[XFRM]: Trace which secpath state is reject factor.
[deliverable/linux.git] / net / xfrm / xfrm_policy.c
1 /*
2 * xfrm_policy.c
3 *
4 * Changes:
5 * Mitsuru KANDA @USAGI
6 * Kazunori MIYAZAWA @USAGI
7 * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
8 * IPv6 support
9 * Kazunori MIYAZAWA @USAGI
10 * YOSHIFUJI Hideaki
11 * Split up af-specific portion
12 * Derek Atkins <derek@ihtfp.com> Add the post_input processor
13 *
14 */
15
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/list.h>
19 #include <linux/spinlock.h>
20 #include <linux/workqueue.h>
21 #include <linux/notifier.h>
22 #include <linux/netdevice.h>
23 #include <linux/netfilter.h>
24 #include <linux/module.h>
25 #include <net/xfrm.h>
26 #include <net/ip.h>
27
28 DEFINE_MUTEX(xfrm_cfg_mutex);
29 EXPORT_SYMBOL(xfrm_cfg_mutex);
30
31 static DEFINE_RWLOCK(xfrm_policy_lock);
32
33 struct xfrm_policy *xfrm_policy_list[XFRM_POLICY_MAX*2];
34 EXPORT_SYMBOL(xfrm_policy_list);
35
36 static DEFINE_RWLOCK(xfrm_policy_afinfo_lock);
37 static struct xfrm_policy_afinfo *xfrm_policy_afinfo[NPROTO];
38
39 static kmem_cache_t *xfrm_dst_cache __read_mostly;
40
41 static struct work_struct xfrm_policy_gc_work;
42 static struct list_head xfrm_policy_gc_list =
43 LIST_HEAD_INIT(xfrm_policy_gc_list);
44 static DEFINE_SPINLOCK(xfrm_policy_gc_lock);
45
46 static struct xfrm_policy_afinfo *xfrm_policy_get_afinfo(unsigned short family);
47 static void xfrm_policy_put_afinfo(struct xfrm_policy_afinfo *afinfo);
48 static struct xfrm_policy_afinfo *xfrm_policy_lock_afinfo(unsigned int family);
49 static void xfrm_policy_unlock_afinfo(struct xfrm_policy_afinfo *afinfo);
50
51 int xfrm_register_type(struct xfrm_type *type, unsigned short family)
52 {
53 struct xfrm_policy_afinfo *afinfo = xfrm_policy_lock_afinfo(family);
54 struct xfrm_type **typemap;
55 int err = 0;
56
57 if (unlikely(afinfo == NULL))
58 return -EAFNOSUPPORT;
59 typemap = afinfo->type_map;
60
61 if (likely(typemap[type->proto] == NULL))
62 typemap[type->proto] = type;
63 else
64 err = -EEXIST;
65 xfrm_policy_unlock_afinfo(afinfo);
66 return err;
67 }
68 EXPORT_SYMBOL(xfrm_register_type);
69
70 int xfrm_unregister_type(struct xfrm_type *type, unsigned short family)
71 {
72 struct xfrm_policy_afinfo *afinfo = xfrm_policy_lock_afinfo(family);
73 struct xfrm_type **typemap;
74 int err = 0;
75
76 if (unlikely(afinfo == NULL))
77 return -EAFNOSUPPORT;
78 typemap = afinfo->type_map;
79
80 if (unlikely(typemap[type->proto] != type))
81 err = -ENOENT;
82 else
83 typemap[type->proto] = NULL;
84 xfrm_policy_unlock_afinfo(afinfo);
85 return err;
86 }
87 EXPORT_SYMBOL(xfrm_unregister_type);
88
89 struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family)
90 {
91 struct xfrm_policy_afinfo *afinfo;
92 struct xfrm_type **typemap;
93 struct xfrm_type *type;
94 int modload_attempted = 0;
95
96 retry:
97 afinfo = xfrm_policy_get_afinfo(family);
98 if (unlikely(afinfo == NULL))
99 return NULL;
100 typemap = afinfo->type_map;
101
102 type = typemap[proto];
103 if (unlikely(type && !try_module_get(type->owner)))
104 type = NULL;
105 if (!type && !modload_attempted) {
106 xfrm_policy_put_afinfo(afinfo);
107 request_module("xfrm-type-%d-%d",
108 (int) family, (int) proto);
109 modload_attempted = 1;
110 goto retry;
111 }
112
113 xfrm_policy_put_afinfo(afinfo);
114 return type;
115 }
116
117 int xfrm_dst_lookup(struct xfrm_dst **dst, struct flowi *fl,
118 unsigned short family)
119 {
120 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
121 int err = 0;
122
123 if (unlikely(afinfo == NULL))
124 return -EAFNOSUPPORT;
125
126 if (likely(afinfo->dst_lookup != NULL))
127 err = afinfo->dst_lookup(dst, fl);
128 else
129 err = -EINVAL;
130 xfrm_policy_put_afinfo(afinfo);
131 return err;
132 }
133 EXPORT_SYMBOL(xfrm_dst_lookup);
134
135 void xfrm_put_type(struct xfrm_type *type)
136 {
137 module_put(type->owner);
138 }
139
140 int xfrm_register_mode(struct xfrm_mode *mode, int family)
141 {
142 struct xfrm_policy_afinfo *afinfo;
143 struct xfrm_mode **modemap;
144 int err;
145
146 if (unlikely(mode->encap >= XFRM_MODE_MAX))
147 return -EINVAL;
148
149 afinfo = xfrm_policy_lock_afinfo(family);
150 if (unlikely(afinfo == NULL))
151 return -EAFNOSUPPORT;
152
153 err = -EEXIST;
154 modemap = afinfo->mode_map;
155 if (likely(modemap[mode->encap] == NULL)) {
156 modemap[mode->encap] = mode;
157 err = 0;
158 }
159
160 xfrm_policy_unlock_afinfo(afinfo);
161 return err;
162 }
163 EXPORT_SYMBOL(xfrm_register_mode);
164
165 int xfrm_unregister_mode(struct xfrm_mode *mode, int family)
166 {
167 struct xfrm_policy_afinfo *afinfo;
168 struct xfrm_mode **modemap;
169 int err;
170
171 if (unlikely(mode->encap >= XFRM_MODE_MAX))
172 return -EINVAL;
173
174 afinfo = xfrm_policy_lock_afinfo(family);
175 if (unlikely(afinfo == NULL))
176 return -EAFNOSUPPORT;
177
