Merge tag 'at91-dt-for-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/mripard...
[deliverable/linux.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...) \
63 printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 /**
69 * enum reg_request_treatment - regulatory request treatment
70 *
71 * @REG_REQ_OK: continue processing the regulatory request
72 * @REG_REQ_IGNORE: ignore the regulatory request
73 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
74 * be intersected with the current one.
75 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
76 * regulatory settings, and no further processing is required.
77 * @REG_REQ_USER_HINT_HANDLED: a non alpha2 user hint was handled and no
78 * further processing is required, i.e., not need to update last_request
79 * etc. This should be used for user hints that do not provide an alpha2
80 * but some other type of regulatory hint, i.e., indoor operation.
81 */
82 enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87 REG_REQ_USER_HINT_HANDLED,
88 };
89
90 static struct regulatory_request core_request_world = {
91 .initiator = NL80211_REGDOM_SET_BY_CORE,
92 .alpha2[0] = '0',
93 .alpha2[1] = '0',
94 .intersect = false,
95 .processed = true,
96 .country_ie_env = ENVIRON_ANY,
97 };
98
99 /*
100 * Receipt of information from last regulatory request,
101 * protected by RTNL (and can be accessed with RCU protection)
102 */
103 static struct regulatory_request __rcu *last_request =
104 (void __rcu *)&core_request_world;
105
106 /* To trigger userspace events */
107 static struct platform_device *reg_pdev;
108
109 /*
110 * Central wireless core regulatory domains, we only need two,
111 * the current one and a world regulatory domain in case we have no
112 * information to give us an alpha2.
113 * (protected by RTNL, can be read under RCU)
114 */
115 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
116
117 /*
118 * Number of devices that registered to the core
119 * that support cellular base station regulatory hints
120 * (protected by RTNL)
121 */
122 static int reg_num_devs_support_basehint;
123
124 /*
125 * State variable indicating if the platform on which the devices
126 * are attached is operating in an indoor environment. The state variable
127 * is relevant for all registered devices.
128 * (protected by RTNL)
129 */
130 static bool reg_is_indoor;
131
132 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
133 {
134 return rtnl_dereference(cfg80211_regdomain);
135 }
136
137 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
138 {
139 return rtnl_dereference(wiphy->regd);
140 }
141
142 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
143 {
144 switch (dfs_region) {
145 case NL80211_DFS_UNSET:
146 return "unset";
147 case NL80211_DFS_FCC:
148 return "FCC";
149 case NL80211_DFS_ETSI:
150 return "ETSI";
151 case NL80211_DFS_JP:
152 return "JP";
153 }
154 return "Unknown";
155 }
156
157 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
158 {
159 const struct ieee80211_regdomain *regd = NULL;
160 const struct ieee80211_regdomain *wiphy_regd = NULL;
161
162 regd = get_cfg80211_regdom();
163 if (!wiphy)
164 goto out;
165
166 wiphy_regd = get_wiphy_regdom(wiphy);
167 if (!wiphy_regd)
168 goto out;
169
170 if (wiphy_regd->dfs_region == regd->dfs_region)
171 goto out;
172
173 REG_DBG_PRINT("%s: device specific dfs_region "
174 "(%s) disagrees with cfg80211's "
175 "central dfs_region (%s)\n",
176 dev_name(&wiphy->dev),
177 reg_dfs_region_str(wiphy_regd->dfs_region),
178 reg_dfs_region_str(regd->dfs_region));
179
180 out:
181 return regd->dfs_region;
182 }
183
184 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
185 {
186 if (!r)
187 return;
188 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
189 }
190
191 static struct regulatory_request *get_last_request(void)
192 {
193 return rcu_dereference_rtnl(last_request);
194 }
195
196 /* Used to queue up regulatory hints */
197 static LIST_HEAD(reg_requests_list);
198 static spinlock_t reg_requests_lock;
199
200 /* Used to queue up beacon hints for review */
201 static LIST_HEAD(reg_pending_beacons);
202 static spinlock_t reg_pending_beacons_lock;
203
204 /* Used to keep track of processed beacon hints */
205 static LIST_HEAD(reg_beacon_list);
206
207 struct reg_beacon {
208 struct list_head list;
209 struct ieee80211_channel chan;
210 };
211
212 static void reg_todo(struct work_struct *work);
213 static DECLARE_WORK(reg_work, reg_todo);
214
215 static void reg_timeout_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
217
218 /* We keep a static world regulatory domain in case of the absence of CRDA */
219 static const struct ieee80211_regdomain world_regdom = {
220 .n_reg_rules = 6,
221 .alpha2 = "00",
222 .reg_rules = {
223 /* IEEE 802.11b/g, channels 1..11 */
224 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
225 /* IEEE 802.11b/g, channels 12..13. */
226 REG_RULE(2467-10, 2472+10, 40, 6, 20,
227 NL80211_RRF_NO_IR),
228 /* IEEE 802.11 channel 14 - Only JP enables
229 * this and for 802.11b only */
230 REG_RULE(2484-10, 2484+10, 20, 6, 20,
231 NL80211_RRF_NO_IR |
232 NL80211_RRF_NO_OFDM),
233 /* IEEE 802.11a, channel 36..48 */
234 REG_RULE(5180-10, 5240+10, 160, 6, 20,
235 NL80211_RRF_NO_IR),
236
237 /* IEEE 802.11a, channel 52..64 - DFS required */
238 REG_RULE(5260-10, 5320+10, 160, 6, 20,
239 NL80211_RRF_NO_IR |
240 NL80211_RRF_DFS),
241
242 /* IEEE 802.11a, channel 100..144 - DFS required */
243 REG_RULE(5500-10, 5720+10, 160, 6, 20,
244 NL80211_RRF_NO_IR |
245 NL80211_RRF_DFS),
246
247 /* IEEE 802.11a, channel 149..165 */
248 REG_RULE(5745-10, 5825+10, 80, 6, 20,
249 NL80211_RRF_NO_IR),
250
251 /* IEEE 802.11ad (60gHz), channels 1..3 */
252 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
253 }
254 };
255
256 /* protected by RTNL */
257 static const struct ieee80211_regdomain *cfg80211_world_regdom =
258 &world_regdom;
259
260 static char *ieee80211_regdom = "00";
261 static char user_alpha2[2];
262
263 module_param(ieee80211_regdom, charp, 0444);
264 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
265
266 static void reg_free_request(struct regulatory_request *request)
267 {
268 if (request != get_last_request())
269 kfree(request);
270 }
271
272 static void reg_free_last_request(void)
273 {
274 struct regulatory_request *lr = get_last_request();
275
276 if (lr != &core_request_world && lr)
277 kfree_rcu(lr, rcu_head);
278 }
279
280 static void reg_update_last_request(struct regulatory_request *request)
281 {
282 struct regulatory_request *lr;
283
284 lr = get_last_request();
285 if (lr == request)
286 return;
287
288 reg_free_last_request();
289 rcu_assign_pointer(last_request, request);
290 }
291
292 static void reset_regdomains(bool full_reset,
293 const struct ieee80211_regdomain *new_regdom)
294 {
295 const struct ieee80211_regdomain *r;
296
297 ASSERT_RTNL();
298
299 r = get_cfg80211_regdom();
300
301 /* avoid freeing static information or freeing something twice */
302 if (r == cfg80211_world_regdom)
303 r = NULL;
304 if (cfg80211_world_regdom == &world_regdom)
305 cfg80211_world_regdom = NULL;
306 if (r == &world_regdom)
307 r = NULL;
308
309 rcu_free_regdom(r);
310 rcu_free_regdom(cfg80211_world_regdom);
311
312 cfg80211_world_regdom = &world_regdom;
313 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
314
315 if (!full_reset)
316 return;
317
318 reg_update_last_request(&core_request_world);
319 }
320
321 /*
322 * Dynamic world regulatory domain requested by the wireless
323 * core upon initialization
324 */
325 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
326 {
327 struct regulatory_request *lr;
328
329 lr = get_last_request();
330
331 WARN_ON(!lr);
332
333 reset_regdomains(false, rd);
334
335 cfg80211_world_regdom = rd;
336 }
337
338 bool is_world_regdom(const char *alpha2)
339 {
340 if (!alpha2)
341 return false;
342 return alpha2[0] == '0' && alpha2[1] == '0';
343 }
344
345 static bool is_alpha2_set(const char *alpha2)
346 {
347 if (!alpha2)
348 return false;
349 return alpha2[0] && alpha2[1];
350 }
351
352 static bool is_unknown_alpha2(const char *alpha2)
353 {
354 if (!alpha2)
355 return false;
356 /*
357 * Special case where regulatory domain was built by driver
358 * but a specific alpha2 cannot be determined
359 */
360 return alpha2[0] == '9' && alpha2[1] == '9';
361 }
362
363 static bool is_intersected_alpha2(const char *alpha2)
364 {
365 if (!alpha2)
366 return false;
367 /*
368 * Special case where regulatory domain is the
369 * result of an intersection between two regulatory domain
370 * structures
371 */
372 return alpha2[0] == '9' && alpha2[1] == '8';
373 }
374
375 static bool is_an_alpha2(const char *alpha2)
376 {
377 if (!alpha2)
378 return false;
379 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
380 }
381
382 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
383 {
384 if (!alpha2_x || !alpha2_y)
385 return false;
386 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
387 }
388
389 static bool regdom_changes(const char *alpha2)
390 {
391 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
392
393 if (!r)
394 return true;
395 return !alpha2_equal(r->alpha2, alpha2);
396 }
397
398 /*
399 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
400 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
401 * has ever been issued.
