* elflink.c (elf_gc_mark_dynamic_ref_symbol): Handle -shared.
[deliverable/binutils-gdb.git] / opcodes / a29k-dis.c
1 /* Instruction printing code for the AMD 29000
2 Copyright 1990, 1993, 1994, 1995, 1998, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by Cygnus Support. Written by Jim Kingdon.
5
6 This file is part of GDB and GNU Binutils.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "dis-asm.h"
25 #include "opcode/a29k.h"
26
27 /* Print a symbolic representation of a general-purpose
28 register number NUM on STREAM.
29 NUM is a number as found in the instruction, not as found in
30 debugging symbols; it must be in the range 0-255. */
31
32 static void
33 print_general (int num, struct disassemble_info *info)
34 {
35 if (num < 128)
36 (*info->fprintf_func) (info->stream, "gr%d", num);
37 else
38 (*info->fprintf_func) (info->stream, "lr%d", num - 128);
39 }
40
41 /* Like print_general but a special-purpose register.
42
43 The mnemonics used by the AMD assembler are not quite the same
44 as the ones in the User's Manual. We use the ones that the
45 assembler uses. */
46
47 static void
48 print_special (unsigned int num, struct disassemble_info *info)
49 {
50 /* Register names of registers 0-SPEC0_NUM-1. */
51 static char *spec0_names[] =
52 {
53 "vab", "ops", "cps", "cfg", "cha", "chd", "chc", "rbp", "tmc", "tmr",
54 "pc0", "pc1", "pc2", "mmu", "lru", "rsn", "rma0", "rmc0", "rma1", "rmc1",
55 "spc0", "spc1", "spc2", "iba0", "ibc0", "iba1", "ibc1", "dba", "dbc",
56 "cir", "cdr"
57 };
58 #define SPEC0_NUM ((sizeof spec0_names) / (sizeof spec0_names[0]))
59
60 /* Register names of registers 128-128+SPEC128_NUM-1. */
61 static char *spec128_names[] =
62 {
63 "ipc", "ipa", "ipb", "q", "alu", "bp", "fc", "cr"
64 };
65 #define SPEC128_NUM ((sizeof spec128_names) / (sizeof spec128_names[0]))
66
67 /* Register names of registers 160-160+SPEC160_NUM-1. */
68 static char *spec160_names[] =
69 {
70 "fpe", "inte", "fps", "sr163", "exop"
71 };
72 #define SPEC160_NUM ((sizeof spec160_names) / (sizeof spec160_names[0]))
73
74 if (num < SPEC0_NUM)
75 (*info->fprintf_func) (info->stream, spec0_names[num]);
76 else if (num >= 128 && num < 128 + SPEC128_NUM)
77 (*info->fprintf_func) (info->stream, spec128_names[num-128]);
78 else if (num >= 160 && num < 160 + SPEC160_NUM)
79 (*info->fprintf_func) (info->stream, spec160_names[num-160]);
80 else
81 (*info->fprintf_func) (info->stream, "sr%d", num);
82 }
83
84 /* Is an instruction with OPCODE a delayed branch? */
85
86 static int
87 is_delayed_branch (int opcode)
88 {
89 return (opcode == 0xa8 || opcode == 0xa9 || opcode == 0xa0 || opcode == 0xa1
90 || opcode == 0xa4 || opcode == 0xa5
91 || opcode == 0xb4 || opcode == 0xb5
92 || opcode == 0xc4 || opcode == 0xc0
93 || opcode == 0xac || opcode == 0xad
94 || opcode == 0xcc);
95 }
96
97 /* Now find the four bytes of INSN and put them in *INSN{0,8,16,24}. */
98
99 static void
100 find_bytes_big (char *insn,
101 unsigned char *insn0,
102 unsigned char *insn8,
103 unsigned char *insn16,
104 unsigned char *insn24)
105 {
106 *insn24 = insn[0];
107 *insn16 = insn[1];
108 *insn8 = insn[2];
109 *insn0 = insn[3];
110 }
111
112 static void
113 find_bytes_little (char *insn,
114 unsigned char *insn0,
115 unsigned char *insn8,
116 unsigned char *insn16,
117 unsigned char *insn24)
118 {
119 *insn24 = insn[3];
120 *insn16 = insn[2];
121 *insn8 = insn[1];
122 *insn0 = insn[0];
123 }
124
125 typedef void (*find_byte_func_type)
126 (char *, unsigned char *, unsigned char *,
127 unsigned char *, unsigned char *);
128
129 /* Print one instruction from MEMADDR on INFO->STREAM.