178 err = -ENOENT;
179 modemap = afinfo->mode_map;
180 if (likely(modemap[mode->encap] == mode)) {
181 modemap[mode->encap] = NULL;
182 err = 0;
183 }
184
185 xfrm_policy_unlock_afinfo(afinfo);
186 return err;
187 }
188 EXPORT_SYMBOL(xfrm_unregister_mode);
189
190 struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family)
191 {
192 struct xfrm_policy_afinfo *afinfo;
193 struct xfrm_mode *mode;
194 int modload_attempted = 0;
195
196 if (unlikely(encap >= XFRM_MODE_MAX))
197 return NULL;
198
199 retry:
200 afinfo = xfrm_policy_get_afinfo(family);
201 if (unlikely(afinfo == NULL))
202 return NULL;
203
204 mode = afinfo->mode_map[encap];
205 if (unlikely(mode && !try_module_get(mode->owner)))
206 mode = NULL;
207 if (!mode && !modload_attempted) {
208 xfrm_policy_put_afinfo(afinfo);
209 request_module("xfrm-mode-%d-%d", family, encap);
210 modload_attempted = 1;
211 goto retry;
212 }
213
214 xfrm_policy_put_afinfo(afinfo);
215 return mode;
216 }
217
218 void xfrm_put_mode(struct xfrm_mode *mode)
219 {
220 module_put(mode->owner);
221 }
222
223 static inline unsigned long make_jiffies(long secs)
224 {
225 if (secs >= (MAX_SCHEDULE_TIMEOUT-1)/HZ)
226 return MAX_SCHEDULE_TIMEOUT-1;
227 else
228 return secs*HZ;
229 }
230
231 static void xfrm_policy_timer(unsigned long data)
232 {
233 struct xfrm_policy *xp = (struct xfrm_policy*)data;
234 unsigned long now = (unsigned long)xtime.tv_sec;
235 long next = LONG_MAX;
236 int warn = 0;
237 int dir;
238
239 read_lock(&xp->lock);
240
241 if (xp->dead)
242 goto out;
243
244 dir = xfrm_policy_id2dir(xp->index);
245
246 if (xp->lft.hard_add_expires_seconds) {
247 long tmo = xp->lft.hard_add_expires_seconds +
248 xp->curlft.add_time - now;
249 if (tmo <= 0)
250 goto expired;
251 if (tmo < next)
252 next = tmo;
253 }
254 if (xp->lft.hard_use_expires_seconds) {
255 long tmo = xp->lft.hard_use_expires_seconds +
256 (xp->curlft.use_time ? : xp->curlft.add_time) - now;
257 if (tmo <= 0)
258 goto expired;
259 if (tmo < next)
260 next = tmo;
261 }
262 if (xp->lft.soft_add_expires_seconds) {
263 long tmo = xp->lft.soft_add_expires_seconds +
264 xp->curlft.add_time - now;
265 if (tmo <= 0) {
266 warn = 1;
267 tmo = XFRM_KM_TIMEOUT;
268 }
269 if (tmo < next)
270 next = tmo;
271 }
272 if (xp->lft.soft_use_expires_seconds) {
273 long tmo = xp->lft.soft_use_expires_seconds +
274 (xp->curlft.use_time ? : xp->curlft.add_time) - now;
275 if (tmo <= 0) {
276 warn = 1;
277 tmo = XFRM_KM_TIMEOUT;
278 }
279 if (tmo < next)
280 next = tmo;
281 }
282
283 if (warn)
284 km_policy_expired(xp, dir, 0, 0);
285 if (next != LONG_MAX &&
286 !mod_timer(&xp->timer, jiffies + make_jiffies(next)))
287 xfrm_pol_hold(xp);
288
289 out:
290 read_unlock(&xp->lock);
291 xfrm_pol_put(xp);
292 return;
293
294 expired:
295 read_unlock(&xp->lock);
296 if (!xfrm_policy_delete(xp, dir))
297 km_policy_expired(xp, dir, 1, 0);
298 xfrm_pol_put(xp);
299 }
300
301
302 /* Allocate xfrm_policy. Not used here, it is supposed to be used by pfkeyv2
303 * SPD calls.
304 */
305
306 struct xfrm_policy *xfrm_policy_alloc(gfp_t gfp)
307 {
308 struct xfrm_policy *policy;
309
310 policy = kzalloc(sizeof(struct xfrm_policy), gfp);
311
312 if (policy) {
313 atomic_set(&policy->refcnt, 1);
314 rwlock_init(&policy->lock);
315 init_timer(&policy->timer);
316 policy->timer.data = (unsigned long)policy;
317 policy->timer.function = xfrm_policy_timer;
318 }
319 return policy;
320 }
321 EXPORT_SYMBOL(xfrm_policy_alloc);
322
323 /* Destroy xfrm_policy: descendant resources must be released to this moment. */
324
325 void __xfrm_policy_destroy(struct xfrm_policy *policy)
326 {
327 BUG_ON(!policy->dead);
328
329 BUG_ON(policy->bundles);
330
331 if (del_timer(&policy->timer))
332 BUG();
333
334 security_xfrm_policy_free(policy);
335 kfree(policy);
336 }
337 EXPORT_SYMBOL(__xfrm_policy_destroy);
338
339 static void xfrm_policy_gc_kill(struct xfrm_policy *policy)
340 {
341 struct dst_entry *dst;
342
343 while ((dst = policy->bundles) != NULL) {
344 policy->bundles = dst->next;
345 dst_free(dst);
346 }
347
348 if (del_timer(&policy->timer))
349 atomic_dec(&policy->refcnt);
350
351 if (atomic_read(&policy->refcnt) > 1)
352 flow_cache_flush();
353
354 xfrm_pol_put(policy);
355 }
356
357 static void xfrm_policy_gc_task(void *data)
358 {
359 struct xfrm_policy *policy;
360 struct list_head *entry, *tmp;
361 struct list_head gc_list = LIST_HEAD_INIT(gc_list);
362
363 spin_lock_bh(&xfrm_policy_gc_lock);
364 list_splice_init(&xfrm_policy_gc_list, &gc_list);
365 spin_unlock_bh(&xfrm_policy_gc_lock);
366
367 list_for_each_safe(entry, tmp, &gc_list) {
368 policy = list_entry(entry, struct xfrm_policy, list);
369 xfrm_policy_gc_kill(policy);
370 }
371 }
372
373 /* Rule must be locked. Release descentant resources, announce
374 * entry dead. The rule must be unlinked from lists to the moment.
