Merge tag 'acpi-video-3.11' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[deliverable/linux.git] / net / wireless / util.c
1 /*
2 * Wireless utility functions
3 *
4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
5 */
6 #include <linux/export.h>
7 #include <linux/bitops.h>
8 #include <linux/etherdevice.h>
9 #include <linux/slab.h>
10 #include <net/cfg80211.h>
11 #include <net/ip.h>
12 #include <net/dsfield.h>
13 #include "core.h"
14 #include "rdev-ops.h"
15
16
17 struct ieee80211_rate *
18 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
19 u32 basic_rates, int bitrate)
20 {
21 struct ieee80211_rate *result = &sband->bitrates[0];
22 int i;
23
24 for (i = 0; i < sband->n_bitrates; i++) {
25 if (!(basic_rates & BIT(i)))
26 continue;
27 if (sband->bitrates[i].bitrate > bitrate)
28 continue;
29 result = &sband->bitrates[i];
30 }
31
32 return result;
33 }
34 EXPORT_SYMBOL(ieee80211_get_response_rate);
35
36 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband)
37 {
38 struct ieee80211_rate *bitrates;
39 u32 mandatory_rates = 0;
40 enum ieee80211_rate_flags mandatory_flag;
41 int i;
42
43 if (WARN_ON(!sband))
44 return 1;
45
46 if (sband->band == IEEE80211_BAND_2GHZ)
47 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
48 else
49 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
50
51 bitrates = sband->bitrates;
52 for (i = 0; i < sband->n_bitrates; i++)
53 if (bitrates[i].flags & mandatory_flag)
54 mandatory_rates |= BIT(i);
55 return mandatory_rates;
56 }
57 EXPORT_SYMBOL(ieee80211_mandatory_rates);
58
59 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
60 {
61 /* see 802.11 17.3.8.3.2 and Annex J
62 * there are overlapping channel numbers in 5GHz and 2GHz bands */
63 if (chan <= 0)
64 return 0; /* not supported */
65 switch (band) {
66 case IEEE80211_BAND_2GHZ:
67 if (chan == 14)
68 return 2484;
69 else if (chan < 14)
70 return 2407 + chan * 5;
71 break;
72 case IEEE80211_BAND_5GHZ:
73 if (chan >= 182 && chan <= 196)
74 return 4000 + chan * 5;
75 else
76 return 5000 + chan * 5;
77 break;
78 case IEEE80211_BAND_60GHZ:
79 if (chan < 5)
80 return 56160 + chan * 2160;
81 break;
82 default:
83 ;
84 }
85 return 0; /* not supported */
86 }
87 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
88
89 int ieee80211_frequency_to_channel(int freq)
90 {
91 /* see 802.11 17.3.8.3.2 and Annex J */
92 if (freq == 2484)
93 return 14;
94 else if (freq < 2484)
95 return (freq - 2407) / 5;
96 else if (freq >= 4910 && freq <= 4980)
97 return (freq - 4000) / 5;
98 else if (freq <= 45000) /* DMG band lower limit */
99 return (freq - 5000) / 5;
100 else if (freq >= 58320 && freq <= 64800)
101 return (freq - 56160) / 2160;
102 else
103 return 0;
104 }
105 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
106
107 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
108 int freq)
109 {
110 enum ieee80211_band band;
111 struct ieee80211_supported_band *sband;
112 int i;
113
114 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
115 sband = wiphy->bands[band];
116
117 if (!sband)
118 continue;
119
120 for (i = 0; i < sband->n_channels; i++) {
121 if (sband->channels[i].center_freq == freq)
122 return &sband->channels[i];
123 }
124 }
125
126 return NULL;
127 }
128 EXPORT_SYMBOL(__ieee80211_get_channel);
129
130 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
131 enum ieee80211_band band)
132 {
133 int i, want;
134
135 switch (band) {
136 case IEEE80211_BAND_5GHZ:
137 want = 3;
138 for (i = 0; i < sband->n_bitrates; i++) {
139 if (sband->bitrates[i].bitrate == 60 ||
140 sband->bitrates[i].bitrate == 120 ||
141 sband->bitrates[i].bitrate == 240) {
142 sband->bitrates[i].flags |=
143 IEEE80211_RATE_MANDATORY_A;
144 want--;
145 }
146 }
147 WARN_ON(want);
148 break;
149 case IEEE80211_BAND_2GHZ:
150 want = 7;
151 for (i = 0; i < sband->n_bitrates; i++) {
152 if (sband->bitrates[i].bitrate == 10) {
153 sband->bitrates[i].flags |=
154 IEEE80211_RATE_MANDATORY_B |
155 IEEE80211_RATE_MANDATORY_G;
156 want--;
157 }
158
159 if (sband->bitrates[i].bitrate == 20 ||
160 sband->bitrates[i].bitrate == 55 ||
161 sband->bitrates[i].bitrate == 110 ||
162 sband->bitrates[i].bitrate == 60 ||
163 sband->bitrates[i].bitrate == 120 ||
164 sband->bitrates[i].bitrate == 240) {
165 sband->bitrates[i].flags |=
166 IEEE80211_RATE_MANDATORY_G;
167 want--;
168 }
169
170 if (sband->bitrates[i].bitrate != 10 &&
171 sband->bitrates[i].bitrate != 20 &&
172 sband->bitrates[i].bitrate != 55 &&
173 sband->bitrates[i].bitrate != 110)
174 sband->bitrates[i].flags |=
175 IEEE80211_RATE_ERP_G;
176 }
177 WARN_ON(want != 0 && want != 3 && want != 6);
178 break;
179 case IEEE80211_BAND_60GHZ:
180 /* check for mandatory HT MCS 1..4 */
181 WARN_ON(!sband->ht_cap.ht_supported);
182 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
183 break;
184 case IEEE80211_NUM_BANDS:
185 WARN_ON(1);