130 Return the size of the instruction (always 4 on a29k). */
131
132 static int
133 print_insn (bfd_vma memaddr, struct disassemble_info *info)
134 {
135 /* The raw instruction. */
136 char insn[4];
137
138 /* The four bytes of the instruction. */
139 unsigned char insn24, insn16, insn8, insn0;
140
141 find_byte_func_type find_byte_func = (find_byte_func_type)info->private_data;
142
143 struct a29k_opcode const * opcode;
144
145 {
146 int status =
147 (*info->read_memory_func) (memaddr, (bfd_byte *) &insn[0], 4, info);
148 if (status != 0)
149 {
150 (*info->memory_error_func) (status, memaddr, info);
151 return -1;
152 }
153 }
154
155 (*find_byte_func) (insn, &insn0, &insn8, &insn16, &insn24);
156
157 printf ("%02x%02x%02x%02x ", insn24, insn16, insn8, insn0);
158
159 /* Handle the nop (aseq 0x40,gr1,gr1) specially. */
160 if ( (insn24 == 0x70)
161 && (insn16 == 0x40)
162 && (insn8 == 0x01)
163 && (insn0 == 0x01))
164 {
165 (*info->fprintf_func) (info->stream,"nop");
166 return 4;
167 }
168
169 /* The opcode is always in insn24. */
170 for (opcode = &a29k_opcodes[0];
171 opcode < &a29k_opcodes[num_opcodes];
172 ++opcode)
173 {
174 if (((unsigned long) insn24 << 24) == opcode->opcode)
175 {
176 char *s;
177
178 (*info->fprintf_func) (info->stream, "%s ", opcode->name);
179 for (s = opcode->args; *s != '\0'; ++s)
180 {
181 switch (*s)
182 {
183 case 'a':
184 print_general (insn8, info);
185 break;
186
187 case 'b':
188 print_general (insn0, info);
189 break;
190
191 case 'c':
192 print_general (insn16, info);
193 break;
194
195 case 'i':
196 (*info->fprintf_func) (info->stream, "%d", insn0);
197 break;
198
199 case 'x':
200 (*info->fprintf_func) (info->stream, "0x%x",
201 (insn16 << 8) + insn0);
202 break;
203
204 case 'h':
205 /* This used to be %x for binutils. */
206 (*info->fprintf_func) (info->stream, "0x%x",
207 (insn16 << 24) + (insn0 << 16));
208 break;
209
210 case 'X':
211 (*info->fprintf_func) (info->stream, "%d",
212 ((insn16 << 8) + insn0) | 0xffff0000);
213 break;
214
215 case 'P':
216 /* This output looks just like absolute addressing, but
217 maybe that's OK (it's what the GDB m68k and EBMON
218 a29k disassemblers do). */
219 /* All the shifting is to sign-extend it. p*/
220 (*info->print_address_func)
221 (memaddr +
222 (((int)((insn16 << 10) + (insn0 << 2)) << 14) >> 14),
223 info);
224 break;
225
226 case 'A':
227 (*info->print_address_func)
228 ((insn16 << 10) + (insn0 << 2), info);
229 break;
230
231 case 'e':
232 (*info->fprintf_func) (info->stream, "%d", insn16 >> 7);
233 break;
234
235 case 'n':
236 (*info->fprintf_func) (info->stream, "0x%x", insn16 & 0x7f);
237 break;
238
239 case 'v':
240 (*info->fprintf_func) (info->stream, "0x%x", insn16);
241 break;
242
243 case 's':
244 print_special (insn8, info);
245 break;
246
247 case 'u':
248 (*info->fprintf_func) (info->stream, "%d", insn0 >> 7);