402 */
403 static bool is_user_regdom_saved(void)
404 {
405 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
406 return false;
407
408 /* This would indicate a mistake on the design */
409 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
410 "Unexpected user alpha2: %c%c\n",
411 user_alpha2[0], user_alpha2[1]))
412 return false;
413
414 return true;
415 }
416
417 static const struct ieee80211_regdomain *
418 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
419 {
420 struct ieee80211_regdomain *regd;
421 int size_of_regd;
422 unsigned int i;
423
424 size_of_regd =
425 sizeof(struct ieee80211_regdomain) +
426 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
427
428 regd = kzalloc(size_of_regd, GFP_KERNEL);
429 if (!regd)
430 return ERR_PTR(-ENOMEM);
431
432 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
433
434 for (i = 0; i < src_regd->n_reg_rules; i++)
435 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
436 sizeof(struct ieee80211_reg_rule));
437
438 return regd;
439 }
440
441 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
442 struct reg_regdb_search_request {
443 char alpha2[2];
444 struct list_head list;
445 };
446
447 static LIST_HEAD(reg_regdb_search_list);
448 static DEFINE_MUTEX(reg_regdb_search_mutex);
449
450 static void reg_regdb_search(struct work_struct *work)
451 {
452 struct reg_regdb_search_request *request;
453 const struct ieee80211_regdomain *curdom, *regdom = NULL;
454 int i;
455
456 rtnl_lock();
457
458 mutex_lock(&reg_regdb_search_mutex);
459 while (!list_empty(&reg_regdb_search_list)) {
460 request = list_first_entry(&reg_regdb_search_list,
461 struct reg_regdb_search_request,
462 list);
463 list_del(&request->list);
464
465 for (i = 0; i < reg_regdb_size; i++) {
466 curdom = reg_regdb[i];
467
468 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
469 regdom = reg_copy_regd(curdom);
470 break;
471 }
472 }
473
474 kfree(request);
475 }
476 mutex_unlock(&reg_regdb_search_mutex);
477
478 if (!IS_ERR_OR_NULL(regdom))
479 set_regdom(regdom);
480
481 rtnl_unlock();
482 }
483
484 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
485
486 static void reg_regdb_query(const char *alpha2)
487 {
488 struct reg_regdb_search_request *request;
489
490 if (!alpha2)
491 return;
492
493 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
494 if (!request)
495 return;
496
497 memcpy(request->alpha2, alpha2, 2);
498
499 mutex_lock(&reg_regdb_search_mutex);
500 list_add_tail(&request->list, &reg_regdb_search_list);
501 mutex_unlock(&reg_regdb_search_mutex);
502
503 schedule_work(&reg_regdb_work);
504 }
505
506 /* Feel free to add any other sanity checks here */
507 static void reg_regdb_size_check(void)
508 {
509 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
510 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
511 }
512 #else
513 static inline void reg_regdb_size_check(void) {}
514 static inline void reg_regdb_query(const char *alpha2) {}
515 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
516
517 /*
518 * This lets us keep regulatory code which is updated on a regulatory
519 * basis in userspace.
520 */
521 static int call_crda(const char *alpha2)
522 {
523 char country[12];
524 char *env[] = { country, NULL };
525
526 snprintf(country, sizeof(country), "COUNTRY=%c%c",
527 alpha2[0], alpha2[1]);
528
529 if (!is_world_regdom((char *) alpha2))
530 pr_info("Calling CRDA for country: %c%c\n",
531 alpha2[0], alpha2[1]);
532 else
533 pr_info("Calling CRDA to update world regulatory domain\n");
534
535 /* query internal regulatory database (if it exists) */
536 reg_regdb_query(alpha2);
537
538 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
539 }
540
541 static enum reg_request_treatment
542 reg_call_crda(struct regulatory_request *request)
543 {
544 if (call_crda(request->alpha2))
545 return REG_REQ_IGNORE;
546 return REG_REQ_OK;
547 }
548
549 bool reg_is_valid_request(const char *alpha2)
550 {
551 struct regulatory_request *lr = get_last_request();
552
553 if (!lr || lr->processed)
554 return false;
555
556 return alpha2_equal(lr->alpha2, alpha2);
557 }
558
559 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
560 {
561 struct regulatory_request *lr = get_last_request();
562
563 /*
564 * Follow the driver's regulatory domain, if present, unless a country
565 * IE has been processed or a user wants to help complaince further
566 */
567 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
568 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
569 wiphy->regd)
570 return get_wiphy_regdom(wiphy);
571
572 return get_cfg80211_regdom();
573 }
574
575 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
576 const struct ieee80211_reg_rule *rule)
577 {
578 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
579 const struct ieee80211_freq_range *freq_range_tmp;
580 const struct ieee80211_reg_rule *tmp;
581 u32 start_freq, end_freq, idx, no;
582
583 for (idx = 0; idx < rd->n_reg_rules; idx++)
584 if (rule == &rd->reg_rules[idx])
585 break;
586
587 if (idx == rd->n_reg_rules)
588 return 0;
589
590 /* get start_freq */
591 no = idx;
592
593 while (no) {
594 tmp = &rd->reg_rules[--no];
595 freq_range_tmp = &tmp->freq_range;
596
597 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
598 break;
599
600 freq_range = freq_range_tmp;
601 }
602
603 start_freq = freq_range->start_freq_khz;
604
605 /* get end_freq */
606 freq_range = &rule->freq_range;
607 no = idx;
608
609 while (no < rd->n_reg_rules - 1) {
610 tmp = &rd->reg_rules[++no];
611 freq_range_tmp = &tmp->freq_range;
612
613 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
614 break;
615
616 freq_range = freq_range_tmp;
617 }
618
619 end_freq = freq_range->end_freq_khz;
620
621 return end_freq - start_freq;
622 }
623
624 /* Sanity check on a regulatory rule */
625 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
626 {
627 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
628 u32 freq_diff;
629
630 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
631 return false;
632
633 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
634 return false;
635
636 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
637
638 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
639 freq_range->max_bandwidth_khz > freq_diff)
640 return false;
641
642 return true;
643 }
644
645 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
646 {
647 const struct ieee80211_reg_rule *reg_rule = NULL;
648 unsigned int i;
649
650 if (!rd->n_reg_rules)
651 return false;
652
653 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
654 return false;
655
656 for (i = 0; i < rd->n_reg_rules; i++) {
657 reg_rule = &rd->reg_rules[i];
658 if (!is_valid_reg_rule(reg_rule))
659 return false;
660 }
661
662 return true;
663 }
664
665 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
666 u32 center_freq_khz, u32 bw_khz)
667 {
668 u32 start_freq_khz, end_freq_khz;
669
670 start_freq_khz = center_freq_khz - (bw_khz/2);
671 end_freq_khz = center_freq_khz + (bw_khz/2);
672
673 if (start_freq_khz >= freq_range->start_freq_khz &&
674 end_freq_khz <= freq_range->end_freq_khz)
675 return true;
676
677 return false;
678 }
679
680 /**
681 * freq_in_rule_band - tells us if a frequency is in a frequency band
682 * @freq_range: frequency rule we want to query
683 * @freq_khz: frequency we are inquiring about
684 *
685 * This lets us know if a specific frequency rule is or is not relevant to
686 * a specific frequency's band. Bands are device specific and artificial
687 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
688 * however it is safe for now to assume that a frequency rule should not be
689 * part of a frequency's band if the start freq or end freq are off by more
690 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
691 * 60 GHz band.
692 * This resolution can be lowered and should be considered as we add
693 * regulatory rule support for other "bands".
694 **/
695 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
696 u32 freq_khz)
697 {
698 #define ONE_GHZ_IN_KHZ 1000000
699 /*
700 * From 802.11ad: directional multi-gigabit (DMG):
701 * Pertaining to operation in a frequency band containing a channel
702 * with the Channel starting frequency above 45 GHz.
703 */
704 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
705 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
706 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
707 return true;
708 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
709 return true;
710 return false;
711 #undef ONE_GHZ_IN_KHZ
712 }
713
714 /*
715 * Later on we can perhaps use the more restrictive DFS
716 * region but we don't have information for that yet so
717 * for now simply disallow conflicts.
718 */
719 static enum nl80211_dfs_regions
720 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
721 const enum nl80211_dfs_regions dfs_region2)
722 {
723 if (dfs_region1 != dfs_region2)
724 return NL80211_DFS_UNSET;
725 return dfs_region1;
726 }
727
728 /*
729 * Helper for regdom_intersect(), this does the real
730 * mathematical intersection fun
731 */
732 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
733 const struct ieee80211_regdomain *rd2,
734 const struct ieee80211_reg_rule *rule1,
735 const struct ieee80211_reg_rule *rule2,
736 struct ieee80211_reg_rule *intersected_rule)
737 {
738 const struct ieee80211_freq_range *freq_range1, *freq_range2;
739 struct ieee80211_freq_range *freq_range;
740 const struct ieee80211_power_rule *power_rule1, *power_rule2;
741 struct ieee80211_power_rule *power_rule;
742 u32 freq_diff, max_bandwidth1, max_bandwidth2;
743
744 freq_range1 = &rule1->freq_range;
745 freq_range2 = &rule2->freq_range;
746 freq_range = &intersected_rule->freq_range;
747
748 power_rule1 = &rule1->power_rule;
749 power_rule2 = &rule2->power_rule;
750 power_rule = &intersected_rule->power_rule;
751
752 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
753 freq_range2->start_freq_khz);
754 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
755 freq_range2->end_freq_khz);
756
757 max_bandwidth1 = freq_range1->max_bandwidth_khz;
758 max_bandwidth2 = freq_range2->max_bandwidth_khz;
759
760 if (rule1->flags & NL80211_RRF_AUTO_BW)
761 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
762 if (rule2->flags & NL80211_RRF_AUTO_BW)
763 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
764
765 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
766
767 intersected_rule->flags = rule1->flags | rule2->flags;
768
769 /*
770 * In case NL80211_RRF_AUTO_BW requested for both rules
771 * set AUTO_BW in intersected rule also. Next we will
772 * calculate BW correctly in handle_channel function.
773 * In other case remove AUTO_BW flag while we calculate
774 * maximum bandwidth correctly and auto calculation is
775 * not required.