186 break;
187 }
188 }
189
190 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
191 {
192 enum ieee80211_band band;
193
194 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
195 if (wiphy->bands[band])
196 set_mandatory_flags_band(wiphy->bands[band], band);
197 }
198
199 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
200 {
201 int i;
202 for (i = 0; i < wiphy->n_cipher_suites; i++)
203 if (cipher == wiphy->cipher_suites[i])
204 return true;
205 return false;
206 }
207
208 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
209 struct key_params *params, int key_idx,
210 bool pairwise, const u8 *mac_addr)
211 {
212 if (key_idx > 5)
213 return -EINVAL;
214
215 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
216 return -EINVAL;
217
218 if (pairwise && !mac_addr)
219 return -EINVAL;
220
221 /*
222 * Disallow pairwise keys with non-zero index unless it's WEP
223 * or a vendor specific cipher (because current deployments use
224 * pairwise WEP keys with non-zero indices and for vendor specific
225 * ciphers this should be validated in the driver or hardware level
226 * - but 802.11i clearly specifies to use zero)
227 */
228 if (pairwise && key_idx &&
229 ((params->cipher == WLAN_CIPHER_SUITE_TKIP) ||
230 (params->cipher == WLAN_CIPHER_SUITE_CCMP) ||
231 (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC)))
232 return -EINVAL;
233
234 switch (params->cipher) {
235 case WLAN_CIPHER_SUITE_WEP40:
236 if (params->key_len != WLAN_KEY_LEN_WEP40)
237 return -EINVAL;
238 break;
239 case WLAN_CIPHER_SUITE_TKIP:
240 if (params->key_len != WLAN_KEY_LEN_TKIP)
241 return -EINVAL;
242 break;
243 case WLAN_CIPHER_SUITE_CCMP:
244 if (params->key_len != WLAN_KEY_LEN_CCMP)
245 return -EINVAL;
246 break;
247 case WLAN_CIPHER_SUITE_WEP104:
248 if (params->key_len != WLAN_KEY_LEN_WEP104)
249 return -EINVAL;
250 break;
251 case WLAN_CIPHER_SUITE_AES_CMAC:
252 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
253 return -EINVAL;
254 break;
255 default:
256 /*
257 * We don't know anything about this algorithm,
258 * allow using it -- but the driver must check
259 * all parameters! We still check below whether
260 * or not the driver supports this algorithm,
261 * of course.
262 */
263 break;
264 }
265
266 if (params->seq) {
267 switch (params->cipher) {
268 case WLAN_CIPHER_SUITE_WEP40:
269 case WLAN_CIPHER_SUITE_WEP104:
270 /* These ciphers do not use key sequence */
271 return -EINVAL;
272 case WLAN_CIPHER_SUITE_TKIP:
273 case WLAN_CIPHER_SUITE_CCMP:
274 case WLAN_CIPHER_SUITE_AES_CMAC:
275 if (params->seq_len != 6)
276 return -EINVAL;
277 break;
278 }
279 }
280
281 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
282 return -EINVAL;
283
284 return 0;
285 }
286
287 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
288 {
289 unsigned int hdrlen = 24;
290
291 if (ieee80211_is_data(fc)) {
292 if (ieee80211_has_a4(fc))
293 hdrlen = 30;
294 if (ieee80211_is_data_qos(fc)) {
295 hdrlen += IEEE80211_QOS_CTL_LEN;
296 if (ieee80211_has_order(fc))
297 hdrlen += IEEE80211_HT_CTL_LEN;
298 }
299 goto out;
300 }
301
302 if (ieee80211_is_ctl(fc)) {
303 /*
304 * ACK and CTS are 10 bytes, all others 16. To see how
305 * to get this condition consider
306 * subtype mask: 0b0000000011110000 (0x00F0)
307 * ACK subtype: 0b0000000011010000 (0x00D0)
308 * CTS subtype: 0b0000000011000000 (0x00C0)
309 * bits that matter: ^^^ (0x00E0)
310 * value of those: 0b0000000011000000 (0x00C0)
311 */
312 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
313 hdrlen = 10;
314 else
315 hdrlen = 16;
316 }
317 out:
318 return hdrlen;
319 }
320 EXPORT_SYMBOL(ieee80211_hdrlen);
321
322 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
323 {
324 const struct ieee80211_hdr *hdr =
325 (const struct ieee80211_hdr *)skb->data;
326 unsigned int hdrlen;
327
328 if (unlikely(skb->len < 10))
329 return 0;
330 hdrlen = ieee80211_hdrlen(hdr->frame_control);
331 if (unlikely(hdrlen > skb->len))
332 return 0;
333 return hdrlen;
334 }
335 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
336
337 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
338 {
339 int ae = meshhdr->flags & MESH_FLAGS_AE;
340 /* 802.11-2012, 8.2.4.7.3 */
341 switch (ae) {
342 default:
343 case 0:
344 return 6;
345 case MESH_FLAGS_AE_A4:
346 return 12;
347 case MESH_FLAGS_AE_A5_A6:
348 return 18;
349 }
350 }
351 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
352
353 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
354 enum nl80211_iftype iftype)
355 {
356 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
357 u16 hdrlen, ethertype;
358 u8 *payload;
359 u8 dst[ETH_ALEN];
360 u8 src[ETH_ALEN] __aligned(2);
361
362 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
363 return -1;
364
365 hdrlen = ieee80211_hdrlen(hdr->frame_control);
366
367 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
