[binutils, ARM, 11/16] New BFCSEL instruction for Armv8.1-M Mainline
[deliverable/binutils-gdb.git] / opcodes / aarch64-opc.c
1 /* aarch64-opc.c -- AArch64 opcode support.
2 Copyright (C) 2009-2019 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of the GNU opcodes library.
6
7 This library is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 It is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 #include "sysdep.h"
22 #include <assert.h>
23 #include <stdlib.h>
24 #include <stdio.h>
25 #include "bfd_stdint.h"
26 #include <stdarg.h>
27 #include <inttypes.h>
28
29 #include "opintl.h"
30 #include "libiberty.h"
31
32 #include "aarch64-opc.h"
33
34 #ifdef DEBUG_AARCH64
35 int debug_dump = FALSE;
36 #endif /* DEBUG_AARCH64 */
37
38 /* The enumeration strings associated with each value of a 5-bit SVE
39 pattern operand. A null entry indicates a reserved meaning. */
40 const char *const aarch64_sve_pattern_array[32] = {
41 /* 0-7. */
42 "pow2",
43 "vl1",
44 "vl2",
45 "vl3",
46 "vl4",
47 "vl5",
48 "vl6",
49 "vl7",
50 /* 8-15. */
51 "vl8",
52 "vl16",
53 "vl32",
54 "vl64",
55 "vl128",
56 "vl256",
57 0,
58 0,
59 /* 16-23. */
60 0,
61 0,
62 0,
63 0,
64 0,
65 0,
66 0,
67 0,
68 /* 24-31. */
69 0,
70 0,
71 0,
72 0,
73 0,
74 "mul4",
75 "mul3",
76 "all"
77 };
78
79 /* The enumeration strings associated with each value of a 4-bit SVE
80 prefetch operand. A null entry indicates a reserved meaning. */
81 const char *const aarch64_sve_prfop_array[16] = {
82 /* 0-7. */
83 "pldl1keep",
84 "pldl1strm",
85 "pldl2keep",
86 "pldl2strm",
87 "pldl3keep",
88 "pldl3strm",
89 0,
90 0,
91 /* 8-15. */
92 "pstl1keep",
93 "pstl1strm",
94 "pstl2keep",
95 "pstl2strm",
96 "pstl3keep",
97 "pstl3strm",
98 0,
99 0
100 };
101
102 /* Helper functions to determine which operand to be used to encode/decode
103 the size:Q fields for AdvSIMD instructions. */
104
105 static inline bfd_boolean
106 vector_qualifier_p (enum aarch64_opnd_qualifier qualifier)
107 {
108 return ((qualifier >= AARCH64_OPND_QLF_V_8B
109 && qualifier <= AARCH64_OPND_QLF_V_1Q) ? TRUE
110 : FALSE);
111 }
112
113 static inline bfd_boolean
114 fp_qualifier_p (enum aarch64_opnd_qualifier qualifier)
115 {
116 return ((qualifier >= AARCH64_OPND_QLF_S_B
117 && qualifier <= AARCH64_OPND_QLF_S_Q) ? TRUE
118 : FALSE);
119 }
120
121 enum data_pattern
122 {
123 DP_UNKNOWN,
124 DP_VECTOR_3SAME,
125 DP_VECTOR_LONG,
126 DP_VECTOR_WIDE,
127 DP_VECTOR_ACROSS_LANES,
128 };
129
130 static const char significant_operand_index [] =
131 {
132 0, /* DP_UNKNOWN, by default using operand 0. */
133 0, /* DP_VECTOR_3SAME */
134 1, /* DP_VECTOR_LONG */
135 2, /* DP_VECTOR_WIDE */
136 1, /* DP_VECTOR_ACROSS_LANES */
137 };
138
139 /* Given a sequence of qualifiers in QUALIFIERS, determine and return
140 the data pattern.
141 N.B. QUALIFIERS is a possible sequence of qualifiers each of which
142 corresponds to one of a sequence of operands. */
143
144 static enum data_pattern
145 get_data_pattern (const aarch64_opnd_qualifier_seq_t qualifiers)
146 {
147 if (vector_qualifier_p (qualifiers[0]) == TRUE)
148 {
149 /* e.g. v.4s, v.4s, v.4s
150 or v.4h, v.4h, v.h[3]. */
151 if (qualifiers[0] == qualifiers[1]
152 && vector_qualifier_p (qualifiers[2]) == TRUE
153 && (aarch64_get_qualifier_esize (qualifiers[0])
154 == aarch64_get_qualifier_esize (qualifiers[1]))
155 && (aarch64_get_qualifier_esize (qualifiers[0])
156 == aarch64_get_qualifier_esize (qualifiers[2])))
157 return DP_VECTOR_3SAME;
158 /* e.g. v.8h, v.8b, v.8b.
159 or v.4s, v.4h, v.h[2].
160 or v.8h, v.16b. */
161 if (vector_qualifier_p (qualifiers[1]) == TRUE
162 && aarch64_get_qualifier_esize (qualifiers[0]) != 0
163 && (aarch64_get_qualifier_esize (qualifiers[0])
164 == aarch64_get_qualifier_esize (qualifiers[1]) << 1))
165 return DP_VECTOR_LONG;
166 /* e.g. v.8h, v.8h, v.8b. */
167 if (qualifiers[0] == qualifiers[1]
168 && vector_qualifier_p (qualifiers[2]) == TRUE
169 && aarch64_get_qualifier_esize (qualifiers[0]) != 0
170 && (aarch64_get_qualifier_esize (qualifiers[0])
171 == aarch64_get_qualifier_esize (qualifiers[2]) << 1)
172 && (aarch64_get_qualifier_esize (qualifiers[0])
173 == aarch64_get_qualifier_esize (qualifiers[1])))
174 return DP_VECTOR_WIDE;
175 }
176 else if (fp_qualifier_p (qualifiers[0]) == TRUE)
177 {
178 /* e.g. SADDLV <V><d>, <Vn>.<T>. */
179 if (vector_qualifier_p (qualifiers[1]) == TRUE
180 && qualifiers[2] == AARCH64_OPND_QLF_NIL)
181 return DP_VECTOR_ACROSS_LANES;
182 }
183
184 return DP_UNKNOWN;
185 }
186
187 /* Select the operand to do the encoding/decoding of the 'size:Q' fields in
188 the AdvSIMD instructions. */
189 /* N.B. it is possible to do some optimization that doesn't call
190 get_data_pattern each time when we need to select an operand. We can
191 either buffer the caculated the result or statically generate the data,
192 however, it is not obvious that the optimization will bring significant
193 benefit. */
194
195 int
196 aarch64_select_operand_for_sizeq_field_coding (const aarch64_opcode *opcode)
197 {
198 return
199 significant_operand_index [get_data_pattern (opcode->qualifiers_list[0])];
200 }
201 \f
202 const aarch64_field fields[] =
203 {
204 { 0, 0 }, /* NIL. */
205 { 0, 4 }, /* cond2: condition in truly conditional-executed inst. */
206 { 0, 4 }, /* nzcv: flag bit specifier, encoded in the "nzcv" field. */
207 { 5, 5 }, /* defgh: d:e:f:g:h bits in AdvSIMD modified immediate. */
208 { 16, 3 }, /* abc: a:b:c bits in AdvSIMD modified immediate. */
209 { 5, 19 }, /* imm19: e.g. in CBZ. */
210 { 5, 19 }, /* immhi: e.g. in ADRP. */
211 { 29, 2 }, /* immlo: e.g. in ADRP. */
212 { 22, 2 }, /* size: in most AdvSIMD and floating-point instructions. */
213 { 10, 2 }, /* vldst_size: size field in the AdvSIMD load/store inst. */
214 { 29, 1 }, /* op: in AdvSIMD modified immediate instructions. */
215 { 30, 1 }, /* Q: in most AdvSIMD instructions. */
216 { 0, 5 }, /* Rt: in load/store instructions. */
217 { 0, 5 }, /* Rd: in many integer instructions. */
218 { 5, 5 }, /* Rn: in many integer instructions. */
219 { 10, 5 }, /* Rt2: in load/store pair instructions. */
220 { 10, 5 }, /* Ra: in fp instructions. */
221 { 5, 3 }, /* op2: in the system instructions. */
222 { 8, 4 }, /* CRm: in the system instructions. */
223 { 12, 4 }, /* CRn: in the system instructions. */
224 { 16, 3 }, /* op1: in the system instructions. */
225 { 19, 2 }, /* op0: in the system instructions. */
226 { 10, 3 }, /* imm3: in add/sub extended reg instructions. */
227 { 12, 4 }, /* cond: condition flags as a source operand. */
228 { 12, 4 }, /* opcode: in advsimd load/store instructions. */
229 { 12, 4 }, /* cmode: in advsimd modified immediate instructions. */
230 { 13, 3 }, /* asisdlso_opcode: opcode in advsimd ld/st single element. */
231 { 13, 2 }, /* len: in advsimd tbl/tbx instructions. */
232 { 16, 5 }, /* Rm: in ld/st reg offset and some integer inst. */
233 { 16, 5 }, /* Rs: in load/store exclusive instructions. */
234 { 13, 3 }, /* option: in ld/st reg offset + add/sub extended reg inst. */
235 { 12, 1 }, /* S: in load/store reg offset instructions. */
236 { 21, 2 }, /* hw: in move wide constant instructions. */
237 { 22, 2 }, /* opc: in load/store reg offset instructions. */
238 { 23, 1 }, /* opc1: in load/store reg offset instructions. */
239 { 22, 2 }, /* shift: in add/sub reg/imm shifted instructions. */
240 { 22, 2 }, /* type: floating point type field in fp data inst. */
241 { 30, 2 }, /* ldst_size: size field in ld/st reg offset inst. */
242 { 10, 6 }, /* imm6: in add/sub reg shifted instructions. */
243 { 15, 6 }, /* imm6_2: in rmif instructions. */
244 { 11, 4 }, /* imm4: in advsimd ext and advsimd ins instructions. */
245 { 0, 4 }, /* imm4_2: in rmif instructions. */
246 { 10, 4 }, /* imm4_3: in adddg/subg instructions. */
247 { 16, 5 }, /* imm5: in conditional compare (immediate) instructions. */
248 { 15, 7 }, /* imm7: in load/store pair pre/post index instructions. */
249 { 13, 8 }, /* imm8: in floating-point scalar move immediate inst. */
250 { 12, 9 }, /* imm9: in load/store pre/post index instructions. */
251 { 10, 12 }, /* imm12: in ld/st unsigned imm or add/sub shifted inst. */
252 { 5, 14 }, /* imm14: in test bit and branch instructions. */
253 { 5, 16 }, /* imm16: in exception instructions. */
254 { 0, 26 }, /* imm26: in unconditional branch instructions. */
255 { 10, 6 }, /* imms: in bitfield and logical immediate instructions. */
256 { 16, 6 }, /* immr: in bitfield and logical immediate instructions. */
257 { 16, 3 }, /* immb: in advsimd shift by immediate instructions. */
258 { 19, 4 }, /* immh: in advsimd shift by immediate instructions. */
259 { 22, 1 }, /* S: in LDRAA and LDRAB instructions. */
260 { 22, 1 }, /* N: in logical (immediate) instructions. */
261 { 11, 1 }, /* index: in ld/st inst deciding the pre/post-index. */
262 { 24, 1 }, /* index2: in ld/st pair inst deciding the pre/post-index. */
263 { 31, 1 }, /* sf: in integer data processing instructions. */
264 { 30, 1 }, /* lse_size: in LSE extension atomic instructions. */
265 { 11, 1 }, /* H: in advsimd scalar x indexed element instructions. */
266 { 21, 1 }, /* L: in advsimd scalar x indexed element instructions. */
267 { 20, 1 }, /* M: in advsimd scalar x indexed element instructions. */
268 { 31, 1 }, /* b5: in the test bit and branch instructions. */
269 { 19, 5 }, /* b40: in the test bit and branch instructions. */
270 { 10, 6 }, /* scale: in the fixed-point scalar to fp converting inst. */
271 { 4, 1 }, /* SVE_M_4: Merge/zero select, bit 4. */
272 { 14, 1 }, /* SVE_M_14: Merge/zero select, bit 14. */
273 { 16, 1 }, /* SVE_M_16: Merge/zero select, bit 16. */
274 { 17, 1 }, /* SVE_N: SVE equivalent of N. */
275 { 0, 4 }, /* SVE_Pd: p0-p15, bits [3,0]. */
276 { 10, 3 }, /* SVE_Pg3: p0-p7, bits [12,10]. */
277 { 5, 4 }, /* SVE_Pg4_5: p0-p15, bits [8,5]. */
278 { 10, 4 }, /* SVE_Pg4_10: p0-p15, bits [13,10]. */
279 { 16, 4 }, /* SVE_Pg4_16: p0-p15, bits [19,16]. */
280 { 16, 4 }, /* SVE_Pm: p0-p15, bits [19,16]. */
281 { 5, 4 }, /* SVE_Pn: p0-p15, bits [8,5]. */
282 { 0, 4 }, /* SVE_Pt: p0-p15, bits [3,0]. */
283 { 5, 5 }, /* SVE_Rm: SVE alternative position for Rm. */
284 { 16, 5 }, /* SVE_Rn: SVE alternative position for Rn. */
285 { 0, 5 }, /* SVE_Vd: Scalar SIMD&FP register, bits [4,0]. */
286 { 5, 5 }, /* SVE_Vm: Scalar SIMD&FP register, bits [9,5]. */
287 { 5, 5 }, /* SVE_Vn: Scalar SIMD&FP register, bits [9,5]. */
288 { 5, 5 }, /* SVE_Za_5: SVE vector register, bits [9,5]. */
289 { 16, 5 }, /* SVE_Za_16: SVE vector register, bits [20,16]. */
290 { 0, 5 }, /* SVE_Zd: SVE vector register. bits [4,0]. */
291 { 5, 5 }, /* SVE_Zm_5: SVE vector register, bits [9,5]. */
292 { 16, 5 }, /* SVE_Zm_16: SVE vector register, bits [20,16]. */
293 { 5, 5 }, /* SVE_Zn: SVE vector register, bits [9,5]. */
294 { 0, 5 }, /* SVE_Zt: SVE vector register, bits [4,0]. */
295 { 5, 1 }, /* SVE_i1: single-bit immediate. */
296 { 22, 1 }, /* SVE_i3h: high bit of 3-bit immediate. */
297 { 16, 3 }, /* SVE_imm3: 3-bit immediate field. */
298 { 16, 4 }, /* SVE_imm4: 4-bit immediate field. */
299 { 5, 5 }, /* SVE_imm5: 5-bit immediate field. */
300 { 16, 5 }, /* SVE_imm5b: secondary 5-bit immediate field. */
301 { 16, 6 }, /* SVE_imm6: 6-bit immediate field. */
302 { 14, 7 }, /* SVE_imm7: 7-bit immediate field. */
303 { 5, 8 }, /* SVE_imm8: 8-bit immediate field. */
304 { 5, 9 }, /* SVE_imm9: 9-bit immediate field. */
305 { 11, 6 }, /* SVE_immr: SVE equivalent of immr. */
306 { 5, 6 }, /* SVE_imms: SVE equivalent of imms. */
307 { 10, 2 }, /* SVE_msz: 2-bit shift amount for ADR. */
308 { 5, 5 }, /* SVE_pattern: vector pattern enumeration. */
309 { 0, 4 }, /* SVE_prfop: prefetch operation for SVE PRF[BHWD]. */
310 { 16, 1 }, /* SVE_rot1: 1-bit rotation amount. */
311 { 10, 2 }, /* SVE_rot2: 2-bit rotation amount. */
312 { 22, 1 }, /* SVE_sz: 1-bit element size select. */
313 { 16, 4 }, /* SVE_tsz: triangular size select. */
314 { 22, 2 }, /* SVE_tszh: triangular size select high, bits [23,22]. */
315 { 8, 2 }, /* SVE_tszl_8: triangular size select low, bits [9,8]. */
316 { 19, 2 }, /* SVE_tszl_19: triangular size select low, bits [20,19]. */
317 { 14, 1 }, /* SVE_xs_14: UXTW/SXTW select (bit 14). */
318 { 22, 1 }, /* SVE_xs_22: UXTW/SXTW select (bit 22). */
319 { 11, 2 }, /* rotate1: FCMLA immediate rotate. */
320 { 13, 2 }, /* rotate2: Indexed element FCMLA immediate rotate. */
321 { 12, 1 }, /* rotate3: FCADD immediate rotate. */
322 { 12, 2 }, /* SM3: Indexed element SM3 2 bits index immediate. */
323 { 22, 1 }, /* sz: 1-bit element size select. */
324 };
325
326 enum aarch64_operand_class
327 aarch64_get_operand_class (enum aarch64_opnd type)
328 {
329 return aarch64_operands[type].op_class;
330 }
331
332 const char *
333 aarch64_get_operand_name (enum aarch64_opnd type)
334 {
335 return aarch64_operands[type].name;
336 }
337
338 /* Get operand description string.
339 This is usually for the diagnosis purpose. */
340 const char *
341 aarch64_get_operand_desc (enum aarch64_opnd type)
342 {
343 return aarch64_operands[type].desc;
344 }
345
346 /* Table of all conditional affixes. */
347 const aarch64_cond aarch64_conds[16] =
348 {
349 {{"eq", "none"}, 0x0},
350 {{"ne", "any"}, 0x1},
351 {{"cs", "hs", "nlast"}, 0x2},
352 {{"cc", "lo", "ul", "last"}, 0x3},
353 {{"mi", "first"}, 0x4},
354 {{"pl", "nfrst"}, 0x5},
355 {{"vs"}, 0x6},
356 {{"vc"}, 0x7},
357 {{"hi", "pmore"}, 0x8},
358 {{"ls", "plast"}, 0x9},
359 {{"ge", "tcont"}, 0xa},
360 {{"lt", "tstop"}, 0xb},
361 {{"gt"}, 0xc},
362 {{"le"}, 0xd},
363 {{"al"}, 0xe},
364 {{"nv"}, 0xf},
365 };
366
367 const aarch64_cond *
368 get_cond_from_value (aarch64_insn value)
369 {
370 assert (value < 16);
371 return &aarch64_conds[(unsigned int) value];
372 }
373
374 const aarch64_cond *
375 get_inverted_cond (const aarch64_cond *cond)
376 {
377 return &aarch64_conds[cond->value ^ 0x1];
378 }
379
380 /* Table describing the operand extension/shifting operators; indexed by
381 enum aarch64_modifier_kind.