375 */
376
377 static void xfrm_policy_kill(struct xfrm_policy *policy)
378 {
379 int dead;
380
381 write_lock_bh(&policy->lock);
382 dead = policy->dead;
383 policy->dead = 1;
384 write_unlock_bh(&policy->lock);
385
386 if (unlikely(dead)) {
387 WARN_ON(1);
388 return;
389 }
390
391 spin_lock(&xfrm_policy_gc_lock);
392 list_add(&policy->list, &xfrm_policy_gc_list);
393 spin_unlock(&xfrm_policy_gc_lock);
394
395 schedule_work(&xfrm_policy_gc_work);
396 }
397
398 /* Generate new index... KAME seems to generate them ordered by cost
399 * of an absolute inpredictability of ordering of rules. This will not pass. */
400 static u32 xfrm_gen_index(int dir)
401 {
402 u32 idx;
403 struct xfrm_policy *p;
404 static u32 idx_generator;
405
406 for (;;) {
407 idx = (idx_generator | dir);
408 idx_generator += 8;
409 if (idx == 0)
410 idx = 8;
411 for (p = xfrm_policy_list[dir]; p; p = p->next) {
412 if (p->index == idx)
413 break;
414 }
415 if (!p)
416 return idx;
417 }
418 }
419
420 int xfrm_policy_insert(int dir, struct xfrm_policy *policy, int excl)
421 {
422 struct xfrm_policy *pol, **p;
423 struct xfrm_policy *delpol = NULL;
424 struct xfrm_policy **newpos = NULL;
425 struct dst_entry *gc_list;
426
427 write_lock_bh(&xfrm_policy_lock);
428 for (p = &xfrm_policy_list[dir]; (pol=*p)!=NULL;) {
429 if (!delpol && memcmp(&policy->selector, &pol->selector, sizeof(pol->selector)) == 0 &&
430 xfrm_sec_ctx_match(pol->security, policy->security)) {
431 if (excl) {
432 write_unlock_bh(&xfrm_policy_lock);
433 return -EEXIST;
434 }
435 *p = pol->next;
436 delpol = pol;
437 if (policy->priority > pol->priority)
438 continue;
439 } else if (policy->priority >= pol->priority) {
440 p = &pol->next;
441 continue;
442 }
443 if (!newpos)
444 newpos = p;
445 if (delpol)
446 break;
447 p = &pol->next;
448 }
449 if (newpos)
450 p = newpos;
451 xfrm_pol_hold(policy);
452 policy->next = *p;
453 *p = policy;
454 atomic_inc(&flow_cache_genid);
455 policy->index = delpol ? delpol->index : xfrm_gen_index(dir);
456 policy->curlft.add_time = (unsigned long)xtime.tv_sec;
457 policy->curlft.use_time = 0;
458 if (!mod_timer(&policy->timer, jiffies + HZ))
459 xfrm_pol_hold(policy);
460 write_unlock_bh(&xfrm_policy_lock);
461
462 if (delpol)
463 xfrm_policy_kill(delpol);
464
465 read_lock_bh(&xfrm_policy_lock);
466 gc_list = NULL;
467 for (policy = policy->next; policy; policy = policy->next) {
468 struct dst_entry *dst;
469
470 write_lock(&policy->lock);
471 dst = policy->bundles;
472 if (dst) {
473 struct dst_entry *tail = dst;
474 while (tail->next)
475 tail = tail->next;
476 tail->next = gc_list;
477 gc_list = dst;
478
479 policy->bundles = NULL;
480 }
481 write_unlock(&policy->lock);
482 }
483 read_unlock_bh(&xfrm_policy_lock);
484
485 while (gc_list) {
486 struct dst_entry *dst = gc_list;
487
488 gc_list = dst->next;
489 dst_free(dst);
490 }
491
492 return 0;
493 }
494 EXPORT_SYMBOL(xfrm_policy_insert);
495
496 struct xfrm_policy *xfrm_policy_bysel_ctx(int dir, struct xfrm_selector *sel,
497 struct xfrm_sec_ctx *ctx, int delete)
498 {
499 struct xfrm_policy *pol, **p;
500
501 write_lock_bh(&xfrm_policy_lock);
502 for (p = &xfrm_policy_list[dir]; (pol=*p)!=NULL; p = &pol->next) {
503 if ((memcmp(sel, &pol->selector, sizeof(*sel)) == 0) &&
504 (xfrm_sec_ctx_match(ctx, pol->security))) {
505 xfrm_pol_hold(pol);
506 if (delete)
507 *p = pol->next;
508 break;
509 }
510 }
511 write_unlock_bh(&xfrm_policy_lock);
512
513 if (pol && delete) {
514 atomic_inc(&flow_cache_genid);
515 xfrm_policy_kill(pol);
516 }
517 return pol;
518 }
519 EXPORT_SYMBOL(xfrm_policy_bysel_ctx);
520
521 struct xfrm_policy *xfrm_policy_byid(int dir, u32 id, int delete)
522 {
523 struct xfrm_policy *pol, **p;
524
525 write_lock_bh(&xfrm_policy_lock);
526 for (p = &xfrm_policy_list[dir]; (pol=*p)!=NULL; p = &pol->next) {
527 if (pol->index == id) {
528 xfrm_pol_hold(pol);
529 if (delete)
530 *p = pol->next;
531 break;
532 }
533 }
534 write_unlock_bh(&xfrm_policy_lock);
535
536 if (pol && delete) {
537 atomic_inc(&flow_cache_genid);
538 xfrm_policy_kill(pol);
539 }
540 return pol;
541 }
542 EXPORT_SYMBOL(xfrm_policy_byid);
543
544 void xfrm_policy_flush(void)
545 {
546 struct xfrm_policy *xp;
547 int dir;
548
549 write_lock_bh(&xfrm_policy_lock);
550 for (dir = 0; dir < XFRM_POLICY_MAX; dir++) {
551 while ((xp = xfrm_policy_list[dir]) != NULL) {
552 xfrm_policy_list[dir] = xp->next;
553 write_unlock_bh(&xfrm_policy_lock);
554
555 xfrm_policy_kill(xp);
556
557 write_lock_bh(&xfrm_policy_lock);
558 }
559 }
560 atomic_inc(&flow_cache_genid);
561 write_unlock_bh(&xfrm_policy_lock);
562 }
563 EXPORT_SYMBOL(xfrm_policy_flush);
564
565 int xfrm_policy_walk(int (*func)(struct xfrm_policy *, int, int, void*),
566 void *data)
567 {
568 struct xfrm_policy *xp;
569 int dir;
570 int count = 0;
571 int error = 0;
572
573 read_lock_bh(&xfrm_policy_lock);
574 for (dir = 0; dir < 2*XFRM_POLICY_MAX; dir++) {
575 for (xp = xfrm_policy_list[dir]; xp; xp = xp->next)
576 count++;
577 }
578
579 if (count == 0) {
580 error = -ENOENT;
581 goto out;
582 }
583
584 for (dir = 0; dir < 2*XFRM_POLICY_MAX; dir++) {
585 for (xp = xfrm_policy_list[dir]; xp; xp = xp->next) {
586 error = func(xp, dir%XFRM_POLICY_MAX, --count, data);
587 if (error)
588 goto out;
589 }
590 }
591
592 out:
593 read_unlock_bh(&xfrm_policy_lock);