368 * header
369 * IEEE 802.11 address fields:
370 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
371 * 0 0 DA SA BSSID n/a
372 * 0 1 DA BSSID SA n/a
373 * 1 0 BSSID SA DA n/a
374 * 1 1 RA TA DA SA
375 */
376 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
377 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
378
379 switch (hdr->frame_control &
380 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
381 case cpu_to_le16(IEEE80211_FCTL_TODS):
382 if (unlikely(iftype != NL80211_IFTYPE_AP &&
383 iftype != NL80211_IFTYPE_AP_VLAN &&
384 iftype != NL80211_IFTYPE_P2P_GO))
385 return -1;
386 break;
387 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
388 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
389 iftype != NL80211_IFTYPE_MESH_POINT &&
390 iftype != NL80211_IFTYPE_AP_VLAN &&
391 iftype != NL80211_IFTYPE_STATION))
392 return -1;
393 if (iftype == NL80211_IFTYPE_MESH_POINT) {
394 struct ieee80211s_hdr *meshdr =
395 (struct ieee80211s_hdr *) (skb->data + hdrlen);
396 /* make sure meshdr->flags is on the linear part */
397 if (!pskb_may_pull(skb, hdrlen + 1))
398 return -1;
399 if (meshdr->flags & MESH_FLAGS_AE_A4)
400 return -1;
401 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
402 skb_copy_bits(skb, hdrlen +
403 offsetof(struct ieee80211s_hdr, eaddr1),
404 dst, ETH_ALEN);
405 skb_copy_bits(skb, hdrlen +
406 offsetof(struct ieee80211s_hdr, eaddr2),
407 src, ETH_ALEN);
408 }
409 hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
410 }
411 break;
412 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
413 if ((iftype != NL80211_IFTYPE_STATION &&
414 iftype != NL80211_IFTYPE_P2P_CLIENT &&
415 iftype != NL80211_IFTYPE_MESH_POINT) ||
416 (is_multicast_ether_addr(dst) &&
417 ether_addr_equal(src, addr)))
418 return -1;
419 if (iftype == NL80211_IFTYPE_MESH_POINT) {
420 struct ieee80211s_hdr *meshdr =
421 (struct ieee80211s_hdr *) (skb->data + hdrlen);
422 /* make sure meshdr->flags is on the linear part */
423 if (!pskb_may_pull(skb, hdrlen + 1))
424 return -1;
425 if (meshdr->flags & MESH_FLAGS_AE_A5_A6)
426 return -1;
427 if (meshdr->flags & MESH_FLAGS_AE_A4)
428 skb_copy_bits(skb, hdrlen +
429 offsetof(struct ieee80211s_hdr, eaddr1),
430 src, ETH_ALEN);
431 hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
432 }
433 break;
434 case cpu_to_le16(0):
435 if (iftype != NL80211_IFTYPE_ADHOC &&
436 iftype != NL80211_IFTYPE_STATION)
437 return -1;
438 break;
439 }
440
441 if (!pskb_may_pull(skb, hdrlen + 8))
442 return -1;
443
444 payload = skb->data + hdrlen;
445 ethertype = (payload[6] << 8) | payload[7];
446
447 if (likely((ether_addr_equal(payload, rfc1042_header) &&
448 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
449 ether_addr_equal(payload, bridge_tunnel_header))) {
450 /* remove RFC1042 or Bridge-Tunnel encapsulation and
451 * replace EtherType */
452 skb_pull(skb, hdrlen + 6);
453 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
454 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
455 } else {
456 struct ethhdr *ehdr;
457 __be16 len;
458
459 skb_pull(skb, hdrlen);
460 len = htons(skb->len);
461 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
462 memcpy(ehdr->h_dest, dst, ETH_ALEN);
463 memcpy(ehdr->h_source, src, ETH_ALEN);
464 ehdr->h_proto = len;
465 }
466 return 0;
467 }
468 EXPORT_SYMBOL(ieee80211_data_to_8023);
469
470 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
471 enum nl80211_iftype iftype, u8 *bssid, bool qos)
472 {
473 struct ieee80211_hdr hdr;
474 u16 hdrlen, ethertype;
475 __le16 fc;
476 const u8 *encaps_data;
477 int encaps_len, skip_header_bytes;
478 int nh_pos, h_pos;
479 int head_need;
480
481 if (unlikely(skb->len < ETH_HLEN))
482 return -EINVAL;
483
484 nh_pos = skb_network_header(skb) - skb->data;
485 h_pos = skb_transport_header(skb) - skb->data;
486
487 /* convert Ethernet header to proper 802.11 header (based on
488 * operation mode) */
489 ethertype = (skb->data[12] << 8) | skb->data[13];
490 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
491
492 switch (iftype) {
493 case NL80211_IFTYPE_AP:
494 case NL80211_IFTYPE_AP_VLAN:
495 case NL80211_IFTYPE_P2P_GO:
496 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
497 /* DA BSSID SA */
498 memcpy(hdr.addr1, skb->data, ETH_ALEN);
499 memcpy(hdr.addr2, addr, ETH_ALEN);
500 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
501 hdrlen = 24;
502 break;
503 case NL80211_IFTYPE_STATION:
504 case NL80211_IFTYPE_P2P_CLIENT:
505 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
506 /* BSSID SA DA */
507 memcpy(hdr.addr1, bssid, ETH_ALEN);
508 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
509 memcpy(hdr.addr3, skb->data, ETH_ALEN);
510 hdrlen = 24;
511 break;
512 case NL80211_IFTYPE_ADHOC:
513 /* DA SA BSSID */
514 memcpy(hdr.addr1, skb->data, ETH_ALEN);
515 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
