unsigned int i;
1282 struct ieee80211_supported_band *sband;
1283 struct reg_beacon *reg_beacon;
1284
1285 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1286 if (!wiphy->bands[reg_beacon->chan.band])
1287 continue;
1288 sband = wiphy->bands[reg_beacon->chan.band];
1289 for (i = 0; i < sband->n_channels; i++)
1290 handle_reg_beacon(wiphy, i, reg_beacon);
1291 }
1292 }
1293
1294 /* Reap the advantages of previously found beacons */
1295 static void reg_process_beacons(struct wiphy *wiphy)
1296 {
1297 /*
1298 * Means we are just firing up cfg80211, so no beacons would
1299 * have been processed yet.
1300 */
1301 if (!last_request)
1302 return;
1303 wiphy_update_beacon_reg(wiphy);
1304 }
1305
1306 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1307 {
1308 if (!chan)
1309 return false;
1310 if (chan->flags & IEEE80211_CHAN_DISABLED)
1311 return false;
1312 /* This would happen when regulatory rules disallow HT40 completely */
1313 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1314 return false;
1315 return true;
1316 }
1317
1318 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1319 struct ieee80211_channel *channel)
1320 {
1321 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1322 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1323 unsigned int i;
1324
1325 if (!is_ht40_allowed(channel)) {
1326 channel->flags |= IEEE80211_CHAN_NO_HT40;
1327 return;
1328 }
1329
1330 /*
1331 * We need to ensure the extension channels exist to
1332 * be able to use HT40- or HT40+, this finds them (or not)
1333 */
1334 for (i = 0; i < sband->n_channels; i++) {
1335 struct ieee80211_channel *c = &sband->channels[i];
1336
1337 if (c->center_freq == (channel->center_freq - 20))
1338 channel_before = c;
1339 if (c->center_freq == (channel->center_freq + 20))
1340 channel_after = c;
1341 }
1342
1343 /*
1344 * Please note that this assumes target bandwidth is 20 MHz,
1345 * if that ever changes we also need to change the below logic
1346 * to include that as well.
1347 */
1348 if (!is_ht40_allowed(channel_before))
1349 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1350 else
1351 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1352
1353 if (!is_ht40_allowed(channel_after))
1354 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1355 else
1356 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1357 }
1358
1359 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1360 struct ieee80211_supported_band *sband)
1361 {
1362 unsigned int i;
1363
1364 if (!sband)
1365 return;
1366
1367 for (i = 0; i < sband->n_channels; i++)
1368 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1369 }
1370
1371 static void reg_process_ht_flags(struct wiphy *wiphy)
1372 {
1373 enum ieee80211_band band;
1374
1375 if (!wiphy)
1376 return;
1377
1378 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1379 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1380 }
1381
1382 static void reg_call_notifier(struct wiphy *wiphy,
1383 struct regulatory_request *request)
1384 {
1385 if (wiphy->reg_notifier)
1386 wiphy->reg_notifier(wiphy, request);
1387 }
1388
1389 static void wiphy_update_regulatory(struct wiphy *wiphy,
1390 enum nl80211_reg_initiator initiator)
1391 {
1392 enum ieee80211_band band;
1393 struct regulatory_request *lr = get_last_request();
1394
1395 if (ignore_reg_update(wiphy, initiator)) {
1396 /*
1397 * Regulatory updates set by CORE are ignored for custom
1398 * regulatory cards. Let us notify the changes to the driver,
1399 * as some drivers used this to restore its orig_* reg domain.
1400 */
1401 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1402 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1403 reg_call_notifier(wiphy, lr);
1404 return;
1405 }
1406
1407 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1408
1409 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1410 handle_band(wiphy, initiator, wiphy->bands[band]);
1411
1412 reg_process_beacons(wiphy);
1413 reg_process_ht_flags(wiphy);
1414 reg_call_notifier(wiphy, lr);
1415 }
1416
1417 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1418 {
1419 struct cfg80211_registered_device *rdev;
1420 struct wiphy *wiphy;
1421
1422 ASSERT_RTNL();
1423
1424 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1425 wiphy = &rdev->wiphy;
1426 wiphy_update_regulatory(wiphy, initiator);
1427 }
1428 }
1429
1430 static void handle_channel_custom(struct wiphy *wiphy,
1431 struct ieee80211_channel *chan,
1432 const struct ieee80211_regdomain *regd)
1433 {
1434 u32 bw_flags = 0;
1435 const struct ieee80211_reg_rule *reg_rule = NULL;
1436 const struct ieee80211_power_rule *power_rule = NULL;
1437 const struct ieee80211_freq_range *freq_range = NULL;
1438 u32 max_bandwidth_khz;
1439
1440 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1441 regd);
1442
1443 if (IS_ERR(reg_rule)) {
1444 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1445 chan->center_freq);
1446 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1447 chan->flags = chan->orig_flags;
1448 return;
1449 }
1450
1451 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1452
1453 power_rule = &reg_rule->power_rule;
1454 freq_range = &reg_rule->freq_range;
1455
1456 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1457 /* Check if auto calculation requested */
1458 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1459 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1460
1461 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1462 bw_flags = IEEE80211_CHAN_NO_HT40;
1463 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1464 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1465 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1466 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1467
1468 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1469 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1470 chan->max_reg_power = chan->max_power =
1471 (int) MBM_TO_DBM(power_rule->max_eirp);
1472 }
1473
1474 static void handle_band_custom(struct wiphy *wiphy,
1475 struct ieee80211_supported_band *sband,
1476 const struct ieee80211_regdomain *regd)
1477 {
1478 unsigned int i;
1479
1480 if (!sband)
1481 return;
1482
1483 for (i = 0; i < sband->n_channels; i++)
1484 handle_channel_custom(wiphy, &sband->channels[i], regd);
1485 }
1486
1487 /* Used by drivers prior to wiphy registration */
1488 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1489 const struct ieee80211_regdomain *regd)
1490 {
1491 enum ieee80211_band band;
1492 unsigned int bands_set = 0;
1493
1494 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1495 "wiphy should have REGULATORY_CUSTOM_REG\n");
1496 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1497
1498 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1499 if (!wiphy->bands[band])
1500 continue;
1501 handle_band_custom(wiphy, wiphy->bands[band], regd);
1502 bands_set++;
1503 }
1504
1505 /*
1506 * no point in calling this if it won't have any effect
1507 * on your device's supported bands.