594 return error;
595 }
596 EXPORT_SYMBOL(xfrm_policy_walk);
597
598 /* Find policy to apply to this flow. */
599
600 static void xfrm_policy_lookup(struct flowi *fl, u16 family, u8 dir,
601 void **objp, atomic_t **obj_refp)
602 {
603 struct xfrm_policy *pol;
604
605 read_lock_bh(&xfrm_policy_lock);
606 for (pol = xfrm_policy_list[dir]; pol; pol = pol->next) {
607 struct xfrm_selector *sel = &pol->selector;
608 int match;
609
610 if (pol->family != family)
611 continue;
612
613 match = xfrm_selector_match(sel, fl, family);
614
615 if (match) {
616 if (!security_xfrm_policy_lookup(pol, fl->secid, dir)) {
617 xfrm_pol_hold(pol);
618 break;
619 }
620 }
621 }
622 read_unlock_bh(&xfrm_policy_lock);
623 if ((*objp = (void *) pol) != NULL)
624 *obj_refp = &pol->refcnt;
625 }
626
627 static inline int policy_to_flow_dir(int dir)
628 {
629 if (XFRM_POLICY_IN == FLOW_DIR_IN &&
630 XFRM_POLICY_OUT == FLOW_DIR_OUT &&
631 XFRM_POLICY_FWD == FLOW_DIR_FWD)
632 return dir;
633 switch (dir) {
634 default:
635 case XFRM_POLICY_IN:
636 return FLOW_DIR_IN;
637 case XFRM_POLICY_OUT:
638 return FLOW_DIR_OUT;
639 case XFRM_POLICY_FWD:
640 return FLOW_DIR_FWD;
641 };
642 }
643
644 static struct xfrm_policy *xfrm_sk_policy_lookup(struct sock *sk, int dir, struct flowi *fl)
645 {
646 struct xfrm_policy *pol;
647
648 read_lock_bh(&xfrm_policy_lock);
649 if ((pol = sk->sk_policy[dir]) != NULL) {
650 int match = xfrm_selector_match(&pol->selector, fl,
651 sk->sk_family);
652 int err = 0;
653
654 if (match)
655 err = security_xfrm_policy_lookup(pol, fl->secid, policy_to_flow_dir(dir));
656
657 if (match && !err)
658 xfrm_pol_hold(pol);
659 else
660 pol = NULL;
661 }
662 read_unlock_bh(&xfrm_policy_lock);
663 return pol;
664 }
665
666 static void __xfrm_policy_link(struct xfrm_policy *pol, int dir)
667 {
668 pol->next = xfrm_policy_list[dir];
669 xfrm_policy_list[dir] = pol;
670 xfrm_pol_hold(pol);
671 }
672
673 static struct xfrm_policy *__xfrm_policy_unlink(struct xfrm_policy *pol,
674 int dir)
675 {
676 struct xfrm_policy **polp;
677
678 for (polp = &xfrm_policy_list[dir];
679 *polp != NULL; polp = &(*polp)->next) {
680 if (*polp == pol) {
681 *polp = pol->next;
682 return pol;
683 }
684 }
685 return NULL;
686 }
687
688 int xfrm_policy_delete(struct xfrm_policy *pol, int dir)
689 {
690 write_lock_bh(&xfrm_policy_lock);
691 pol = __xfrm_policy_unlink(pol, dir);
692 write_unlock_bh(&xfrm_policy_lock);
693 if (pol) {
694 if (dir < XFRM_POLICY_MAX)
695 atomic_inc(&flow_cache_genid);
696 xfrm_policy_kill(pol);
697 return 0;
698 }
699 return -ENOENT;
700 }
701 EXPORT_SYMBOL(xfrm_policy_delete);
702
703 int xfrm_sk_policy_insert(struct sock *sk, int dir, struct xfrm_policy *pol)
704 {
705 struct xfrm_policy *old_pol;
706
707 write_lock_bh(&xfrm_policy_lock);
708 old_pol = sk->sk_policy[dir];
709 sk->sk_policy[dir] = pol;
710 if (pol) {
711 pol->curlft.add_time = (unsigned long)xtime.tv_sec;
712 pol->index = xfrm_gen_index(XFRM_POLICY_MAX+dir);
713 __xfrm_policy_link(pol, XFRM_POLICY_MAX+dir);
714 }
715 if (old_pol)
716 __xfrm_policy_unlink(old_pol, XFRM_POLICY_MAX+dir);
717 write_unlock_bh(&xfrm_policy_lock);
718
719 if (old_pol) {
720 xfrm_policy_kill(old_pol);
721 }
722 return 0;
723 }
724
725 static struct xfrm_policy *clone_policy(struct xfrm_policy *old, int dir)
726 {
727 struct xfrm_policy *newp = xfrm_policy_alloc(GFP_ATOMIC);
728
729 if (newp) {
730 newp->selector = old->selector;
731 if (security_xfrm_policy_clone(old, newp)) {
732 kfree(newp);
733 return NULL; /* ENOMEM */
734 }
735 newp->lft = old->lft;
736 newp->curlft = old->curlft;
737 newp->action = old->action;
738 newp->flags = old->flags;
739 newp->xfrm_nr = old->xfrm_nr;
740 newp->index = old->index;
741 memcpy(newp->xfrm_vec, old->xfrm_vec,
742 newp->xfrm_nr*sizeof(struct xfrm_tmpl));
743 write_lock_bh(&xfrm_policy_lock);
744 __xfrm_policy_link(newp, XFRM_POLICY_MAX+dir);
745 write_unlock_bh(&xfrm_policy_lock);
746 xfrm_pol_put(newp);
747 }
748 return newp;
749 }
750
751 int __xfrm_sk_clone_policy(struct sock *sk)
752 {
753 struct xfrm_policy *p0 = sk->sk_policy[0],
754 *p1 = sk->sk_policy[1];
755
756 sk->sk_policy[0] = sk->sk_policy[1] = NULL;
757 if (p0 && (sk->sk_policy[0] = clone_policy(p0, 0)) == NULL)
758 return -ENOMEM;
759 if (p1 && (sk->sk_policy[1] = clone_policy(p1, 1)) == NULL)
760 return -ENOMEM;
761 return 0;
762 }
763
764 /* Resolve list of templates for the flow, given policy. */
765
766 static int
767 xfrm_tmpl_resolve(struct xfrm_policy *policy, struct flowi *fl,
768 struct xfrm_state **xfrm,
769 unsigned short family)
770 {
771 int nx;
772 int i, error;
773 xfrm_address_t *daddr = xfrm_flowi_daddr(fl, family);
774 xfrm_address_t *saddr = xfrm_flowi_saddr(fl, family);
775
776 for (nx=0, i = 0; i < policy->xfrm_nr; i++) {
777 struct xfrm_state *x;
778 xfrm_address_t *remote = daddr;
779 xfrm_address_t *local = saddr;
780 struct xfrm_tmpl *tmpl = &policy->xfrm_vec[i];
781
782 if (tmpl->mode == XFRM_MODE_TUNNEL) {
783 remote = &tmpl->id.daddr;
784 local = &tmpl->saddr;
785 }
786
787 x = xfrm_state_find(remote, local, fl, tmpl, policy, &error, family);
788
789 if (x && x->km.state == XFRM_STATE_VALID) {
790 xfrm[nx++] = x;
791 daddr = remote;
792 saddr = local;
793 continue;
794 }
795 if (x) {
796 error = (x->km.state == XFRM_STATE_ERROR ?