516 memcpy(hdr.addr3, bssid, ETH_ALEN);
517 hdrlen = 24;
518 break;
519 default:
520 return -EOPNOTSUPP;
521 }
522
523 if (qos) {
524 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
525 hdrlen += 2;
526 }
527
528 hdr.frame_control = fc;
529 hdr.duration_id = 0;
530 hdr.seq_ctrl = 0;
531
532 skip_header_bytes = ETH_HLEN;
533 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
534 encaps_data = bridge_tunnel_header;
535 encaps_len = sizeof(bridge_tunnel_header);
536 skip_header_bytes -= 2;
537 } else if (ethertype >= ETH_P_802_3_MIN) {
538 encaps_data = rfc1042_header;
539 encaps_len = sizeof(rfc1042_header);
540 skip_header_bytes -= 2;
541 } else {
542 encaps_data = NULL;
543 encaps_len = 0;
544 }
545
546 skb_pull(skb, skip_header_bytes);
547 nh_pos -= skip_header_bytes;
548 h_pos -= skip_header_bytes;
549
550 head_need = hdrlen + encaps_len - skb_headroom(skb);
551
552 if (head_need > 0 || skb_cloned(skb)) {
553 head_need = max(head_need, 0);
554 if (head_need)
555 skb_orphan(skb);
556
557 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
558 return -ENOMEM;
559
560 skb->truesize += head_need;
561 }
562
563 if (encaps_data) {
564 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
565 nh_pos += encaps_len;
566 h_pos += encaps_len;
567 }
568
569 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
570
571 nh_pos += hdrlen;
572 h_pos += hdrlen;
573
574 /* Update skb pointers to various headers since this modified frame
575 * is going to go through Linux networking code that may potentially
576 * need things like pointer to IP header. */
577 skb_set_mac_header(skb, 0);
578 skb_set_network_header(skb, nh_pos);
579 skb_set_transport_header(skb, h_pos);
580
581 return 0;
582 }
583 EXPORT_SYMBOL(ieee80211_data_from_8023);
584
585
586 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
587 const u8 *addr, enum nl80211_iftype iftype,
588 const unsigned int extra_headroom,
589 bool has_80211_header)
590 {
591 struct sk_buff *frame = NULL;
592 u16 ethertype;
593 u8 *payload;
594 const struct ethhdr *eth;
595 int remaining, err;
596 u8 dst[ETH_ALEN], src[ETH_ALEN];
597
598 if (has_80211_header) {
599 err = ieee80211_data_to_8023(skb, addr, iftype);
600 if (err)
601 goto out;
602
603 /* skip the wrapping header */
604 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
605 if (!eth)
606 goto out;
607 } else {
608 eth = (struct ethhdr *) skb->data;
609 }
610
611 while (skb != frame) {
612 u8 padding;
613 __be16 len = eth->h_proto;
614 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
615
616 remaining = skb->len;
617 memcpy(dst, eth->h_dest, ETH_ALEN);
618 memcpy(src, eth->h_source, ETH_ALEN);
619
620 padding = (4 - subframe_len) & 0x3;
621 /* the last MSDU has no padding */
622 if (subframe_len > remaining)
623 goto purge;
624
625 skb_pull(skb, sizeof(struct ethhdr));
626 /* reuse skb for the last subframe */
627 if (remaining <= subframe_len + padding)
628 frame = skb;
629 else {
630 unsigned int hlen = ALIGN(extra_headroom, 4);
631 /*
632 * Allocate and reserve two bytes more for payload
633 * alignment since sizeof(struct ethhdr) is 14.
634 */
635 frame = dev_alloc_skb(hlen + subframe_len + 2);
636 if (!frame)
637 goto purge;
638
639 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
640 memcpy(skb_put(frame, ntohs(len)), skb->data,
641 ntohs(len));
642
643 eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
644 padding);
645 if (!eth) {
646 dev_kfree_skb(frame);
647 goto purge;
648 }
649 }
650
651 skb_reset_network_header(frame);
652 frame->dev = skb->dev;
653 frame->priority = skb->priority;
654
655 payload = frame->data;
656 ethertype = (payload[6] << 8) | payload[7];
657
658 if (likely((ether_addr_equal(payload, rfc1042_header) &&
659 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
660 ether_addr_equal(payload, bridge_tunnel_header))) {
661 /* remove RFC1042 or Bridge-Tunnel
662 * encapsulation and replace EtherType */
663 skb_pull(frame, 6);
664 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
665 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
666 } else {
667 memcpy(skb_push(frame, sizeof(__be16)), &len,
668 sizeof(__be16));
669 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
670 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
671 }
672 __skb_queue_tail(list, frame);
673 }
674
675 return;
676
677 purge:
678 __skb_queue_purge(list);
679 out:
680 dev_kfree_skb(skb);
681 }
682 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
683
684 /* Given a data frame determine the 802.1p/1d tag to use. */
685 unsigned int cfg80211_classify8021d(struct sk_buff *skb)
686 {
687 unsigned int dscp;
688
689 /* skb->priority values from 256->263 are magic values to
690 * directly indicate a specific 802.1d priority. This is used
691 * to allow 802.1d priority to be passed directly in from VLAN
692 * tags, etc.