1508 */
1509 WARN_ON(!bands_set);
1510 }
1511 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1512
1513 static void reg_set_request_processed(void)
1514 {
1515 bool need_more_processing = false;
1516 struct regulatory_request *lr = get_last_request();
1517
1518 lr->processed = true;
1519
1520 spin_lock(&reg_requests_lock);
1521 if (!list_empty(&reg_requests_list))
1522 need_more_processing = true;
1523 spin_unlock(&reg_requests_lock);
1524
1525 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1526 cancel_delayed_work(&reg_timeout);
1527
1528 if (need_more_processing)
1529 schedule_work(&reg_work);
1530 }
1531
1532 /**
1533 * reg_process_hint_core - process core regulatory requests
1534 * @pending_request: a pending core regulatory request
1535 *
1536 * The wireless subsystem can use this function to process
1537 * a regulatory request issued by the regulatory core.
1538 *
1539 * Returns one of the different reg request treatment values.
1540 */
1541 static enum reg_request_treatment
1542 reg_process_hint_core(struct regulatory_request *core_request)
1543 {
1544
1545 core_request->intersect = false;
1546 core_request->processed = false;
1547
1548 reg_update_last_request(core_request);
1549
1550 return reg_call_crda(core_request);
1551 }
1552
1553 static enum reg_request_treatment
1554 __reg_process_hint_user(struct regulatory_request *user_request)
1555 {
1556 struct regulatory_request *lr = get_last_request();
1557
1558 if (reg_request_cell_base(user_request))
1559 return reg_ignore_cell_hint(user_request);
1560
1561 if (reg_request_cell_base(lr))
1562 return REG_REQ_IGNORE;
1563
1564 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1565 return REG_REQ_INTERSECT;
1566 /*
1567 * If the user knows better the user should set the regdom
1568 * to their country before the IE is picked up
1569 */
1570 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1571 lr->intersect)
1572 return REG_REQ_IGNORE;
1573 /*
1574 * Process user requests only after previous user/driver/core
1575 * requests have been processed
1576 */
1577 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1578 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1579 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1580 regdom_changes(lr->alpha2))
1581 return REG_REQ_IGNORE;
1582
1583 if (!regdom_changes(user_request->alpha2))
1584 return REG_REQ_ALREADY_SET;
1585
1586 return REG_REQ_OK;
1587 }
1588
1589 /**
1590 * reg_process_hint_user - process user regulatory requests
1591 * @user_request: a pending user regulatory request
1592 *
1593 * The wireless subsystem can use this function to process
1594 * a regulatory request initiated by userspace.
1595 *
1596 * Returns one of the different reg request treatment values.
1597 */
1598 static enum reg_request_treatment
1599 reg_process_hint_user(struct regulatory_request *user_request)
1600 {
1601 enum reg_request_treatment treatment;
1602
1603 treatment = __reg_process_hint_user(user_request);
1604 if (treatment == REG_REQ_IGNORE ||
1605 treatment == REG_REQ_ALREADY_SET) {
1606 kfree(user_request);
1607 return treatment;
1608 }
1609
1610 user_request->intersect = treatment == REG_REQ_INTERSECT;
1611 user_request->processed = false;
1612
1613 reg_update_last_request(user_request);
1614
1615 user_alpha2[0] = user_request->alpha2[0];
1616 user_alpha2[1] = user_request->alpha2[1];
1617
1618 return reg_call_crda(user_request);
1619 }
1620
1621 static enum reg_request_treatment
1622 __reg_process_hint_driver(struct regulatory_request *driver_request)
1623 {
1624 struct regulatory_request *lr = get_last_request();
1625
1626 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1627 if (regdom_changes(driver_request->alpha2))
1628 return REG_REQ_OK;
1629 return REG_REQ_ALREADY_SET;
1630 }
1631
1632 /*
1633 * This would happen if you unplug and plug your card
1634 * back in or if you add a new device for which the previously
1635 * loaded card also agrees on the regulatory domain.