797 -EINVAL : -EAGAIN);
798 xfrm_state_put(x);
799 }
800
801 if (!tmpl->optional)
802 goto fail;
803 }
804 return nx;
805
806 fail:
807 for (nx--; nx>=0; nx--)
808 xfrm_state_put(xfrm[nx]);
809 return error;
810 }
811
812 /* Check that the bundle accepts the flow and its components are
813 * still valid.
814 */
815
816 static struct dst_entry *
817 xfrm_find_bundle(struct flowi *fl, struct xfrm_policy *policy, unsigned short family)
818 {
819 struct dst_entry *x;
820 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
821 if (unlikely(afinfo == NULL))
822 return ERR_PTR(-EINVAL);
823 x = afinfo->find_bundle(fl, policy);
824 xfrm_policy_put_afinfo(afinfo);
825 return x;
826 }
827
828 /* Allocate chain of dst_entry's, attach known xfrm's, calculate
829 * all the metrics... Shortly, bundle a bundle.
830 */
831
832 static int
833 xfrm_bundle_create(struct xfrm_policy *policy, struct xfrm_state **xfrm, int nx,
834 struct flowi *fl, struct dst_entry **dst_p,
835 unsigned short family)
836 {
837 int err;
838 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
839 if (unlikely(afinfo == NULL))
840 return -EINVAL;
841 err = afinfo->bundle_create(policy, xfrm, nx, fl, dst_p);
842 xfrm_policy_put_afinfo(afinfo);
843 return err;
844 }
845
846
847 static int stale_bundle(struct dst_entry *dst);
848
849 /* Main function: finds/creates a bundle for given flow.
850 *
851 * At the moment we eat a raw IP route. Mostly to speed up lookups
852 * on interfaces with disabled IPsec.
853 */
854 int xfrm_lookup(struct dst_entry **dst_p, struct flowi *fl,
855 struct sock *sk, int flags)
856 {
857 struct xfrm_policy *policy;
858 struct xfrm_state *xfrm[XFRM_MAX_DEPTH];
859 struct dst_entry *dst, *dst_orig = *dst_p;
860 int nx = 0;
861 int err;
862 u32 genid;
863 u16 family;
864 u8 dir = policy_to_flow_dir(XFRM_POLICY_OUT);
865
866 restart:
867 genid = atomic_read(&flow_cache_genid);
868 policy = NULL;
869 if (sk && sk->sk_policy[1])
870 policy = xfrm_sk_policy_lookup(sk, XFRM_POLICY_OUT, fl);
871
872 if (!policy) {
873 /* To accelerate a bit... */
874 if ((dst_orig->flags & DST_NOXFRM) || !xfrm_policy_list[XFRM_POLICY_OUT])
875 return 0;
876
877 policy = flow_cache_lookup(fl, dst_orig->ops->family,
878 dir, xfrm_policy_lookup);
879 }
880
881 if (!policy)
882 return 0;
883
884 family = dst_orig->ops->family;
885 policy->curlft.use_time = (unsigned long)xtime.tv_sec;
886
887 switch (policy->action) {
888 case XFRM_POLICY_BLOCK:
889 /* Prohibit the flow */
890 err = -EPERM;
891 goto error;
892
893 case XFRM_POLICY_ALLOW:
894 if (policy->xfrm_nr == 0) {
895 /* Flow passes not transformed. */
896 xfrm_pol_put(policy);
897 return 0;
898 }
899
900 /* Try to find matching bundle.
901 *
902 * LATER: help from flow cache. It is optional, this
903 * is required only for output policy.
904 */
905 dst = xfrm_find_bundle(fl, policy, family);
906 if (IS_ERR(dst)) {
907 err = PTR_ERR(dst);
908 goto error;
909 }
910
911 if (dst)
912 break;
913
914 nx = xfrm_tmpl_resolve(policy, fl, xfrm, family);
915
916 if (unlikely(nx<0)) {
917 err = nx;
918 if (err == -EAGAIN && flags) {
919 DECLARE_WAITQUEUE(wait, current);
920
921 add_wait_queue(&km_waitq, &wait);
922 set_current_state(TASK_INTERRUPTIBLE);
923 schedule();
924 set_current_state(TASK_RUNNING);
925 remove_wait_queue(&km_waitq, &wait);
926
927 nx = xfrm_tmpl_resolve(policy, fl, xfrm, family);
928
929 if (nx == -EAGAIN && signal_pending(current)) {
930 err = -ERESTART;
931 goto error;
932 }
933 if (nx == -EAGAIN ||
934 genid != atomic_read(&flow_cache_genid)) {
935 xfrm_pol_put(policy);
936 goto restart;
937 }
938 err = nx;
939 }
940 if (err < 0)
941 goto error;
942 }
943 if (nx == 0) {
944 /* Flow passes not transformed. */
945 xfrm_pol_put(policy);
946 return 0;
947 }
948
949 dst = dst_orig;
950 err = xfrm_bundle_create(policy, xfrm, nx, fl, &dst, family);
951
952 if (unlikely(err)) {
953 int i;
954 for (i=0; i<nx; i++)
955 xfrm_state_put(xfrm[i]);
956 goto error;
957 }
958
959 write_lock_bh(&policy->lock);
960 if (unlikely(policy->dead || stale_bundle(dst))) {
961 /* Wow! While we worked on resolving, this
962 * policy has gone. Retry. It is not paranoia,
963 * we just cannot enlist new bundle to dead object.
964 * We can't enlist stable bundles either.
