Remove arc sanitization.
[deliverable/binutils-gdb.git] / opcodes / a29k-dis.c
1 /* Instruction printing code for the AMD 29000
2 Copyright (C) 1990 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by Jim Kingdon.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "dis-asm.h"
22 #include "opcode/a29k.h"
23
24 /* Print a symbolic representation of a general-purpose
25 register number NUM on STREAM.
26 NUM is a number as found in the instruction, not as found in
27 debugging symbols; it must be in the range 0-255. */
28 static void
29 print_general (num, info)
30 int num;
31 struct disassemble_info *info;
32 {
33 if (num < 128)
34 (*info->fprintf_func) (info->stream, "gr%d", num);
35 else
36 (*info->fprintf_func) (info->stream, "lr%d", num - 128);
37 }
38
39 /* Like print_general but a special-purpose register.
40
41 The mnemonics used by the AMD assembler are not quite the same
42 as the ones in the User's Manual. We use the ones that the
43 assembler uses. */
44 static void
45 print_special (num, info)
46 unsigned int num;
47 struct disassemble_info *info;
48 {
49 /* Register names of registers 0-SPEC0_NUM-1. */
50 static char *spec0_names[] = {
51 "vab", "ops", "cps", "cfg", "cha", "chd", "chc", "rbp", "tmc", "tmr",
52 "pc0", "pc1", "pc2", "mmu", "lru", "rsn", "rma0", "rmc0", "rma1", "rmc1",
53 "spc0", "spc1", "spc2", "iba0", "ibc0", "iba1", "ibc1", "dba", "dbc",
54 "cir", "cdr"
55 };
56 #define SPEC0_NUM ((sizeof spec0_names) / (sizeof spec0_names[0]))
57
58 /* Register names of registers 128-128+SPEC128_NUM-1. */
59 static char *spec128_names[] = {
60 "ipc", "ipa", "ipb", "q", "alu", "bp", "fc", "cr"
61 };
62 #define SPEC128_NUM ((sizeof spec128_names) / (sizeof spec128_names[0]))
63
64 /* Register names of registers 160-160+SPEC160_NUM-1. */
65 static char *spec160_names[] = {
66 "fpe", "inte", "fps", "sr163", "exop"
67 };
68 #define SPEC160_NUM ((sizeof spec160_names) / (sizeof spec160_names[0]))
69
70 if (num < SPEC0_NUM)
71 (*info->fprintf_func) (info->stream, spec0_names[num]);
72 else if (num >= 128 && num < 128 + SPEC128_NUM)
73 (*info->fprintf_func) (info->stream, spec128_names[num-128]);
74 else if (num >= 160 && num < 160 + SPEC160_NUM)
75 (*info->fprintf_func) (info->stream, spec160_names[num-160]);
76 else
77 (*info->fprintf_func) (info->stream, "sr%d", num);
78 }
79
80 /* Is an instruction with OPCODE a delayed branch? */
81 static int
82 is_delayed_branch (opcode)
83 int opcode;
84 {
85 return (opcode == 0xa8 || opcode == 0xa9 || opcode == 0xa0 || opcode == 0xa1
86 || opcode == 0xa4 || opcode == 0xa5
87 || opcode == 0xb4 || opcode == 0xb5
88 || opcode == 0xc4 || opcode == 0xc0
89 || opcode == 0xac || opcode == 0xad
90 || opcode == 0xcc);
91 }
92
93 /* Now find the four bytes of INSN and put them in *INSN{0,8,16,24}. */
94 static void
95 find_bytes_big (insn, insn0, insn8, insn16, insn24)
96 char *insn;
97 unsigned char *insn0;
98 unsigned char *insn8;
99 unsigned char *insn16;
100 unsigned char *insn24;
101 {
102 *insn24 = insn[0];
103 *insn16 = insn[1];
104 *insn8 = insn[2];
105 *insn0 = insn[3];
106 }
107
108 static void
109 find_bytes_little (insn, insn0, insn8, insn16, insn24)
110 char *insn;
111 unsigned char *insn0;
112 unsigned char *insn8;
113 unsigned char *insn16;
114 unsigned char *insn24;
115 {
116 *insn24 = insn[3];
117 *insn16 = insn[2];
118 *insn8 = insn[1];
119 *insn0 = insn[0];
120 }
121
122 typedef (*find_byte_func_type)
123 PARAMS ((char *, unsigned char *, unsigned char *,
124 unsigned char *, unsigned char *));
125
126 /* Print one instruction from MEMADDR on INFO->STREAM.