776 */
777 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
778 (rule2->flags & NL80211_RRF_AUTO_BW))
779 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
780 else
781 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
782
783 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
784 if (freq_range->max_bandwidth_khz > freq_diff)
785 freq_range->max_bandwidth_khz = freq_diff;
786
787 power_rule->max_eirp = min(power_rule1->max_eirp,
788 power_rule2->max_eirp);
789 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
790 power_rule2->max_antenna_gain);
791
792 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
793 rule2->dfs_cac_ms);
794
795 if (!is_valid_reg_rule(intersected_rule))
796 return -EINVAL;
797
798 return 0;
799 }
800
801 /**
802 * regdom_intersect - do the intersection between two regulatory domains
803 * @rd1: first regulatory domain
804 * @rd2: second regulatory domain
805 *
806 * Use this function to get the intersection between two regulatory domains.
807 * Once completed we will mark the alpha2 for the rd as intersected, "98",
808 * as no one single alpha2 can represent this regulatory domain.
809 *
810 * Returns a pointer to the regulatory domain structure which will hold the
811 * resulting intersection of rules between rd1 and rd2. We will
812 * kzalloc() this structure for you.
813 */
814 static struct ieee80211_regdomain *
815 regdom_intersect(const struct ieee80211_regdomain *rd1,
816 const struct ieee80211_regdomain *rd2)
817 {
818 int r, size_of_regd;
819 unsigned int x, y;
820 unsigned int num_rules = 0, rule_idx = 0;
821 const struct ieee80211_reg_rule *rule1, *rule2;
822 struct ieee80211_reg_rule *intersected_rule;
823 struct ieee80211_regdomain *rd;
824 /* This is just a dummy holder to help us count */
825 struct ieee80211_reg_rule dummy_rule;
826
827 if (!rd1 || !rd2)
828 return NULL;
829
830 /*
831 * First we get a count of the rules we'll need, then we actually
832 * build them. This is to so we can malloc() and free() a
833 * regdomain once. The reason we use reg_rules_intersect() here
834 * is it will return -EINVAL if the rule computed makes no sense.
835 * All rules that do check out OK are valid.
836 */
837
838 for (x = 0; x < rd1->n_reg_rules; x++) {
839 rule1 = &rd1->reg_rules[x];
840 for (y = 0; y < rd2->n_reg_rules; y++) {
841 rule2 = &rd2->reg_rules[y];
842 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
843 &dummy_rule))
844 num_rules++;
845 }
846 }
847
848 if (!num_rules)
849 return NULL;
850
851 size_of_regd = sizeof(struct ieee80211_regdomain) +
852 num_rules * sizeof(struct ieee80211_reg_rule);
853
854 rd = kzalloc(size_of_regd, GFP_KERNEL);
855 if (!rd)
856 return NULL;
857
858 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
859 rule1 = &rd1->reg_rules[x];
860 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
861 rule2 = &rd2->reg_rules[y];
862 /*
863 * This time around instead of using the stack lets
864 * write to the target rule directly saving ourselves
865 * a memcpy()
866 */
867 intersected_rule = &rd->reg_rules[rule_idx];
868 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
869 intersected_rule);
870 /*
871 * No need to memset here the intersected rule here as
872 * we're not using the stack anymore
873 */
874 if (r)
875 continue;
876 rule_idx++;
877 }
878 }
879
880 if (rule_idx != num_rules) {
881 kfree(rd);
882 return NULL;
883 }
884
885 rd->n_reg_rules = num_rules;
886 rd->alpha2[0] = '9';
887 rd->alpha2[1] = '8';
888 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
889 rd2->dfs_region);
890
891 return rd;
892 }
893
894 /*
895 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
896 * want to just have the channel structure use these
897 */
898 static u32 map_regdom_flags(u32 rd_flags)
899 {
900 u32 channel_flags = 0;
901 if (rd_flags & NL80211_RRF_NO_IR_ALL)
902 channel_flags |= IEEE80211_CHAN_NO_IR;
903 if (rd_flags & NL80211_RRF_DFS)
904 channel_flags |= IEEE80211_CHAN_RADAR;
905 if (rd_flags & NL80211_RRF_NO_OFDM)
906 channel_flags |= IEEE80211_CHAN_NO_OFDM;
907 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
908 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
909 return channel_flags;
910 }
911
912 static const struct ieee80211_reg_rule *
913 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
914 const struct ieee80211_regdomain *regd)
915 {
916 int i;
917 bool band_rule_found = false;
918 bool bw_fits = false;
919
920 if (!regd)
921 return ERR_PTR(-EINVAL);
922
923 for (i = 0; i < regd->n_reg_rules; i++) {
924 const struct ieee80211_reg_rule *rr;
925 const struct ieee80211_freq_range *fr = NULL;
926
927 rr = &regd->reg_rules[i];
928 fr = &rr->freq_range;
929
930 /*
931 * We only need to know if one frequency rule was
932 * was in center_freq's band, that's enough, so lets
933 * not overwrite it once found
934 */
935 if (!band_rule_found)
936 band_rule_found = freq_in_rule_band(fr, center_freq);
937
938 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
939
940 if (band_rule_found && bw_fits)
941 return rr;
942 }
943
944 if (!band_rule_found)
945 return ERR_PTR(-ERANGE);
946
947 return ERR_PTR(-EINVAL);
948 }
949
950 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
951 u32 center_freq)
952 {
953 const struct ieee80211_regdomain *regd;
954
955 regd = reg_get_regdomain(wiphy);
956
957 return freq_reg_info_regd(wiphy, center_freq, regd);
958 }
959 EXPORT_SYMBOL(freq_reg_info);
960
961 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
962 {
963 switch (initiator) {
964 case NL80211_REGDOM_SET_BY_CORE:
965 return "core";
966 case NL80211_REGDOM_SET_BY_USER:
967 return "user";
968 case NL80211_REGDOM_SET_BY_DRIVER:
969 return "driver";
970 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
971 return "country IE";
972 default:
973 WARN_ON(1);
974 return "bug";
975 }
976 }
977 EXPORT_SYMBOL(reg_initiator_name);
978
979 #ifdef CONFIG_CFG80211_REG_DEBUG
980 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
981 struct ieee80211_channel *chan,
982 const struct ieee80211_reg_rule *reg_rule)
983 {
984 const struct ieee80211_power_rule *power_rule;
985 const struct ieee80211_freq_range *freq_range;
986 char max_antenna_gain[32], bw[32];
987
988 power_rule = &reg_rule->power_rule;
989 freq_range = &reg_rule->freq_range;
990
991 if (!power_rule->max_antenna_gain)
992 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
993 else
994 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
995 power_rule->max_antenna_gain);
996
997 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
998 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
999 freq_range->max_bandwidth_khz,
1000 reg_get_max_bandwidth(regd, reg_rule));
1001 else
1002 snprintf(bw, sizeof(bw), "%d KHz",
1003 freq_range->max_bandwidth_khz);
1004
1005 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1006 chan->center_freq);
1007
1008 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1009 freq_range->start_freq_khz, freq_range->end_freq_khz,
1010 bw, max_antenna_gain,
1011 power_rule->max_eirp);
1012 }
1013 #else
1014 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1015 struct ieee80211_channel *chan,
1016 const struct ieee80211_reg_rule *reg_rule)
1017 {
1018 return;
1019 }
1020 #endif
1021
1022 /*
1023 * Note that right now we assume the desired channel bandwidth
1024 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1025 * per channel, the primary and the extension channel).
1026 */
1027 static void handle_channel(struct wiphy *wiphy,
1028 enum nl80211_reg_initiator initiator,
1029 struct ieee80211_channel *chan)
1030 {
1031 u32 flags, bw_flags = 0;
1032 const struct ieee80211_reg_rule *reg_rule = NULL;
1033 const struct ieee80211_power_rule *power_rule = NULL;
1034 const struct ieee80211_freq_range *freq_range = NULL;
1035 struct wiphy *request_wiphy = NULL;
1036 struct regulatory_request *lr = get_last_request();
1037 const struct ieee80211_regdomain *regd;
1038 u32 max_bandwidth_khz;
1039
1040 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1041
1042 flags = chan->orig_flags;
1043
1044 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1045 if (IS_ERR(reg_rule)) {
1046 /*
1047 * We will disable all channels that do not match our
1048 * received regulatory rule unless the hint is coming
1049 * from a Country IE and the Country IE had no information
1050 * about a band. The IEEE 802.11 spec allows for an AP
1051 * to send only a subset of the regulatory rules allowed,
1052 * so an AP in the US that only supports 2.4 GHz may only send
1053 * a country IE with information for the 2.4 GHz band
1054 * while 5 GHz is still supported.
1055 */
1056 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1057 PTR_ERR(reg_rule) == -ERANGE)
1058 return;
1059
1060 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1061 request_wiphy && request_wiphy == wiphy &&
1062 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1063 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1064 chan->center_freq);
1065 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1066 chan->flags = chan->orig_flags;
1067 } else {
1068 REG_DBG_PRINT("Disabling freq %d MHz\n",
1069 chan->center_freq);
1070 chan->flags |= IEEE80211_CHAN_DISABLED;
1071 }
1072 return;
1073 }
1074
1075 regd = reg_get_regdomain(wiphy);
1076 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1077
1078 power_rule = &reg_rule->power_rule;
1079 freq_range = &reg_rule->freq_range;
1080
1081 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1082 /* Check if auto calculation requested */
1083 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1084 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1085
1086 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1087 bw_flags = IEEE80211_CHAN_NO_HT40;
1088 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1089 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1090 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1091 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1092
1093 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1094 request_wiphy && request_wiphy == wiphy &&
1095 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1096 /*
1097 * This guarantees the driver's requested regulatory domain
1098 * will always be used as a base for further regulatory
1099 * settings
1100 */
1101 chan->flags = chan->orig_flags =
1102 map_regdom_flags(reg_rule->flags) | bw_flags;
1103 chan->max_antenna_gain = chan->orig_mag =
1104 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1105 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1106 (int) MBM_TO_DBM(power_rule->max_eirp);
1107
1108 if (chan->flags & IEEE80211_CHAN_RADAR) {
1109 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1110 if (reg_rule->dfs_cac_ms)
1111 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1112 }
1113
1114 return;
1115 }
1116
1117 chan->dfs_state = NL80211_DFS_USABLE;
1118 chan->dfs_state_entered = jiffies;
1119
1120 chan->beacon_found = false;
1121 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1122 chan->max_antenna_gain =
1123 min_t(int, chan->orig_mag,
1124 MBI_TO_DBI(power_rule->max_antenna_gain));
1125 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1126
1127 if (chan->flags & IEEE80211_CHAN_RADAR) {
1128 if (reg_rule->dfs_cac_ms)
1129 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1130 else
1131 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1132 }
1133
1134 if (chan->orig_mpwr) {
1135 /*
1136 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1137 * will always follow the passed country IE power settings.