1636 */
1637 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1638 !regdom_changes(driver_request->alpha2))
1639 return REG_REQ_ALREADY_SET;
1640
1641 return REG_REQ_INTERSECT;
1642 }
1643
1644 /**
1645 * reg_process_hint_driver - process driver regulatory requests
1646 * @driver_request: a pending driver regulatory request
1647 *
1648 * The wireless subsystem can use this function to process
1649 * a regulatory request issued by an 802.11 driver.
1650 *
1651 * Returns one of the different reg request treatment values.
1652 */
1653 static enum reg_request_treatment
1654 reg_process_hint_driver(struct wiphy *wiphy,
1655 struct regulatory_request *driver_request)
1656 {
1657 const struct ieee80211_regdomain *regd;
1658 enum reg_request_treatment treatment;
1659
1660 treatment = __reg_process_hint_driver(driver_request);
1661
1662 switch (treatment) {
1663 case REG_REQ_OK:
1664 break;
1665 case REG_REQ_IGNORE:
1666 kfree(driver_request);
1667 return treatment;
1668 case REG_REQ_INTERSECT:
1669 /* fall through */
1670 case REG_REQ_ALREADY_SET:
1671 regd = reg_copy_regd(get_cfg80211_regdom());
1672 if (IS_ERR(regd)) {
1673 kfree(driver_request);
1674 return REG_REQ_IGNORE;
1675 }
1676 rcu_assign_pointer(wiphy->regd, regd);
1677 }
1678
1679
1680 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1681 driver_request->processed = false;
1682
1683 reg_update_last_request(driver_request);
1684
1685 /*
1686 * Since CRDA will not be called in this case as we already
1687 * have applied the requested regulatory domain before we just
1688 * inform userspace we have processed the request
1689 */
1690 if (treatment == REG_REQ_ALREADY_SET) {
1691 nl80211_send_reg_change_event(driver_request);
1692 reg_set_request_processed();
1693 return treatment;
1694 }
1695
1696 return reg_call_crda(driver_request);
1697 }
1698
1699 static enum reg_request_treatment
1700 __reg_process_hint_country_ie(struct wiphy *wiphy,
1701 struct regulatory_request *country_ie_request)
1702 {
1703 struct wiphy *last_wiphy = NULL;
1704 struct regulatory_request *lr = get_last_request();
1705
1706 if (reg_request_cell_base(lr)) {
1707 /* Trust a Cell base station over the AP's country IE */
1708 if (regdom_changes(country_ie_request->alpha2))
1709 return REG_REQ_IGNORE;
1710 return REG_REQ_ALREADY_SET;
1711 } else {
1712 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1713 return REG_REQ_IGNORE;
1714 }
1715
1716 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1717 return -EINVAL;
1718
1719 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1720 return REG_REQ_OK;
1721
1722 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1723
1724 if (last_wiphy != wiphy) {
1725 /*
1726 * Two cards with two APs claiming different
1727 * Country IE alpha2s. We could
1728 * intersect them, but that seems unlikely
1729 * to be correct. Reject second one for now.
1730 */
1731 if (regdom_changes(country_ie_request->alpha2))
1732 return REG_REQ_IGNORE;
1733 return REG_REQ_ALREADY_SET;
1734 }
1735 /*
1736 * Two consecutive Country IE hints on the same wiphy.
1737 * This should be picked up early by the driver/stack
1738 */
1739 if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1740 return REG_REQ_OK;
1741 return REG_REQ_ALREADY_SET;
1742 }
1743
1744 /**
1745 * reg_process_hint_country_ie - process regulatory requests from country IEs
1746 * @country_ie_request: a regulatory request from a country IE
1747 *
1748 * The wireless subsystem can use this function to process
1749 * a regulatory request issued by a country Information Element.
1750 *
1751 * Returns one of the different reg request treatment values.
1752 */
1753 static enum reg_request_treatment
1754 reg_process_hint_country_ie(struct wiphy *wiphy,
1755 struct regulatory_request *country_ie_request)
1756 {
1757 enum reg_request_treatment treatment;
1758
1759 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1760
1761 switch (treatment) {
1762 case REG_REQ_OK:
1763 break;
1764 case REG_REQ_IGNORE:
1765 /* fall through */
1766 case REG_REQ_ALREADY_SET:
1767 kfree(country_ie_request);
1768 return treatment;
1769 case REG_REQ_INTERSECT:
1770 kfree(country_ie_request);
1771 /*
1772 * This doesn't happen yet, not sure we
1773 * ever want to support it for this case.