127 Return the size of the instruction (always 4 on a29k). */
128
129 static int
130 print_insn (memaddr, info)
131 bfd_vma memaddr;
132 struct disassemble_info *info;
133 {
134 /* The raw instruction. */
135 char insn[4];
136
137 /* The four bytes of the instruction. */
138 unsigned char insn24, insn16, insn8, insn0;
139
140 find_byte_func_type find_byte_func = (find_byte_func_type)info->private_data;
141
142 struct a29k_opcode CONST * opcode;
143
144 {
145 int status =
146 (*info->read_memory_func) (memaddr, (bfd_byte *) &insn[0], 4, info);
147 if (status != 0)
148 {
149 (*info->memory_error_func) (status, memaddr, info);
150 return -1;
151 }
152 }
153
154 (*find_byte_func) (insn, &insn0, &insn8, &insn16, &insn24);
155
156 printf ("%02x%02x%02x%02x ", insn24, insn16, insn8, insn0);
157
158 /* Handle the nop (aseq 0x40,gr1,gr1) specially */
159 if ((insn24==0x70) && (insn16==0x40) && (insn8==0x01) && (insn0==0x01)) {
160 (*info->fprintf_func) (info->stream,"nop");
161 return 4;
162 }
163
164 /* The opcode is always in insn24. */
165 for (opcode = &a29k_opcodes[0];
166 opcode < &a29k_opcodes[num_opcodes];
167 ++opcode)
168 {
169 if (((unsigned long) insn24 << 24) == opcode->opcode)
170 {
171 char *s;
172
173 (*info->fprintf_func) (info->stream, "%s ", opcode->name);
174 for (s = opcode->args; *s != '\0'; ++s)
175 {
176 switch (*s)
177 {
178 case 'a':
179 print_general (insn8, info);
180 break;
181
182 case 'b':
183 print_general (insn0, info);
184 break;
185
186 case 'c':
187 print_general (insn16, info);
188 break;
189
190 case 'i':
191 (*info->fprintf_func) (info->stream, "%d", insn0);
192 break;
193
194 case 'x':
195 (*info->fprintf_func) (info->stream, "0x%x", (insn16 << 8) + insn0);
196 break;
197
198 case 'h':
199 /* This used to be %x for binutils. */
200 (*info->fprintf_func) (info->stream, "0x%x",
201 (insn16 << 24) + (insn0 << 16));
202 break;
203
204 case 'X':
205 (*info->fprintf_func) (info->stream, "%d",
206 ((insn16 << 8) + insn0) | 0xffff0000);
207 break;
208
209 case 'P':
210 /* This output looks just like absolute addressing, but
211 maybe that's OK (it's what the GDB m68k and EBMON
212 a29k disassemblers do). */
213 /* All the shifting is to sign-extend it. p*/
214 (*info->print_address_func)
215 (memaddr +
216 (((int)((insn16 << 10) + (insn0 << 2)) << 14) >> 14),
217 info);
218 break;
219
220 case 'A':
221 (*info->print_address_func)
222 ((insn16 << 10) + (insn0 << 2), info);
223 break;
224
225 case 'e':
226 (*info->fprintf_func) (info->stream, "%d", insn16 >> 7);
227 break;
228
229 case 'n':
230 (*info->fprintf_func) (info->stream, "0x%x", insn16 & 0x7f);
231 break;
232
233 case 'v':
234 (*info->fprintf_func) (info->stream, "0x%x", insn16);
235 break;
236
237 case 's':
238 print_special (insn8, info);
239 break;
240
241 case 'u':
242 (*info->fprintf_func) (info->stream, "%d", insn0 >> 7);