965 */
966 write_unlock_bh(&policy->lock);
967 if (dst)
968 dst_free(dst);
969
970 err = -EHOSTUNREACH;
971 goto error;
972 }
973 dst->next = policy->bundles;
974 policy->bundles = dst;
975 dst_hold(dst);
976 write_unlock_bh(&policy->lock);
977 }
978 *dst_p = dst;
979 dst_release(dst_orig);
980 xfrm_pol_put(policy);
981 return 0;
982
983 error:
984 dst_release(dst_orig);
985 xfrm_pol_put(policy);
986 *dst_p = NULL;
987 return err;
988 }
989 EXPORT_SYMBOL(xfrm_lookup);
990
991 static inline int
992 xfrm_secpath_reject(int idx, struct sk_buff *skb, struct flowi *fl)
993 {
994 struct xfrm_state *x;
995 int err;
996
997 if (!skb->sp || idx < 0 || idx >= skb->sp->len)
998 return 0;
999 x = skb->sp->xvec[idx];
1000 if (!x->type->reject)
1001 return 0;
1002 xfrm_state_hold(x);
1003 err = x->type->reject(x, skb, fl);
1004 xfrm_state_put(x);
1005 return err;
1006 }
1007
1008 /* When skb is transformed back to its "native" form, we have to
1009 * check policy restrictions. At the moment we make this in maximally
1010 * stupid way. Shame on me. :-) Of course, connected sockets must
1011 * have policy cached at them.
1012 */
1013
1014 static inline int
1015 xfrm_state_ok(struct xfrm_tmpl *tmpl, struct xfrm_state *x,
1016 unsigned short family)
1017 {
1018 if (xfrm_state_kern(x))
1019 return tmpl->optional && !xfrm_state_addr_cmp(tmpl, x, family);
1020 return x->id.proto == tmpl->id.proto &&
1021 (x->id.spi == tmpl->id.spi || !tmpl->id.spi) &&
1022 (x->props.reqid == tmpl->reqid || !tmpl->reqid) &&
1023 x->props.mode == tmpl->mode &&
1024 ((tmpl->aalgos & (1<<x->props.aalgo)) ||
1025 !(xfrm_id_proto_match(tmpl->id.proto, IPSEC_PROTO_ANY))) &&
1026 !(x->props.mode != XFRM_MODE_TRANSPORT &&
1027 xfrm_state_addr_cmp(tmpl, x, family));
1028 }
1029
1030 /*
1031 * 0 or more than 0 is returned when validation is succeeded (either bypass
1032 * because of optional transport mode, or next index of the mathced secpath
1033 * state with the template.
1034 * -1 is returned when no matching template is found.
1035 * Otherwise "-2 - errored_index" is returned.
1036 */
1037 static inline int
1038 xfrm_policy_ok(struct xfrm_tmpl *tmpl, struct sec_path *sp, int start,
1039 unsigned short family)
1040 {
1041 int idx = start;
1042
1043 if (tmpl->optional) {
1044 if (tmpl->mode == XFRM_MODE_TRANSPORT)
1045 return start;
1046 } else
1047 start = -1;
1048 for (; idx < sp->len; idx++) {
1049 if (xfrm_state_ok(tmpl, sp->xvec[idx], family))
1050 return ++idx;
1051 if (sp->xvec[idx]->props.mode != XFRM_MODE_TRANSPORT) {
1052 if (start == -1)
1053 start = -2-idx;
1054 break;
1055 }
1056 }
1057 return start;
1058 }
1059
1060 int
1061 xfrm_decode_session(struct sk_buff *skb, struct flowi *fl, unsigned short family)
1062 {
1063 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
1064 int err;
1065
1066 if (unlikely(afinfo == NULL))
1067 return -EAFNOSUPPORT;
1068
1069 afinfo->decode_session(skb, fl);
1070 err = security_xfrm_decode_session(skb, &fl->secid);
1071 xfrm_policy_put_afinfo(afinfo);
1072 return err;
1073 }
1074 EXPORT_SYMBOL(xfrm_decode_session);
1075
1076 static inline int secpath_has_nontransport(struct sec_path *sp, int k, int *idxp)
1077 {
1078 for (; k < sp->len; k++) {
1079 if (sp->xvec[k]->props.mode != XFRM_MODE_TRANSPORT) {
1080 if (idxp)
1081 *idxp = k;
1082 return 1;
1083 }
1084 }
1085
1086 return 0;
1087 }
1088
1089 int __xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb,
1090 unsigned short family)
1091 {
1092 struct xfrm_policy *pol;
1093 struct flowi fl;
1094 u8 fl_dir = policy_to_flow_dir(dir);
1095 int xerr_idx = -1;
1096 int *xerr_idxp = &xerr_idx;
1097
1098 if (xfrm_decode_session(skb, &fl, family) < 0)
1099 return 0;
1100 nf_nat_decode_session(skb, &fl, family);
1101
1102 /* First, check used SA against their selectors. */
1103 if (skb->sp) {
1104 int i;
1105
1106 for (i=skb->sp->len-1; i>=0; i--) {
1107 struct xfrm_state *x = skb->sp->xvec[i];
1108 if (!xfrm_selector_match(&x->sel, &fl, family))
1109 return 0;
1110 }
1111 }
1112
1113 pol = NULL;
1114 if (sk && sk->sk_policy[dir])
1115 pol = xfrm_sk_policy_lookup(sk, dir, &fl);
1116
1117 if (!pol)
1118 pol = flow_cache_lookup(&fl, family, fl_dir,
1119 xfrm_policy_lookup);
1120
1121 if (!pol) {
1122 if (skb->sp && secpath_has_nontransport(skb->sp, 0, xerr_idxp)) {
1123 xfrm_secpath_reject(xerr_idx, skb, &fl);
1124 return 0;
1125 }
1126 return 1;
1127 }
1128
1129 pol->curlft.use_time = (unsigned long)xtime.tv_sec;
1130
1131 if (pol->action == XFRM_POLICY_ALLOW) {
1132 struct sec_path *sp;
1133 static struct sec_path dummy;
1134 int i, k;
1135
1136 if ((sp = skb->sp) == NULL)
1137 sp = &dummy;
1138
1139 /* For each tunnel xfrm, find the first matching tmpl.
1140 * For each tmpl before that, find corresponding xfrm.
1141 * Order is _important_. Later we will implement
1142 * some barriers, but at the moment barriers
1143 * are implied between each two transformations.