1774 */
1775 WARN_ONCE(1, "Unexpected intersection for country IEs");
1776 return REG_REQ_IGNORE;
1777 }
1778
1779 country_ie_request->intersect = false;
1780 country_ie_request->processed = false;
1781
1782 reg_update_last_request(country_ie_request);
1783
1784 return reg_call_crda(country_ie_request);
1785 }
1786
1787 /* This processes *all* regulatory hints */
1788 static void reg_process_hint(struct regulatory_request *reg_request)
1789 {
1790 struct wiphy *wiphy = NULL;
1791 enum reg_request_treatment treatment;
1792
1793 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1794 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1795
1796 switch (reg_request->initiator) {
1797 case NL80211_REGDOM_SET_BY_CORE:
1798 reg_process_hint_core(reg_request);
1799 return;
1800 case NL80211_REGDOM_SET_BY_USER:
1801 treatment = reg_process_hint_user(reg_request);
1802 if (treatment == REG_REQ_OK ||
1803 treatment == REG_REQ_ALREADY_SET)
1804 return;
1805 queue_delayed_work(system_power_efficient_wq,
1806 &reg_timeout, msecs_to_jiffies(3142));
1807 return;
1808 case NL80211_REGDOM_SET_BY_DRIVER:
1809 if (!wiphy)
1810 goto out_free;
1811 treatment = reg_process_hint_driver(wiphy, reg_request);
1812 break;
1813 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1814 if (!wiphy)
1815 goto out_free;
1816 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1817 break;
1818 default:
1819 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1820 goto out_free;
1821 }
1822
1823 /* This is required so that the orig_* parameters are saved */
1824 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1825 wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1826 wiphy_update_regulatory(wiphy, reg_request->initiator);
1827
1828 return;
1829
1830 out_free:
1831 kfree(reg_request);
1832 }
1833
1834 /*
1835 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1836 * Regulatory hints come on a first come first serve basis and we
1837 * must process each one atomically.
1838 */
1839 static void reg_process_pending_hints(void)
1840 {
1841 struct regulatory_request *reg_request, *lr;
1842
1843 lr = get_last_request();
1844
1845 /* When last_request->processed becomes true this will be rescheduled */
1846 if (lr && !lr->processed) {
1847 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1848 return;
1849 }
1850
1851 spin_lock(&reg_requests_lock);
1852
1853 if (list_empty(&reg_requests_list)) {
1854 spin_unlock(&reg_requests_lock);
1855 return;
1856 }
1857
1858 reg_request = list_first_entry(&reg_requests_list,
1859 struct regulatory_request,
1860 list);
1861 list_del_init(&reg_request->list);
1862
1863 spin_unlock(&reg_requests_lock);
1864
1865 reg_process_hint(reg_request);
1866 }
1867
1868 /* Processes beacon hints -- this has nothing to do with country IEs */
1869 static void reg_process_pending_beacon_hints(void)
1870 {
1871 struct cfg80211_registered_device *rdev;
1872 struct reg_beacon *pending_beacon, *tmp;
1873
1874 /* This goes through the _pending_ beacon list */
1875 spin_lock_bh(&reg_pending_beacons_lock);
1876
1877 list_for_each_entry_safe(pending_beacon, tmp,
1878 &reg_pending_beacons, list) {
1879 list_del_init(&pending_beacon->list);
1880
1881 /* Applies the beacon hint to current wiphys */
1882 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1883 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1884
1885 /* Remembers the beacon hint for new wiphys or reg changes */
1886 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1887 }
1888
1889 spin_unlock_bh(&reg_pending_beacons_lock);
1890 }
1891
1892 static void reg_todo(struct work_struct *work)
1893 {
1894 rtnl_lock();
1895 reg_process_pending_hints();
1896 reg_process_pending_beacon_hints();
1897 rtnl_unlock();
1898 }
1899
1900 static void queue_regulatory_request(struct regulatory_request *request)
1901 {
1902 request->alpha2[0] = toupper(request->alpha2[0]);
1903 request->alpha2[1] = toupper(request->alpha2[1]);
1904
1905 spin_lock(&reg_requests_lock);
1906 list_add_tail(&request->list, &reg_requests_list);
1907 spin_unlock(&reg_requests_lock);
1908
1909 schedule_work(&reg_work);
1910 }
1911
1912 /*
1913 * Core regulatory hint -- happens during cfg80211_init()
1914 * and when we restore regulatory settings.
1915 */
1916 static int regulatory_hint_core(const char *alpha2)
1917 {
1918 struct regulatory_request *request;
1919
1920 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1921 if (!request)
1922 return -ENOMEM;
1923
1924 request->alpha2[0] = alpha2[0];
1925 request->alpha2[1] = alpha2[1];
1926 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1927
1928 queue_regulatory_request(request);
1929
1930 return 0;
1931 }
1932
1933 /* User hints */
1934 int regulatory_hint_user(const char *alpha2,
1935 enum nl80211_user_reg_hint_type user_reg_hint_type)
1936 {
1937 struct regulatory_request *request;
1938
1939 if (WARN_ON(!alpha2))
1940 return -EINVAL;
1941
1942 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1943 if (!request)
1944 return -ENOMEM;
1945
1946 request->wiphy_idx = WIPHY_IDX_INVALID;
1947 request->alpha2[0] = alpha2[0];
1948 request->alpha2[1] = alpha2[1];
1949 request->initiator = NL80211_REGDOM_SET_BY_USER;
1950 request->user_reg_hint_type = user_reg_hint_type;
1951
1952 queue_regulatory_request(request);
1953
1954 return 0;
1955 }
1956
1957 /* Driver hints */
1958 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1959 {
1960 struct regulatory_request *request;
1961
1962 if (WARN_ON(!alpha2 || !wiphy))
1963 return -EINVAL;
1964
1965 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
1966
1967 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1968 if (!request)
1969 return -ENOMEM;
1970
1971 request->wiphy_idx = get_wiphy_idx(wiphy);
1972
1973 request->alpha2[0] = alpha2[0];
1974 request->alpha2[1] = alpha2[1];
1975 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1976
1977 queue_regulatory_request(request);
1978
1979 return 0;
1980 }
1981 EXPORT_SYMBOL(regulatory_hint);
1982
1983 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
1984 const u8 *country_ie, u8 country_ie_len)
1985 {
1986 char alpha2[2];
1987 enum environment_cap env = ENVIRON_ANY;
1988 struct regulatory_request *request = NULL, *lr;
1989
1990 /* IE len must be evenly divisible by 2 */
1991 if (country_ie_len & 0x01)
1992 return;
1993
1994 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1995 return;
1996
1997 request = kzalloc(sizeof(*request), GFP_KERNEL);
1998 if (!request)
1999 return;
2000
2001 alpha2[0] = country_ie[0];
2002 alpha2[1] = country_ie[1];
2003
2004 if (country_ie[2] == 'I')
2005 env = ENVIRON_INDOOR;
2006 else if (country_ie[2] == 'O')
2007 env = ENVIRON_OUTDOOR;
2008
2009 rcu_read_lock();
2010 lr = get_last_request();
2011
2012 if (unlikely(!lr))
2013 goto out;
2014
2015 /*
2016 * We will run this only upon a successful connection on cfg80211.