382
383 The value column provides the most common values for encoding modifiers,
384 which enables table-driven encoding/decoding for the modifiers. */
385 const struct aarch64_name_value_pair aarch64_operand_modifiers [] =
386 {
387 {"none", 0x0},
388 {"msl", 0x0},
389 {"ror", 0x3},
390 {"asr", 0x2},
391 {"lsr", 0x1},
392 {"lsl", 0x0},
393 {"uxtb", 0x0},
394 {"uxth", 0x1},
395 {"uxtw", 0x2},
396 {"uxtx", 0x3},
397 {"sxtb", 0x4},
398 {"sxth", 0x5},
399 {"sxtw", 0x6},
400 {"sxtx", 0x7},
401 {"mul", 0x0},
402 {"mul vl", 0x0},
403 {NULL, 0},
404 };
405
406 enum aarch64_modifier_kind
407 aarch64_get_operand_modifier (const struct aarch64_name_value_pair *desc)
408 {
409 return desc - aarch64_operand_modifiers;
410 }
411
412 aarch64_insn
413 aarch64_get_operand_modifier_value (enum aarch64_modifier_kind kind)
414 {
415 return aarch64_operand_modifiers[kind].value;
416 }
417
418 enum aarch64_modifier_kind
419 aarch64_get_operand_modifier_from_value (aarch64_insn value,
420 bfd_boolean extend_p)
421 {
422 if (extend_p == TRUE)
423 return AARCH64_MOD_UXTB + value;
424 else
425 return AARCH64_MOD_LSL - value;
426 }
427
428 bfd_boolean
429 aarch64_extend_operator_p (enum aarch64_modifier_kind kind)
430 {
431 return (kind > AARCH64_MOD_LSL && kind <= AARCH64_MOD_SXTX)
432 ? TRUE : FALSE;
433 }
434
435 static inline bfd_boolean
436 aarch64_shift_operator_p (enum aarch64_modifier_kind kind)
437 {
438 return (kind >= AARCH64_MOD_ROR && kind <= AARCH64_MOD_LSL)
439 ? TRUE : FALSE;
440 }
441
442 const struct aarch64_name_value_pair aarch64_barrier_options[16] =
443 {
444 { "#0x00", 0x0 },
445 { "oshld", 0x1 },
446 { "oshst", 0x2 },
447 { "osh", 0x3 },
448 { "#0x04", 0x4 },
449 { "nshld", 0x5 },
450 { "nshst", 0x6 },
451 { "nsh", 0x7 },
452 { "#0x08", 0x8 },
453 { "ishld", 0x9 },
454 { "ishst", 0xa },
455 { "ish", 0xb },
456 { "#0x0c", 0xc },
457 { "ld", 0xd },
458 { "st", 0xe },
459 { "sy", 0xf },
460 };
461
462 /* Table describing the operands supported by the aliases of the HINT
463 instruction.
464
465 The name column is the operand that is accepted for the alias. The value
466 column is the hint number of the alias. The list of operands is terminated
467 by NULL in the name column. */
468
469 const struct aarch64_name_value_pair aarch64_hint_options[] =
470 {
471 /* BTI. This is also the F_DEFAULT entry for AARCH64_OPND_BTI_TARGET. */
472 { " ", HINT_ENCODE (HINT_OPD_F_NOPRINT, 0x20) },
473 { "csync", HINT_OPD_CSYNC }, /* PSB CSYNC. */
474 { "c", HINT_OPD_C }, /* BTI C. */
475 { "j", HINT_OPD_J }, /* BTI J. */
476 { "jc", HINT_OPD_JC }, /* BTI JC. */
477 { NULL, HINT_OPD_NULL },
478 };
479
480 /* op -> op: load = 0 instruction = 1 store = 2
481 l -> level: 1-3
482 t -> temporal: temporal (retained) = 0 non-temporal (streaming) = 1 */
483 #define B(op,l,t) (((op) << 3) | (((l) - 1) << 1) | (t))
484 const struct aarch64_name_value_pair aarch64_prfops[32] =
485 {
486 { "pldl1keep", B(0, 1, 0) },
487 { "pldl1strm", B(0, 1, 1) },
488 { "pldl2keep", B(0, 2, 0) },
489 { "pldl2strm", B(0, 2, 1) },
490 { "pldl3keep", B(0, 3, 0) },
491 { "pldl3strm", B(0, 3, 1) },
492 { NULL, 0x06 },
493 { NULL, 0x07 },
494 { "plil1keep", B(1, 1, 0) },
495 { "plil1strm", B(1, 1, 1) },
496 { "plil2keep", B(1, 2, 0) },
497 { "plil2strm", B(1, 2, 1) },
498 { "plil3keep", B(1, 3, 0) },
499 { "plil3strm", B(1, 3, 1) },
500 { NULL, 0x0e },
501 { NULL, 0x0f },
502 { "pstl1keep", B(2, 1, 0) },
503 { "pstl1strm", B(2, 1, 1) },
504 { "pstl2keep", B(2, 2, 0) },
505 { "pstl2strm", B(2, 2, 1) },
506 { "pstl3keep", B(2, 3, 0) },
507 { "pstl3strm", B(2, 3, 1) },
508 { NULL, 0x16 },
509 { NULL, 0x17 },
510 { NULL, 0x18 },
511 { NULL, 0x19 },
512 { NULL, 0x1a },
513 { NULL, 0x1b },
514 { NULL, 0x1c },
515 { NULL, 0x1d },
516 { NULL, 0x1e },
517 { NULL, 0x1f },
518 };
519 #undef B
520 \f
521 /* Utilities on value constraint. */
522
523 static inline int
524 value_in_range_p (int64_t value, int low, int high)
525 {
526 return (value >= low && value <= high) ? 1 : 0;
527 }
528
529 /* Return true if VALUE is a multiple of ALIGN. */
530 static inline int
531 value_aligned_p (int64_t value, int align)
532 {
533 return (value % align) == 0;
534 }
535
536 /* A signed value fits in a field. */
537 static inline int
538 value_fit_signed_field_p (int64_t value, unsigned width)
539 {
540 assert (width < 32);
541 if (width < sizeof (value) * 8)
542 {
543 int64_t lim = (int64_t)1 << (width - 1);
544 if (value >= -lim && value < lim)
545 return 1;
546 }
547 return 0;
548 }
549
550 /* An unsigned value fits in a field. */
551 static inline int
552 value_fit_unsigned_field_p (int64_t value, unsigned width)
553 {
554 assert (width < 32);
555 if (width < sizeof (value) * 8)
556 {
557 int64_t lim = (int64_t)1 << width;
558 if (value >= 0 && value < lim)
559 return 1;
560 }
561 return 0;
562 }
563
564 /* Return 1 if OPERAND is SP or WSP. */
565 int
566 aarch64_stack_pointer_p (const aarch64_opnd_info *operand)
567 {
568 return ((aarch64_get_operand_class (operand->type)
569 == AARCH64_OPND_CLASS_INT_REG)
570 && operand_maybe_stack_pointer (aarch64_operands + operand->type)
571 && operand->reg.regno == 31);
572 }
573
574 /* Return 1 if OPERAND is XZR or WZP. */
575 int
576 aarch64_zero_register_p (const aarch64_opnd_info *operand)
577 {
578 return ((aarch64_get_operand_class (operand->type)
579 == AARCH64_OPND_CLASS_INT_REG)
580 && !operand_maybe_stack_pointer (aarch64_operands + operand->type)
581 && operand->reg.regno == 31);
582 }
583
584 /* Return true if the operand *OPERAND that has the operand code
585 OPERAND->TYPE and been qualified by OPERAND->QUALIFIER can be also
586 qualified by the qualifier TARGET. */
587
588 static inline int
589 operand_also_qualified_p (const struct aarch64_opnd_info *operand,
590 aarch64_opnd_qualifier_t target)
591 {
592 switch (operand->qualifier)
593 {
594 case AARCH64_OPND_QLF_W:
595 if (target == AARCH64_OPND_QLF_WSP && aarch64_stack_pointer_p (operand))
596 return 1;
597 break;
598 case AARCH64_OPND_QLF_X:
599 if (target == AARCH64_OPND_QLF_SP && aarch64_stack_pointer_p (operand))
600 return 1;
601 break;
602 case AARCH64_OPND_QLF_WSP:
603 if (target == AARCH64_OPND_QLF_W
604 && operand_maybe_stack_pointer (aarch64_operands + operand->type))
605 return 1;
606 break;
607 case AARCH64_OPND_QLF_SP:
608 if (target == AARCH64_OPND_QLF_X
609 && operand_maybe_stack_pointer (aarch64_operands + operand->type))
610 return 1;
611 break;
612 default:
613 break;
614 }
615
616 return 0;
617 }
618
619 /* Given qualifier sequence list QSEQ_LIST and the known qualifier KNOWN_QLF
620 for operand KNOWN_IDX, return the expected qualifier for operand IDX.
621
622 Return NIL if more than one expected qualifiers are found. */
623
624 aarch64_opnd_qualifier_t
625 aarch64_get_expected_qualifier (const aarch64_opnd_qualifier_seq_t *qseq_list,
626 int idx,
627 const aarch64_opnd_qualifier_t known_qlf,
628 int known_idx)
629 {
630 int i, saved_i;
631
632 /* Special case.
633
634 When the known qualifier is NIL, we have to assume that there is only
635 one qualifier sequence in the *QSEQ_LIST and return the corresponding
636 qualifier directly. One scenario is that for instruction
637 PRFM <prfop>, [<Xn|SP>, #:lo12:<symbol>]
638 which has only one possible valid qualifier sequence
639 NIL, S_D
640 the caller may pass NIL in KNOWN_QLF to obtain S_D so that it can
641 determine the correct relocation type (i.e. LDST64_LO12) for PRFM.
642
643 Because the qualifier NIL has dual roles in the qualifier sequence:
644 it can mean no qualifier for the operand, or the qualifer sequence is
645 not in use (when all qualifiers in the sequence are NILs), we have to
646 handle this special case here. */
647 if (known_qlf == AARCH64_OPND_NIL)
648 {
649 assert (qseq_list[0][known_idx] == AARCH64_OPND_NIL);
650 return qseq_list[0][idx];
651 }
652
653 for (i = 0, saved_i = -1; i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
654 {
655 if (qseq_list[i][known_idx] == known_qlf)
656 {
657 if (saved_i != -1)
658 /* More than one sequences are found to have KNOWN_QLF at
659 KNOWN_IDX. */
660 return AARCH64_OPND_NIL;
661 saved_i = i;
662 }
663 }
664
665 return qseq_list[saved_i][idx];
666 }
667
668 enum operand_qualifier_kind
669 {
670 OQK_NIL,
671 OQK_OPD_VARIANT,
672 OQK_VALUE_IN_RANGE,
673 OQK_MISC,
674 };
675
676 /* Operand qualifier description. */
677 struct operand_qualifier_data
678 {
679 /* The usage of the three data fields depends on the qualifier kind. */
680 int data0;
681 int data1;
682 int data2;
683 /* Description. */
684 const char *desc;
685 /* Kind. */
686 enum operand_qualifier_kind kind;
687 };
688
689 /* Indexed by the operand qualifier enumerators. */
690 struct operand_qualifier_data aarch64_opnd_qualifiers[] =
691 {
692 {0, 0, 0, "NIL", OQK_NIL},
693
694 /* Operand variant qualifiers.
695 First 3 fields:
696 element size, number of elements and common value for encoding. */
697
698 {4, 1, 0x0, "w", OQK_OPD_VARIANT},
699 {8, 1, 0x1, "x", OQK_OPD_VARIANT},
700 {4, 1, 0x0, "wsp", OQK_OPD_VARIANT},
701 {8, 1, 0x1, "sp", OQK_OPD_VARIANT},
702
703 {1, 1, 0x0, "b", OQK_OPD_VARIANT},
704 {2, 1, 0x1, "h", OQK_OPD_VARIANT},
705 {4, 1, 0x2, "s", OQK_OPD_VARIANT},
706 {8, 1, 0x3, "d", OQK_OPD_VARIANT},
707 {16, 1, 0x4, "q", OQK_OPD_VARIANT},
708 {4, 1, 0x0, "4b", OQK_OPD_VARIANT},
709
710 {1, 4, 0x0, "4b", OQK_OPD_VARIANT},
711 {1, 8, 0x0, "8b", OQK_OPD_VARIANT},
712 {1, 16, 0x1, "16b", OQK_OPD_VARIANT},
713 {2, 2, 0x0, "2h", OQK_OPD_VARIANT},
714 {2, 4, 0x2, "4h", OQK_OPD_VARIANT},
715 {2, 8, 0x3, "8h", OQK_OPD_VARIANT},
716 {4, 2, 0x4, "2s", OQK_OPD_VARIANT},
717 {4, 4, 0x5, "4s", OQK_OPD_VARIANT},
718 {8, 1, 0x6, "1d", OQK_OPD_VARIANT},
719 {8, 2, 0x7, "2d", OQK_OPD_VARIANT},
720 {16, 1, 0x8, "1q", OQK_OPD_VARIANT},
721
722 {0, 0, 0, "z", OQK_OPD_VARIANT},
723 {0, 0, 0, "m", OQK_OPD_VARIANT},
724
725 /* Qualifier for scaled immediate for Tag granule (stg,st2g,etc). */
726 {16, 0, 0, "tag", OQK_OPD_VARIANT},
727
728 /* Qualifiers constraining the value range.
729 First 3 fields:
730 Lower bound, higher bound, unused. */
731
732 {0, 15, 0, "CR", OQK_VALUE_IN_RANGE},
733 {0, 7, 0, "imm_0_7" , OQK_VALUE_IN_RANGE},
734 {0, 15, 0, "imm_0_15", OQK_VALUE_IN_RANGE},
735 {0, 31, 0, "imm_0_31", OQK_VALUE_IN_RANGE},
736 {0, 63, 0, "imm_0_63", OQK_VALUE_IN_RANGE},
737 {1, 32, 0, "imm_1_32", OQK_VALUE_IN_RANGE},
738 {1, 64, 0, "imm_1_64", OQK_VALUE_IN_RANGE},
739
740 /* Qualifiers for miscellaneous purpose.
741 First 3 fields:
742 unused, unused and unused. */
743
744 {0, 0, 0, "lsl", 0},
745 {0, 0, 0, "msl", 0},
746
747 {0, 0, 0, "retrieving", 0},
748 };
749
750 static inline bfd_boolean
751 operand_variant_qualifier_p (aarch64_opnd_qualifier_t qualifier)
752 {
753 return (aarch64_opnd_qualifiers[qualifier].kind == OQK_OPD_VARIANT)
754 ? TRUE : FALSE;
755 }
756
757 static inline bfd_boolean
758 qualifier_value_in_range_constraint_p (aarch64_opnd_qualifier_t qualifier)
759 {
760 return (aarch64_opnd_qualifiers[qualifier].kind == OQK_VALUE_IN_RANGE)
761 ? TRUE : FALSE;
762 }
763
764 const char*
765 aarch64_get_qualifier_name (aarch64_opnd_qualifier_t qualifier)
766 {
767 return aarch64_opnd_qualifiers[qualifier].desc;
768 }
769
770 /* Given an operand qualifier, return the expected data element size
771 of a qualified operand. */
772 unsigned char
773 aarch64_get_qualifier_esize (aarch64_opnd_qualifier_t qualifier)
774 {
775 assert (operand_variant_qualifier_p (qualifier) == TRUE);
776 return aarch64_opnd_qualifiers[qualifier].data0;
777 }
778
779 unsigned char
780 aarch64_get_qualifier_nelem (aarch64_opnd_qualifier_t qualifier)
781 {
782 assert (operand_variant_qualifier_p (qualifier) == TRUE);
783 return aarch64_opnd_qualifiers[qualifier].data1;
784 }
785
786 aarch64_insn
787 aarch64_get_qualifier_standard_value (aarch64_opnd_qualifier_t qualifier)
788 {
789 assert (operand_variant_qualifier_p (qualifier) == TRUE);
790 return aarch64_opnd_qualifiers[qualifier].data2;
791 }
792
793 static int
794 get_lower_bound (aarch64_opnd_qualifier_t qualifier)
795 {
796 assert (qualifier_value_in_range_constraint_p (qualifier) == TRUE);
797 return aarch64_opnd_qualifiers[qualifier].data0;
798 }
799
800 static int
801 get_upper_bound (aarch64_opnd_qualifier_t qualifier)
802 {
803 assert (qualifier_value_in_range_constraint_p (qualifier) == TRUE);
804 return aarch64_opnd_qualifiers[qualifier].data1;
805 }
806
807 #ifdef DEBUG_AARCH64
808 void
809 aarch64_verbose (const char *str, ...)