243 break;
244
245 case 'r':
246 (*info->fprintf_func) (info->stream, "%d", (insn0 >> 4) & 7);
247 break;
248
249 case 'I':
250 if ((insn16 & 3) != 0)
251 (*info->fprintf_func) (info->stream, "%d", insn16 & 3);
252 break;
253
254 case 'd':
255 (*info->fprintf_func) (info->stream, "%d", (insn0 >> 2) & 3);
256 break;
257
258 case 'f':
259 (*info->fprintf_func) (info->stream, "%d", insn0 & 3);
260 break;
261
262 case 'F':
263 (*info->fprintf_func) (info->stream, "%d", (insn16 >> 2) & 15);
264 break;
265
266 case 'C':
267 (*info->fprintf_func) (info->stream, "%d", insn16 & 3);
268 break;
269
270 default:
271 (*info->fprintf_func) (info->stream, "%c", *s);
272 }
273 }
274
275 /* Now we look for a const,consth pair of instructions,
276 in which case we try to print the symbolic address. */
277 if (insn24 == 2) /* consth */
278 {
279 int errcode;
280 char prev_insn[4];
281 unsigned char prev_insn0, prev_insn8, prev_insn16, prev_insn24;
282
283 errcode = (*info->read_memory_func) (memaddr - 4,
284 (bfd_byte *) &prev_insn[0],
285 4,
286 info);
287 if (errcode == 0)
288 {
289 /* If it is a delayed branch, we need to look at the
290 instruction before the delayed brach to handle
291 things like
292
293 const _foo
294 call _printf
295 consth _foo
296 */
297 (*find_byte_func) (prev_insn, &prev_insn0, &prev_insn8,
298 &prev_insn16, &prev_insn24);
299 if (is_delayed_branch (prev_insn24))
300 {
301 errcode = (*info->read_memory_func)
302 (memaddr - 8, (bfd_byte *) &prev_insn[0], 4, info);
303 (*find_byte_func) (prev_insn, &prev_insn0, &prev_insn8,
304 &prev_insn16, &prev_insn24);
305 }
306 }
307
308 /* If there was a problem reading memory, then assume
309 the previous instruction was not const. */
310 if (errcode == 0)
311 {
312 /* Is it const to the same register? */
313 if (prev_insn24 == 3
314 && prev_insn8 == insn8)
315 {
316 (*info->fprintf_func) (info->stream, "\t; ");
317 (*info->print_address_func)
318 (((insn16 << 24) + (insn0 << 16)
319 + (prev_insn16 << 8) + (prev_insn0)),
320 info);
321 }
322 }
323 }
324
325 return 4;
326 }
327 }
328 /* This used to be %8x for binutils. */
329 (*info->fprintf_func)
330 (info->stream, ".word 0x%08x",
331 (insn24 << 24) + (insn16 << 16) + (insn8 << 8) + insn0);
332 return 4;
333 }
334
335 /* Disassemble an big-endian a29k instruction. */
336 int
337 print_insn_big_a29k (memaddr, info)
338 bfd_vma memaddr;
339 struct disassemble_info *info;
340 {
341 info->private_data = (PTR) find_bytes_big;
342 return print_insn (memaddr, info);
343 }
344
345 /* Disassemble a little-endian a29k instruction. */
346 int
347 print_insn_little_a29k (memaddr, info)
348 bfd_vma memaddr;
349 struct disassemble_info *info;
350 {
351 info->private_data = (PTR) find_bytes_little;
352 return print_insn (memaddr, info);
353 }
This page took 0.045105 seconds and 4 git commands to generate.