693 */
694 if (skb->priority >= 256 && skb->priority <= 263)
695 return skb->priority - 256;
696
697 switch (skb->protocol) {
698 case htons(ETH_P_IP):
699 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
700 break;
701 case htons(ETH_P_IPV6):
702 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
703 break;
704 default:
705 return 0;
706 }
707
708 return dscp >> 5;
709 }
710 EXPORT_SYMBOL(cfg80211_classify8021d);
711
712 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
713 {
714 const struct cfg80211_bss_ies *ies;
715
716 ies = rcu_dereference(bss->ies);
717 if (!ies)
718 return NULL;
719
720 return cfg80211_find_ie(ie, ies->data, ies->len);
721 }
722 EXPORT_SYMBOL(ieee80211_bss_get_ie);
723
724 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
725 {
726 struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy);
727 struct net_device *dev = wdev->netdev;
728 int i;
729
730 if (!wdev->connect_keys)
731 return;
732
733 for (i = 0; i < 6; i++) {
734 if (!wdev->connect_keys->params[i].cipher)
735 continue;
736 if (rdev_add_key(rdev, dev, i, false, NULL,
737 &wdev->connect_keys->params[i])) {
738 netdev_err(dev, "failed to set key %d\n", i);
739 continue;
740 }
741 if (wdev->connect_keys->def == i)
742 if (rdev_set_default_key(rdev, dev, i, true, true)) {
743 netdev_err(dev, "failed to set defkey %d\n", i);
744 continue;
745 }
746 if (wdev->connect_keys->defmgmt == i)
747 if (rdev_set_default_mgmt_key(rdev, dev, i))
748 netdev_err(dev, "failed to set mgtdef %d\n", i);
749 }
750
751 kfree(wdev->connect_keys);
752 wdev->connect_keys = NULL;
753 }
754
755 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
756 {
757 struct cfg80211_event *ev;
758 unsigned long flags;
759 const u8 *bssid = NULL;
760
761 spin_lock_irqsave(&wdev->event_lock, flags);
762 while (!list_empty(&wdev->event_list)) {
763 ev = list_first_entry(&wdev->event_list,
764 struct cfg80211_event, list);
765 list_del(&ev->list);
766 spin_unlock_irqrestore(&wdev->event_lock, flags);
767
768 wdev_lock(wdev);
769 switch (ev->type) {
770 case EVENT_CONNECT_RESULT:
771 if (!is_zero_ether_addr(ev->cr.bssid))
772 bssid = ev->cr.bssid;
773 __cfg80211_connect_result(
774 wdev->netdev, bssid,
775 ev->cr.req_ie, ev->cr.req_ie_len,
776 ev->cr.resp_ie, ev->cr.resp_ie_len,
777 ev->cr.status,
778 ev->cr.status == WLAN_STATUS_SUCCESS,
779 NULL);
780 break;
781 case EVENT_ROAMED:
782 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
783 ev->rm.req_ie_len, ev->rm.resp_ie,
784 ev->rm.resp_ie_len);
785 break;
786 case EVENT_DISCONNECTED:
787 __cfg80211_disconnected(wdev->netdev,
788 ev->dc.ie, ev->dc.ie_len,
789 ev->dc.reason, true);
790 break;
791 case EVENT_IBSS_JOINED:
792 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid);
793 break;
794 }
795 wdev_unlock(wdev);
796
797 kfree(ev);
798
799 spin_lock_irqsave(&wdev->event_lock, flags);
800 }
801 spin_unlock_irqrestore(&wdev->event_lock, flags);
802 }
803
804 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
805 {
806 struct wireless_dev *wdev;
807
808 ASSERT_RTNL();
809 ASSERT_RDEV_LOCK(rdev);
810
811 list_for_each_entry(wdev, &rdev->wdev_list, list)
812 cfg80211_process_wdev_events(wdev);
813 }
814
815 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
816 struct net_device *dev, enum nl80211_iftype ntype,
817 u32 *flags, struct vif_params *params)
818 {
819 int err;
820 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
821
822 ASSERT_RDEV_LOCK(rdev);
823
824 /* don't support changing VLANs, you just re-create them */
825 if (otype == NL80211_IFTYPE_AP_VLAN)
826 return -EOPNOTSUPP;
827
828 /* cannot change into P2P device type */
829 if (ntype == NL80211_IFTYPE_P2P_DEVICE)
830 return -EOPNOTSUPP;
831
832 if (!rdev->ops->change_virtual_intf ||
833 !(rdev->wiphy.interface_modes & (1 << ntype)))
834 return -EOPNOTSUPP;
835
836 /* if it's part of a bridge, reject changing type to station/ibss */
837 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
838 (ntype == NL80211_IFTYPE_ADHOC ||
839 ntype == NL80211_IFTYPE_STATION ||
840 ntype == NL80211_IFTYPE_P2P_CLIENT))
841 return -EBUSY;
842
843 if (ntype != otype && netif_running(dev)) {
844 err = cfg80211_can_change_interface(rdev, dev->ieee80211_ptr,
845 ntype);
846 if (err)
847 return err;
848
849 dev->ieee80211_ptr->use_4addr = false;
850 dev->ieee80211_ptr->mesh_id_up_len = 0;
851
852 switch (otype) {
853 case NL80211_IFTYPE_AP:
854 cfg80211_stop_ap(rdev, dev);
855 break;
856 case NL80211_IFTYPE_ADHOC:
857 cfg80211_leave_ibss(rdev, dev, false);
858 break;