810 {
811 va_list ap;
812 va_start (ap, str);
813 printf ("#### ");
814 vprintf (str, ap);
815 printf ("\n");
816 va_end (ap);
817 }
818
819 static inline void
820 dump_qualifier_sequence (const aarch64_opnd_qualifier_t *qualifier)
821 {
822 int i;
823 printf ("#### \t");
824 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i, ++qualifier)
825 printf ("%s,", aarch64_get_qualifier_name (*qualifier));
826 printf ("\n");
827 }
828
829 static void
830 dump_match_qualifiers (const struct aarch64_opnd_info *opnd,
831 const aarch64_opnd_qualifier_t *qualifier)
832 {
833 int i;
834 aarch64_opnd_qualifier_t curr[AARCH64_MAX_OPND_NUM];
835
836 aarch64_verbose ("dump_match_qualifiers:");
837 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
838 curr[i] = opnd[i].qualifier;
839 dump_qualifier_sequence (curr);
840 aarch64_verbose ("against");
841 dump_qualifier_sequence (qualifier);
842 }
843 #endif /* DEBUG_AARCH64 */
844
845 /* This function checks if the given instruction INSN is a destructive
846 instruction based on the usage of the registers. It does not recognize
847 unary destructive instructions. */
848 bfd_boolean
849 aarch64_is_destructive_by_operands (const aarch64_opcode *opcode)
850 {
851 int i = 0;
852 const enum aarch64_opnd *opnds = opcode->operands;
853
854 if (opnds[0] == AARCH64_OPND_NIL)
855 return FALSE;
856
857 while (opnds[++i] != AARCH64_OPND_NIL)
858 if (opnds[i] == opnds[0])
859 return TRUE;
860
861 return FALSE;
862 }
863
864 /* TODO improve this, we can have an extra field at the runtime to
865 store the number of operands rather than calculating it every time. */
866
867 int
868 aarch64_num_of_operands (const aarch64_opcode *opcode)
869 {
870 int i = 0;
871 const enum aarch64_opnd *opnds = opcode->operands;
872 while (opnds[i++] != AARCH64_OPND_NIL)
873 ;
874 --i;
875 assert (i >= 0 && i <= AARCH64_MAX_OPND_NUM);
876 return i;
877 }
878
879 /* Find the best matched qualifier sequence in *QUALIFIERS_LIST for INST.
880 If succeeds, fill the found sequence in *RET, return 1; otherwise return 0.
881
882 N.B. on the entry, it is very likely that only some operands in *INST
883 have had their qualifiers been established.
884
885 If STOP_AT is not -1, the function will only try to match
886 the qualifier sequence for operands before and including the operand
887 of index STOP_AT; and on success *RET will only be filled with the first
888 (STOP_AT+1) qualifiers.
889
890 A couple examples of the matching algorithm:
891
892 X,W,NIL should match
893 X,W,NIL
894
895 NIL,NIL should match
896 X ,NIL
897
898 Apart from serving the main encoding routine, this can also be called
899 during or after the operand decoding. */
900
901 int
902 aarch64_find_best_match (const aarch64_inst *inst,
903 const aarch64_opnd_qualifier_seq_t *qualifiers_list,
904 int stop_at, aarch64_opnd_qualifier_t *ret)
905 {
906 int found = 0;
907 int i, num_opnds;
908 const aarch64_opnd_qualifier_t *qualifiers;
909
910 num_opnds = aarch64_num_of_operands (inst->opcode);
911 if (num_opnds == 0)
912 {
913 DEBUG_TRACE ("SUCCEED: no operand");
914 return 1;
915 }
916
917 if (stop_at < 0 || stop_at >= num_opnds)
918 stop_at = num_opnds - 1;
919
920 /* For each pattern. */
921 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
922 {
923 int j;
924 qualifiers = *qualifiers_list;
925
926 /* Start as positive. */
927 found = 1;
928
929 DEBUG_TRACE ("%d", i);
930 #ifdef DEBUG_AARCH64
931 if (debug_dump)
932 dump_match_qualifiers (inst->operands, qualifiers);
933 #endif
934
935 /* Most opcodes has much fewer patterns in the list.
936 First NIL qualifier indicates the end in the list. */
937 if (empty_qualifier_sequence_p (qualifiers) == TRUE)
938 {
939 DEBUG_TRACE_IF (i == 0, "SUCCEED: empty qualifier list");
940 if (i)
941 found = 0;
942 break;
943 }
944
945 for (j = 0; j < num_opnds && j <= stop_at; ++j, ++qualifiers)
946 {
947 if (inst->operands[j].qualifier == AARCH64_OPND_QLF_NIL)
948 {
949 /* Either the operand does not have qualifier, or the qualifier
950 for the operand needs to be deduced from the qualifier
951 sequence.
952 In the latter case, any constraint checking related with
953 the obtained qualifier should be done later in
954 operand_general_constraint_met_p. */
955 continue;
956 }
957 else if (*qualifiers != inst->operands[j].qualifier)
958 {
959 /* Unless the target qualifier can also qualify the operand
960 (which has already had a non-nil qualifier), non-equal
961 qualifiers are generally un-matched. */
962 if (operand_also_qualified_p (inst->operands + j, *qualifiers))
963 continue;
964 else
965 {
966 found = 0;
967 break;
968 }
969 }
970 else
971 continue; /* Equal qualifiers are certainly matched. */
972 }
973
974 /* Qualifiers established. */
975 if (found == 1)
976 break;
977 }
978
979 if (found == 1)
980 {
981 /* Fill the result in *RET. */
982 int j;
983 qualifiers = *qualifiers_list;
984
985 DEBUG_TRACE ("complete qualifiers using list %d", i);
986 #ifdef DEBUG_AARCH64
987 if (debug_dump)
988 dump_qualifier_sequence (qualifiers);
989 #endif
990
991 for (j = 0; j <= stop_at; ++j, ++qualifiers)
992 ret[j] = *qualifiers;
993 for (; j < AARCH64_MAX_OPND_NUM; ++j)
994 ret[j] = AARCH64_OPND_QLF_NIL;
995
996 DEBUG_TRACE ("SUCCESS");
997 return 1;
998 }
999
1000 DEBUG_TRACE ("FAIL");
1001 return 0;
1002 }
1003
1004 /* Operand qualifier matching and resolving.
1005
1006 Return 1 if the operand qualifier(s) in *INST match one of the qualifier
1007 sequences in INST->OPCODE->qualifiers_list; otherwise return 0.
1008
1009 if UPDATE_P == TRUE, update the qualifier(s) in *INST after the matching
1010 succeeds. */
1011
1012 static int
1013 match_operands_qualifier (aarch64_inst *inst, bfd_boolean update_p)
1014 {
1015 int i, nops;
1016 aarch64_opnd_qualifier_seq_t qualifiers;
1017
1018 if (!aarch64_find_best_match (inst, inst->opcode->qualifiers_list, -1,
1019 qualifiers))
1020 {
1021 DEBUG_TRACE ("matching FAIL");
1022 return 0;
1023 }
1024
1025 if (inst->opcode->flags & F_STRICT)
1026 {
1027 /* Require an exact qualifier match, even for NIL qualifiers. */
1028 nops = aarch64_num_of_operands (inst->opcode);
1029 for (i = 0; i < nops; ++i)
1030 if (inst->operands[i].qualifier != qualifiers[i])
1031 return FALSE;
1032 }
1033
1034 /* Update the qualifiers. */
1035 if (update_p == TRUE)
1036 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
1037 {
1038 if (inst->opcode->operands[i] == AARCH64_OPND_NIL)
1039 break;
1040 DEBUG_TRACE_IF (inst->operands[i].qualifier != qualifiers[i],
1041 "update %s with %s for operand %d",
1042 aarch64_get_qualifier_name (inst->operands[i].qualifier),
1043 aarch64_get_qualifier_name (qualifiers[i]), i);
1044 inst->operands[i].qualifier = qualifiers[i];
1045 }
1046
1047 DEBUG_TRACE ("matching SUCCESS");
1048 return 1;
1049 }
1050
1051 /* Return TRUE if VALUE is a wide constant that can be moved into a general
1052 register by MOVZ.
1053
1054 IS32 indicates whether value is a 32-bit immediate or not.
1055 If SHIFT_AMOUNT is not NULL, on the return of TRUE, the logical left shift
1056 amount will be returned in *SHIFT_AMOUNT. */
1057
1058 bfd_boolean
1059 aarch64_wide_constant_p (int64_t value, int is32, unsigned int *shift_amount)
1060 {
1061 int amount;
1062
1063 DEBUG_TRACE ("enter with 0x%" PRIx64 "(%" PRIi64 ")", value, value);
1064
1065 if (is32)
1066 {
1067 /* Allow all zeros or all ones in top 32-bits, so that
1068 32-bit constant expressions like ~0x80000000 are
1069 permitted. */
1070 uint64_t ext = value;
1071 if (ext >> 32 != 0 && ext >> 32 != (uint64_t) 0xffffffff)
1072 /* Immediate out of range. */
1073 return FALSE;
1074 value &= (int64_t) 0xffffffff;
1075 }
1076
1077 /* first, try movz then movn */
1078 amount = -1;
1079 if ((value & ((int64_t) 0xffff << 0)) == value)
1080 amount = 0;
1081 else if ((value & ((int64_t) 0xffff << 16)) == value)
1082 amount = 16;
1083 else if (!is32 && (value & ((int64_t) 0xffff << 32)) == value)
1084 amount = 32;
1085 else if (!is32 && (value & ((int64_t) 0xffff << 48)) == value)
1086 amount = 48;
1087
1088 if (amount == -1)
1089 {
1090 DEBUG_TRACE ("exit FALSE with 0x%" PRIx64 "(%" PRIi64 ")", value, value);
1091 return FALSE;
1092 }
1093
1094 if (shift_amount != NULL)
1095 *shift_amount = amount;
1096
1097 DEBUG_TRACE ("exit TRUE with amount %d", amount);
1098
1099 return TRUE;
1100 }
1101
1102 /* Build the accepted values for immediate logical SIMD instructions.
1103
1104 The standard encodings of the immediate value are:
1105 N imms immr SIMD size R S
1106 1 ssssss rrrrrr 64 UInt(rrrrrr) UInt(ssssss)
1107 0 0sssss 0rrrrr 32 UInt(rrrrr) UInt(sssss)
1108 0 10ssss 00rrrr 16 UInt(rrrr) UInt(ssss)
1109 0 110sss 000rrr 8 UInt(rrr) UInt(sss)
1110 0 1110ss 0000rr 4 UInt(rr) UInt(ss)
1111 0 11110s 00000r 2 UInt(r) UInt(s)
1112 where all-ones value of S is reserved.
1113
1114 Let's call E the SIMD size.
1115
1116 The immediate value is: S+1 bits '1' rotated to the right by R.
1117
1118 The total of valid encodings is 64*63 + 32*31 + ... + 2*1 = 5334
1119 (remember S != E - 1). */
1120
1121 #define TOTAL_IMM_NB 5334
1122
1123 typedef struct
1124 {
1125 uint64_t imm;
1126 aarch64_insn encoding;
1127 } simd_imm_encoding;
1128
1129 static simd_imm_encoding simd_immediates[TOTAL_IMM_NB];
1130
1131 static int
1132 simd_imm_encoding_cmp(const void *i1, const void *i2)
1133 {
1134 const simd_imm_encoding *imm1 = (const simd_imm_encoding *)i1;
1135 const simd_imm_encoding *imm2 = (const simd_imm_encoding *)i2;
1136
1137 if (imm1->imm < imm2->imm)
1138 return -1;
1139 if (imm1->imm > imm2->imm)
1140 return +1;
1141 return 0;
1142 }
1143
1144 /* immediate bitfield standard encoding
1145 imm13<12> imm13<5:0> imm13<11:6> SIMD size R S
1146 1 ssssss rrrrrr 64 rrrrrr ssssss
1147 0 0sssss 0rrrrr 32 rrrrr sssss
1148 0 10ssss 00rrrr 16 rrrr ssss
1149 0 110sss 000rrr 8 rrr sss
1150 0 1110ss 0000rr 4 rr ss
1151 0 11110s 00000r 2 r s */
1152 static inline int
1153 encode_immediate_bitfield (int is64, uint32_t s, uint32_t r)
1154 {
1155 return (is64 << 12) | (r << 6) | s;
1156 }
1157
1158 static void
1159 build_immediate_table (void)
1160 {
1161 uint32_t log_e, e, s, r, s_mask;
1162 uint64_t mask, imm;
1163 int nb_imms;
1164 int is64;
1165
1166 nb_imms = 0;
1167 for (log_e = 1; log_e <= 6; log_e++)
1168 {
1169 /* Get element size. */
1170 e = 1u << log_e;
1171 if (log_e == 6)
1172 {
1173 is64 = 1;
1174 mask = 0xffffffffffffffffull;
1175 s_mask = 0;
1176 }
1177 else
1178 {
1179 is64 = 0;
1180 mask = (1ull << e) - 1;
1181 /* log_e s_mask
1182 1 ((1 << 4) - 1) << 2 = 111100
1183 2 ((1 << 3) - 1) << 3 = 111000
1184 3 ((1 << 2) - 1) << 4 = 110000
1185 4 ((1 << 1) - 1) << 5 = 100000
1186 5 ((1 << 0) - 1) << 6 = 000000 */
1187 s_mask = ((1u << (5 - log_e)) - 1) << (log_e + 1);
1188 }
1189 for (s = 0; s < e - 1; s++)
1190 for (r = 0; r < e; r++)
1191 {
1192 /* s+1 consecutive bits to 1 (s < 63) */
1193 imm = (1ull << (s + 1)) - 1;
1194 /* rotate right by r */
1195 if (r != 0)
1196 imm = (imm >> r) | ((imm << (e - r)) & mask);
1197 /* replicate the constant depending on SIMD size */
1198 switch (log_e)
1199 {
1200 case 1: imm = (imm << 2) | imm;
1201 /* Fall through. */
1202 case 2: imm = (imm << 4) | imm;
1203 /* Fall through. */
1204 case 3: imm = (imm << 8) | imm;
1205 /* Fall through. */
1206 case 4: imm = (imm << 16) | imm;
1207 /* Fall through. */
1208 case 5: imm = (imm << 32) | imm;
1209 /* Fall through. */
1210 case 6: break;
1211 default: abort ();
1212 }
1213 simd_immediates[nb_imms].imm = imm;
1214 simd_immediates[nb_imms].encoding =
1215 encode_immediate_bitfield(is64, s | s_mask, r);
1216 nb_imms++;
1217 }
1218 }
1219 assert (nb_imms == TOTAL_IMM_NB);
1220 qsort(simd_immediates, nb_imms,
1221 sizeof(simd_immediates[0]), simd_imm_encoding_cmp);
1222 }
1223
1224 /* Return TRUE if VALUE is a valid logical immediate, i.e. bitmask, that can
1225 be accepted by logical (immediate) instructions
1226 e.g. ORR <Xd|SP>, <Xn>, #<imm>.