1138 */
1139 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1140 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1141 chan->max_power = chan->max_reg_power;
1142 else
1143 chan->max_power = min(chan->orig_mpwr,
1144 chan->max_reg_power);
1145 } else
1146 chan->max_power = chan->max_reg_power;
1147 }
1148
1149 static void handle_band(struct wiphy *wiphy,
1150 enum nl80211_reg_initiator initiator,
1151 struct ieee80211_supported_band *sband)
1152 {
1153 unsigned int i;
1154
1155 if (!sband)
1156 return;
1157
1158 for (i = 0; i < sband->n_channels; i++)
1159 handle_channel(wiphy, initiator, &sband->channels[i]);
1160 }
1161
1162 static bool reg_request_cell_base(struct regulatory_request *request)
1163 {
1164 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1165 return false;
1166 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1167 }
1168
1169 static bool reg_request_indoor(struct regulatory_request *request)
1170 {
1171 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1172 return false;
1173 return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
1174 }
1175
1176 bool reg_last_request_cell_base(void)
1177 {
1178 return reg_request_cell_base(get_last_request());
1179 }
1180
1181 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1182 /* Core specific check */
1183 static enum reg_request_treatment
1184 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1185 {
1186 struct regulatory_request *lr = get_last_request();
1187
1188 if (!reg_num_devs_support_basehint)
1189 return REG_REQ_IGNORE;
1190
1191 if (reg_request_cell_base(lr) &&
1192 !regdom_changes(pending_request->alpha2))
1193 return REG_REQ_ALREADY_SET;
1194
1195 return REG_REQ_OK;
1196 }
1197
1198 /* Device specific check */
1199 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1200 {
1201 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1202 }
1203 #else
1204 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1205 {
1206 return REG_REQ_IGNORE;
1207 }
1208
1209 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1210 {
1211 return true;
1212 }
1213 #endif
1214
1215 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1216 {
1217 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1218 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1219 return true;
1220 return false;
1221 }
1222
1223 static bool ignore_reg_update(struct wiphy *wiphy,
1224 enum nl80211_reg_initiator initiator)
1225 {
1226 struct regulatory_request *lr = get_last_request();
1227
1228 if (!lr) {
1229 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1230 "since last_request is not set\n",
1231 reg_initiator_name(initiator));
1232 return true;
1233 }
1234
1235 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1236 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1237 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1238 "since the driver uses its own custom "
1239 "regulatory domain\n",
1240 reg_initiator_name(initiator));
1241 return true;
1242 }
1243
1244 /*
1245 * wiphy->regd will be set once the device has its own
1246 * desired regulatory domain set
1247 */
1248 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1249 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1250 !is_world_regdom(lr->alpha2)) {
1251 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1252 "since the driver requires its own regulatory "
1253 "domain to be set first\n",
1254 reg_initiator_name(initiator));
1255 return true;
1256 }
1257
1258 if (reg_request_cell_base(lr))
1259 return reg_dev_ignore_cell_hint(wiphy);
1260
1261 return false;
1262 }
1263
1264 static bool reg_is_world_roaming(struct wiphy *wiphy)
1265 {
1266 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1267 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1268 struct regulatory_request *lr = get_last_request();
1269
1270 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1271 return true;
1272
1273 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1274 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1275 return true;
1276
1277 return false;
1278 }
1279
1280 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1281 struct reg_beacon *reg_beacon)
1282 {
1283 struct ieee80211_supported_band *sband;
1284 struct ieee80211_channel *chan;
1285 bool channel_changed = false;
1286 struct ieee80211_channel chan_before;
1287
1288 sband = wiphy->bands[reg_beacon->chan.band];
1289 chan = &sband->channels[chan_idx];
1290
1291 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1292 return;
1293
1294 if (chan->beacon_found)
1295 return;
1296
1297 chan->beacon_found = true;
1298
1299 if (!reg_is_world_roaming(wiphy))
1300 return;
1301
1302 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1303 return;
1304
1305 chan_before.center_freq = chan->center_freq;
1306 chan_before.flags = chan->flags;
1307
1308 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1309 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1310 channel_changed = true;
1311 }
1312
1313 if (channel_changed)
1314 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1315 }
1316
1317 /*
1318 * Called when a scan on a wiphy finds a beacon on
1319 * new channel
1320 */
1321 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1322 struct reg_beacon *reg_beacon)
1323 {
1324 unsigned int i;
1325 struct ieee80211_supported_band *sband;
1326
1327 if (!wiphy->bands[reg_beacon->chan.band])
1328 return;
1329
1330 sband = wiphy->bands[reg_beacon->chan.band];
1331
1332 for (i = 0; i < sband->n_channels; i++)
1333 handle_reg_beacon(wiphy, i, reg_beacon);
1334 }
1335
1336 /*
1337 * Called upon reg changes or a new wiphy is added
1338 */
1339 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1340 {
1341 unsigned int i;
1342 struct ieee80211_supported_band *sband;
1343 struct reg_beacon *reg_beacon;
1344
1345 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1346 if (!wiphy->bands[reg_beacon->chan.band])
1347 continue;
1348 sband = wiphy->bands[reg_beacon->chan.band];
1349 for (i = 0; i < sband->n_channels; i++)
1350 handle_reg_beacon(wiphy, i, reg_beacon);
1351 }
1352 }
1353
1354 /* Reap the advantages of previously found beacons */
1355 static void reg_process_beacons(struct wiphy *wiphy)
1356 {
1357 /*
1358 * Means we are just firing up cfg80211, so no beacons would
1359 * have been processed yet.
1360 */
1361 if (!last_request)
1362 return;
1363 wiphy_update_beacon_reg(wiphy);
1364 }
1365
1366 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1367 {
1368 if (!chan)
1369 return false;
1370 if (chan->flags & IEEE80211_CHAN_DISABLED)
1371 return false;
1372 /* This would happen when regulatory rules disallow HT40 completely */
1373 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1374 return false;
1375 return true;
1376 }
1377
1378 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1379 struct ieee80211_channel *channel)
1380 {
1381 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1382 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1383 unsigned int i;
1384
1385 if (!is_ht40_allowed(channel)) {
1386 channel->flags |= IEEE80211_CHAN_NO_HT40;
1387 return;
1388 }
1389
1390 /*
1391 * We need to ensure the extension channels exist to
1392 * be able to use HT40- or HT40+, this finds them (or not)
1393 */
1394 for (i = 0; i < sband->n_channels; i++) {
1395 struct ieee80211_channel *c = &sband->channels[i];
1396
1397 if (c->center_freq == (channel->center_freq - 20))
1398 channel_before = c;
1399 if (c->center_freq == (channel->center_freq + 20))
1400 channel_after = c;
1401 }
1402
1403 /*
1404 * Please note that this assumes target bandwidth is 20 MHz,
1405 * if that ever changes we also need to change the below logic
1406 * to include that as well.
1407 */
1408 if (!is_ht40_allowed(channel_before))
1409 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1410 else
1411 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1412
1413 if (!is_ht40_allowed(channel_after))
1414 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1415 else
1416 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1417 }
1418
1419 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1420 struct ieee80211_supported_band *sband)
1421 {
1422 unsigned int i;
1423
1424 if (!sband)
1425 return;
1426
1427 for (i = 0; i < sband->n_channels; i++)
1428 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1429 }
1430
1431 static void reg_process_ht_flags(struct wiphy *wiphy)
1432 {
1433 enum ieee80211_band band;
1434
1435 if (!wiphy)
1436 return;
1437
1438 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1439 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1440 }
1441
1442 static void reg_call_notifier(struct wiphy *wiphy,
1443 struct regulatory_request *request)
1444 {
1445 if (wiphy->reg_notifier)
1446 wiphy->reg_notifier(wiphy, request);
1447 }
1448
1449 static void wiphy_update_regulatory(struct wiphy *wiphy,
1450 enum nl80211_reg_initiator initiator)
1451 {
1452 enum ieee80211_band band;
1453 struct regulatory_request *lr = get_last_request();
1454
1455 if (ignore_reg_update(wiphy, initiator)) {
1456 /*
1457 * Regulatory updates set by CORE are ignored for custom
1458 * regulatory cards. Let us notify the changes to the driver,
1459 * as some drivers used this to restore its orig_* reg domain.