859 case NL80211_IFTYPE_STATION:
860 case NL80211_IFTYPE_P2P_CLIENT:
861 wdev_lock(dev->ieee80211_ptr);
862 cfg80211_disconnect(rdev, dev,
863 WLAN_REASON_DEAUTH_LEAVING, true);
864 wdev_unlock(dev->ieee80211_ptr);
865 break;
866 case NL80211_IFTYPE_MESH_POINT:
867 /* mesh should be handled? */
868 break;
869 default:
870 break;
871 }
872
873 cfg80211_process_rdev_events(rdev);
874 }
875
876 err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
877
878 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
879
880 if (!err && params && params->use_4addr != -1)
881 dev->ieee80211_ptr->use_4addr = params->use_4addr;
882
883 if (!err) {
884 dev->priv_flags &= ~IFF_DONT_BRIDGE;
885 switch (ntype) {
886 case NL80211_IFTYPE_STATION:
887 if (dev->ieee80211_ptr->use_4addr)
888 break;
889 /* fall through */
890 case NL80211_IFTYPE_P2P_CLIENT:
891 case NL80211_IFTYPE_ADHOC:
892 dev->priv_flags |= IFF_DONT_BRIDGE;
893 break;
894 case NL80211_IFTYPE_P2P_GO:
895 case NL80211_IFTYPE_AP:
896 case NL80211_IFTYPE_AP_VLAN:
897 case NL80211_IFTYPE_WDS:
898 case NL80211_IFTYPE_MESH_POINT:
899 /* bridging OK */
900 break;
901 case NL80211_IFTYPE_MONITOR:
902 /* monitor can't bridge anyway */
903 break;
904 case NL80211_IFTYPE_UNSPECIFIED:
905 case NUM_NL80211_IFTYPES:
906 /* not happening */
907 break;
908 case NL80211_IFTYPE_P2P_DEVICE:
909 WARN_ON(1);
910 break;
911 }
912 }
913
914 if (!err && ntype != otype && netif_running(dev)) {
915 cfg80211_update_iface_num(rdev, ntype, 1);
916 cfg80211_update_iface_num(rdev, otype, -1);
917 }
918
919 return err;
920 }
921
922 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
923 {
924 static const u32 __mcs2bitrate[] = {
925 /* control PHY */
926 [0] = 275,
927 /* SC PHY */
928 [1] = 3850,
929 [2] = 7700,
930 [3] = 9625,
931 [4] = 11550,
932 [5] = 12512, /* 1251.25 mbps */
933 [6] = 15400,
934 [7] = 19250,
935 [8] = 23100,
936 [9] = 25025,
937 [10] = 30800,
938 [11] = 38500,
939 [12] = 46200,
940 /* OFDM PHY */
941 [13] = 6930,
942 [14] = 8662, /* 866.25 mbps */
943 [15] = 13860,
944 [16] = 17325,
945 [17] = 20790,
946 [18] = 27720,
947 [19] = 34650,
948 [20] = 41580,
949 [21] = 45045,
950 [22] = 51975,
951 [23] = 62370,
952 [24] = 67568, /* 6756.75 mbps */
953 /* LP-SC PHY */
954 [25] = 6260,
955 [26] = 8340,
956 [27] = 11120,
957 [28] = 12510,
958 [29] = 16680,
959 [30] = 22240,
960 [31] = 25030,
961 };
962
963 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
964 return 0;
965
966 return __mcs2bitrate[rate->mcs];
967 }
968
969 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
970 {
971 static const u32 base[4][10] = {
972 { 6500000,
973 13000000,
974 19500000,
975 26000000,
976 39000000,
977 52000000,
978 58500000,
979 65000000,
980 78000000,
981 0,
982 },
983 { 13500000,
984 27000000,
985 40500000,
986 54000000,
987 81000000,
988 108000000,
989 121500000,
990 135000000,
991 162000000,
992 180000000,
993 },
994 { 29300000,
995 58500000,
996 87800000,
997 117000000,
998 175500000,
999 234000000,
1000 263300000,
1001 292500000,
1002 351000000,
1003 390000000,
1004 },
1005 { 58500000,
1006 117000000,
1007 175500000,
1008 234000000,
1009 351000000,
1010 468000000,
1011 526500000,
1012 585000000,
1013 702000000,
1014 780000000,
1015 },
1016 };
1017 u32 bitrate;
1018 int idx;
1019
1020 if (WARN_ON_ONCE(rate->mcs > 9))
1021 return 0;
1022
1023 idx = rate->flags & (RATE_INFO_FLAGS_160_MHZ_WIDTH |
1024 RATE_INFO_FLAGS_80P80_MHZ_WIDTH) ? 3 :
1025 rate->flags & RATE_INFO_FLAGS_80_MHZ_WIDTH ? 2 :
1026 rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH ? 1 : 0;
1027
1028 bitrate = base[idx][rate->mcs];
1029 bitrate *= rate->nss;
1030
1031 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1032 bitrate = (bitrate / 9) * 10;
1033
1034 /* do NOT round down here */
1035 return (bitrate + 50000) / 100000;
1036 }
1037
1038 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1039 {
1040 int modulation, streams, bitrate;
1041
1042 if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1043 !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1044 return rate->legacy;
1045 if (rate->flags & RATE_INFO_FLAGS_60G)
1046 return cfg80211_calculate_bitrate_60g(rate);
1047 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1048 return cfg80211_calculate_bitrate_vht(rate);
1049
1050 /* the formula below does only work for MCS values smaller than 32 */
1051 if (WARN_ON_ONCE(rate->mcs >= 32))
1052 return 0;
1053
1054 modulation = rate->mcs & 7;
1055 streams = (rate->mcs >> 3) + 1;
1056
1057 bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ?