1227
1228 ESIZE is the number of bytes in the decoded immediate value.
1229 If ENCODING is not NULL, on the return of TRUE, the standard encoding for
1230 VALUE will be returned in *ENCODING. */
1231
1232 bfd_boolean
1233 aarch64_logical_immediate_p (uint64_t value, int esize, aarch64_insn *encoding)
1234 {
1235 simd_imm_encoding imm_enc;
1236 const simd_imm_encoding *imm_encoding;
1237 static bfd_boolean initialized = FALSE;
1238 uint64_t upper;
1239 int i;
1240
1241 DEBUG_TRACE ("enter with 0x%" PRIx64 "(%" PRIi64 "), esize: %d", value,
1242 value, esize);
1243
1244 if (!initialized)
1245 {
1246 build_immediate_table ();
1247 initialized = TRUE;
1248 }
1249
1250 /* Allow all zeros or all ones in top bits, so that
1251 constant expressions like ~1 are permitted. */
1252 upper = (uint64_t) -1 << (esize * 4) << (esize * 4);
1253 if ((value & ~upper) != value && (value | upper) != value)
1254 return FALSE;
1255
1256 /* Replicate to a full 64-bit value. */
1257 value &= ~upper;
1258 for (i = esize * 8; i < 64; i *= 2)
1259 value |= (value << i);
1260
1261 imm_enc.imm = value;
1262 imm_encoding = (const simd_imm_encoding *)
1263 bsearch(&imm_enc, simd_immediates, TOTAL_IMM_NB,
1264 sizeof(simd_immediates[0]), simd_imm_encoding_cmp);
1265 if (imm_encoding == NULL)
1266 {
1267 DEBUG_TRACE ("exit with FALSE");
1268 return FALSE;
1269 }
1270 if (encoding != NULL)
1271 *encoding = imm_encoding->encoding;
1272 DEBUG_TRACE ("exit with TRUE");
1273 return TRUE;
1274 }
1275
1276 /* If 64-bit immediate IMM is in the format of
1277 "aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhh",
1278 where a, b, c, d, e, f, g and h are independently 0 or 1, return an integer
1279 of value "abcdefgh". Otherwise return -1. */
1280 int
1281 aarch64_shrink_expanded_imm8 (uint64_t imm)
1282 {
1283 int i, ret;
1284 uint32_t byte;
1285
1286 ret = 0;
1287 for (i = 0; i < 8; i++)
1288 {
1289 byte = (imm >> (8 * i)) & 0xff;
1290 if (byte == 0xff)
1291 ret |= 1 << i;
1292 else if (byte != 0x00)
1293 return -1;
1294 }
1295 return ret;
1296 }
1297
1298 /* Utility inline functions for operand_general_constraint_met_p. */
1299
1300 static inline void
1301 set_error (aarch64_operand_error *mismatch_detail,
1302 enum aarch64_operand_error_kind kind, int idx,
1303 const char* error)
1304 {
1305 if (mismatch_detail == NULL)
1306 return;
1307 mismatch_detail->kind = kind;
1308 mismatch_detail->index = idx;
1309 mismatch_detail->error = error;
1310 }
1311
1312 static inline void
1313 set_syntax_error (aarch64_operand_error *mismatch_detail, int idx,
1314 const char* error)
1315 {
1316 if (mismatch_detail == NULL)
1317 return;
1318 set_error (mismatch_detail, AARCH64_OPDE_SYNTAX_ERROR, idx, error);
1319 }
1320
1321 static inline void
1322 set_out_of_range_error (aarch64_operand_error *mismatch_detail,
1323 int idx, int lower_bound, int upper_bound,
1324 const char* error)
1325 {
1326 if (mismatch_detail == NULL)
1327 return;
1328 set_error (mismatch_detail, AARCH64_OPDE_OUT_OF_RANGE, idx, error);
1329 mismatch_detail->data[0] = lower_bound;
1330 mismatch_detail->data[1] = upper_bound;
1331 }
1332
1333 static inline void
1334 set_imm_out_of_range_error (aarch64_operand_error *mismatch_detail,
1335 int idx, int lower_bound, int upper_bound)
1336 {
1337 if (mismatch_detail == NULL)
1338 return;
1339 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1340 _("immediate value"));
1341 }
1342
1343 static inline void
1344 set_offset_out_of_range_error (aarch64_operand_error *mismatch_detail,
1345 int idx, int lower_bound, int upper_bound)
1346 {
1347 if (mismatch_detail == NULL)
1348 return;
1349 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1350 _("immediate offset"));
1351 }
1352
1353 static inline void
1354 set_regno_out_of_range_error (aarch64_operand_error *mismatch_detail,
1355 int idx, int lower_bound, int upper_bound)
1356 {
1357 if (mismatch_detail == NULL)
1358 return;
1359 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1360 _("register number"));
1361 }
1362
1363 static inline void
1364 set_elem_idx_out_of_range_error (aarch64_operand_error *mismatch_detail,
1365 int idx, int lower_bound, int upper_bound)
1366 {
1367 if (mismatch_detail == NULL)
1368 return;
1369 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1370 _("register element index"));
1371 }
1372
1373 static inline void
1374 set_sft_amount_out_of_range_error (aarch64_operand_error *mismatch_detail,
1375 int idx, int lower_bound, int upper_bound)
1376 {
1377 if (mismatch_detail == NULL)
1378 return;
1379 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1380 _("shift amount"));
1381 }
1382
1383 /* Report that the MUL modifier in operand IDX should be in the range
1384 [LOWER_BOUND, UPPER_BOUND]. */
1385 static inline void
1386 set_multiplier_out_of_range_error (aarch64_operand_error *mismatch_detail,
1387 int idx, int lower_bound, int upper_bound)
1388 {
1389 if (mismatch_detail == NULL)
1390 return;
1391 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1392 _("multiplier"));
1393 }
1394
1395 static inline void
1396 set_unaligned_error (aarch64_operand_error *mismatch_detail, int idx,
1397 int alignment)
1398 {
1399 if (mismatch_detail == NULL)
1400 return;
1401 set_error (mismatch_detail, AARCH64_OPDE_UNALIGNED, idx, NULL);
1402 mismatch_detail->data[0] = alignment;
1403 }
1404
1405 static inline void
1406 set_reg_list_error (aarch64_operand_error *mismatch_detail, int idx,
1407 int expected_num)
1408 {
1409 if (mismatch_detail == NULL)
1410 return;
1411 set_error (mismatch_detail, AARCH64_OPDE_REG_LIST, idx, NULL);
1412 mismatch_detail->data[0] = expected_num;
1413 }
1414
1415 static inline void
1416 set_other_error (aarch64_operand_error *mismatch_detail, int idx,
1417 const char* error)
1418 {
1419 if (mismatch_detail == NULL)
1420 return;
1421 set_error (mismatch_detail, AARCH64_OPDE_OTHER_ERROR, idx, error);
1422 }
1423
1424 /* General constraint checking based on operand code.
1425
1426 Return 1 if OPNDS[IDX] meets the general constraint of operand code TYPE
1427 as the IDXth operand of opcode OPCODE. Otherwise return 0.
1428
1429 This function has to be called after the qualifiers for all operands
1430 have been resolved.
1431
1432 Mismatching error message is returned in *MISMATCH_DETAIL upon request,
1433 i.e. when MISMATCH_DETAIL is non-NULL. This avoids the generation
1434 of error message during the disassembling where error message is not
1435 wanted. We avoid the dynamic construction of strings of error messages
1436 here (i.e. in libopcodes), as it is costly and complicated; instead, we
1437 use a combination of error code, static string and some integer data to
1438 represent an error. */
1439
1440 static int
1441 operand_general_constraint_met_p (const aarch64_opnd_info *opnds, int idx,
1442 enum aarch64_opnd type,
1443 const aarch64_opcode *opcode,
1444 aarch64_operand_error *mismatch_detail)
1445 {
1446 unsigned num, modifiers, shift;
1447 unsigned char size;
1448 int64_t imm, min_value, max_value;
1449 uint64_t uvalue, mask;
1450 const aarch64_opnd_info *opnd = opnds + idx;
1451 aarch64_opnd_qualifier_t qualifier = opnd->qualifier;
1452
1453 assert (opcode->operands[idx] == opnd->type && opnd->type == type);
1454
1455 switch (aarch64_operands[type].op_class)
1456 {
1457 case AARCH64_OPND_CLASS_INT_REG:
1458 /* Check pair reg constraints for cas* instructions. */
1459 if (type == AARCH64_OPND_PAIRREG)
1460 {
1461 assert (idx == 1 || idx == 3);
1462 if (opnds[idx - 1].reg.regno % 2 != 0)
1463 {
1464 set_syntax_error (mismatch_detail, idx - 1,
1465 _("reg pair must start from even reg"));
1466 return 0;
1467 }
1468 if (opnds[idx].reg.regno != opnds[idx - 1].reg.regno + 1)
1469 {
1470 set_syntax_error (mismatch_detail, idx,
1471 _("reg pair must be contiguous"));
1472 return 0;
1473 }
1474 break;
1475 }
1476
1477 /* <Xt> may be optional in some IC and TLBI instructions. */
1478 if (type == AARCH64_OPND_Rt_SYS)
1479 {
1480 assert (idx == 1 && (aarch64_get_operand_class (opnds[0].type)
1481 == AARCH64_OPND_CLASS_SYSTEM));
1482 if (opnds[1].present
1483 && !aarch64_sys_ins_reg_has_xt (opnds[0].sysins_op))
1484 {
1485 set_other_error (mismatch_detail, idx, _("extraneous register"));
1486 return 0;
1487 }
1488 if (!opnds[1].present
1489 && aarch64_sys_ins_reg_has_xt (opnds[0].sysins_op))
1490 {
1491 set_other_error (mismatch_detail, idx, _("missing register"));
1492 return 0;
1493 }
1494 }
1495 switch (qualifier)
1496 {
1497 case AARCH64_OPND_QLF_WSP:
1498 case AARCH64_OPND_QLF_SP:
1499 if (!aarch64_stack_pointer_p (opnd))
1500 {
1501 set_other_error (mismatch_detail, idx,
1502 _("stack pointer register expected"));
1503 return 0;
1504 }
1505 break;
1506 default:
1507 break;
1508 }
1509 break;
1510
1511 case AARCH64_OPND_CLASS_SVE_REG:
1512 switch (type)
1513 {
1514 case AARCH64_OPND_SVE_Zm3_INDEX:
1515 case AARCH64_OPND_SVE_Zm3_22_INDEX:
1516 case AARCH64_OPND_SVE_Zm4_INDEX:
1517 size = get_operand_fields_width (get_operand_from_code (type));
1518 shift = get_operand_specific_data (&aarch64_operands[type]);
1519 mask = (1 << shift) - 1;
1520 if (opnd->reg.regno > mask)
1521 {
1522 assert (mask == 7 || mask == 15);
1523 set_other_error (mismatch_detail, idx,
1524 mask == 15
1525 ? _("z0-z15 expected")
1526 : _("z0-z7 expected"));
1527 return 0;
1528 }
1529 mask = (1 << (size - shift)) - 1;
1530 if (!value_in_range_p (opnd->reglane.index, 0, mask))
1531 {
1532 set_elem_idx_out_of_range_error (mismatch_detail, idx, 0, mask);
1533 return 0;
1534 }
1535 break;
1536
1537 case AARCH64_OPND_SVE_Zn_INDEX:
1538 size = aarch64_get_qualifier_esize (opnd->qualifier);
1539 if (!value_in_range_p (opnd->reglane.index, 0, 64 / size - 1))
1540 {
1541 set_elem_idx_out_of_range_error (mismatch_detail, idx,
1542 0, 64 / size - 1);
1543 return 0;
1544 }
1545 break;
1546
1547 case AARCH64_OPND_SVE_ZnxN:
1548 case AARCH64_OPND_SVE_ZtxN:
1549 if (opnd->reglist.num_regs != get_opcode_dependent_value (opcode))
1550 {
1551 set_other_error (mismatch_detail, idx,
1552 _("invalid register list"));
1553 return 0;
1554 }
1555 break;
1556
1557 default:
1558 break;
1559 }
1560 break;
1561
1562 case AARCH64_OPND_CLASS_PRED_REG:
1563 if (opnd->reg.regno >= 8
1564 && get_operand_fields_width (get_operand_from_code (type)) == 3)
1565 {
1566 set_other_error (mismatch_detail, idx, _("p0-p7 expected"));
1567 return 0;
1568 }
1569 break;
1570
1571 case AARCH64_OPND_CLASS_COND:
1572 if (type == AARCH64_OPND_COND1
1573 && (opnds[idx].cond->value & 0xe) == 0xe)
1574 {
1575 /* Not allow AL or NV. */
1576 set_syntax_error (mismatch_detail, idx, NULL);
1577 }
1578 break;
1579
1580 case AARCH64_OPND_CLASS_ADDRESS:
1581 /* Check writeback. */
1582 switch (opcode->iclass)
1583 {
1584 case ldst_pos:
1585 case ldst_unscaled:
1586 case ldstnapair_offs:
1587 case ldstpair_off:
1588 case ldst_unpriv:
1589 if (opnd->addr.writeback == 1)
1590 {
1591 set_syntax_error (mismatch_detail, idx,
1592 _("unexpected address writeback"));
1593 return 0;
1594 }
1595 break;
1596 case ldst_imm10:
1597 if (opnd->addr.writeback == 1 && opnd->addr.preind != 1)
1598 {
1599 set_syntax_error (mismatch_detail, idx,
1600 _("unexpected address writeback"));
1601 return 0;
1602 }
1603 break;
1604 case ldst_imm9:
1605 case ldstpair_indexed:
1606 case asisdlsep:
1607 case asisdlsop:
1608 if (opnd->addr.writeback == 0)
1609 {
1610 set_syntax_error (mismatch_detail, idx,
1611 _("address writeback expected"));
1612 return 0;
1613 }
1614 break;
1615 default:
1616 assert (opnd->addr.writeback == 0);
1617 break;
1618 }
1619 switch (type)
1620 {
1621 case AARCH64_OPND_ADDR_SIMM7:
1622 /* Scaled signed 7 bits immediate offset. */
1623 /* Get the size of the data element that is accessed, which may be
1624 different from that of the source register size,
1625 e.g. in strb/ldrb. */
1626 size = aarch64_get_qualifier_esize (opnd->qualifier);
1627 if (!value_in_range_p (opnd->addr.offset.imm, -64 * size, 63 * size))
1628 {
1629 set_offset_out_of_range_error (mismatch_detail, idx,
1630 -64 * size, 63 * size);
1631 return 0;
1632 }
1633 if (!value_aligned_p (opnd->addr.offset.imm, size))
1634 {
1635 set_unaligned_error (mismatch_detail, idx, size);
1636 return 0;
1637 }
1638 break;
1639 case AARCH64_OPND_ADDR_OFFSET:
1640 case AARCH64_OPND_ADDR_SIMM9:
1641 /* Unscaled signed 9 bits immediate offset. */
1642 if (!value_in_range_p (opnd->addr.offset.imm, -256, 255))
1643 {
1644 set_offset_out_of_range_error (mismatch_detail, idx, -256, 255);
1645 return 0;
1646 }
1647 break;
1648
1649 case AARCH64_OPND_ADDR_SIMM9_2:
1650 /* Unscaled signed 9 bits immediate offset, which has to be negative
1651 or unaligned. */
1652 size = aarch64_get_qualifier_esize (qualifier);
1653 if ((value_in_range_p (opnd->addr.offset.imm, 0, 255)
1654 && !value_aligned_p (opnd->addr.offset.imm, size))
1655 || value_in_range_p (opnd->addr.offset.imm, -256, -1))
1656 return 1;
1657 set_other_error (mismatch_detail, idx,
1658 _("negative or unaligned offset expected"));
1659 return 0;
1660
1661 case AARCH64_OPND_ADDR_SIMM10:
1662 /* Scaled signed 10 bits immediate offset. */
1663 if (!value_in_range_p (opnd->addr.offset.imm, -4096, 4088))
1664 {
1665 set_offset_out_of_range_error (mismatch_detail, idx, -4096, 4088);
1666 return 0;
1667 }
1668 if (!value_aligned_p (opnd->addr.offset.imm, 8))
1669 {
1670 set_unaligned_error (mismatch_detail, idx, 8);
1671 return 0;
1672 }
1673 break;
1674
1675 case AARCH64_OPND_ADDR_SIMM11:
1676 /* Signed 11 bits immediate offset (multiple of 16). */
1677 if (!value_in_range_p (opnd->addr.offset.imm, -1024, 1008))
1678 {
1679 set_offset_out_of_range_error (mismatch_detail, idx, -1024, 1008);
1680 return 0;
1681 }
1682
1683 if (!value_aligned_p (opnd->addr.offset.imm, 16))
1684 {
1685 set_unaligned_error (mismatch_detail, idx, 16);
1686 return 0;
1687 }
1688 break;
1689
1690 case AARCH64_OPND_ADDR_SIMM13:
1691 /* Signed 13 bits immediate offset (multiple of 16). */
1692 if (!value_in_range_p (opnd->addr.offset.imm, -4096, 4080))
1693 {
1694 set_offset_out_of_range_error (mismatch_detail, idx, -4096, 4080);
1695 return 0;
1696 }
1697
1698 if (!value_aligned_p (opnd->addr.offset.imm, 16))
1699 {
1700 set_unaligned_error (mismatch_detail, idx, 16);
1701 return 0;
1702 }
1703 break;
1704
1705 case AARCH64_OPND_SIMD_ADDR_POST:
1706 /* AdvSIMD load/store multiple structures, post-index. */
1707 assert (idx == 1);
1708 if (opnd->addr.offset.is_reg)
1709 {
1710 if (value_in_range_p (opnd->addr.offset.regno, 0, 30))
1711 return 1;
1712 else
1713 {
1714 set_other_error (mismatch_detail, idx,
1715 _("invalid register offset"));
1716 return 0;
1717 }
1718 }
1719 else
1720 {
1721 const aarch64_opnd_info *prev = &opnds[idx-1];
1722 unsigned num_bytes; /* total number of bytes transferred. */
1723 /* The opcode dependent area stores the number of elements in
1724 each structure to be loaded/stored. */
1725 int is_ld1r = get_opcode_dependent_value (opcode) == 1;
1726 if (opcode->operands[0] == AARCH64_OPND_LVt_AL)