1144 */
1145 for (i = pol->xfrm_nr-1, k = 0; i >= 0; i--) {
1146 k = xfrm_policy_ok(pol->xfrm_vec+i, sp, k, family);
1147 if (k < 0) {
1148 if (k < -1 && xerr_idxp)
1149 *xerr_idxp = -(2+k);
1150 goto reject;
1151 }
1152 }
1153
1154 if (secpath_has_nontransport(sp, k, xerr_idxp))
1155 goto reject;
1156
1157 xfrm_pol_put(pol);
1158 return 1;
1159 }
1160
1161 reject:
1162 xfrm_secpath_reject(xerr_idx, skb, &fl);
1163 xfrm_pol_put(pol);
1164 return 0;
1165 }
1166 EXPORT_SYMBOL(__xfrm_policy_check);
1167
1168 int __xfrm_route_forward(struct sk_buff *skb, unsigned short family)
1169 {
1170 struct flowi fl;
1171
1172 if (xfrm_decode_session(skb, &fl, family) < 0)
1173 return 0;
1174
1175 return xfrm_lookup(&skb->dst, &fl, NULL, 0) == 0;
1176 }
1177 EXPORT_SYMBOL(__xfrm_route_forward);
1178
1179 /* Optimize later using cookies and generation ids. */
1180
1181 static struct dst_entry *xfrm_dst_check(struct dst_entry *dst, u32 cookie)
1182 {
1183 /* Code (such as __xfrm4_bundle_create()) sets dst->obsolete
1184 * to "-1" to force all XFRM destinations to get validated by
1185 * dst_ops->check on every use. We do this because when a
1186 * normal route referenced by an XFRM dst is obsoleted we do
1187 * not go looking around for all parent referencing XFRM dsts
1188 * so that we can invalidate them. It is just too much work.
1189 * Instead we make the checks here on every use. For example:
1190 *
1191 * XFRM dst A --> IPv4 dst X
1192 *
1193 * X is the "xdst->route" of A (X is also the "dst->path" of A
1194 * in this example). If X is marked obsolete, "A" will not
1195 * notice. That's what we are validating here via the
1196 * stale_bundle() check.
1197 *
1198 * When a policy's bundle is pruned, we dst_free() the XFRM
1199 * dst which causes it's ->obsolete field to be set to a
1200 * positive non-zero integer. If an XFRM dst has been pruned
1201 * like this, we want to force a new route lookup.
1202 */
1203 if (dst->obsolete < 0 && !stale_bundle(dst))
1204 return dst;
1205
1206 return NULL;
1207 }
1208
1209 static int stale_bundle(struct dst_entry *dst)
1210 {
1211 return !xfrm_bundle_ok((struct xfrm_dst *)dst, NULL, AF_UNSPEC, 0);
1212 }
1213
1214 void xfrm_dst_ifdown(struct dst_entry *dst, struct net_device *dev)
1215 {
1216 while ((dst = dst->child) && dst->xfrm && dst->dev == dev) {
1217 dst->dev = &loopback_dev;
1218 dev_hold(&loopback_dev);
1219 dev_put(dev);
1220 }
1221 }
1222 EXPORT_SYMBOL(xfrm_dst_ifdown);
1223
1224 static void xfrm_link_failure(struct sk_buff *skb)
1225 {
1226 /* Impossible. Such dst must be popped before reaches point of failure. */
1227 return;
1228 }
1229
1230 static struct dst_entry *xfrm_negative_advice(struct dst_entry *dst)
1231 {
1232 if (dst) {
1233 if (dst->obsolete) {
1234 dst_release(dst);
1235 dst = NULL;
1236 }
1237 }
1238 return dst;
1239 }
1240
1241 static void xfrm_prune_bundles(int (*func)(struct dst_entry *))
1242 {
1243 int i;
1244 struct xfrm_policy *pol;
1245 struct dst_entry *dst, **dstp, *gc_list = NULL;
1246
1247 read_lock_bh(&xfrm_policy_lock);
1248 for (i=0; i<2*XFRM_POLICY_MAX; i++) {
1249 for (pol = xfrm_policy_list[i]; pol; pol = pol->next) {
1250 write_lock(&pol->lock);
1251 dstp = &pol->bundles;
1252 while ((dst=*dstp) != NULL) {
1253 if (func(dst)) {
1254 *dstp = dst->next;
1255 dst->next = gc_list;
1256 gc_list = dst;
1257 } else {
1258 dstp = &dst->next;
1259 }
1260 }
1261 write_unlock(&pol->lock);
1262 }
1263 }
1264 read_unlock_bh(&xfrm_policy_lock);
1265
1266 while (gc_list) {
1267 dst = gc_list;
1268 gc_list = dst->next;
1269 dst_free(dst);
1270 }
1271 }
1272
1273 static int unused_bundle(struct dst_entry *dst)
1274 {
1275 return !atomic_read(&dst->__refcnt);
1276 }
1277
1278 static void __xfrm_garbage_collect(void)
1279 {
1280 xfrm_prune_bundles(unused_bundle);
1281 }
1282
1283 int xfrm_flush_bundles(void)
1284 {
1285 xfrm_prune_bundles(stale_bundle);
1286 return 0;
1287 }
1288
1289 static int always_true(struct dst_entry *dst)
1290 {
1291 return 1;
1292 }
1293
1294 void xfrm_flush_all_bundles(void)
1295 {
1296 xfrm_prune_bundles(always_true);
1297 }
1298
1299 void xfrm_init_pmtu(struct dst_entry *dst)
1300 {
1301 do {
1302 struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
1303 u32 pmtu, route_mtu_cached;
1304
1305 pmtu = dst_mtu(dst->child);
1306 xdst->child_mtu_cached = pmtu;
1307
1308 pmtu = xfrm_state_mtu(dst->xfrm, pmtu);
1309
1310 route_mtu_cached = dst_mtu(xdst->route);
1311 xdst->route_mtu_cached = route_mtu_cached;
1312
1313 if (pmtu > route_mtu_cached)
1314 pmtu = route_mtu_cached;
1315
1316 dst->metrics[RTAX_MTU-1] = pmtu;
1317 } while ((dst = dst->next));
1318 }
1319
1320 EXPORT_SYMBOL(xfrm_init_pmtu);
1321
1322 /* Check that the bundle accepts the flow and its components are
1323 * still valid.