1460 */
1461 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1462 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1463 reg_call_notifier(wiphy, lr);
1464 return;
1465 }
1466
1467 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1468
1469 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1470 handle_band(wiphy, initiator, wiphy->bands[band]);
1471
1472 reg_process_beacons(wiphy);
1473 reg_process_ht_flags(wiphy);
1474 reg_call_notifier(wiphy, lr);
1475 }
1476
1477 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1478 {
1479 struct cfg80211_registered_device *rdev;
1480 struct wiphy *wiphy;
1481
1482 ASSERT_RTNL();
1483
1484 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1485 wiphy = &rdev->wiphy;
1486 wiphy_update_regulatory(wiphy, initiator);
1487 }
1488 }
1489
1490 static void handle_channel_custom(struct wiphy *wiphy,
1491 struct ieee80211_channel *chan,
1492 const struct ieee80211_regdomain *regd)
1493 {
1494 u32 bw_flags = 0;
1495 const struct ieee80211_reg_rule *reg_rule = NULL;
1496 const struct ieee80211_power_rule *power_rule = NULL;
1497 const struct ieee80211_freq_range *freq_range = NULL;
1498 u32 max_bandwidth_khz;
1499
1500 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1501 regd);
1502
1503 if (IS_ERR(reg_rule)) {
1504 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1505 chan->center_freq);
1506 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1507 chan->flags = chan->orig_flags;
1508 return;
1509 }
1510
1511 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1512
1513 power_rule = &reg_rule->power_rule;
1514 freq_range = &reg_rule->freq_range;
1515
1516 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1517 /* Check if auto calculation requested */
1518 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1519 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1520
1521 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1522 bw_flags = IEEE80211_CHAN_NO_HT40;
1523 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1524 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1525 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1526 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1527
1528 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1529 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1530 chan->max_reg_power = chan->max_power =
1531 (int) MBM_TO_DBM(power_rule->max_eirp);
1532 }
1533
1534 static void handle_band_custom(struct wiphy *wiphy,
1535 struct ieee80211_supported_band *sband,
1536 const struct ieee80211_regdomain *regd)
1537 {
1538 unsigned int i;
1539
1540 if (!sband)
1541 return;
1542
1543 for (i = 0; i < sband->n_channels; i++)
1544 handle_channel_custom(wiphy, &sband->channels[i], regd);
1545 }
1546
1547 /* Used by drivers prior to wiphy registration */
1548 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1549 const struct ieee80211_regdomain *regd)
1550 {
1551 enum ieee80211_band band;
1552 unsigned int bands_set = 0;
1553
1554 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1555 "wiphy should have REGULATORY_CUSTOM_REG\n");
1556 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1557
1558 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1559 if (!wiphy->bands[band])
1560 continue;
1561 handle_band_custom(wiphy, wiphy->bands[band], regd);
1562 bands_set++;
1563 }
1564
1565 /*
1566 * no point in calling this if it won't have any effect
1567 * on your device's supported bands.
1568 */
1569 WARN_ON(!bands_set);
1570 }
1571 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1572
1573 static void reg_set_request_processed(void)
1574 {
1575 bool need_more_processing = false;
1576 struct regulatory_request *lr = get_last_request();
1577
1578 lr->processed = true;
1579
1580 spin_lock(&reg_requests_lock);
1581 if (!list_empty(&reg_requests_list))
1582 need_more_processing = true;
1583 spin_unlock(&reg_requests_lock);
1584
1585 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1586 cancel_delayed_work(&reg_timeout);
1587
1588 if (need_more_processing)
1589 schedule_work(&reg_work);
1590 }
1591
1592 /**
1593 * reg_process_hint_core - process core regulatory requests
1594 * @pending_request: a pending core regulatory request
1595 *
1596 * The wireless subsystem can use this function to process
1597 * a regulatory request issued by the regulatory core.
1598 *
1599 * Returns one of the different reg request treatment values.
1600 */
1601 static enum reg_request_treatment
1602 reg_process_hint_core(struct regulatory_request *core_request)
1603 {
1604
1605 core_request->intersect = false;
1606 core_request->processed = false;
1607
1608 reg_update_last_request(core_request);
1609
1610 return reg_call_crda(core_request);
1611 }
1612
1613 static enum reg_request_treatment
1614 __reg_process_hint_user(struct regulatory_request *user_request)
1615 {
1616 struct regulatory_request *lr = get_last_request();
1617
1618 if (reg_request_indoor(user_request)) {
1619 reg_is_indoor = true;
1620 return REG_REQ_USER_HINT_HANDLED;
1621 }
1622
1623 if (reg_request_cell_base(user_request))
1624 return reg_ignore_cell_hint(user_request);
1625
1626 if (reg_request_cell_base(lr))
1627 return REG_REQ_IGNORE;
1628
1629 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1630 return REG_REQ_INTERSECT;
1631 /*
1632 * If the user knows better the user should set the regdom
1633 * to their country before the IE is picked up
1634 */
1635 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1636 lr->intersect)
1637 return REG_REQ_IGNORE;
1638 /*
1639 * Process user requests only after previous user/driver/core
1640 * requests have been processed
1641 */
1642 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1643 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1644 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1645 regdom_changes(lr->alpha2))
1646 return REG_REQ_IGNORE;
1647
1648 if (!regdom_changes(user_request->alpha2))
1649 return REG_REQ_ALREADY_SET;
1650
1651 return REG_REQ_OK;
1652 }
1653
1654 /**
1655 * reg_process_hint_user - process user regulatory requests
1656 * @user_request: a pending user regulatory request
1657 *
1658 * The wireless subsystem can use this function to process
1659 * a regulatory request initiated by userspace.
1660 *
1661 * Returns one of the different reg request treatment values.
1662 */
1663 static enum reg_request_treatment
1664 reg_process_hint_user(struct regulatory_request *user_request)
1665 {
1666 enum reg_request_treatment treatment;
1667
1668 treatment = __reg_process_hint_user(user_request);
1669 if (treatment == REG_REQ_IGNORE ||
1670 treatment == REG_REQ_ALREADY_SET ||
1671 treatment == REG_REQ_USER_HINT_HANDLED) {
1672 reg_free_request(user_request);
1673 return treatment;
1674 }
1675
1676 user_request->intersect = treatment == REG_REQ_INTERSECT;
1677 user_request->processed = false;
1678
1679 reg_update_last_request(user_request);
1680
1681 user_alpha2[0] = user_request->alpha2[0];
1682 user_alpha2[1] = user_request->alpha2[1];
1683
1684 return reg_call_crda(user_request);
1685 }
1686
1687 static enum reg_request_treatment
1688 __reg_process_hint_driver(struct regulatory_request *driver_request)
1689 {
1690 struct regulatory_request *lr = get_last_request();
1691
1692 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1693 if (regdom_changes(driver_request->alpha2))
1694 return REG_REQ_OK;
1695 return REG_REQ_ALREADY_SET;
1696 }
1697
1698 /*
1699 * This would happen if you unplug and plug your card
1700 * back in or if you add a new device for which the previously
1701 * loaded card also agrees on the regulatory domain.
1702 */
1703 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1704 !regdom_changes(driver_request->alpha2))
1705 return REG_REQ_ALREADY_SET;
1706
1707 return REG_REQ_INTERSECT;
1708 }
1709
1710 /**
1711 * reg_process_hint_driver - process driver regulatory requests
1712 * @driver_request: a pending driver regulatory request
1713 *
1714 * The wireless subsystem can use this function to process
1715 * a regulatory request issued by an 802.11 driver.
1716 *
1717 * Returns one of the different reg request treatment values.
1718 */
1719 static enum reg_request_treatment
1720 reg_process_hint_driver(struct wiphy *wiphy,
1721 struct regulatory_request *driver_request)
1722 {
1723 const struct ieee80211_regdomain *regd;
1724 enum reg_request_treatment treatment;
1725
1726 treatment = __reg_process_hint_driver(driver_request);
1727
1728 switch (treatment) {
1729 case REG_REQ_OK:
1730 break;
1731 case REG_REQ_IGNORE:
1732 case REG_REQ_USER_HINT_HANDLED:
1733 reg_free_request(driver_request);
1734 return treatment;
1735 case REG_REQ_INTERSECT:
1736 /* fall through */
1737 case REG_REQ_ALREADY_SET:
1738 regd = reg_copy_regd(get_cfg80211_regdom());
1739 if (IS_ERR(regd)) {
1740 reg_free_request(driver_request);
1741 return REG_REQ_IGNORE;
1742 }
1743 rcu_assign_pointer(wiphy->regd, regd);
1744 }
1745
1746
1747 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1748 driver_request->processed = false;
1749
1750 reg_update_last_request(driver_request);
1751
1752 /*
1753 * Since CRDA will not be called in this case as we already
1754 * have applied the requested regulatory domain before we just
1755 * inform userspace we have processed the request
1756 */
1757 if (treatment == REG_REQ_ALREADY_SET) {
1758 nl80211_send_reg_change_event(driver_request);
1759 reg_set_request_processed();
1760 return treatment;
1761 }
1762
1763 return reg_call_crda(driver_request);
1764 }
1765
1766 static enum reg_request_treatment
1767 __reg_process_hint_country_ie(struct wiphy *wiphy,
1768 struct regulatory_request *country_ie_request)
1769 {
1770 struct wiphy *last_wiphy = NULL;
1771 struct regulatory_request *lr = get_last_request();
1772
1773 if (reg_request_cell_base(lr)) {
1774 /* Trust a Cell base station over the AP's country IE */
1775 if (regdom_changes(country_ie_request->alpha2))
1776 return REG_REQ_IGNORE;
1777 return REG_REQ_ALREADY_SET;
1778 } else {
1779 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1780 return REG_REQ_IGNORE;
1781 }
1782
1783 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1784 return -EINVAL;
1785
1786 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1787 return REG_REQ_OK;
1788
1789 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1790
1791 if (last_wiphy != wiphy) {
1792 /*
1793 * Two cards with two APs claiming different
1794 * Country IE alpha2s. We could
1795 * intersect them, but that seems unlikely
1796 * to be correct. Reject second one for now.
1797 */
1798 if (regdom_changes(country_ie_request->alpha2))
1799 return REG_REQ_IGNORE;
1800 return REG_REQ_ALREADY_SET;
1801 }
1802 /*
1803 * Two consecutive Country IE hints on the same wiphy.