1727 /* Special handling of loading single structure to all lane. */
1728 num_bytes = (is_ld1r ? 1 : prev->reglist.num_regs)
1729 * aarch64_get_qualifier_esize (prev->qualifier);
1730 else
1731 num_bytes = prev->reglist.num_regs
1732 * aarch64_get_qualifier_esize (prev->qualifier)
1733 * aarch64_get_qualifier_nelem (prev->qualifier);
1734 if ((int) num_bytes != opnd->addr.offset.imm)
1735 {
1736 set_other_error (mismatch_detail, idx,
1737 _("invalid post-increment amount"));
1738 return 0;
1739 }
1740 }
1741 break;
1742
1743 case AARCH64_OPND_ADDR_REGOFF:
1744 /* Get the size of the data element that is accessed, which may be
1745 different from that of the source register size,
1746 e.g. in strb/ldrb. */
1747 size = aarch64_get_qualifier_esize (opnd->qualifier);
1748 /* It is either no shift or shift by the binary logarithm of SIZE. */
1749 if (opnd->shifter.amount != 0
1750 && opnd->shifter.amount != (int)get_logsz (size))
1751 {
1752 set_other_error (mismatch_detail, idx,
1753 _("invalid shift amount"));
1754 return 0;
1755 }
1756 /* Only UXTW, LSL, SXTW and SXTX are the accepted extending
1757 operators. */
1758 switch (opnd->shifter.kind)
1759 {
1760 case AARCH64_MOD_UXTW:
1761 case AARCH64_MOD_LSL:
1762 case AARCH64_MOD_SXTW:
1763 case AARCH64_MOD_SXTX: break;
1764 default:
1765 set_other_error (mismatch_detail, idx,
1766 _("invalid extend/shift operator"));
1767 return 0;
1768 }
1769 break;
1770
1771 case AARCH64_OPND_ADDR_UIMM12:
1772 imm = opnd->addr.offset.imm;
1773 /* Get the size of the data element that is accessed, which may be
1774 different from that of the source register size,
1775 e.g. in strb/ldrb. */
1776 size = aarch64_get_qualifier_esize (qualifier);
1777 if (!value_in_range_p (opnd->addr.offset.imm, 0, 4095 * size))
1778 {
1779 set_offset_out_of_range_error (mismatch_detail, idx,
1780 0, 4095 * size);
1781 return 0;
1782 }
1783 if (!value_aligned_p (opnd->addr.offset.imm, size))
1784 {
1785 set_unaligned_error (mismatch_detail, idx, size);
1786 return 0;
1787 }
1788 break;
1789
1790 case AARCH64_OPND_ADDR_PCREL14:
1791 case AARCH64_OPND_ADDR_PCREL19:
1792 case AARCH64_OPND_ADDR_PCREL21:
1793 case AARCH64_OPND_ADDR_PCREL26:
1794 imm = opnd->imm.value;
1795 if (operand_need_shift_by_two (get_operand_from_code (type)))
1796 {
1797 /* The offset value in a PC-relative branch instruction is alway
1798 4-byte aligned and is encoded without the lowest 2 bits. */
1799 if (!value_aligned_p (imm, 4))
1800 {
1801 set_unaligned_error (mismatch_detail, idx, 4);
1802 return 0;
1803 }
1804 /* Right shift by 2 so that we can carry out the following check
1805 canonically. */
1806 imm >>= 2;
1807 }
1808 size = get_operand_fields_width (get_operand_from_code (type));
1809 if (!value_fit_signed_field_p (imm, size))
1810 {
1811 set_other_error (mismatch_detail, idx,
1812 _("immediate out of range"));
1813 return 0;
1814 }
1815 break;
1816
1817 case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
1818 case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
1819 case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
1820 case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
1821 min_value = -8;
1822 max_value = 7;
1823 sve_imm_offset_vl:
1824 assert (!opnd->addr.offset.is_reg);
1825 assert (opnd->addr.preind);
1826 num = 1 + get_operand_specific_data (&aarch64_operands[type]);
1827 min_value *= num;
1828 max_value *= num;
1829 if ((opnd->addr.offset.imm != 0 && !opnd->shifter.operator_present)
1830 || (opnd->shifter.operator_present
1831 && opnd->shifter.kind != AARCH64_MOD_MUL_VL))
1832 {
1833 set_other_error (mismatch_detail, idx,
1834 _("invalid addressing mode"));
1835 return 0;
1836 }
1837 if (!value_in_range_p (opnd->addr.offset.imm, min_value, max_value))
1838 {
1839 set_offset_out_of_range_error (mismatch_detail, idx,
1840 min_value, max_value);
1841 return 0;
1842 }
1843 if (!value_aligned_p (opnd->addr.offset.imm, num))
1844 {
1845 set_unaligned_error (mismatch_detail, idx, num);
1846 return 0;
1847 }
1848 break;
1849
1850 case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
1851 min_value = -32;
1852 max_value = 31;
1853 goto sve_imm_offset_vl;
1854
1855 case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
1856 min_value = -256;
1857 max_value = 255;
1858 goto sve_imm_offset_vl;
1859
1860 case AARCH64_OPND_SVE_ADDR_RI_U6:
1861 case AARCH64_OPND_SVE_ADDR_RI_U6x2:
1862 case AARCH64_OPND_SVE_ADDR_RI_U6x4:
1863 case AARCH64_OPND_SVE_ADDR_RI_U6x8:
1864 min_value = 0;
1865 max_value = 63;
1866 sve_imm_offset:
1867 assert (!opnd->addr.offset.is_reg);
1868 assert (opnd->addr.preind);
1869 num = 1 << get_operand_specific_data (&aarch64_operands[type]);
1870 min_value *= num;
1871 max_value *= num;
1872 if (opnd->shifter.operator_present
1873 || opnd->shifter.amount_present)
1874 {
1875 set_other_error (mismatch_detail, idx,
1876 _("invalid addressing mode"));
1877 return 0;
1878 }
1879 if (!value_in_range_p (opnd->addr.offset.imm, min_value, max_value))
1880 {
1881 set_offset_out_of_range_error (mismatch_detail, idx,
1882 min_value, max_value);
1883 return 0;
1884 }
1885 if (!value_aligned_p (opnd->addr.offset.imm, num))
1886 {
1887 set_unaligned_error (mismatch_detail, idx, num);
1888 return 0;
1889 }
1890 break;
1891
1892 case AARCH64_OPND_SVE_ADDR_RI_S4x16:
1893 min_value = -8;
1894 max_value = 7;
1895 goto sve_imm_offset;
1896
1897 case AARCH64_OPND_SVE_ADDR_R:
1898 case AARCH64_OPND_SVE_ADDR_RR:
1899 case AARCH64_OPND_SVE_ADDR_RR_LSL1:
1900 case AARCH64_OPND_SVE_ADDR_RR_LSL2:
1901 case AARCH64_OPND_SVE_ADDR_RR_LSL3:
1902 case AARCH64_OPND_SVE_ADDR_RX:
1903 case AARCH64_OPND_SVE_ADDR_RX_LSL1:
1904 case AARCH64_OPND_SVE_ADDR_RX_LSL2:
1905 case AARCH64_OPND_SVE_ADDR_RX_LSL3:
1906 case AARCH64_OPND_SVE_ADDR_RZ:
1907 case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
1908 case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
1909 case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
1910 modifiers = 1 << AARCH64_MOD_LSL;
1911 sve_rr_operand:
1912 assert (opnd->addr.offset.is_reg);
1913 assert (opnd->addr.preind);
1914 if ((aarch64_operands[type].flags & OPD_F_NO_ZR) != 0
1915 && opnd->addr.offset.regno == 31)
1916 {
1917 set_other_error (mismatch_detail, idx,
1918 _("index register xzr is not allowed"));
1919 return 0;
1920 }
1921 if (((1 << opnd->shifter.kind) & modifiers) == 0
1922 || (opnd->shifter.amount
1923 != get_operand_specific_data (&aarch64_operands[type])))
1924 {
1925 set_other_error (mismatch_detail, idx,
1926 _("invalid addressing mode"));
1927 return 0;
1928 }
1929 break;
1930
1931 case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
1932 case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
1933 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
1934 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
1935 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
1936 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
1937 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
1938 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
1939 modifiers = (1 << AARCH64_MOD_SXTW) | (1 << AARCH64_MOD_UXTW);
1940 goto sve_rr_operand;
1941
1942 case AARCH64_OPND_SVE_ADDR_ZI_U5:
1943 case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
1944 case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
1945 case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
1946 min_value = 0;
1947 max_value = 31;
1948 goto sve_imm_offset;
1949
1950 case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
1951 modifiers = 1 << AARCH64_MOD_LSL;
1952 sve_zz_operand:
1953 assert (opnd->addr.offset.is_reg);
1954 assert (opnd->addr.preind);
1955 if (((1 << opnd->shifter.kind) & modifiers) == 0
1956 || opnd->shifter.amount < 0
1957 || opnd->shifter.amount > 3)
1958 {
1959 set_other_error (mismatch_detail, idx,
1960 _("invalid addressing mode"));
1961 return 0;
1962 }
1963 break;
1964
1965 case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
1966 modifiers = (1 << AARCH64_MOD_SXTW);
1967 goto sve_zz_operand;
1968
1969 case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
1970 modifiers = 1 << AARCH64_MOD_UXTW;
1971 goto sve_zz_operand;
1972
1973 default:
1974 break;
1975 }
1976 break;
1977
1978 case AARCH64_OPND_CLASS_SIMD_REGLIST:
1979 if (type == AARCH64_OPND_LEt)
1980 {
1981 /* Get the upper bound for the element index. */
1982 num = 16 / aarch64_get_qualifier_esize (qualifier) - 1;
1983 if (!value_in_range_p (opnd->reglist.index, 0, num))
1984 {
1985 set_elem_idx_out_of_range_error (mismatch_detail, idx, 0, num);
1986 return 0;
1987 }
1988 }
1989 /* The opcode dependent area stores the number of elements in
1990 each structure to be loaded/stored. */
1991 num = get_opcode_dependent_value (opcode);
1992 switch (type)
1993 {
1994 case AARCH64_OPND_LVt:
1995 assert (num >= 1 && num <= 4);
1996 /* Unless LD1/ST1, the number of registers should be equal to that
1997 of the structure elements. */
1998 if (num != 1 && opnd->reglist.num_regs != num)
1999 {
2000 set_reg_list_error (mismatch_detail, idx, num);
2001 return 0;
2002 }
2003 break;
2004 case AARCH64_OPND_LVt_AL:
2005 case AARCH64_OPND_LEt:
2006 assert (num >= 1 && num <= 4);
2007 /* The number of registers should be equal to that of the structure
2008 elements. */
2009 if (opnd->reglist.num_regs != num)
2010 {
2011 set_reg_list_error (mismatch_detail, idx, num);
2012 return 0;
2013 }
2014 break;
2015 default:
2016 break;
2017 }
2018 break;
2019
2020 case AARCH64_OPND_CLASS_IMMEDIATE:
2021 /* Constraint check on immediate operand. */
2022 imm = opnd->imm.value;
2023 /* E.g. imm_0_31 constrains value to be 0..31. */
2024 if (qualifier_value_in_range_constraint_p (qualifier)
2025 && !value_in_range_p (imm, get_lower_bound (qualifier),
2026 get_upper_bound (qualifier)))
2027 {
2028 set_imm_out_of_range_error (mismatch_detail, idx,
2029 get_lower_bound (qualifier),
2030 get_upper_bound (qualifier));
2031 return 0;
2032 }
2033
2034 switch (type)
2035 {
2036 case AARCH64_OPND_AIMM:
2037 if (opnd->shifter.kind != AARCH64_MOD_LSL)
2038 {
2039 set_other_error (mismatch_detail, idx,
2040 _("invalid shift operator"));
2041 return 0;
2042 }
2043 if (opnd->shifter.amount != 0 && opnd->shifter.amount != 12)
2044 {
2045 set_other_error (mismatch_detail, idx,
2046 _("shift amount must be 0 or 12"));
2047 return 0;
2048 }
2049 if (!value_fit_unsigned_field_p (opnd->imm.value, 12))
2050 {
2051 set_other_error (mismatch_detail, idx,
2052 _("immediate out of range"));
2053 return 0;
2054 }
2055 break;
2056
2057 case AARCH64_OPND_HALF:
2058 assert (idx == 1 && opnds[0].type == AARCH64_OPND_Rd);
2059 if (opnd->shifter.kind != AARCH64_MOD_LSL)
2060 {
2061 set_other_error (mismatch_detail, idx,
2062 _("invalid shift operator"));
2063 return 0;
2064 }
2065 size = aarch64_get_qualifier_esize (opnds[0].qualifier);
2066 if (!value_aligned_p (opnd->shifter.amount, 16))
2067 {
2068 set_other_error (mismatch_detail, idx,
2069 _("shift amount must be a multiple of 16"));
2070 return 0;
2071 }
2072 if (!value_in_range_p (opnd->shifter.amount, 0, size * 8 - 16))
2073 {
2074 set_sft_amount_out_of_range_error (mismatch_detail, idx,
2075 0, size * 8 - 16);
2076 return 0;
2077 }
2078 if (opnd->imm.value < 0)
2079 {
2080 set_other_error (mismatch_detail, idx,
2081 _("negative immediate value not allowed"));
2082 return 0;
2083 }
2084 if (!value_fit_unsigned_field_p (opnd->imm.value, 16))
2085 {
2086 set_other_error (mismatch_detail, idx,
2087 _("immediate out of range"));
2088 return 0;
2089 }
2090 break;
2091
2092 case AARCH64_OPND_IMM_MOV:
2093 {
2094 int esize = aarch64_get_qualifier_esize (opnds[0].qualifier);
2095 imm = opnd->imm.value;
2096 assert (idx == 1);
2097 switch (opcode->op)
2098 {
2099 case OP_MOV_IMM_WIDEN:
2100 imm = ~imm;
2101 /* Fall through. */
2102 case OP_MOV_IMM_WIDE:
2103 if (!aarch64_wide_constant_p (imm, esize == 4, NULL))
2104 {
2105 set_other_error (mismatch_detail, idx,
2106 _("immediate out of range"));
2107 return 0;
2108 }
2109 break;
2110 case OP_MOV_IMM_LOG:
2111 if (!aarch64_logical_immediate_p (imm, esize, NULL))
2112 {
2113 set_other_error (mismatch_detail, idx,
2114 _("immediate out of range"));
2115 return 0;
2116 }
2117 break;
2118 default:
2119 assert (0);
2120 return 0;
2121 }
2122 }
2123 break;
2124
2125 case AARCH64_OPND_NZCV:
2126 case AARCH64_OPND_CCMP_IMM:
2127 case AARCH64_OPND_EXCEPTION:
2128 case AARCH64_OPND_UIMM4:
2129 case AARCH64_OPND_UIMM4_ADDG:
2130 case AARCH64_OPND_UIMM7:
2131 case AARCH64_OPND_UIMM3_OP1:
2132 case AARCH64_OPND_UIMM3_OP2:
2133 case AARCH64_OPND_SVE_UIMM3:
2134 case AARCH64_OPND_SVE_UIMM7:
2135 case AARCH64_OPND_SVE_UIMM8:
2136 case AARCH64_OPND_SVE_UIMM8_53:
2137 size = get_operand_fields_width (get_operand_from_code (type));
2138 assert (size < 32);
2139 if (!value_fit_unsigned_field_p (opnd->imm.value, size))
2140 {
2141 set_imm_out_of_range_error (mismatch_detail, idx, 0,
2142 (1 << size) - 1);
2143 return 0;
2144 }
2145 break;
2146
2147 case AARCH64_OPND_UIMM10:
2148 /* Scaled unsigned 10 bits immediate offset. */
2149 if (!value_in_range_p (opnd->imm.value, 0, 1008))
2150 {
2151 set_imm_out_of_range_error (mismatch_detail, idx, 0, 1008);
2152 return 0;
2153 }
2154
2155 if (!value_aligned_p (opnd->imm.value, 16))
2156 {
2157 set_unaligned_error (mismatch_detail, idx, 16);
2158 return 0;
2159 }
2160 break;
2161
2162 case AARCH64_OPND_SIMM5:
2163 case AARCH64_OPND_SVE_SIMM5:
2164 case AARCH64_OPND_SVE_SIMM5B:
2165 case AARCH64_OPND_SVE_SIMM6:
2166 case AARCH64_OPND_SVE_SIMM8:
2167 size = get_operand_fields_width (get_operand_from_code (type));
2168 assert (size < 32);
2169 if (!value_fit_signed_field_p (opnd->imm.value, size))
2170 {
2171 set_imm_out_of_range_error (mismatch_detail, idx,
2172 -(1 << (size - 1)),
2173 (1 << (size - 1)) - 1);
2174 return 0;
2175 }
2176 break;
2177
2178 case AARCH64_OPND_WIDTH:
2179 assert (idx > 1 && opnds[idx-1].type == AARCH64_OPND_IMM
2180 && opnds[0].type == AARCH64_OPND_Rd);
2181 size = get_upper_bound (qualifier);
2182 if (opnd->imm.value + opnds[idx-1].imm.value > size)
2183 /* lsb+width <= reg.size */
2184 {
2185 set_imm_out_of_range_error (mismatch_detail, idx, 1,
2186 size - opnds[idx-1].imm.value);
2187 return 0;
2188 }
2189 break;
2190
2191 case AARCH64_OPND_LIMM:
2192 case AARCH64_OPND_SVE_LIMM:
2193 {
2194 int esize = aarch64_get_qualifier_esize (opnds[0].qualifier);
2195 uint64_t uimm = opnd->imm.value;
2196 if (opcode->op == OP_BIC)
2197 uimm = ~uimm;
2198 if (!aarch64_logical_immediate_p (uimm, esize, NULL))
2199 {
2200 set_other_error (mismatch_detail, idx,
2201 _("immediate out of range"));
2202 return 0;
2203 }
2204 }
2205 break;
2206
2207 case AARCH64_OPND_IMM0:
2208 case AARCH64_OPND_FPIMM0:
2209 if (opnd->imm.value != 0)
2210 {
2211 set_other_error (mismatch_detail, idx,
2212 _("immediate zero expected"));
2213 return 0;
2214 }
2215 break;
2216
2217 case AARCH64_OPND_IMM_ROT1:
2218 case AARCH64_OPND_IMM_ROT2:
2219 case AARCH64_OPND_SVE_IMM_ROT2:
2220 if (opnd->imm.value != 0
2221 && opnd->imm.value != 90
2222 && opnd->imm.value != 180
2223 && opnd->imm.value != 270)
2224 {
2225 set_other_error (mismatch_detail, idx,
2226 _("rotate expected to be 0, 90, 180 or 270"));
2227 return 0;
2228 }
2229 break;
2230
2231 case AARCH64_OPND_IMM_ROT3:
2232 case AARCH64_OPND_SVE_IMM_ROT1:
2233 if (opnd->imm.value != 90 && opnd->imm.value != 270)
2234 {
2235 set_other_error (mismatch_detail, idx,
2236 _("rotate expected to be 90 or 270"));
2237 return 0;
2238 }
2239 break;
2240
2241 case AARCH64_OPND_SHLL_IMM:
2242 assert (idx == 2);
2243 size = 8 * aarch64_get_qualifier_esize (opnds[idx - 1].qualifier);
2244 if (opnd->imm.value != size)
2245 {
2246 set_other_error (mismatch_detail, idx,
2247 _("invalid shift amount"));
2248 return 0;
2249 }
2250 break;
2251
2252 case AARCH64_OPND_IMM_VLSL:
2253 size = aarch64_get_qualifier_esize (qualifier);
2254 if (!value_in_range_p (opnd->imm.value, 0, size * 8 - 1))
2255 {
2256 set_imm_out_of_range_error (mismatch_detail, idx, 0,
2257 size * 8 - 1);
2258 return 0;
2259 }
2260 break;
2261
2262 case AARCH64_OPND_IMM_VLSR:
2263 size = aarch64_get_qualifier_esize (qualifier);
2264 if (!value_in_range_p (opnd->imm.value, 1, size * 8))
2265 {
2266 set_imm_out_of_range_error (mismatch_detail, idx, 1, size * 8);
2267 return 0;
2268 }
2269 break;
2270
2271 case AARCH64_OPND_SIMD_IMM:
2272 case AARCH64_OPND_SIMD_IMM_SFT:
2273 /* Qualifier check. */
2274 switch (qualifier)
2275 {
2276 case AARCH64_OPND_QLF_LSL:
2277 if (opnd->shifter.kind != AARCH64_MOD_LSL)
2278 {
2279 set_other_error (mismatch_detail, idx,
2280 _("invalid shift operator"));
2281 return 0;
2282 }
2283 break;
2284 case AARCH64_OPND_QLF_MSL:
2285 if (opnd->shifter.kind != AARCH64_MOD_MSL)
2286 {
2287 set_other_error (mismatch_detail, idx,
2288 _("invalid shift operator"));
2289 return 0;
2290 }
2291 break;
2292 case AARCH64_OPND_QLF_NIL:
2293 if (opnd->shifter.kind != AARCH64_MOD_NONE)
2294 {
2295 set_other_error (mismatch_detail, idx,
2296 _("shift is not permitted"));
2297 return 0;
2298 }
2299 break;
2300 default:
2301 assert (0);
2302 return 0;
2303 }
2304 /* Is the immediate valid? */
2305 assert (idx == 1);
2306 if (aarch64_get_qualifier_esize (opnds[0].qualifier) != 8)
2307 {
2308 /* uimm8 or simm8 */
2309 if (!value_in_range_p (opnd->imm.value, -128, 255))
2310 {
2311 set_imm_out_of_range_error (mismatch_detail, idx, -128, 255);
2312 return 0;
2313 }
2314 }
2315 else if (aarch64_shrink_expanded_imm8 (opnd->imm.value) < 0)
2316 {
2317 /* uimm64 is not
2318 'aaaaaaaabbbbbbbbccccccccddddddddeeeeeeee
2319 ffffffffgggggggghhhhhhhh'. */
2320 set_other_error (mismatch_detail, idx,
2321 _("invalid value for immediate"));
2322 return 0;
2323 }
2324 /* Is the shift amount valid? */
2325 switch (opnd->shifter.kind)
2326 {
2327 case AARCH64_MOD_LSL:
2328 size = aarch64_get_qualifier_esize (opnds[0].qualifier);
2329 if (!value_in_range_p (opnd->shifter.amount, 0, (size - 1) * 8))
2330 {
2331 set_sft_amount_out_of_range_error (mismatch_detail, idx, 0,
2332 (size - 1) * 8);
2333 return 0;
2334 }
2335 if (!value_aligned_p (opnd->shifter.amount, 8))
2336 {
2337 set_unaligned_error (mismatch_detail, idx, 8);
2338 return 0;
2339 }
2340 break;
2341 case AARCH64_MOD_MSL:
2342 /* Only 8 and 16 are valid shift amount. */
2343 if (opnd->shifter.amount != 8 && opnd->shifter.amount != 16)
2344 {
2345 set_other_error (mismatch_detail, idx,
2346 _("shift amount must be 0 or 16"));
2347 return 0;
2348 }
2349 break;
2350 default:
2351 if (opnd->shifter.kind != AARCH64_MOD_NONE)
2352 {
2353 set_other_error (mismatch_detail, idx,
2354 _("invalid shift operator"));
2355 return 0;
2356 }
2357 break;
2358 }
2359 break;
2360
2361 case AARCH64_OPND_FPIMM:
2362 case AARCH64_OPND_SIMD_FPIMM:
2363 case AARCH64_OPND_SVE_FPIMM8:
2364 if (opnd->imm.is_fp == 0)
2365 {
2366 set_other_error (mismatch_detail, idx,
2367 _("floating-point immediate expected"));
2368 return 0;
2369 }
2370 /* The value is expected to be an 8-bit floating-point constant with
2371 sign, 3-bit exponent and normalized 4 bits of precision, encoded
2372 in "a:b:c:d:e:f:g:h" or FLD_imm8 (depending on the type of the
2373 instruction). */
2374 if (!value_in_range_p (opnd->imm.value, 0, 255))
2375 {
2376 set_other_error (mismatch_detail, idx,
2377 _("immediate out of range"));
2378 return 0;
2379 }
2380 if (opnd->shifter.kind != AARCH64_MOD_NONE)
2381 {
2382 set_other_error (mismatch_detail, idx,
2383 _("invalid shift operator"));
2384 return 0;
2385 }
2386 break;
2387
2388 case AARCH64_OPND_SVE_AIMM:
2389 min_value = 0;
2390 sve_aimm:
2391 assert (opnd->shifter.kind == AARCH64_MOD_LSL);
2392 size = aarch64_get_qualifier_esize (opnds[0].qualifier);
2393 mask = ~((uint64_t) -1 << (size * 4) << (size * 4));
2394 uvalue = opnd->imm.value;
2395 shift = opnd->shifter.amount;
2396 if (size == 1)
2397 {
2398 if (shift != 0)
2399 {
2400 set_other_error (mismatch_detail, idx,
2401 _("no shift amount allowed for"
2402 " 8-bit constants"));
2403 return 0;
2404 }
2405 }
2406 else
2407 {
2408 if (shift != 0 && shift != 8)
2409 {
2410 set_other_error (mismatch_detail, idx,
2411 _("shift amount must be 0 or 8"));
2412 return 0;
2413 }
2414 if (shift == 0 && (uvalue & 0xff) == 0)
2415 {
2416 shift = 8;
2417 uvalue = (int64_t) uvalue / 256;
2418 }
2419 }
2420 mask >>= shift;
2421 if ((uvalue & mask) != uvalue && (uvalue | ~mask) != uvalue)
2422 {
2423 set_other_error (mismatch_detail, idx,
2424 _("immediate too big for element size"));
2425 return 0;
2426 }
2427 uvalue = (uvalue - min_value) & mask;
2428 if (uvalue > 0xff)
2429 {
2430 set_other_error (mismatch_detail, idx,
2431 _("invalid arithmetic immediate"));
2432 return 0;
2433 }
2434 break;
2435
2436 case AARCH64_OPND_SVE_ASIMM:
2437 min_value = -128;
2438 goto sve_aimm;
2439
2440 case AARCH64_OPND_SVE_I1_HALF_ONE:
2441 assert (opnd->imm.is_fp);
2442 if (opnd->imm.value != 0x3f000000 && opnd->imm.value != 0x3f800000)
2443 {
2444 set_other_error (mismatch_detail, idx,
2445 _("floating-point value must be 0.5 or 1.0"));
2446 return 0;
2447 }
2448 break;
2449
2450 case AARCH64_OPND_SVE_I1_HALF_TWO:
2451 assert (opnd->imm.is_fp);
2452 if (opnd->imm.value != 0x3f000000 && opnd->imm.value != 0x40000000)
2453 {
2454 set_other_error (mismatch_detail, idx,
2455 _("floating-point value must be 0.5 or 2.0"));
2456 return 0;
2457 }
2458 break;
2459
2460 case AARCH64_OPND_SVE_I1_ZERO_ONE:
2461 assert (opnd->imm.is_fp);
2462 if (opnd->imm.value != 0 && opnd->imm.value != 0x3f800000)
2463 {
2464 set_other_error (mismatch_detail, idx,
2465 _("floating-point value must be 0.0 or 1.0"));
2466 return 0;
2467 }
2468 break;
2469
2470 case AARCH64_OPND_SVE_INV_LIMM:
2471 {
2472 int esize = aarch64_get_qualifier_esize (opnds[0].qualifier);
2473 uint64_t uimm = ~opnd->imm.value;
2474 if (!aarch64_logical_immediate_p (uimm, esize, NULL))
2475 {
2476 set_other_error (mismatch_detail, idx,
2477 _("immediate out of range"));
2478 return 0;
2479 }
2480 }
2481 break;
2482
2483 case AARCH64_OPND_SVE_LIMM_MOV:
2484 {
2485 int esize = aarch64_get_qualifier_esize (opnds[0].qualifier);
2486 uint64_t uimm = opnd->imm.value;
2487 if (!aarch64_logical_immediate_p (uimm, esize, NULL))
2488 {
2489 set_other_error (mismatch_detail, idx,
2490 _("immediate out of range"));
2491 return 0;
2492 }
2493 if (!aarch64_sve_dupm_mov_immediate_p (uimm, esize))
2494 {
2495 set_other_error (mismatch_detail, idx,
2496 _("invalid replicated MOV immediate"));
2497 return 0;
2498 }
2499 }
2500 break;
2501
2502 case AARCH64_OPND_SVE_PATTERN_SCALED:
2503 assert (opnd->shifter.kind == AARCH64_MOD_MUL);
2504 if (!value_in_range_p (opnd->shifter.amount, 1, 16))
2505 {
2506 set_multiplier_out_of_range_error (mismatch_detail, idx, 1, 16);
2507 return 0;
2508 }
2509 break;
2510
2511 case AARCH64_OPND_SVE_SHLIMM_PRED:
2512 case AARCH64_OPND_SVE_SHLIMM_UNPRED:
2513 size = aarch64_get_qualifier_esize (opnds[idx - 1].qualifier);
2514 if (!value_in_range_p (opnd->imm.value, 0, 8 * size - 1))
2515 {
2516 set_imm_out_of_range_error (mismatch_detail, idx,
2517 0, 8 * size - 1);
2518 return 0;
2519 }
2520 break;
2521
2522 case AARCH64_OPND_SVE_SHRIMM_PRED:
2523 case AARCH64_OPND_SVE_SHRIMM_UNPRED:
2524 size = aarch64_get_qualifier_esize (opnds[idx - 1].qualifier);
2525 if (!value_in_range_p (opnd->imm.value, 1, 8 * size))
2526 {
2527 set_imm_out_of_range_error (mismatch_detail, idx, 1, 8 * size);
2528 return 0;
2529 }
2530 break;
2531
2532 default:
2533 break;
2534 }
2535 break;
2536
2537 case AARCH64_OPND_CLASS_SYSTEM:
2538 switch (type)
2539 {
2540 case AARCH64_OPND_PSTATEFIELD:
2541 assert (idx == 0 && opnds[1].type == AARCH64_OPND_UIMM4);
2542 /* MSR UAO, #uimm4
2543 MSR PAN, #uimm4
2544 MSR SSBS,#uimm4
2545 The immediate must be #0 or #1. */
2546 if ((opnd->pstatefield == 0x03 /* UAO. */
2547 || opnd->pstatefield == 0x04 /* PAN. */
2548 || opnd->pstatefield == 0x19 /* SSBS. */
2549 || opnd->pstatefield == 0x1a) /* DIT. */
2550 && opnds[1].imm.value > 1)
2551 {
2552 set_imm_out_of_range_error (mismatch_detail, idx, 0, 1);
2553 return 0;
2554 }
2555 /* MSR SPSel, #uimm4
2556 Uses uimm4 as a control value to select the stack pointer: if
2557 bit 0 is set it selects the current exception level's stack
2558 pointer, if bit 0 is clear it selects shared EL0 stack pointer.
2559 Bits 1 to 3 of uimm4 are reserved and should be zero. */
2560 if (opnd->pstatefield == 0x05 /* spsel */ && opnds[1].imm.value > 1)
2561 {
2562 set_imm_out_of_range_error (mismatch_detail, idx, 0, 1);
2563 return 0;
2564 }
2565 break;
2566 default:
2567 break;
2568 }
2569 break;
2570
2571 case AARCH64_OPND_CLASS_SIMD_ELEMENT:
2572 /* Get the upper bound for the element index. */
2573 if (opcode->op == OP_FCMLA_ELEM)
2574 /* FCMLA index range depends on the vector size of other operands
2575 and is halfed because complex numbers take two elements. */
2576 num = aarch64_get_qualifier_nelem (opnds[0].qualifier)
2577 * aarch64_get_qualifier_esize (opnds[0].qualifier) / 2;
2578 else
2579 num = 16;
2580 num = num / aarch64_get_qualifier_esize (qualifier) - 1;
2581 assert (aarch64_get_qualifier_nelem (qualifier) == 1);
2582
2583 /* Index out-of-range. */
2584 if (!value_in_range_p (opnd->reglane.index, 0, num))
2585 {
2586 set_elem_idx_out_of_range_error (mismatch_detail, idx, 0, num);
2587 return 0;
2588 }
2589 /* SMLAL<Q> <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>].
2590 <Vm> Is the vector register (V0-V31) or (V0-V15), whose
2591 number is encoded in "size:M:Rm":
2592 size <Vm>
2593 00 RESERVED
2594 01 0:Rm
2595 10 M:Rm
2596 11 RESERVED */
2597 if (type == AARCH64_OPND_Em16 && qualifier == AARCH64_OPND_QLF_S_H
2598 && !value_in_range_p (opnd->reglane.regno, 0, 15))
2599 {
2600 set_regno_out_of_range_error (mismatch_detail, idx, 0, 15);
2601 return 0;
2602 }
2603 break;
2604
2605 case AARCH64_OPND_CLASS_MODIFIED_REG:
2606 assert (idx == 1 || idx == 2);
2607 switch (type)
2608 {
2609 case AARCH64_OPND_Rm_EXT:
2610 if (!aarch64_extend_operator_p (opnd->shifter.kind)
2611 && opnd->shifter.kind != AARCH64_MOD_LSL)
2612 {
2613 set_other_error (mismatch_detail, idx,
2614 _("extend operator expected"));
2615 return 0;
2616 }
2617 /* It is not optional unless at least one of "Rd" or "Rn" is '11111'
2618 (i.e. SP), in which case it defaults to LSL. The LSL alias is
2619 only valid when "Rd" or "Rn" is '11111', and is preferred in that
2620 case. */
2621 if (!aarch64_stack_pointer_p (opnds + 0)
2622 && (idx != 2 || !aarch64_stack_pointer_p (opnds + 1)))
2623 {
2624 if (!opnd->shifter.operator_present)
2625 {
2626 set_other_error (mismatch_detail, idx,
2627 _("missing extend operator"));
2628 return 0;
2629 }
2630 else if (opnd->shifter.kind == AARCH64_MOD_LSL)
2631 {
2632 set_other_error (mismatch_detail, idx,
2633 _("'LSL' operator not allowed"));
2634 return 0;
2635 }
2636 }
2637 assert (opnd->shifter.operator_present /* Default to LSL. */
2638 || opnd->shifter.kind == AARCH64_MOD_LSL);
2639 if (!value_in_range_p (opnd->shifter.amount, 0, 4))
2640 {
2641 set_sft_amount_out_of_range_error (mismatch_detail, idx, 0, 4);
2642 return 0;
2643 }
2644 /* In the 64-bit form, the final register operand is written as Wm
2645 for all but the (possibly omitted) UXTX/LSL and SXTX
2646 operators.
2647 N.B. GAS allows X register to be used with any operator as a
2648 programming convenience. */
2649 if (qualifier == AARCH64_OPND_QLF_X
2650 && opnd->shifter.kind != AARCH64_MOD_LSL
2651 && opnd->shifter.kind != AARCH64_MOD_UXTX
2652 && opnd->shifter.kind != AARCH64_MOD_SXTX)
2653 {
2654 set_other_error (mismatch_detail, idx, _("W register expected"));
2655 return 0;
2656 }
2657 break;
2658
2659 case AARCH64_OPND_Rm_SFT:
2660 /* ROR is not available to the shifted register operand in
2661 arithmetic instructions. */
2662 if (!aarch64_shift_operator_p (opnd->shifter.kind))
2663 {
2664 set_other_error (mismatch_detail, idx,
2665 _("shift operator expected"));
2666 return 0;
2667 }
2668 if (opnd->shifter.kind == AARCH64_MOD_ROR
2669 && opcode->iclass != log_shift)
2670 {
2671 set_other_error (mismatch_detail, idx,
2672 _("'ROR' operator not allowed"));
2673 return 0;
2674 }
2675 num = qualifier == AARCH64_OPND_QLF_W ? 31 : 63;
2676 if (!value_in_range_p (opnd->shifter.amount, 0, num))
2677 {
2678 set_sft_amount_out_of_range_error (mismatch_detail, idx, 0, num);
2679 return 0;
2680 }
2681 break;
2682
2683 default:
2684 break;
2685 }
2686 break;
2687
2688 default:
2689 break;
2690 }
2691
2692 return 1;
2693 }
2694
2695 /* Main entrypoint for the operand constraint checking.
2696
2697 Return 1 if operands of *INST meet the constraint applied by the operand
2698 codes and operand qualifiers; otherwise return 0 and if MISMATCH_DETAIL is
2699 not NULL, return the detail of the error in *MISMATCH_DETAIL. N.B. when
2700 adding more constraint checking, make sure MISMATCH_DETAIL->KIND is set
2701 with a proper error kind rather than AARCH64_OPDE_NIL (GAS asserts non-NIL
2702 error kind when it is notified that an instruction does not pass the check).
2703
2704 Un-determined operand qualifiers may get established during the process. */
2705
2706 int
2707 aarch64_match_operands_constraint (aarch64_inst *inst,
2708 aarch64_operand_error *mismatch_detail)
2709 {
2710 int i;
2711
2712 DEBUG_TRACE ("enter");
2713
2714 /* Check for cases where a source register needs to be the same as the
2715 destination register. Do this before matching qualifiers since if
2716 an instruction has both invalid tying and invalid qualifiers,
2717 the error about qualifiers would suggest several alternative
2718 instructions that also have invalid tying. */
2719 i = inst->opcode->tied_operand;
2720 if (i > 0 && (inst->operands[0].reg.regno != inst->operands[i].reg.regno))
2721 {
2722 if (mismatch_detail)
2723 {
2724 mismatch_detail->kind = AARCH64_OPDE_UNTIED_OPERAND;
2725 mismatch_detail->index = i;
2726 mismatch_detail->error = NULL;
2727 }
2728 return 0;
2729 }
2730
2731 /* Match operands' qualifier.