1324 */
1325
1326 int xfrm_bundle_ok(struct xfrm_dst *first, struct flowi *fl, int family, int strict)
1327 {
1328 struct dst_entry *dst = &first->u.dst;
1329 struct xfrm_dst *last;
1330 u32 mtu;
1331
1332 if (!dst_check(dst->path, ((struct xfrm_dst *)dst)->path_cookie) ||
1333 (dst->dev && !netif_running(dst->dev)))
1334 return 0;
1335
1336 last = NULL;
1337
1338 do {
1339 struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
1340
1341 if (fl && !xfrm_selector_match(&dst->xfrm->sel, fl, family))
1342 return 0;
1343 if (fl && !security_xfrm_flow_state_match(fl, dst->xfrm))
1344 return 0;
1345 if (dst->xfrm->km.state != XFRM_STATE_VALID)
1346 return 0;
1347
1348 if (strict && fl && dst->xfrm->props.mode != XFRM_MODE_TUNNEL &&
1349 !xfrm_state_addr_flow_check(dst->xfrm, fl, family))
1350 return 0;
1351
1352 mtu = dst_mtu(dst->child);
1353 if (xdst->child_mtu_cached != mtu) {
1354 last = xdst;
1355 xdst->child_mtu_cached = mtu;
1356 }
1357
1358 if (!dst_check(xdst->route, xdst->route_cookie))
1359 return 0;
1360 mtu = dst_mtu(xdst->route);
1361 if (xdst->route_mtu_cached != mtu) {
1362 last = xdst;
1363 xdst->route_mtu_cached = mtu;
1364 }
1365
1366 dst = dst->child;
1367 } while (dst->xfrm);
1368
1369 if (likely(!last))
1370 return 1;
1371
1372 mtu = last->child_mtu_cached;
1373 for (;;) {
1374 dst = &last->u.dst;
1375
1376 mtu = xfrm_state_mtu(dst->xfrm, mtu);
1377 if (mtu > last->route_mtu_cached)
1378 mtu = last->route_mtu_cached;
1379 dst->metrics[RTAX_MTU-1] = mtu;
1380
1381 if (last == first)
1382 break;
1383
1384 last = last->u.next;
1385 last->child_mtu_cached = mtu;
1386 }
1387
1388 return 1;
1389 }
1390
1391 EXPORT_SYMBOL(xfrm_bundle_ok);
1392
1393 int xfrm_policy_register_afinfo(struct xfrm_policy_afinfo *afinfo)
1394 {
1395 int err = 0;
1396 if (unlikely(afinfo == NULL))
1397 return -EINVAL;
1398 if (unlikely(afinfo->family >= NPROTO))
1399 return -EAFNOSUPPORT;
1400 write_lock_bh(&xfrm_policy_afinfo_lock);
1401 if (unlikely(xfrm_policy_afinfo[afinfo->family] != NULL))
1402 err = -ENOBUFS;
1403 else {
1404 struct dst_ops *dst_ops = afinfo->dst_ops;
1405 if (likely(dst_ops->kmem_cachep == NULL))
1406 dst_ops->kmem_cachep = xfrm_dst_cache;
1407 if (likely(dst_ops->check == NULL))
1408 dst_ops->check = xfrm_dst_check;
1409 if (likely(dst_ops->negative_advice == NULL))
1410 dst_ops->negative_advice = xfrm_negative_advice;
1411 if (likely(dst_ops->link_failure == NULL))
1412 dst_ops->link_failure = xfrm_link_failure;
1413 if (likely(afinfo->garbage_collect == NULL))
1414 afinfo->garbage_collect = __xfrm_garbage_collect;
1415 xfrm_policy_afinfo[afinfo->family] = afinfo;
1416 }
1417 write_unlock_bh(&xfrm_policy_afinfo_lock);
1418 return err;
1419 }
1420 EXPORT_SYMBOL(xfrm_policy_register_afinfo);
1421
1422 int xfrm_policy_unregister_afinfo(struct xfrm_policy_afinfo *afinfo)
1423 {
1424 int err = 0;
1425 if (unlikely(afinfo == NULL))
1426 return -EINVAL;
1427 if (unlikely(afinfo->family >= NPROTO))
1428 return -EAFNOSUPPORT;
1429 write_lock_bh(&xfrm_policy_afinfo_lock);
1430 if (likely(xfrm_policy_afinfo[afinfo->family] != NULL)) {
1431 if (unlikely(xfrm_policy_afinfo[afinfo->family] != afinfo))
1432 err = -EINVAL;
1433 else {
1434 struct dst_ops *dst_ops = afinfo->dst_ops;
1435 xfrm_policy_afinfo[afinfo->family] = NULL;
1436 dst_ops->kmem_cachep = NULL;
1437 dst_ops->check = NULL;
1438 dst_ops->negative_advice = NULL;
1439 dst_ops->link_failure = NULL;
1440 afinfo->garbage_collect = NULL;
1441 }
1442 }
1443 write_unlock_bh(&xfrm_policy_afinfo_lock);
1444 return err;
1445 }
1446 EXPORT_SYMBOL(xfrm_policy_unregister_afinfo);
1447
1448 static struct xfrm_policy_afinfo *xfrm_policy_get_afinfo(unsigned short family)
1449 {
1450 struct xfrm_policy_afinfo *afinfo;
1451 if (unlikely(family >= NPROTO))
1452 return NULL;
1453 read_lock(&xfrm_policy_afinfo_lock);
1454 afinfo = xfrm_policy_afinfo[family];
1455 if (unlikely(!afinfo))
1456 read_unlock(&xfrm_policy_afinfo_lock);
1457 return afinfo;
1458 }
1459
1460 static void xfrm_policy_put_afinfo(struct xfrm_policy_afinfo *afinfo)
1461 {
1462 read_unlock(&xfrm_policy_afinfo_lock);
1463 }
1464
1465 static struct xfrm_policy_afinfo *xfrm_policy_lock_afinfo(unsigned int family)
1466 {
1467 struct xfrm_policy_afinfo *afinfo;
1468 if (unlikely(family >= NPROTO))
1469 return NULL;
1470 write_lock_bh(&xfrm_policy_afinfo_lock);
1471 afinfo = xfrm_policy_afinfo[family];
1472 if (unlikely(!afinfo))
1473 write_unlock_bh(&xfrm_policy_afinfo_lock);
1474 return afinfo;
1475 }
1476
1477 static void xfrm_policy_unlock_afinfo(struct xfrm_policy_afinfo *afinfo)
1478 {
1479 write_unlock_bh(&xfrm_policy_afinfo_lock);
1480 }
1481
1482 static int xfrm_dev_event(struct notifier_block *this, unsigned long event, void *ptr)
1483 {
1484 switch (event) {
1485 case NETDEV_DOWN:
1486 xfrm_flush_bundles();
1487 }
1488 return NOTIFY_DONE;
1489 }
1490
1491 static struct notifier_block xfrm_dev_notifier = {
1492 xfrm_dev_event,
1493 NULL,
1494 0
1495 };
1496
1497 static void __init xfrm_policy_init(void)
1498 {
1499 xfrm_dst_cache = kmem_cache_create("xfrm_dst_cache",
1500 sizeof(struct xfrm_dst),
1501 0, SLAB_HWCACHE_ALIGN,
1502 NULL, NULL);
1503 if (!xfrm_dst_cache)
1504 panic("XFRM: failed to allocate xfrm_dst_cache\n");
1505
1506 INIT_WORK(&xfrm_policy_gc_work, xfrm_policy_gc_task, NULL);
1507 register_netdevice_notifier(&xfrm_dev_notifier);
1508 }
1509
1510 void __init xfrm_init(void)
1511 {
1512 xfrm_state_init();
1513 xfrm_policy_init();
1514 xfrm_input_init();
1515 }
1516
This page took 0.061265 seconds and 5 git commands to generate.