1804 * This should be picked up early by the driver/stack
1805 */
1806 if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1807 return REG_REQ_OK;
1808 return REG_REQ_ALREADY_SET;
1809 }
1810
1811 /**
1812 * reg_process_hint_country_ie - process regulatory requests from country IEs
1813 * @country_ie_request: a regulatory request from a country IE
1814 *
1815 * The wireless subsystem can use this function to process
1816 * a regulatory request issued by a country Information Element.
1817 *
1818 * Returns one of the different reg request treatment values.
1819 */
1820 static enum reg_request_treatment
1821 reg_process_hint_country_ie(struct wiphy *wiphy,
1822 struct regulatory_request *country_ie_request)
1823 {
1824 enum reg_request_treatment treatment;
1825
1826 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1827
1828 switch (treatment) {
1829 case REG_REQ_OK:
1830 break;
1831 case REG_REQ_IGNORE:
1832 case REG_REQ_USER_HINT_HANDLED:
1833 /* fall through */
1834 case REG_REQ_ALREADY_SET:
1835 reg_free_request(country_ie_request);
1836 return treatment;
1837 case REG_REQ_INTERSECT:
1838 reg_free_request(country_ie_request);
1839 /*
1840 * This doesn't happen yet, not sure we
1841 * ever want to support it for this case.
1842 */
1843 WARN_ONCE(1, "Unexpected intersection for country IEs");
1844 return REG_REQ_IGNORE;
1845 }
1846
1847 country_ie_request->intersect = false;
1848 country_ie_request->processed = false;
1849
1850 reg_update_last_request(country_ie_request);
1851
1852 return reg_call_crda(country_ie_request);
1853 }
1854
1855 /* This processes *all* regulatory hints */
1856 static void reg_process_hint(struct regulatory_request *reg_request)
1857 {
1858 struct wiphy *wiphy = NULL;
1859 enum reg_request_treatment treatment;
1860
1861 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1862 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1863
1864 switch (reg_request->initiator) {
1865 case NL80211_REGDOM_SET_BY_CORE:
1866 reg_process_hint_core(reg_request);
1867 return;
1868 case NL80211_REGDOM_SET_BY_USER:
1869 treatment = reg_process_hint_user(reg_request);
1870 if (treatment == REG_REQ_IGNORE ||
1871 treatment == REG_REQ_ALREADY_SET ||
1872 treatment == REG_REQ_USER_HINT_HANDLED)
1873 return;
1874 queue_delayed_work(system_power_efficient_wq,
1875 &reg_timeout, msecs_to_jiffies(3142));
1876 return;
1877 case NL80211_REGDOM_SET_BY_DRIVER:
1878 if (!wiphy)
1879 goto out_free;
1880 treatment = reg_process_hint_driver(wiphy, reg_request);
1881 break;
1882 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1883 if (!wiphy)
1884 goto out_free;
1885 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1886 break;
1887 default:
1888 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1889 goto out_free;
1890 }
1891
1892 /* This is required so that the orig_* parameters are saved */
1893 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1894 wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1895 wiphy_update_regulatory(wiphy, reg_request->initiator);
1896
1897 return;
1898
1899 out_free:
1900 reg_free_request(reg_request);
1901 }
1902
1903 /*
1904 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1905 * Regulatory hints come on a first come first serve basis and we
1906 * must process each one atomically.
1907 */
1908 static void reg_process_pending_hints(void)
1909 {
1910 struct regulatory_request *reg_request, *lr;
1911
1912 lr = get_last_request();
1913
1914 /* When last_request->processed becomes true this will be rescheduled */
1915 if (lr && !lr->processed) {
1916 reg_process_hint(lr);
1917 return;
1918 }
1919
1920 spin_lock(&reg_requests_lock);
1921
1922 if (list_empty(&reg_requests_list)) {
1923 spin_unlock(&reg_requests_lock);
1924 return;
1925 }
1926
1927 reg_request = list_first_entry(&reg_requests_list,
1928 struct regulatory_request,
1929 list);
1930 list_del_init(&reg_request->list);
1931
1932 spin_unlock(&reg_requests_lock);
1933
1934 reg_process_hint(reg_request);
1935 }
1936
1937 /* Processes beacon hints -- this has nothing to do with country IEs */
1938 static void reg_process_pending_beacon_hints(void)
1939 {
1940 struct cfg80211_registered_device *rdev;
1941 struct reg_beacon *pending_beacon, *tmp;
1942
1943 /* This goes through the _pending_ beacon list */
1944 spin_lock_bh(&reg_pending_beacons_lock);
1945
1946 list_for_each_entry_safe(pending_beacon, tmp,
1947 &reg_pending_beacons, list) {
1948 list_del_init(&pending_beacon->list);
1949
1950 /* Applies the beacon hint to current wiphys */
1951 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1952 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1953
1954 /* Remembers the beacon hint for new wiphys or reg changes */
1955 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1956 }
1957
1958 spin_unlock_bh(&reg_pending_beacons_lock);
1959 }
1960
1961 static void reg_todo(struct work_struct *work)
1962 {
1963 rtnl_lock();
1964 reg_process_pending_hints();
1965 reg_process_pending_beacon_hints();
1966 rtnl_unlock();
1967 }
1968
1969 static void queue_regulatory_request(struct regulatory_request *request)
1970 {
1971 request->alpha2[0] = toupper(request->alpha2[0]);
1972 request->alpha2[1] = toupper(request->alpha2[1]);
1973
1974 spin_lock(&reg_requests_lock);
1975 list_add_tail(&request->list, &reg_requests_list);
1976 spin_unlock(&reg_requests_lock);
1977
1978 schedule_work(&reg_work);
1979 }
1980
1981 /*
1982 * Core regulatory hint -- happens during cfg80211_init()
1983 * and when we restore regulatory settings.
1984 */
1985 static int regulatory_hint_core(const char *alpha2)
1986 {
1987 struct regulatory_request *request;
1988
1989 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1990 if (!request)
1991 return -ENOMEM;
1992
1993 request->alpha2[0] = alpha2[0];
1994 request->alpha2[1] = alpha2[1];
1995 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1996
1997 queue_regulatory_request(request);
1998
1999 return 0;
2000 }
2001
2002 /* User hints */
2003 int regulatory_hint_user(const char *alpha2,
2004 enum nl80211_user_reg_hint_type user_reg_hint_type)
2005 {
2006 struct regulatory_request *request;
2007
2008 if (WARN_ON(!alpha2))
2009 return -EINVAL;
2010
2011 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2012 if (!request)
2013 return -ENOMEM;
2014
2015 request->wiphy_idx = WIPHY_IDX_INVALID;
2016 request->alpha2[0] = alpha2[0];
2017 request->alpha2[1] = alpha2[1];
2018 request->initiator = NL80211_REGDOM_SET_BY_USER;
2019 request->user_reg_hint_type = user_reg_hint_type;
2020
2021 queue_regulatory_request(request);
2022
2023 return 0;
2024 }
2025
2026 int regulatory_hint_indoor_user(void)
2027 {
2028 struct regulatory_request *request;
2029
2030 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2031 if (!request)
2032 return -ENOMEM;
2033
2034 request->wiphy_idx = WIPHY_IDX_INVALID;
2035 request->initiator = NL80211_REGDOM_SET_BY_USER;
2036 request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2037 queue_regulatory_request(request);
2038
2039 return 0;
2040 }
2041
2042 /* Driver hints */
2043 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2044 {
2045 struct regulatory_request *request;
2046
2047 if (WARN_ON(!alpha2 || !wiphy))
2048 return -EINVAL;
2049
2050 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2051
2052 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2053 if (!request)
2054 return -ENOMEM;
2055
2056 request->wiphy_idx = get_wiphy_idx(wiphy);
2057
2058 request->alpha2[0] = alpha2[0];
2059 request->alpha2[1] = alpha2[1];
2060 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2061
2062 queue_regulatory_request(request);
2063
2064 return 0;
2065 }
2066 EXPORT_SYMBOL(regulatory_hint);
2067
2068 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2069 const u8 *country_ie, u8 country_ie_len)
2070 {
2071 char alpha2[2];
2072 enum environment_cap env = ENVIRON_ANY;
2073 struct regulatory_request *request = NULL, *lr;
2074
2075 /* IE len must be evenly divisible by 2 */
2076 if (country_ie_len & 0x01)
2077 return;
2078
2079 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2080 return;
2081
2082 request = kzalloc(sizeof(*request), GFP_KERNEL);
2083 if (!request)
2084 return;
2085
2086 alpha2[0] = country_ie[0];
2087 alpha2[1] = country_ie[1];
2088
2089 if (country_ie[2] == 'I')
2090 env = ENVIRON_INDOOR;
2091 else if (country_ie[2] == 'O')
2092 env = ENVIRON_OUTDOOR;
2093
2094 rcu_read_lock();
2095 lr = get_last_request();
2096
2097 if (unlikely(!lr))
2098 goto out;
2099
2100 /*
2101 * We will run this only upon a successful connection on cfg80211.
2102 * We leave conflict resolution to the workqueue, where can hold
2103 * the RTNL.
2104 */
2105 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2106 lr->wiphy_idx != WIPHY_IDX_INVALID)
2107 goto out;
2108
2109 request->wiphy_idx = get_wiphy_idx(wiphy);
2110 request->alpha2[0] = alpha2[0];
2111 request->alpha2[1] = alpha2[1];
2112 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2113 request->country_ie_env = env;
2114
2115 queue_regulatory_request(request);
2116 request = NULL;
2117 out:
2118 kfree(request);
2119 rcu_read_unlock();
2120 }
2121
2122 static void restore_alpha2(char *alpha2, bool reset_user)
2123 {
2124 /* indicates there is no alpha2 to consider for restoration */
2125 alpha2[0] = '9';
2126 alpha2[1] = '7';
2127
2128 /* The user setting has precedence over the module parameter */
2129 if (is_user_regdom_saved()) {
2130 /* Unless we're asked to ignore it and reset it */
2131 if (reset_user) {
2132 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2133 user_alpha2[0] = '9';
2134 user_alpha2[1] = '7';
2135
2136 /*
2137 * If we're ignoring user settings, we still need to
2138 * check the module parameter to ensure we put things
2139 * back as they were for a full restore.