2732 *INST has already had qualifier establish for some, if not all, of
2733 its operands; we need to find out whether these established
2734 qualifiers match one of the qualifier sequence in
2735 INST->OPCODE->QUALIFIERS_LIST. If yes, we will assign each operand
2736 with the corresponding qualifier in such a sequence.
2737 Only basic operand constraint checking is done here; the more thorough
2738 constraint checking will carried out by operand_general_constraint_met_p,
2739 which has be to called after this in order to get all of the operands'
2740 qualifiers established. */
2741 if (match_operands_qualifier (inst, TRUE /* update_p */) == 0)
2742 {
2743 DEBUG_TRACE ("FAIL on operand qualifier matching");
2744 if (mismatch_detail)
2745 {
2746 /* Return an error type to indicate that it is the qualifier
2747 matching failure; we don't care about which operand as there
2748 are enough information in the opcode table to reproduce it. */
2749 mismatch_detail->kind = AARCH64_OPDE_INVALID_VARIANT;
2750 mismatch_detail->index = -1;
2751 mismatch_detail->error = NULL;
2752 }
2753 return 0;
2754 }
2755
2756 /* Match operands' constraint. */
2757 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
2758 {
2759 enum aarch64_opnd type = inst->opcode->operands[i];
2760 if (type == AARCH64_OPND_NIL)
2761 break;
2762 if (inst->operands[i].skip)
2763 {
2764 DEBUG_TRACE ("skip the incomplete operand %d", i);
2765 continue;
2766 }
2767 if (operand_general_constraint_met_p (inst->operands, i, type,
2768 inst->opcode, mismatch_detail) == 0)
2769 {
2770 DEBUG_TRACE ("FAIL on operand %d", i);
2771 return 0;
2772 }
2773 }
2774
2775 DEBUG_TRACE ("PASS");
2776
2777 return 1;
2778 }
2779
2780 /* Replace INST->OPCODE with OPCODE and return the replaced OPCODE.
2781 Also updates the TYPE of each INST->OPERANDS with the corresponding
2782 value of OPCODE->OPERANDS.
2783
2784 Note that some operand qualifiers may need to be manually cleared by
2785 the caller before it further calls the aarch64_opcode_encode; by
2786 doing this, it helps the qualifier matching facilities work
2787 properly. */
2788
2789 const aarch64_opcode*
2790 aarch64_replace_opcode (aarch64_inst *inst, const aarch64_opcode *opcode)
2791 {
2792 int i;
2793 const aarch64_opcode *old = inst->opcode;
2794
2795 inst->opcode = opcode;
2796
2797 /* Update the operand types. */
2798 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
2799 {
2800 inst->operands[i].type = opcode->operands[i];
2801 if (opcode->operands[i] == AARCH64_OPND_NIL)
2802 break;
2803 }
2804
2805 DEBUG_TRACE ("replace %s with %s", old->name, opcode->name);
2806
2807 return old;
2808 }
2809
2810 int
2811 aarch64_operand_index (const enum aarch64_opnd *operands, enum aarch64_opnd operand)
2812 {
2813 int i;
2814 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
2815 if (operands[i] == operand)
2816 return i;
2817 else if (operands[i] == AARCH64_OPND_NIL)
2818 break;
2819 return -1;
2820 }
2821 \f
2822 /* R0...R30, followed by FOR31. */
2823 #define BANK(R, FOR31) \
2824 { R (0), R (1), R (2), R (3), R (4), R (5), R (6), R (7), \
2825 R (8), R (9), R (10), R (11), R (12), R (13), R (14), R (15), \
2826 R (16), R (17), R (18), R (19), R (20), R (21), R (22), R (23), \
2827 R (24), R (25), R (26), R (27), R (28), R (29), R (30), FOR31 }
2828 /* [0][0] 32-bit integer regs with sp Wn
2829 [0][1] 64-bit integer regs with sp Xn sf=1
2830 [1][0] 32-bit integer regs with #0 Wn
2831 [1][1] 64-bit integer regs with #0 Xn sf=1 */
2832 static const char *int_reg[2][2][32] = {
2833 #define R32(X) "w" #X
2834 #define R64(X) "x" #X
2835 { BANK (R32, "wsp"), BANK (R64, "sp") },
2836 { BANK (R32, "wzr"), BANK (R64, "xzr") }
2837 #undef R64
2838 #undef R32
2839 };
2840
2841 /* Names of the SVE vector registers, first with .S suffixes,
2842 then with .D suffixes. */
2843
2844 static const char *sve_reg[2][32] = {
2845 #define ZS(X) "z" #X ".s"
2846 #define ZD(X) "z" #X ".d"
2847 BANK (ZS, ZS (31)), BANK (ZD, ZD (31))
2848 #undef ZD
2849 #undef ZS
2850 };
2851 #undef BANK
2852
2853 /* Return the integer register name.
2854 if SP_REG_P is not 0, R31 is an SP reg, other R31 is the zero reg. */
2855
2856 static inline const char *
2857 get_int_reg_name (int regno, aarch64_opnd_qualifier_t qualifier, int sp_reg_p)
2858 {
2859 const int has_zr = sp_reg_p ? 0 : 1;
2860 const int is_64 = aarch64_get_qualifier_esize (qualifier) == 4 ? 0 : 1;
2861 return int_reg[has_zr][is_64][regno];
2862 }
2863
2864 /* Like get_int_reg_name, but IS_64 is always 1. */
2865
2866 static inline const char *
2867 get_64bit_int_reg_name (int regno, int sp_reg_p)
2868 {
2869 const int has_zr = sp_reg_p ? 0 : 1;
2870 return int_reg[has_zr][1][regno];
2871 }
2872
2873 /* Get the name of the integer offset register in OPND, using the shift type
2874 to decide whether it's a word or doubleword. */
2875
2876 static inline const char *
2877 get_offset_int_reg_name (const aarch64_opnd_info *opnd)
2878 {
2879 switch (opnd->shifter.kind)
2880 {
2881 case AARCH64_MOD_UXTW:
2882 case AARCH64_MOD_SXTW:
2883 return get_int_reg_name (opnd->addr.offset.regno, AARCH64_OPND_QLF_W, 0);
2884
2885 case AARCH64_MOD_LSL:
2886 case AARCH64_MOD_SXTX:
2887 return get_int_reg_name (opnd->addr.offset.regno, AARCH64_OPND_QLF_X, 0);
2888
2889 default:
2890 abort ();
2891 }
2892 }
2893
2894 /* Get the name of the SVE vector offset register in OPND, using the operand
2895 qualifier to decide whether the suffix should be .S or .D. */
2896
2897 static inline const char *
2898 get_addr_sve_reg_name (int regno, aarch64_opnd_qualifier_t qualifier)
2899 {
2900 assert (qualifier == AARCH64_OPND_QLF_S_S
2901 || qualifier == AARCH64_OPND_QLF_S_D);
2902 return sve_reg[qualifier == AARCH64_OPND_QLF_S_D][regno];
2903 }
2904
2905 /* Types for expanding an encoded 8-bit value to a floating-point value. */
2906
2907 typedef union
2908 {
2909 uint64_t i;
2910 double d;
2911 } double_conv_t;
2912
2913 typedef union
2914 {
2915 uint32_t i;
2916 float f;
2917 } single_conv_t;
2918
2919 typedef union
2920 {
2921 uint32_t i;
2922 float f;
2923 } half_conv_t;
2924
2925 /* IMM8 is an 8-bit floating-point constant with sign, 3-bit exponent and
2926 normalized 4 bits of precision, encoded in "a:b:c:d:e:f:g:h" or FLD_imm8
2927 (depending on the type of the instruction). IMM8 will be expanded to a
2928 single-precision floating-point value (SIZE == 4) or a double-precision
2929 floating-point value (SIZE == 8). A half-precision floating-point value
2930 (SIZE == 2) is expanded to a single-precision floating-point value. The
2931 expanded value is returned. */
2932
2933 static uint64_t
2934 expand_fp_imm (int size, uint32_t imm8)
2935 {
2936 uint64_t imm = 0;
2937 uint32_t imm8_7, imm8_6_0, imm8_6, imm8_6_repl4;
2938
2939 imm8_7 = (imm8 >> 7) & 0x01; /* imm8<7> */
2940 imm8_6_0 = imm8 & 0x7f; /* imm8<6:0> */
2941 imm8_6 = imm8_6_0 >> 6; /* imm8<6> */
2942 imm8_6_repl4 = (imm8_6 << 3) | (imm8_6 << 2)
2943 | (imm8_6 << 1) | imm8_6; /* Replicate(imm8<6>,4) */
2944 if (size == 8)
2945 {
2946 imm = (imm8_7 << (63-32)) /* imm8<7> */
2947 | ((imm8_6 ^ 1) << (62-32)) /* NOT(imm8<6) */
2948 | (imm8_6_repl4 << (58-32)) | (imm8_6 << (57-32))
2949 | (imm8_6 << (56-32)) | (imm8_6 << (55-32)) /* Replicate(imm8<6>,7) */
2950 | (imm8_6_0 << (48-32)); /* imm8<6>:imm8<5:0> */
2951 imm <<= 32;
2952 }
2953 else if (size == 4 || size == 2)
2954 {
2955 imm = (imm8_7 << 31) /* imm8<7> */
2956 | ((imm8_6 ^ 1) << 30) /* NOT(imm8<6>) */
2957 | (imm8_6_repl4 << 26) /* Replicate(imm8<6>,4) */
2958 | (imm8_6_0 << 19); /* imm8<6>:imm8<5:0> */
2959 }
2960 else
2961 {
2962 /* An unsupported size. */
2963 assert (0);
2964 }
2965
2966 return imm;
2967 }
2968
2969 /* Produce the string representation of the register list operand *OPND
2970 in the buffer pointed by BUF of size SIZE. PREFIX is the part of
2971 the register name that comes before the register number, such as "v". */
2972 static void
2973 print_register_list (char *buf, size_t size, const aarch64_opnd_info *opnd,
2974 const char *prefix)
2975 {
2976 const int num_regs = opnd->reglist.num_regs;
2977 const int first_reg = opnd->reglist.first_regno;
2978 const int last_reg = (first_reg + num_regs - 1) & 0x1f;
2979 const char *qlf_name = aarch64_get_qualifier_name (opnd->qualifier);
2980 char tb[8]; /* Temporary buffer. */
2981
2982 assert (opnd->type != AARCH64_OPND_LEt || opnd->reglist.has_index);
2983 assert (num_regs >= 1 && num_regs <= 4);
2984
2985 /* Prepare the index if any. */
2986 if (opnd->reglist.has_index)
2987 /* PR 21096: The %100 is to silence a warning about possible truncation. */
2988 snprintf (tb, 8, "[%" PRIi64 "]", (opnd->reglist.index % 100));
2989 else
2990 tb[0] = '\0';
2991
2992 /* The hyphenated form is preferred for disassembly if there are
2993 more than two registers in the list, and the register numbers
2994 are monotonically increasing in increments of one. */
2995 if (num_regs > 2 && last_reg > first_reg)
2996 snprintf (buf, size, "{%s%d.%s-%s%d.%s}%s", prefix, first_reg, qlf_name,
2997 prefix, last_reg, qlf_name, tb);
2998 else
2999 {
3000 const int reg0 = first_reg;
3001 const int reg1 = (first_reg + 1) & 0x1f;
3002 const int reg2 = (first_reg + 2) & 0x1f;
3003 const int reg3 = (first_reg + 3) & 0x1f;
3004
3005 switch (num_regs)
3006 {
3007 case 1:
3008 snprintf (buf, size, "{%s%d.%s}%s", prefix, reg0, qlf_name, tb);
3009 break;
3010 case 2:
3011 snprintf (buf, size, "{%s%d.%s, %s%d.%s}%s", prefix, reg0, qlf_name,
3012 prefix, reg1, qlf_name, tb);
3013 break;
3014 case 3:
3015 snprintf (buf, size, "{%s%d.%s, %s%d.%s, %s%d.%s}%s",
3016 prefix, reg0, qlf_name, prefix, reg1, qlf_name,
3017 prefix, reg2, qlf_name, tb);
3018 break;
3019 case 4:
3020 snprintf (buf, size, "{%s%d.%s, %s%d.%s, %s%d.%s, %s%d.%s}%s",
3021 prefix, reg0, qlf_name, prefix, reg1, qlf_name,
3022 prefix, reg2, qlf_name, prefix, reg3, qlf_name, tb);
3023 break;
3024 }
3025 }
3026 }
3027
3028 /* Print the register+immediate address in OPND to BUF, which has SIZE
3029 characters. BASE is the name of the base register. */
3030
3031 static void
3032 print_immediate_offset_address (char *buf, size_t size,
3033 const aarch64_opnd_info *opnd,
3034 const char *base)
3035 {
3036 if (opnd->addr.writeback)
3037 {
3038 if (opnd->addr.preind)
3039 snprintf (buf, size, "[%s, #%d]!", base, opnd->addr.offset.imm);
3040 else
3041 snprintf (buf, size, "[%s], #%d", base, opnd->addr.offset.imm);
3042 }
3043 else
3044 {
3045 if (opnd->shifter.operator_present)
3046 {
3047 assert (opnd->shifter.kind == AARCH64_MOD_MUL_VL);
3048 snprintf (buf, size, "[%s, #%d, mul vl]",
3049 base, opnd->addr.offset.imm);
3050 }
3051 else if (opnd->addr.offset.imm)
3052 snprintf (buf, size, "[%s, #%d]", base, opnd->addr.offset.imm);
3053 else
3054 snprintf (buf, size, "[%s]", base);
3055 }
3056 }
3057
3058 /* Produce the string representation of the register offset address operand
3059 *OPND in the buffer pointed by BUF of size SIZE. BASE and OFFSET are
3060 the names of the base and offset registers. */
3061 static void
3062 print_register_offset_address (char *buf, size_t size,
3063 const aarch64_opnd_info *opnd,
3064 const char *base, const char *offset)
3065 {
3066 char tb[16]; /* Temporary buffer. */
3067 bfd_boolean print_extend_p = TRUE;
3068 bfd_boolean print_amount_p = TRUE;
3069 const char *shift_name = aarch64_operand_modifiers[opnd->shifter.kind].name;
3070
3071 if (!opnd->shifter.amount && (opnd->qualifier != AARCH64_OPND_QLF_S_B
3072 || !opnd->shifter.amount_present))
3073 {
3074 /* Not print the shift/extend amount when the amount is zero and
3075 when it is not the special case of 8-bit load/store instruction. */
3076 print_amount_p = FALSE;
3077 /* Likewise, no need to print the shift operator LSL in such a
3078 situation. */
3079 if (opnd->shifter.kind == AARCH64_MOD_LSL)
3080 print_extend_p = FALSE;
3081 }
3082
3083 /* Prepare for the extend/shift. */
3084 if (print_extend_p)
3085 {
3086 if (print_amount_p)
3087 snprintf (tb, sizeof (tb), ", %s #%" PRIi64, shift_name,
3088 /* PR 21096: The %100 is to silence a warning about possible truncation. */
3089 (opnd->shifter.amount % 100));
3090 else
3091 snprintf (tb, sizeof (tb), ", %s", shift_name);
3092 }
3093 else
3094 tb[0] = '\0';
3095
3096 snprintf (buf, size, "[%s, %s%s]", base, offset, tb);
3097 }
3098
3099 /* Generate the string representation of the operand OPNDS[IDX] for OPCODE
3100 in *BUF. The caller should pass in the maximum size of *BUF in SIZE.
3101 PC, PCREL_P and ADDRESS are used to pass in and return information about
3102 the PC-relative address calculation, where the PC value is passed in
3103 PC. If the operand is pc-relative related, *PCREL_P (if PCREL_P non-NULL)
3104 will return 1 and *ADDRESS (if ADDRESS non-NULL) will return the
3105 calculated address; otherwise, *PCREL_P (if PCREL_P non-NULL) returns 0.