2017 * We leave conflict resolution to the workqueue, where can hold
2018 * the RTNL.
2019 */
2020 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2021 lr->wiphy_idx != WIPHY_IDX_INVALID)
2022 goto out;
2023
2024 request->wiphy_idx = get_wiphy_idx(wiphy);
2025 request->alpha2[0] = alpha2[0];
2026 request->alpha2[1] = alpha2[1];
2027 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2028 request->country_ie_env = env;
2029
2030 queue_regulatory_request(request);
2031 request = NULL;
2032 out:
2033 kfree(request);
2034 rcu_read_unlock();
2035 }
2036
2037 static void restore_alpha2(char *alpha2, bool reset_user)
2038 {
2039 /* indicates there is no alpha2 to consider for restoration */
2040 alpha2[0] = '9';
2041 alpha2[1] = '7';
2042
2043 /* The user setting has precedence over the module parameter */
2044 if (is_user_regdom_saved()) {
2045 /* Unless we're asked to ignore it and reset it */
2046 if (reset_user) {
2047 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2048 user_alpha2[0] = '9';
2049 user_alpha2[1] = '7';
2050
2051 /*
2052 * If we're ignoring user settings, we still need to
2053 * check the module parameter to ensure we put things
2054 * back as they were for a full restore.
2055 */
2056 if (!is_world_regdom(ieee80211_regdom)) {
2057 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2058 ieee80211_regdom[0], ieee80211_regdom[1]);
2059 alpha2[0] = ieee80211_regdom[0];
2060 alpha2[1] = ieee80211_regdom[1];
2061 }
2062 } else {
2063 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2064 user_alpha2[0], user_alpha2[1]);
2065 alpha2[0] = user_alpha2[0];
2066 alpha2[1] = user_alpha2[1];
2067 }
2068 } else if (!is_world_regdom(ieee80211_regdom)) {
2069 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2070 ieee80211_regdom[0], ieee80211_regdom[1]);
2071 alpha2[0] = ieee80211_regdom[0];
2072 alpha2[1] = ieee80211_regdom[1];
2073 } else
2074 REG_DBG_PRINT("Restoring regulatory settings\n");
2075 }
2076
2077 static void restore_custom_reg_settings(struct wiphy *wiphy)
2078 {
2079 struct ieee80211_supported_band *sband;
2080 enum ieee80211_band band;
2081 struct ieee80211_channel *chan;
2082 int i;
2083
2084 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2085 sband = wiphy->bands[band];
2086 if (!sband)
2087 continue;
2088 for (i = 0; i < sband->n_channels; i++) {
2089 chan = &sband->channels[i];
2090 chan->flags = chan->orig_flags;
2091 chan->max_antenna_gain = chan->orig_mag;
2092 chan->max_power = chan->orig_mpwr;
2093 chan->beacon_found = false;
2094 }
2095 }
2096 }
2097
2098 /*
2099 * Restoring regulatory settings involves ingoring any
2100 * possibly stale country IE information and user regulatory
2101 * settings if so desired, this includes any beacon hints
2102 * learned as we could have traveled outside to another country
2103 * after disconnection. To restore regulatory settings we do
2104 * exactly what we did at bootup:
2105 *
2106 * - send a core regulatory hint
2107 * - send a user regulatory hint if applicable
2108 *
2109 * Device drivers that send a regulatory hint for a specific country
2110 * keep their own regulatory domain on wiphy->regd so that does does
2111 * not need to be remembered.
2112 */
2113 static void restore_regulatory_settings(bool reset_user)
2114 {
2115 char alpha2[2];
2116 char world_alpha2[2];
2117 struct reg_beacon *reg_beacon, *btmp;
2118 struct regulatory_request *reg_request, *tmp;
2119 LIST_HEAD(tmp_reg_req_list);
2120 struct cfg80211_registered_device *rdev;
2121
2122 ASSERT_RTNL();
2123
2124 reset_regdomains(true, &world_regdom);
2125 restore_alpha2(alpha2, reset_user);
2126
2127 /*
2128 * If there's any pending requests we simply
2129 * stash them to a temporary pending queue and
2130 * add then after we've restored regulatory
2131 * settings.