1058 13500000 : 6500000;
1059
1060 if (modulation < 4)
1061 bitrate *= (modulation + 1);
1062 else if (modulation == 4)
1063 bitrate *= (modulation + 2);
1064 else
1065 bitrate *= (modulation + 3);
1066
1067 bitrate *= streams;
1068
1069 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1070 bitrate = (bitrate / 9) * 10;
1071
1072 /* do NOT round down here */
1073 return (bitrate + 50000) / 100000;
1074 }
1075 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1076
1077 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1078 enum ieee80211_p2p_attr_id attr,
1079 u8 *buf, unsigned int bufsize)
1080 {
1081 u8 *out = buf;
1082 u16 attr_remaining = 0;
1083 bool desired_attr = false;
1084 u16 desired_len = 0;
1085
1086 while (len > 0) {
1087 unsigned int iedatalen;
1088 unsigned int copy;
1089 const u8 *iedata;
1090
1091 if (len < 2)
1092 return -EILSEQ;
1093 iedatalen = ies[1];
1094 if (iedatalen + 2 > len)
1095 return -EILSEQ;
1096
1097 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1098 goto cont;
1099
1100 if (iedatalen < 4)
1101 goto cont;
1102
1103 iedata = ies + 2;
1104
1105 /* check WFA OUI, P2P subtype */
1106 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1107 iedata[2] != 0x9a || iedata[3] != 0x09)
1108 goto cont;
1109
1110 iedatalen -= 4;
1111 iedata += 4;
1112
1113 /* check attribute continuation into this IE */
1114 copy = min_t(unsigned int, attr_remaining, iedatalen);
1115 if (copy && desired_attr) {
1116 desired_len += copy;
1117 if (out) {
1118 memcpy(out, iedata, min(bufsize, copy));
1119 out += min(bufsize, copy);
1120 bufsize -= min(bufsize, copy);
1121 }
1122
1123
1124 if (copy == attr_remaining)
1125 return desired_len;
1126 }
1127
1128 attr_remaining -= copy;
1129 if (attr_remaining)
1130 goto cont;
1131
1132 iedatalen -= copy;
1133 iedata += copy;
1134
1135 while (iedatalen > 0) {
1136 u16 attr_len;
1137
1138 /* P2P attribute ID & size must fit */
1139 if (iedatalen < 3)
1140 return -EILSEQ;
1141 desired_attr = iedata[0] == attr;
1142 attr_len = get_unaligned_le16(iedata + 1);
1143 iedatalen -= 3;
1144 iedata += 3;
1145
1146 copy = min_t(unsigned int, attr_len, iedatalen);
1147
1148 if (desired_attr) {
1149 desired_len += copy;
1150 if (out) {
1151 memcpy(out, iedata, min(bufsize, copy));
1152 out += min(bufsize, copy);
1153 bufsize -= min(bufsize, copy);
1154 }
1155
1156 if (copy == attr_len)
1157 return desired_len;
1158 }
1159
1160 iedata += copy;
1161 iedatalen -= copy;
1162 attr_remaining = attr_len - copy;
1163 }
1164
1165 cont:
1166 len -= ies[1] + 2;
1167 ies += ies[1] + 2;
1168 }
1169
1170 if (attr_remaining && desired_attr)
1171 return -EILSEQ;
1172
1173 return -ENOENT;
1174 }
1175 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1176
1177 bool ieee80211_operating_class_to_band(u8 operating_class,
1178 enum ieee80211_band *band)
1179 {
1180 switch (operating_class) {
1181 case 112:
1182 case 115 ... 127:
1183 *band = IEEE80211_BAND_5GHZ;
1184 return true;
1185 case 81:
1186 case 82:
1187 case 83:
1188 case 84:
1189 *band = IEEE80211_BAND_2GHZ;
1190 return true;
1191 case 180:
1192 *band = IEEE80211_BAND_60GHZ;
1193 return true;
1194 }
1195
1196 return false;
1197 }
1198 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1199
1200 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1201 u32 beacon_int)
1202 {
1203 struct wireless_dev *wdev;
1204 int res = 0;
1205
1206 if (!beacon_int)
1207 return -EINVAL;
1208
1209 list_for_each_entry(wdev, &rdev->wdev_list, list) {
1210 if (!wdev->beacon_interval)
1211 continue;
1212 if (wdev->beacon_interval != beacon_int) {
1213 res = -EINVAL;
1214 break;
1215 }
1216 }
1217
1218 return res;
1219 }
1220
1221 int cfg80211_can_use_iftype_chan(struct cfg80211_registered_device *rdev,
1222 struct wireless_dev *wdev,
1223 enum nl80211_iftype iftype,
1224 struct ieee80211_channel *chan,
1225 enum cfg80211_chan_mode chanmode,
1226 u8 radar_detect)
1227 {
1228 struct wireless_dev *wdev_iter;
1229 u32 used_iftypes = BIT(iftype);
1230 int num[NUM_NL80211_IFTYPES];
1231 struct ieee80211_channel
1232 *used_channels[CFG80211_MAX_NUM_DIFFERENT_CHANNELS];
1233 struct ieee80211_channel *ch;
1234 enum cfg80211_chan_mode chmode;
1235 int num_different_channels = 0;
1236 int total = 1;
1237 bool radar_required;
1238 int i, j;
1239
1240 ASSERT_RTNL();
1241
1242 if (WARN_ON(hweight32(radar_detect) > 1))
1243 return -EINVAL;
1244
1245 switch (iftype) {
1246 case NL80211_IFTYPE_ADHOC:
1247 case NL80211_IFTYPE_AP:
1248 case NL80211_IFTYPE_AP_VLAN:
1249 case NL80211_IFTYPE_MESH_POINT:
1250 case NL80211_IFTYPE_P2P_GO:
1251 case NL80211_IFTYPE_WDS:
1252 radar_required = !!(chan &&
1253 (chan->flags & IEEE80211_CHAN_RADAR));
1254 break;
1255 case NL80211_IFTYPE_P2P_CLIENT:
1256 case NL80211_IFTYPE_STATION:
1257 case NL80211_IFTYPE_P2P_DEVICE:
1258 case NL80211_IFTYPE_MONITOR:
1259 radar_required = false;
1260 break;
1261 case NUM_NL80211_IFTYPES:
1262 case NL80211_IFTYPE_UNSPECIFIED:
1263 default:
1264 return -EINVAL;
1265 }
1266
1267 if (radar_required && !radar_detect)
1268 return -EINVAL;
1269
1270 /* Always allow software iftypes */
1271 if (rdev->wiphy.software_iftypes & BIT(iftype)) {
1272 if (radar_detect)
1273 return -EINVAL;
1274 return 0;
1275 }
1276
1277 memset(num, 0, sizeof(num));
1278 memset(used_channels, 0, sizeof(used_channels));
1279
1280 num[iftype] = 1;
1281
1282 switch (chanmode) {
1283 case CHAN_MODE_UNDEFINED:
1284 break;
1285 case CHAN_MODE_SHARED:
1286 WARN_ON(!chan);
1287 used_channels[0] = chan;
1288 num_different_channels++;
1289 break;
1290 case CHAN_MODE_EXCLUSIVE:
1291 num_different_channels++;
1292 break;
1293 }
1294
1295 list_for_each_entry(wdev_iter, &rdev->wdev_list, list) {
1296 if (wdev_iter == wdev)
1297 continue;
1298 if (wdev_iter->iftype == NL80211_IFTYPE_P2P_DEVICE) {
1299 if (!wdev_iter->p2p_started)
1300 continue;
1301 } else if (wdev_iter->netdev) {
1302 if (!netif_running(wdev_iter->netdev))
1303 continue;
1304 } else {
1305 WARN_ON(1);
1306 }
1307
1308 if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype))
1309 continue;
1310
1311 /*
1312 * We may be holding the "wdev" mutex, but now need to lock
1313 * wdev_iter. This is OK because once we get here wdev_iter
1314 * is not wdev (tested above), but we need to use the nested
1315 * locking for lockdep.