249 break;
250
251 case 'r':
252 (*info->fprintf_func) (info->stream, "%d", (insn0 >> 4) & 7);
253 break;
254
255 case 'I':
256 if ((insn16 & 3) != 0)
257 (*info->fprintf_func) (info->stream, "%d", insn16 & 3);
258 break;
259
260 case 'd':
261 (*info->fprintf_func) (info->stream, "%d", (insn0 >> 2) & 3);
262 break;
263
264 case 'f':
265 (*info->fprintf_func) (info->stream, "%d", insn0 & 3);
266 break;
267
268 case 'F':
269 (*info->fprintf_func) (info->stream, "%d",
270 (insn16 >> 2) & 15);
271 break;
272
273 case 'C':
274 (*info->fprintf_func) (info->stream, "%d", insn16 & 3);
275 break;
276
277 default:
278 (*info->fprintf_func) (info->stream, "%c", *s);
279 }
280 }
281
282 /* Now we look for a const,consth pair of instructions,
283 in which case we try to print the symbolic address. */
284 if (insn24 == 2) /* consth */
285 {
286 int errcode;
287 char prev_insn[4];
288 unsigned char prev_insn0, prev_insn8, prev_insn16, prev_insn24;
289
290 errcode = (*info->read_memory_func) (memaddr - 4,
291 (bfd_byte *) &prev_insn[0],
292 4,
293 info);
294 if (errcode == 0)
295 {
296 /* If it is a delayed branch, we need to look at the
297 instruction before the delayed brach to handle
298 things like
299
300 const _foo
301 call _printf
302 consth _foo
303 */
304 (*find_byte_func) (prev_insn, & prev_insn0, & prev_insn8,
305 & prev_insn16, & prev_insn24);
306 if (is_delayed_branch (prev_insn24))
307 {
308 errcode = (*info->read_memory_func)
309 (memaddr - 8, (bfd_byte *) & prev_insn[0], 4, info);
310 (*find_byte_func) (prev_insn, & prev_insn0, & prev_insn8,
311 & prev_insn16, & prev_insn24);
312 }
313 }
314
315 /* If there was a problem reading memory, then assume
316 the previous instruction was not const. */
317 if (errcode == 0)
318 {
319 /* Is it const to the same register? */
320 if (prev_insn24 == 3
321 && prev_insn8 == insn8)
322 {
323 (*info->fprintf_func) (info->stream, "\t; ");
324 (*info->print_address_func)
325 (((insn16 << 24) + (insn0 << 16)
326 + (prev_insn16 << 8) + (prev_insn0)),
327 info);
328 }
329 }
330 }
331
332 return 4;
333 }
334 }
335 /* This used to be %8x for binutils. */
336 (*info->fprintf_func)
337 (info->stream, ".word 0x%08x",
338 (insn24 << 24) + (insn16 << 16) + (insn8 << 8) + insn0);
339 return 4;
340 }
341
342 /* Disassemble an big-endian a29k instruction. */
343
344 int
345 print_insn_big_a29k (bfd_vma memaddr, struct disassemble_info *info)
346 {
347 info->private_data = (PTR) find_bytes_big;
348 return print_insn (memaddr, info);
349 }
350
351 /* Disassemble a little-endian a29k instruction. */
352
353 int
354 print_insn_little_a29k (bfd_vma memaddr, struct disassemble_info *info)
355 {
356 info->private_data = (PTR) find_bytes_little;
357 return print_insn (memaddr, info);
358 }
This page took 0.03777 seconds and 4 git commands to generate.