2140 */
2141 if (!is_world_regdom(ieee80211_regdom)) {
2142 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2143 ieee80211_regdom[0], ieee80211_regdom[1]);
2144 alpha2[0] = ieee80211_regdom[0];
2145 alpha2[1] = ieee80211_regdom[1];
2146 }
2147 } else {
2148 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2149 user_alpha2[0], user_alpha2[1]);
2150 alpha2[0] = user_alpha2[0];
2151 alpha2[1] = user_alpha2[1];
2152 }
2153 } else if (!is_world_regdom(ieee80211_regdom)) {
2154 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2155 ieee80211_regdom[0], ieee80211_regdom[1]);
2156 alpha2[0] = ieee80211_regdom[0];
2157 alpha2[1] = ieee80211_regdom[1];
2158 } else
2159 REG_DBG_PRINT("Restoring regulatory settings\n");
2160 }
2161
2162 static void restore_custom_reg_settings(struct wiphy *wiphy)
2163 {
2164 struct ieee80211_supported_band *sband;
2165 enum ieee80211_band band;
2166 struct ieee80211_channel *chan;
2167 int i;
2168
2169 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2170 sband = wiphy->bands[band];
2171 if (!sband)
2172 continue;
2173 for (i = 0; i < sband->n_channels; i++) {
2174 chan = &sband->channels[i];
2175 chan->flags = chan->orig_flags;
2176 chan->max_antenna_gain = chan->orig_mag;
2177 chan->max_power = chan->orig_mpwr;
2178 chan->beacon_found = false;
2179 }
2180 }
2181 }
2182
2183 /*
2184 * Restoring regulatory settings involves ingoring any
2185 * possibly stale country IE information and user regulatory
2186 * settings if so desired, this includes any beacon hints
2187 * learned as we could have traveled outside to another country
2188 * after disconnection. To restore regulatory settings we do
2189 * exactly what we did at bootup:
2190 *
2191 * - send a core regulatory hint
2192 * - send a user regulatory hint if applicable
2193 *
2194 * Device drivers that send a regulatory hint for a specific country
2195 * keep their own regulatory domain on wiphy->regd so that does does
2196 * not need to be remembered.
2197 */
2198 static void restore_regulatory_settings(bool reset_user)
2199 {
2200 char alpha2[2];
2201 char world_alpha2[2];
2202 struct reg_beacon *reg_beacon, *btmp;
2203 struct regulatory_request *reg_request, *tmp;
2204 LIST_HEAD(tmp_reg_req_list);
2205 struct cfg80211_registered_device *rdev;
2206
2207 ASSERT_RTNL();
2208
2209 reg_is_indoor = false;
2210
2211 reset_regdomains(true, &world_regdom);
2212 restore_alpha2(alpha2, reset_user);
2213
2214 /*
2215 * If there's any pending requests we simply
2216 * stash them to a temporary pending queue and
2217 * add then after we've restored regulatory
2218 * settings.
2219 */
2220 spin_lock(&reg_requests_lock);
2221 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2222 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2223 continue;
2224 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2225 }
2226 spin_unlock(&reg_requests_lock);
2227
2228 /* Clear beacon hints */
2229 spin_lock_bh(&reg_pending_beacons_lock);
2230 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2231 list_del(&reg_beacon->list);
2232 kfree(reg_beacon);
2233 }
2234 spin_unlock_bh(&reg_pending_beacons_lock);
2235
2236 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2237 list_del(&reg_beacon->list);
2238 kfree(reg_beacon);
2239 }
2240
2241 /* First restore to the basic regulatory settings */
2242 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2243 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2244
2245 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2246 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2247 restore_custom_reg_settings(&rdev->wiphy);
2248 }
2249
2250 regulatory_hint_core(world_alpha2);
2251
2252 /*
2253 * This restores the ieee80211_regdom module parameter
2254 * preference or the last user requested regulatory
2255 * settings, user regulatory settings takes precedence.
2256 */
2257 if (is_an_alpha2(alpha2))
2258 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2259
2260 spin_lock(&reg_requests_lock);
2261 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2262 spin_unlock(&reg_requests_lock);
2263
2264 REG_DBG_PRINT("Kicking the queue\n");
2265
2266 schedule_work(&reg_work);
2267 }
2268
2269 void regulatory_hint_disconnect(void)
2270 {
2271 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2272 restore_regulatory_settings(false);
2273 }
2274
2275 static bool freq_is_chan_12_13_14(u16 freq)
2276 {
2277 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2278 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2279 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2280 return true;
2281 return false;
2282 }
2283
2284 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2285 {
2286 struct reg_beacon *pending_beacon;
2287
2288 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2289 if (beacon_chan->center_freq ==
2290 pending_beacon->chan.center_freq)
2291 return true;
2292 return false;
2293 }
2294
2295 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2296 struct ieee80211_channel *beacon_chan,
2297 gfp_t gfp)
2298 {
2299 struct reg_beacon *reg_beacon;
2300 bool processing;
2301
2302 if (beacon_chan->beacon_found ||
2303 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2304 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2305 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2306 return 0;
2307
2308 spin_lock_bh(&reg_pending_beacons_lock);
2309 processing = pending_reg_beacon(beacon_chan);
2310 spin_unlock_bh(&reg_pending_beacons_lock);
2311
2312 if (processing)
2313 return 0;
2314
2315 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2316 if (!reg_beacon)
2317 return -ENOMEM;
2318
2319 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2320 beacon_chan->center_freq,
2321 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2322 wiphy_name(wiphy));
2323
2324 memcpy(&reg_beacon->chan, beacon_chan,
2325 sizeof(struct ieee80211_channel));
2326
2327 /*
2328 * Since we can be called from BH or and non-BH context
2329 * we must use spin_lock_bh()
2330 */
2331 spin_lock_bh(&reg_pending_beacons_lock);
2332 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2333 spin_unlock_bh(&reg_pending_beacons_lock);
2334
2335 schedule_work(&reg_work);
2336
2337 return 0;
2338 }
2339
2340 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2341 {
2342 unsigned int i;
2343 const struct ieee80211_reg_rule *reg_rule = NULL;
2344 const struct ieee80211_freq_range *freq_range = NULL;
2345 const struct ieee80211_power_rule *power_rule = NULL;
2346 char bw[32], cac_time[32];
2347
2348 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2349
2350 for (i = 0; i < rd->n_reg_rules; i++) {
2351 reg_rule = &rd->reg_rules[i];
2352 freq_range = &reg_rule->freq_range;
2353 power_rule = &reg_rule->power_rule;
2354
2355 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2356 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2357 freq_range->max_bandwidth_khz,
2358 reg_get_max_bandwidth(rd, reg_rule));
2359 else
2360 snprintf(bw, sizeof(bw), "%d KHz",
2361 freq_range->max_bandwidth_khz);
2362
2363 if (reg_rule->flags & NL80211_RRF_DFS)
2364 scnprintf(cac_time, sizeof(cac_time), "%u s",
2365 reg_rule->dfs_cac_ms/1000);
2366 else
2367 scnprintf(cac_time, sizeof(cac_time), "N/A");
2368
2369
2370 /*
2371 * There may not be documentation for max antenna gain
2372 * in certain regions
2373 */
2374 if (power_rule->max_antenna_gain)
2375 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2376 freq_range->start_freq_khz,
2377 freq_range->end_freq_khz,
2378 bw,
2379 power_rule->max_antenna_gain,
2380 power_rule->max_eirp,
2381 cac_time);
2382 else
2383 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2384 freq_range->start_freq_khz,
2385 freq_range->end_freq_khz,
2386 bw,
2387 power_rule->max_eirp,
2388 cac_time);
2389 }
2390 }
2391
2392 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2393 {
2394 switch (dfs_region) {
2395 case NL80211_DFS_UNSET:
2396 case NL80211_DFS_FCC:
2397 case NL80211_DFS_ETSI:
2398 case NL80211_DFS_JP:
2399 return true;
2400 default:
2401 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2402 dfs_region);
2403 return false;
2404 }
2405 }
2406
2407 static void print_regdomain(const struct ieee80211_regdomain *rd)
2408 {
2409 struct regulatory_request *lr = get_last_request();
2410
2411 if (is_intersected_alpha2(rd->alpha2)) {
2412 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2413 struct cfg80211_registered_device *rdev;
2414 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2415 if (rdev) {
2416 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2417 rdev->country_ie_alpha2[0],
2418 rdev->country_ie_alpha2[1]);
2419 } else
2420 pr_info("Current regulatory domain intersected:\n");
2421 } else
2422 pr_info("Current regulatory domain intersected:\n");
2423 } else if (is_world_regdom(rd->alpha2)) {
2424 pr_info("World regulatory domain updated:\n");
2425 } else {
2426 if (is_unknown_alpha2(rd->alpha2))
2427 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2428 else {
2429 if (reg_request_cell_base(lr))
2430 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2431 rd->alpha2[0], rd->alpha2[1]);
2432 else
2433 pr_info("Regulatory domain changed to country: %c%c\n",
2434 rd->alpha2[0], rd->alpha2[1]);
2435 }
2436 }
2437
2438 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2439 print_rd_rules(rd);
2440 }
2441
2442 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2443 {
2444 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2445 print_rd_rules(rd);
2446 }
2447
2448 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2449 {
2450 if (!is_world_regdom(rd->alpha2))
2451 return -EINVAL;
2452 update_world_regdomain(rd);
2453 return 0;
2454 }
2455
2456 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2457 struct regulatory_request *user_request)
2458 {
2459 const struct ieee80211_regdomain *intersected_rd = NULL;
2460
2461 if (!regdom_changes(rd->alpha2))
2462 return -EALREADY;
2463
2464 if (!is_valid_rd(rd)) {
2465 pr_err("Invalid regulatory domain detected:\n");
2466 print_regdomain_info(rd);
2467 return -EINVAL;
2468 }
2469
2470 if (!user_request->intersect) {
2471 reset_regdomains(false, rd);
2472 return 0;
2473 }
2474
2475 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2476 if (!intersected_rd)
2477 return -EINVAL;
2478
2479 kfree(rd);
2480 rd = NULL;
2481 reset_regdomains(false, intersected_rd);
2482
2483 return 0;
2484 }
2485
2486 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2487 struct regulatory_request *driver_request)
2488 {
2489 const struct ieee80211_regdomain *regd;
2490 const struct ieee80211_regdomain *intersected_rd = NULL;
2491 const struct ieee80211_regdomain *tmp;
2492 struct wiphy *request_wiphy;
2493
2494 if (is_world_regdom(rd->alpha2))
2495 return -EINVAL;
2496
2497 if (!regdom_changes(rd->alpha2))
2498 return -EALREADY;
2499
2500 if (!is_valid_rd(rd)) {
2501 pr_err("Invalid regulatory domain detected:\n");
2502 print_regdomain_info(rd);
2503 return -EINVAL;
2504 }
2505
2506 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2507 if (!request_wiphy) {
2508 queue_delayed_work(system_power_efficient_wq,
2509 &reg_timeout, 0);
2510 return -ENODEV;
2511 }
2512
2513 if (!driver_request->intersect) {
2514 if (request_wiphy->regd)
2515 return -EALREADY;
2516
2517 regd = reg_copy_regd(rd);
2518 if (IS_ERR(regd))
2519 return PTR_ERR(regd);
2520
2521 rcu_assign_pointer(request_wiphy->regd, regd);
2522 reset_regdomains(false, rd);
2523 return 0;
2524 }
2525
2526 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2527 if (!intersected_rd)
2528 return -EINVAL;
2529
2530 /*
2531 * We can trash what CRDA provided now.