2132 */
2133 spin_lock(&reg_requests_lock);
2134 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2135 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2136 continue;
2137 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2138 }
2139 spin_unlock(&reg_requests_lock);
2140
2141 /* Clear beacon hints */
2142 spin_lock_bh(&reg_pending_beacons_lock);
2143 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2144 list_del(&reg_beacon->list);
2145 kfree(reg_beacon);
2146 }
2147 spin_unlock_bh(&reg_pending_beacons_lock);
2148
2149 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2150 list_del(&reg_beacon->list);
2151 kfree(reg_beacon);
2152 }
2153
2154 /* First restore to the basic regulatory settings */
2155 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2156 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2157
2158 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2159 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2160 restore_custom_reg_settings(&rdev->wiphy);
2161 }
2162
2163 regulatory_hint_core(world_alpha2);
2164
2165 /*
2166 * This restores the ieee80211_regdom module parameter
2167 * preference or the last user requested regulatory
2168 * settings, user regulatory settings takes precedence.
2169 */
2170 if (is_an_alpha2(alpha2))
2171 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2172
2173 spin_lock(&reg_requests_lock);
2174 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2175 spin_unlock(&reg_requests_lock);
2176
2177 REG_DBG_PRINT("Kicking the queue\n");
2178
2179 schedule_work(&reg_work);
2180 }
2181
2182 void regulatory_hint_disconnect(void)
2183 {
2184 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2185 restore_regulatory_settings(false);
2186 }
2187
2188 static bool freq_is_chan_12_13_14(u16 freq)
2189 {
2190 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2191 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2192 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2193 return true;
2194 return false;
2195 }
2196
2197 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2198 {
2199 struct reg_beacon *pending_beacon;
2200
2201 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2202 if (beacon_chan->center_freq ==
2203 pending_beacon->chan.center_freq)
2204 return true;
2205 return false;
2206 }
2207
2208 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2209 struct ieee80211_channel *beacon_chan,
2210 gfp_t gfp)
2211 {
2212 struct reg_beacon *reg_beacon;
2213 bool processing;
2214
2215 if (beacon_chan->beacon_found ||
2216 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2217 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2218 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2219 return 0;
2220
2221 spin_lock_bh(&reg_pending_beacons_lock);
2222 processing = pending_reg_beacon(beacon_chan);
2223 spin_unlock_bh(&reg_pending_beacons_lock);
2224
2225 if (processing)
2226 return 0;
2227
2228 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2229 if (!reg_beacon)
2230 return -ENOMEM;
2231
2232 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2233 beacon_chan->center_freq,
2234 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2235 wiphy_name(wiphy));
2236
2237 memcpy(&reg_beacon->chan, beacon_chan,
2238 sizeof(struct ieee80211_channel));
2239
2240 /*
2241 * Since we can be called from BH or and non-BH context
2242 * we must use spin_lock_bh()
2243 */
2244 spin_lock_bh(&reg_pending_beacons_lock);
2245 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2246 spin_unlock_bh(&reg_pending_beacons_lock);
2247
2248 schedule_work(&reg_work);
2249
2250 return 0;
2251 }
2252
2253 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2254 {
2255 unsigned int i;
2256 const struct ieee80211_reg_rule *reg_rule = NULL;
2257 const struct ieee80211_freq_range *freq_range = NULL;
2258 const struct ieee80211_power_rule *power_rule = NULL;
2259 char bw[32];
2260
2261 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2262
2263 for (i = 0; i < rd->n_reg_rules; i++) {
2264 reg_rule = &rd->reg_rules[i];
2265 freq_range = &reg_rule->freq_range;
2266 power_rule = &reg_rule->power_rule;
2267
2268 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2269 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2270 freq_range->max_bandwidth_khz,
2271 reg_get_max_bandwidth(rd, reg_rule));
2272 else
2273 snprintf(bw, sizeof(bw), "%d KHz",
2274 freq_range->max_bandwidth_khz);
2275
2276 /*
2277 * There may not be documentation for max antenna gain
2278 * in certain regions
2279 */
2280 if (power_rule->max_antenna_gain)
2281 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm)\n",
2282 freq_range->start_freq_khz,
2283 freq_range->end_freq_khz,
2284 bw,
2285 power_rule->max_antenna_gain,
2286 power_rule->max_eirp);
2287 else
2288 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm)\n",
2289 freq_range->start_freq_khz,
2290 freq_range->end_freq_khz,
2291 bw,
2292 power_rule->max_eirp);
2293 }
2294 }
2295
2296 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2297 {
2298 switch (dfs_region) {
2299 case NL80211_DFS_UNSET:
2300 case NL80211_DFS_FCC:
2301 case NL80211_DFS_ETSI:
2302 case NL80211_DFS_JP:
2303 return true;