1316 */
1317 mutex_lock_nested(&wdev_iter->mtx, 1);
1318 __acquire(wdev_iter->mtx);
1319 cfg80211_get_chan_state(wdev_iter, &ch, &chmode);
1320 wdev_unlock(wdev_iter);
1321
1322 switch (chmode) {
1323 case CHAN_MODE_UNDEFINED:
1324 break;
1325 case CHAN_MODE_SHARED:
1326 for (i = 0; i < CFG80211_MAX_NUM_DIFFERENT_CHANNELS; i++)
1327 if (!used_channels[i] || used_channels[i] == ch)
1328 break;
1329
1330 if (i == CFG80211_MAX_NUM_DIFFERENT_CHANNELS)
1331 return -EBUSY;
1332
1333 if (used_channels[i] == NULL) {
1334 used_channels[i] = ch;
1335 num_different_channels++;
1336 }
1337 break;
1338 case CHAN_MODE_EXCLUSIVE:
1339 num_different_channels++;
1340 break;
1341 }
1342
1343 num[wdev_iter->iftype]++;
1344 total++;
1345 used_iftypes |= BIT(wdev_iter->iftype);
1346 }
1347
1348 if (total == 1 && !radar_detect)
1349 return 0;
1350
1351 for (i = 0; i < rdev->wiphy.n_iface_combinations; i++) {
1352 const struct ieee80211_iface_combination *c;
1353 struct ieee80211_iface_limit *limits;
1354 u32 all_iftypes = 0;
1355
1356 c = &rdev->wiphy.iface_combinations[i];
1357
1358 if (total > c->max_interfaces)
1359 continue;
1360 if (num_different_channels > c->num_different_channels)
1361 continue;
1362
1363 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1364 GFP_KERNEL);
1365 if (!limits)
1366 return -ENOMEM;
1367
1368 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1369 if (rdev->wiphy.software_iftypes & BIT(iftype))
1370 continue;
1371 for (j = 0; j < c->n_limits; j++) {
1372 all_iftypes |= limits[j].types;
1373 if (!(limits[j].types & BIT(iftype)))
1374 continue;
1375 if (limits[j].max < num[iftype])
1376 goto cont;
1377 limits[j].max -= num[iftype];
1378 }
1379 }
1380
1381 if (radar_detect && !(c->radar_detect_widths & radar_detect))
1382 goto cont;
1383
1384 /*
1385 * Finally check that all iftypes that we're currently
1386 * using are actually part of this combination. If they
1387 * aren't then we can't use this combination and have
1388 * to continue to the next.
1389 */
1390 if ((all_iftypes & used_iftypes) != used_iftypes)
1391 goto cont;
1392
1393 /*
1394 * This combination covered all interface types and
1395 * supported the requested numbers, so we're good.
1396 */
1397 kfree(limits);
1398 return 0;
1399 cont:
1400 kfree(limits);
1401 }
1402
1403 return -EBUSY;
1404 }
1405
1406 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1407 const u8 *rates, unsigned int n_rates,
1408 u32 *mask)
1409 {
1410 int i, j;
1411
1412 if (!sband)
1413 return -EINVAL;
1414
1415 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1416 return -EINVAL;
1417
1418 *mask = 0;
1419
1420 for (i = 0; i < n_rates; i++) {
1421 int rate = (rates[i] & 0x7f) * 5;
1422 bool found = false;
1423
1424 for (j = 0; j < sband->n_bitrates; j++) {
1425 if (sband->bitrates[j].bitrate == rate) {
1426 found = true;
1427 *mask |= BIT(j);
1428 break;
1429 }
1430 }
1431 if (!found)
1432 return -EINVAL;
1433 }
1434
1435 /*
1436 * mask must have at least one bit set here since we
1437 * didn't accept a 0-length rates array nor allowed
1438 * entries in the array that didn't exist
1439 */
1440
1441 return 0;
1442 }
1443
1444 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1445 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1446 const unsigned char rfc1042_header[] __aligned(2) =
1447 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1448 EXPORT_SYMBOL(rfc1042_header);
1449
1450 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1451 const unsigned char bridge_tunnel_header[] __aligned(2) =
1452 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1453 EXPORT_SYMBOL(bridge_tunnel_header);
This page took 0.059272 seconds and 5 git commands to generate.