2532 * However if a driver requested this specific regulatory
2533 * domain we keep it for its private use
2534 */
2535 tmp = get_wiphy_regdom(request_wiphy);
2536 rcu_assign_pointer(request_wiphy->regd, rd);
2537 rcu_free_regdom(tmp);
2538
2539 rd = NULL;
2540
2541 reset_regdomains(false, intersected_rd);
2542
2543 return 0;
2544 }
2545
2546 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2547 struct regulatory_request *country_ie_request)
2548 {
2549 struct wiphy *request_wiphy;
2550
2551 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2552 !is_unknown_alpha2(rd->alpha2))
2553 return -EINVAL;
2554
2555 /*
2556 * Lets only bother proceeding on the same alpha2 if the current
2557 * rd is non static (it means CRDA was present and was used last)
2558 * and the pending request came in from a country IE
2559 */
2560
2561 if (!is_valid_rd(rd)) {
2562 pr_err("Invalid regulatory domain detected:\n");
2563 print_regdomain_info(rd);
2564 return -EINVAL;
2565 }
2566
2567 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2568 if (!request_wiphy) {
2569 queue_delayed_work(system_power_efficient_wq,
2570 &reg_timeout, 0);
2571 return -ENODEV;
2572 }
2573
2574 if (country_ie_request->intersect)
2575 return -EINVAL;
2576
2577 reset_regdomains(false, rd);
2578 return 0;
2579 }
2580
2581 /*
2582 * Use this call to set the current regulatory domain. Conflicts with
2583 * multiple drivers can be ironed out later. Caller must've already
2584 * kmalloc'd the rd structure.
2585 */
2586 int set_regdom(const struct ieee80211_regdomain *rd)
2587 {
2588 struct regulatory_request *lr;
2589 bool user_reset = false;
2590 int r;
2591
2592 if (!reg_is_valid_request(rd->alpha2)) {
2593 kfree(rd);
2594 return -EINVAL;
2595 }
2596
2597 lr = get_last_request();
2598
2599 /* Note that this doesn't update the wiphys, this is done below */
2600 switch (lr->initiator) {
2601 case NL80211_REGDOM_SET_BY_CORE:
2602 r = reg_set_rd_core(rd);
2603 break;
2604 case NL80211_REGDOM_SET_BY_USER:
2605 r = reg_set_rd_user(rd, lr);
2606 user_reset = true;
2607 break;
2608 case NL80211_REGDOM_SET_BY_DRIVER:
2609 r = reg_set_rd_driver(rd, lr);
2610 break;
2611 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2612 r = reg_set_rd_country_ie(rd, lr);
2613 break;
2614 default:
2615 WARN(1, "invalid initiator %d\n", lr->initiator);
2616 return -EINVAL;
2617 }
2618
2619 if (r) {
2620 switch (r) {
2621 case -EALREADY:
2622 reg_set_request_processed();
2623 break;
2624 default:
2625 /* Back to world regulatory in case of errors */
2626 restore_regulatory_settings(user_reset);
2627 }
2628
2629 kfree(rd);
2630 return r;
2631 }
2632
2633 /* This would make this whole thing pointless */
2634 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2635 return -EINVAL;
2636
2637 /* update all wiphys now with the new established regulatory domain */
2638 update_all_wiphy_regulatory(lr->initiator);
2639
2640 print_regdomain(get_cfg80211_regdom());
2641
2642 nl80211_send_reg_change_event(lr);
2643
2644 reg_set_request_processed();
2645
2646 return 0;
2647 }
2648
2649 void wiphy_regulatory_register(struct wiphy *wiphy)
2650 {
2651 struct regulatory_request *lr;
2652
2653 if (!reg_dev_ignore_cell_hint(wiphy))
2654 reg_num_devs_support_basehint++;
2655
2656 lr = get_last_request();
2657 wiphy_update_regulatory(wiphy, lr->initiator);
2658 }
2659
2660 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2661 {
2662 struct wiphy *request_wiphy = NULL;
2663 struct regulatory_request *lr;
2664
2665 lr = get_last_request();
2666
2667 if (!reg_dev_ignore_cell_hint(wiphy))
2668 reg_num_devs_support_basehint--;
2669
2670 rcu_free_regdom(get_wiphy_regdom(wiphy));
2671 RCU_INIT_POINTER(wiphy->regd, NULL);
2672
2673 if (lr)
2674 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2675
2676 if (!request_wiphy || request_wiphy != wiphy)
2677 return;
2678
2679 lr->wiphy_idx = WIPHY_IDX_INVALID;
2680 lr->country_ie_env = ENVIRON_ANY;
2681 }
2682
2683 static void reg_timeout_work(struct work_struct *work)
2684 {
2685 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2686 rtnl_lock();
2687 restore_regulatory_settings(true);
2688 rtnl_unlock();
2689 }
2690
2691 /*
2692 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
2693 * UNII band definitions
2694 */
2695 int cfg80211_get_unii(int freq)
2696 {
2697 /* UNII-1 */
2698 if (freq >= 5150 && freq <= 5250)
2699 return 0;
2700
2701 /* UNII-2A */
2702 if (freq > 5250 && freq <= 5350)
2703 return 1;
2704
2705 /* UNII-2B */
2706 if (freq > 5350 && freq <= 5470)
2707 return 2;
2708
2709 /* UNII-2C */
2710 if (freq > 5470 && freq <= 5725)
2711 return 3;
2712
2713 /* UNII-3 */
2714 if (freq > 5725 && freq <= 5825)
2715 return 4;
2716
2717 return -EINVAL;
2718 }
2719
2720 bool regulatory_indoor_allowed(void)
2721 {
2722 return reg_is_indoor;
2723 }
2724
2725 int __init regulatory_init(void)
2726 {
2727 int err = 0;
2728
2729 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2730 if (IS_ERR(reg_pdev))
2731 return PTR_ERR(reg_pdev);
2732
2733 spin_lock_init(&reg_requests_lock);
2734 spin_lock_init(&reg_pending_beacons_lock);
2735
2736 reg_regdb_size_check();
2737
2738 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2739
2740 user_alpha2[0] = '9';
2741 user_alpha2[1] = '7';
2742
2743 /* We always try to get an update for the static regdomain */
2744 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2745 if (err) {
2746 if (err == -ENOMEM)
2747 return err;
2748 /*
2749 * N.B. kobject_uevent_env() can fail mainly for when we're out
2750 * memory which is handled and propagated appropriately above
2751 * but it can also fail during a netlink_broadcast() or during
2752 * early boot for call_usermodehelper(). For now treat these
2753 * errors as non-fatal.
2754 */
2755 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2756 }
2757
2758 /*
2759 * Finally, if the user set the module parameter treat it
2760 * as a user hint.
2761 */
2762 if (!is_world_regdom(ieee80211_regdom))
2763 regulatory_hint_user(ieee80211_regdom,
2764 NL80211_USER_REG_HINT_USER);
2765
2766 return 0;
2767 }
2768
2769 void regulatory_exit(void)
2770 {
2771 struct regulatory_request *reg_request, *tmp;
2772 struct reg_beacon *reg_beacon, *btmp;
2773
2774 cancel_work_sync(&reg_work);
2775 cancel_delayed_work_sync(&reg_timeout);
2776
2777 /* Lock to suppress warnings */
2778 rtnl_lock();
2779 reset_regdomains(true, NULL);
2780 rtnl_unlock();
2781
2782 dev_set_uevent_suppress(&reg_pdev->dev, true);
2783
2784 platform_device_unregister(reg_pdev);
2785
2786 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2787 list_del(&reg_beacon->list);
2788 kfree(reg_beacon);
2789 }
2790
2791 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2792 list_del(&reg_beacon->list);
2793 kfree(reg_beacon);
2794 }
2795
2796 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2797 list_del(&reg_request->list);
2798 kfree(reg_request);
2799 }
2800 }
This page took 0.095011 seconds and 6 git commands to generate.