2304 default:
2305 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2306 dfs_region);
2307 return false;
2308 }
2309 }
2310
2311 static void print_regdomain(const struct ieee80211_regdomain *rd)
2312 {
2313 struct regulatory_request *lr = get_last_request();
2314
2315 if (is_intersected_alpha2(rd->alpha2)) {
2316 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2317 struct cfg80211_registered_device *rdev;
2318 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2319 if (rdev) {
2320 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2321 rdev->country_ie_alpha2[0],
2322 rdev->country_ie_alpha2[1]);
2323 } else
2324 pr_info("Current regulatory domain intersected:\n");
2325 } else
2326 pr_info("Current regulatory domain intersected:\n");
2327 } else if (is_world_regdom(rd->alpha2)) {
2328 pr_info("World regulatory domain updated:\n");
2329 } else {
2330 if (is_unknown_alpha2(rd->alpha2))
2331 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2332 else {
2333 if (reg_request_cell_base(lr))
2334 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2335 rd->alpha2[0], rd->alpha2[1]);
2336 else
2337 pr_info("Regulatory domain changed to country: %c%c\n",
2338 rd->alpha2[0], rd->alpha2[1]);
2339 }
2340 }
2341
2342 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2343 print_rd_rules(rd);
2344 }
2345
2346 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2347 {
2348 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2349 print_rd_rules(rd);
2350 }
2351
2352 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2353 {
2354 if (!is_world_regdom(rd->alpha2))
2355 return -EINVAL;
2356 update_world_regdomain(rd);
2357 return 0;
2358 }
2359
2360 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2361 struct regulatory_request *user_request)
2362 {
2363 const struct ieee80211_regdomain *intersected_rd = NULL;
2364
2365 if (is_world_regdom(rd->alpha2))
2366 return -EINVAL;
2367
2368 if (!regdom_changes(rd->alpha2))
2369 return -EALREADY;
2370
2371 if (!is_valid_rd(rd)) {
2372 pr_err("Invalid regulatory domain detected:\n");
2373 print_regdomain_info(rd);
2374 return -EINVAL;
2375 }
2376
2377 if (!user_request->intersect) {
2378 reset_regdomains(false, rd);
2379 return 0;
2380 }
2381
2382 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2383 if (!intersected_rd)
2384 return -EINVAL;
2385
2386 kfree(rd);
2387 rd = NULL;
2388 reset_regdomains(false, intersected_rd);
2389
2390 return 0;
2391 }
2392
2393 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2394 struct regulatory_request *driver_request)
2395 {
2396 const struct ieee80211_regdomain *regd;
2397 const struct ieee80211_regdomain *intersected_rd = NULL;
2398 const struct ieee80211_regdomain *tmp;
2399 struct wiphy *request_wiphy;
2400
2401 if (is_world_regdom(rd->alpha2))
2402 return -EINVAL;
2403
2404 if (!regdom_changes(rd->alpha2))
2405 return -EALREADY;
2406
2407 if (!is_valid_rd(rd)) {
2408 pr_err("Invalid regulatory domain detected:\n");
2409 print_regdomain_info(rd);
2410 return -EINVAL;
2411 }
2412
2413 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2414 if (!request_wiphy) {
2415 queue_delayed_work(system_power_efficient_wq,
2416 &reg_timeout, 0);
2417 return -ENODEV;
2418 }
2419
2420 if (!driver_request->intersect) {
2421 if (request_wiphy->regd)
2422 return -EALREADY;
2423
2424 regd = reg_copy_regd(rd);
2425 if (IS_ERR(regd))
2426 return PTR_ERR(regd);
2427
2428 rcu_assign_pointer(request_wiphy->regd, regd);
2429 reset_regdomains(false, rd);
2430 return 0;
2431 }
2432
2433 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2434 if (!intersected_rd)
2435 return -EINVAL;
2436
2437 /*
2438 * We can trash what CRDA provided now.
2439 * However if a driver requested this specific regulatory
2440 * domain we keep it for its private use
2441 */
2442 tmp = get_wiphy_regdom(request_wiphy);
2443 rcu_assign_pointer(request_wiphy->regd, rd);
2444 rcu_free_regdom(tmp);
2445
2446 rd = NULL;
2447
2448 reset_regdomains(false, intersected_rd);
2449
2450 return 0;
2451 }
2452
2453 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2454 struct regulatory_request *country_ie_request)
2455 {
2456 struct wiphy *request_wiphy;
2457
2458 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2459 !is_unknown_alpha2(rd->alpha2))
2460 return -EINVAL;
2461
2462 /*
2463 * Lets only bother proceeding on the same alpha2 if the current
2464 * rd is non static (it means CRDA was present and was used last)
2465 * and the pending request came in from a country IE
2466 */
2467
2468 if (!is_valid_rd(rd)) {
2469 pr_err("Invalid regulatory domain detected:\n");
2470 print_regdomain_info(rd);
2471 return -EINVAL;
2472 }
2473
2474 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2475 if (!request_wiphy) {
2476 queue_delayed_work(system_power_efficient_wq,
2477 &reg_timeout, 0);
2478 return -ENODEV;
2479 }
2480
2481 if (country_ie_request->intersect)
2482 return -EINVAL;
2483
2484 reset_regdomains(false, rd);
2485 return 0;
2486 }
2487
2488 /*
2489 * Use this call to set the current regulatory domain. Conflicts with
2490 * multiple drivers can be ironed out later. Caller must've already
2491 * kmalloc'd the rd structure.
2492 */
2493 int set_regdom(const struct ieee80211_regdomain *rd)
2494 {
2495 struct regulatory_request *lr;
2496 int r;
2497
2498 if (!reg_is_valid_request(rd->alpha2)) {
2499 kfree(rd);
2500 return -EINVAL;
2501 }
2502
2503 lr = get_last_request();
2504
2505 /* Note that this doesn't update the wiphys, this is done below */
2506 switch (lr->initiator) {
2507 case NL80211_REGDOM_SET_BY_CORE:
2508 r = reg_set_rd_core(rd);
2509 break;
2510 case NL80211_REGDOM_SET_BY_USER:
2511 r = reg_set_rd_user(rd, lr);
2512 break;
2513 case NL80211_REGDOM_SET_BY_DRIVER:
2514 r = reg_set_rd_driver(rd, lr);
2515 break;
2516 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2517 r = reg_set_rd_country_ie(rd, lr);
2518 break;
2519 default:
2520 WARN(1, "invalid initiator %d\n", lr->initiator);
2521 return -EINVAL;
2522 }
2523
2524 if (r) {
2525 if (r == -EALREADY)
2526 reg_set_request_processed();
2527
2528 kfree(rd);
2529 return r;
2530 }
2531
2532 /* This would make this whole thing pointless */
2533 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2534 return -EINVAL;
2535
2536 /* update all wiphys now with the new established regulatory domain */
2537 update_all_wiphy_regulatory(lr->initiator);
2538
2539 print_regdomain(get_cfg80211_regdom());
2540
2541 nl80211_send_reg_change_event(lr);
2542
2543 reg_set_request_processed();
2544
2545 return 0;
2546 }
2547
2548 void wiphy_regulatory_register(struct wiphy *wiphy)
2549 {
2550 struct regulatory_request *lr;
2551
2552 if (!reg_dev_ignore_cell_hint(wiphy))
2553 reg_num_devs_support_basehint++;
2554
2555 lr = get_last_request();
2556 wiphy_update_regulatory(wiphy, lr->initiator);
2557 }
2558
2559 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2560 {
2561 struct wiphy *request_wiphy = NULL;
2562 struct regulatory_request *lr;
2563
2564 lr = get_last_request();
2565
2566 if (!reg_dev_ignore_cell_hint(wiphy))
2567 reg_num_devs_support_basehint--;
2568
2569 rcu_free_regdom(get_wiphy_regdom(wiphy));
2570 rcu_assign_pointer(wiphy->regd, NULL);
2571
2572 if (lr)
2573 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2574
2575 if (!request_wiphy || request_wiphy != wiphy)
2576 return;
2577
2578 lr->wiphy_idx = WIPHY_IDX_INVALID;
2579 lr->country_ie_env = ENVIRON_ANY;
2580 }
2581
2582 static void reg_timeout_work(struct work_struct *work)
2583 {
2584 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2585 rtnl_lock();
2586 restore_regulatory_settings(true);
2587 rtnl_unlock();
2588 }
2589
2590 int __init regulatory_init(void)
2591 {
2592 int err = 0;
2593
2594 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2595 if (IS_ERR(reg_pdev))
2596 return PTR_ERR(reg_pdev);
2597
2598 spin_lock_init(&reg_requests_lock);
2599 spin_lock_init(&reg_pending_beacons_lock);
2600
2601 reg_regdb_size_check();
2602
2603 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2604
2605 user_alpha2[0] = '9';
2606 user_alpha2[1] = '7';
2607
2608 /* We always try to get an update for the static regdomain */
2609 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2610 if (err) {
2611 if (err == -ENOMEM)
2612 return err;
2613 /*
2614 * N.B. kobject_uevent_env() can fail mainly for when we're out
2615 * memory which is handled and propagated appropriately above
2616 * but it can also fail during a netlink_broadcast() or during
2617 * early boot for call_usermodehelper(). For now treat these
2618 * errors as non-fatal.
2619 */
2620 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2621 }
2622
2623 /*
2624 * Finally, if the user set the module parameter treat it
2625 * as a user hint.
2626 */
2627 if (!is_world_regdom(ieee80211_regdom))
2628 regulatory_hint_user(ieee80211_regdom,
2629 NL80211_USER_REG_HINT_USER);
2630
2631 return 0;
2632 }
2633
2634 void regulatory_exit(void)
2635 {
2636 struct regulatory_request *reg_request, *tmp;
2637 struct reg_beacon *reg_beacon, *btmp;
2638
2639 cancel_work_sync(&reg_work);
2640 cancel_delayed_work_sync(&reg_timeout);
2641
2642 /* Lock to suppress warnings */
2643 rtnl_lock();
2644 reset_regdomains(true, NULL);
2645 rtnl_unlock();
2646
2647 dev_set_uevent_suppress(&reg_pdev->dev, true);
2648
2649 platform_device_unregister(reg_pdev);
2650
2651 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2652 list_del(&reg_beacon->list);
2653 kfree(reg_beacon);
2654 }
2655
2656 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2657 list_del(&reg_beacon->list);
2658 kfree(reg_beacon);
2659 }
2660
2661 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2662 list_del(&reg_request->list);
2663 kfree(reg_request);
2664 }
2665 }
This page took 0.091665 seconds and 5 git commands to generate.