3106
3107 The function serves both the disassembler and the assembler diagnostics
3108 issuer, which is the reason why it lives in this file. */
3109
3110 void
3111 aarch64_print_operand (char *buf, size_t size, bfd_vma pc,
3112 const aarch64_opcode *opcode,
3113 const aarch64_opnd_info *opnds, int idx, int *pcrel_p,
3114 bfd_vma *address, char** notes)
3115 {
3116 unsigned int i, num_conds;
3117 const char *name = NULL;
3118 const aarch64_opnd_info *opnd = opnds + idx;
3119 enum aarch64_modifier_kind kind;
3120 uint64_t addr, enum_value;
3121
3122 buf[0] = '\0';
3123 if (pcrel_p)
3124 *pcrel_p = 0;
3125
3126 switch (opnd->type)
3127 {
3128 case AARCH64_OPND_Rd:
3129 case AARCH64_OPND_Rn:
3130 case AARCH64_OPND_Rm:
3131 case AARCH64_OPND_Rt:
3132 case AARCH64_OPND_Rt2:
3133 case AARCH64_OPND_Rs:
3134 case AARCH64_OPND_Ra:
3135 case AARCH64_OPND_Rt_SYS:
3136 case AARCH64_OPND_PAIRREG:
3137 case AARCH64_OPND_SVE_Rm:
3138 /* The optional-ness of <Xt> in e.g. IC <ic_op>{, <Xt>} is determined by
3139 the <ic_op>, therefore we use opnd->present to override the
3140 generic optional-ness information. */
3141 if (opnd->type == AARCH64_OPND_Rt_SYS)
3142 {
3143 if (!opnd->present)
3144 break;
3145 }
3146 /* Omit the operand, e.g. RET. */
3147 else if (optional_operand_p (opcode, idx)
3148 && (opnd->reg.regno
3149 == get_optional_operand_default_value (opcode)))
3150 break;
3151 assert (opnd->qualifier == AARCH64_OPND_QLF_W
3152 || opnd->qualifier == AARCH64_OPND_QLF_X);
3153 snprintf (buf, size, "%s",
3154 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0));
3155 break;
3156
3157 case AARCH64_OPND_Rd_SP:
3158 case AARCH64_OPND_Rn_SP:
3159 case AARCH64_OPND_Rt_SP:
3160 case AARCH64_OPND_SVE_Rn_SP:
3161 case AARCH64_OPND_Rm_SP:
3162 assert (opnd->qualifier == AARCH64_OPND_QLF_W
3163 || opnd->qualifier == AARCH64_OPND_QLF_WSP
3164 || opnd->qualifier == AARCH64_OPND_QLF_X
3165 || opnd->qualifier == AARCH64_OPND_QLF_SP);
3166 snprintf (buf, size, "%s",
3167 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 1));
3168 break;
3169
3170 case AARCH64_OPND_Rm_EXT:
3171 kind = opnd->shifter.kind;
3172 assert (idx == 1 || idx == 2);
3173 if ((aarch64_stack_pointer_p (opnds)
3174 || (idx == 2 && aarch64_stack_pointer_p (opnds + 1)))
3175 && ((opnd->qualifier == AARCH64_OPND_QLF_W
3176 && opnds[0].qualifier == AARCH64_OPND_QLF_W
3177 && kind == AARCH64_MOD_UXTW)
3178 || (opnd->qualifier == AARCH64_OPND_QLF_X
3179 && kind == AARCH64_MOD_UXTX)))
3180 {
3181 /* 'LSL' is the preferred form in this case. */
3182 kind = AARCH64_MOD_LSL;
3183 if (opnd->shifter.amount == 0)
3184 {
3185 /* Shifter omitted. */
3186 snprintf (buf, size, "%s",
3187 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0));
3188 break;
3189 }
3190 }
3191 if (opnd->shifter.amount)
3192 snprintf (buf, size, "%s, %s #%" PRIi64,
3193 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0),
3194 aarch64_operand_modifiers[kind].name,
3195 opnd->shifter.amount);
3196 else
3197 snprintf (buf, size, "%s, %s",
3198 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0),
3199 aarch64_operand_modifiers[kind].name);
3200 break;
3201
3202 case AARCH64_OPND_Rm_SFT:
3203 assert (opnd->qualifier == AARCH64_OPND_QLF_W
3204 || opnd->qualifier == AARCH64_OPND_QLF_X);
3205 if (opnd->shifter.amount == 0 && opnd->shifter.kind == AARCH64_MOD_LSL)
3206 snprintf (buf, size, "%s",
3207 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0));
3208 else
3209 snprintf (buf, size, "%s, %s #%" PRIi64,
3210 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0),
3211 aarch64_operand_modifiers[opnd->shifter.kind].name,
3212 opnd->shifter.amount);
3213 break;
3214
3215 case AARCH64_OPND_Fd:
3216 case AARCH64_OPND_Fn:
3217 case AARCH64_OPND_Fm:
3218 case AARCH64_OPND_Fa:
3219 case AARCH64_OPND_Ft:
3220 case AARCH64_OPND_Ft2:
3221 case AARCH64_OPND_Sd:
3222 case AARCH64_OPND_Sn:
3223 case AARCH64_OPND_Sm:
3224 case AARCH64_OPND_SVE_VZn:
3225 case AARCH64_OPND_SVE_Vd:
3226 case AARCH64_OPND_SVE_Vm:
3227 case AARCH64_OPND_SVE_Vn:
3228 snprintf (buf, size, "%s%d", aarch64_get_qualifier_name (opnd->qualifier),
3229 opnd->reg.regno);
3230 break;
3231
3232 case AARCH64_OPND_Va:
3233 case AARCH64_OPND_Vd:
3234 case AARCH64_OPND_Vn:
3235 case AARCH64_OPND_Vm:
3236 snprintf (buf, size, "v%d.%s", opnd->reg.regno,
3237 aarch64_get_qualifier_name (opnd->qualifier));
3238 break;
3239
3240 case AARCH64_OPND_Ed:
3241 case AARCH64_OPND_En:
3242 case AARCH64_OPND_Em:
3243 case AARCH64_OPND_Em16:
3244 case AARCH64_OPND_SM3_IMM2:
3245 snprintf (buf, size, "v%d.%s[%" PRIi64 "]", opnd->reglane.regno,
3246 aarch64_get_qualifier_name (opnd->qualifier),
3247 opnd->reglane.index);
3248 break;
3249
3250 case AARCH64_OPND_VdD1:
3251 case AARCH64_OPND_VnD1:
3252 snprintf (buf, size, "v%d.d[1]", opnd->reg.regno);
3253 break;
3254
3255 case AARCH64_OPND_LVn:
3256 case AARCH64_OPND_LVt:
3257 case AARCH64_OPND_LVt_AL:
3258 case AARCH64_OPND_LEt:
3259 print_register_list (buf, size, opnd, "v");
3260 break;
3261
3262 case AARCH64_OPND_SVE_Pd:
3263 case AARCH64_OPND_SVE_Pg3:
3264 case AARCH64_OPND_SVE_Pg4_5:
3265 case AARCH64_OPND_SVE_Pg4_10:
3266 case AARCH64_OPND_SVE_Pg4_16:
3267 case AARCH64_OPND_SVE_Pm:
3268 case AARCH64_OPND_SVE_Pn:
3269 case AARCH64_OPND_SVE_Pt:
3270 if (opnd->qualifier == AARCH64_OPND_QLF_NIL)
3271 snprintf (buf, size, "p%d", opnd->reg.regno);
3272 else if (opnd->qualifier == AARCH64_OPND_QLF_P_Z
3273 || opnd->qualifier == AARCH64_OPND_QLF_P_M)
3274 snprintf (buf, size, "p%d/%s", opnd->reg.regno,
3275 aarch64_get_qualifier_name (opnd->qualifier));
3276 else
3277 snprintf (buf, size, "p%d.%s", opnd->reg.regno,
3278 aarch64_get_qualifier_name (opnd->qualifier));
3279 break;
3280
3281 case AARCH64_OPND_SVE_Za_5:
3282 case AARCH64_OPND_SVE_Za_16:
3283 case AARCH64_OPND_SVE_Zd:
3284 case AARCH64_OPND_SVE_Zm_5:
3285 case AARCH64_OPND_SVE_Zm_16:
3286 case AARCH64_OPND_SVE_Zn:
3287 case AARCH64_OPND_SVE_Zt:
3288 if (opnd->qualifier == AARCH64_OPND_QLF_NIL)
3289 snprintf (buf, size, "z%d", opnd->reg.regno);
3290 else
3291 snprintf (buf, size, "z%d.%s", opnd->reg.regno,
3292 aarch64_get_qualifier_name (opnd->qualifier));
3293 break;
3294
3295 case AARCH64_OPND_SVE_ZnxN:
3296 case AARCH64_OPND_SVE_ZtxN:
3297 print_register_list (buf, size, opnd, "z");
3298 break;
3299
3300 case AARCH64_OPND_SVE_Zm3_INDEX:
3301 case AARCH64_OPND_SVE_Zm3_22_INDEX:
3302 case AARCH64_OPND_SVE_Zm4_INDEX:
3303 case AARCH64_OPND_SVE_Zn_INDEX:
3304 snprintf (buf, size, "z%d.%s[%" PRIi64 "]", opnd->reglane.regno,
3305 aarch64_get_qualifier_name (opnd->qualifier),
3306 opnd->reglane.index);
3307 break;
3308
3309 case AARCH64_OPND_CRn:
3310 case AARCH64_OPND_CRm:
3311 snprintf (buf, size, "C%" PRIi64, opnd->imm.value);
3312 break;
3313
3314 case AARCH64_OPND_IDX:
3315 case AARCH64_OPND_MASK:
3316 case AARCH64_OPND_IMM:
3317 case AARCH64_OPND_IMM_2:
3318 case AARCH64_OPND_WIDTH:
3319 case AARCH64_OPND_UIMM3_OP1:
3320 case AARCH64_OPND_UIMM3_OP2:
3321 case AARCH64_OPND_BIT_NUM:
3322 case AARCH64_OPND_IMM_VLSL:
3323 case AARCH64_OPND_IMM_VLSR:
3324 case AARCH64_OPND_SHLL_IMM:
3325 case AARCH64_OPND_IMM0:
3326 case AARCH64_OPND_IMMR:
3327 case AARCH64_OPND_IMMS:
3328 case AARCH64_OPND_FBITS:
3329 case AARCH64_OPND_SIMM5:
3330 case AARCH64_OPND_SVE_SHLIMM_PRED:
3331 case AARCH64_OPND_SVE_SHLIMM_UNPRED:
3332 case AARCH64_OPND_SVE_SHRIMM_PRED:
3333 case AARCH64_OPND_SVE_SHRIMM_UNPRED:
3334 case AARCH64_OPND_SVE_SIMM5:
3335 case AARCH64_OPND_SVE_SIMM5B:
3336 case AARCH64_OPND_SVE_SIMM6:
3337 case AARCH64_OPND_SVE_SIMM8:
3338 case AARCH64_OPND_SVE_UIMM3:
3339 case AARCH64_OPND_SVE_UIMM7:
3340 case AARCH64_OPND_SVE_UIMM8:
3341 case AARCH64_OPND_SVE_UIMM8_53:
3342 case AARCH64_OPND_IMM_ROT1:
3343 case AARCH64_OPND_IMM_ROT2:
3344 case AARCH64_OPND_IMM_ROT3:
3345 case AARCH64_OPND_SVE_IMM_ROT1:
3346 case AARCH64_OPND_SVE_IMM_ROT2:
3347 snprintf (buf, size, "#%" PRIi64, opnd->imm.value);
3348 break;
3349
3350 case AARCH64_OPND_SVE_I1_HALF_ONE:
3351 case AARCH64_OPND_SVE_I1_HALF_TWO:
3352 case AARCH64_OPND_SVE_I1_ZERO_ONE:
3353 {
3354 single_conv_t c;
3355 c.i = opnd->imm.value;
3356 snprintf (buf, size, "#%.1f", c.f);
3357 break;
3358 }
3359
3360 case AARCH64_OPND_SVE_PATTERN:
3361 if (optional_operand_p (opcode, idx)
3362 && opnd->imm.value == get_optional_operand_default_value (opcode))
3363 break;
3364 enum_value = opnd->imm.value;
3365 assert (enum_value < ARRAY_SIZE (aarch64_sve_pattern_array));
3366 if (aarch64_sve_pattern_array[enum_value])
3367 snprintf (buf, size, "%s", aarch64_sve_pattern_array[enum_value]);
3368 else
3369 snprintf (buf, size, "#%" PRIi64, opnd->imm.value);
3370 break;
3371
3372 case AARCH64_OPND_SVE_PATTERN_SCALED:
3373 if (optional_operand_p (opcode, idx)
3374 && !opnd->shifter.operator_present
3375 && opnd->imm.value == get_optional_operand_default_value (opcode))
3376 break;
3377 enum_value = opnd->imm.value;
3378 assert (enum_value < ARRAY_SIZE (aarch64_sve_pattern_array));
3379 if (aarch64_sve_pattern_array[opnd->imm.value])
3380 snprintf (buf, size, "%s", aarch64_sve_pattern_array[opnd->imm.value]);
3381 else
3382 snprintf (buf, size, "#%" PRIi64, opnd->imm.value);
3383 if (opnd->shifter.operator_present)
3384 {
3385 size_t len = strlen (buf);
3386 snprintf (buf + len, size - len, ", %s #%" PRIi64,
3387 aarch64_operand_modifiers[opnd->shifter.kind].name,
3388 opnd->shifter.amount);
3389 }
3390 break;
3391
3392 case AARCH64_OPND_SVE_PRFOP:
3393 enum_value = opnd->imm.value;
3394 assert (enum_value < ARRAY_SIZE (aarch64_sve_prfop_array));
3395 if (aarch64_sve_prfop_array[enum_value])
3396 snprintf (buf, size, "%s", aarch64_sve_prfop_array[enum_value]);
3397 else
3398 snprintf (buf, size, "#%" PRIi64, opnd->imm.value);
3399 break;
3400
3401 case AARCH64_OPND_IMM_MOV:
3402 switch (aarch64_get_qualifier_esize (opnds[0].qualifier))
3403 {
3404 case 4: /* e.g. MOV Wd, #<imm32>. */
3405 {
3406 int imm32 = opnd->imm.value;
3407 snprintf (buf, size, "#0x%-20x\t// #%d", imm32, imm32);
3408 }
3409 break;
3410 case 8: /* e.g. MOV Xd, #<imm64>. */
3411 snprintf (buf, size, "#0x%-20" PRIx64 "\t// #%" PRIi64,
3412 opnd->imm.value, opnd->imm.value);
3413 break;
3414 default: assert (0);
3415 }
3416 break;
3417
3418 case AARCH64_OPND_FPIMM0:
3419 snprintf (buf, size, "#0.0");
3420 break;
3421
3422 case AARCH64_OPND_LIMM:
3423 case AARCH64_OPND_AIMM:
3424 case AARCH64_OPND_HALF:
3425 case AARCH64_OPND_SVE_INV_LIMM:
3426 case AARCH64_OPND_SVE_LIMM:
3427 case AARCH64_OPND_SVE_LIMM_MOV:
3428 if (opnd->shifter.amount)
3429 snprintf (buf, size, "#0x%" PRIx64 ", lsl #%" PRIi64, opnd->imm.value,
3430 opnd->shifter.amount);
3431 else
3432 snprintf (buf, size, "#0x%" PRIx64, opnd->imm.value);
3433 break;
3434
3435 case AARCH64_OPND_SIMD_IMM:
3436 case AARCH64_OPND_SIMD_IMM_SFT:
3437 if ((! opnd->shifter.amount && opnd->shifter.kind == AARCH64_MOD_LSL)
3438 || opnd->shifter.kind == AARCH64_MOD_NONE)
3439 snprintf (buf, size, "#0x%" PRIx64, opnd->imm.value);
3440 else
3441 snprintf (buf, size, "#0x%" PRIx64 ", %s #%" PRIi64, opnd->imm.value,
3442 aarch64_operand_modifiers[opnd->shifter.kind].name,
3443 opnd->shifter.amount);
3444 break;
3445
3446 case AARCH64_OPND_SVE_AIMM:
3447 case AARCH64_OPND_SVE_ASIMM:
3448 if (opnd->shifter.amount)
3449 snprintf (buf, size, "#%" PRIi64 ", lsl #%" PRIi64, opnd->imm.value,
3450 opnd->shifter.amount);
3451 else
3452 snprintf (buf, size, "#%" PRIi64, opnd->imm.value);
3453 break;
3454
3455 case AARCH64_OPND_FPIMM:
3456 case AARCH64_OPND_SIMD_FPIMM:
3457 case AARCH64_OPND_SVE_FPIMM8:
3458 switch (aarch64_get_qualifier_esize (opnds[0].qualifier))
3459 {
3460 case 2: /* e.g. FMOV <Hd>, #<imm>. */
3461 {
3462 half_conv_t c;
3463 c.i = expand_fp_imm (2, opnd->imm.value);
3464 snprintf (buf, size, "#%.18e", c.f);
3465 }
3466 break;
3467 case 4: /* e.g. FMOV <Vd>.4S, #<imm>. */
3468 {
3469 single_conv_t c;
3470 c.i = expand_fp_imm (4, opnd->imm.value);
3471 snprintf (buf, size, "#%.18e", c.f);
3472 }
3473 break;
3474 case 8: /* e.g. FMOV <Sd>, #<imm>. */
3475 {
3476 double_conv_t c;
3477 c.i = expand_fp_imm (8, opnd->imm.value);
3478 snprintf (buf, size, "#%.18e", c.d);
3479 }
3480 break;
3481 default: assert (0);
3482 }
3483 break;
3484
3485 case AARCH64_OPND_CCMP_IMM:
3486 case AARCH64_OPND_NZCV:
3487 case AARCH64_OPND_EXCEPTION:
3488 case AARCH64_OPND_UIMM4:
3489 case AARCH64_OPND_UIMM4_ADDG:
3490 case AARCH64_OPND_UIMM7:
3491 case AARCH64_OPND_UIMM10:
3492 if (optional_operand_p (opcode, idx) == TRUE
3493 && (opnd->imm.value ==
3494 (int64_t) get_optional_operand_default_value (opcode)))
3495 /* Omit the operand, e.g. DCPS1. */
3496 break;
3497 snprintf (buf, size, "#0x%x", (unsigned int)opnd->imm.value);
3498 break;
3499
3500 case AARCH64_OPND_COND:
3501 case AARCH64_OPND_COND1:
3502 snprintf (buf, size, "%s", opnd->cond->names[0]);
3503 num_conds = ARRAY_SIZE (opnd->cond->names);
3504 for (i = 1; i < num_conds && opnd->cond->names[i]; ++i)
3505 {
3506 size_t len = strlen (buf);
3507 if (i == 1)
3508 snprintf (buf + len, size - len, " // %s = %s",
3509 opnd->cond->names[0], opnd->cond->names[i]);
3510 else
3511 snprintf (buf + len, size - len, ", %s",
3512 opnd->cond->names[i]);
3513 }
3514 break;
3515
3516 case AARCH64_OPND_ADDR_ADRP:
3517 addr = ((pc + AARCH64_PCREL_OFFSET) & ~(uint64_t)0xfff)
3518 + opnd->imm.value;
3519 if (pcrel_p)
3520 *pcrel_p = 1;
3521 if (address)
3522 *address = addr;
3523 /* This is not necessary during the disassembling, as print_address_func
3524 in the disassemble_info will take care of the printing. But some
3525 other callers may be still interested in getting the string in *STR,
3526 so here we do snprintf regardless. */
3527 snprintf (buf, size, "#0x%" PRIx64, addr);
3528 break;
3529
3530 case AARCH64_OPND_ADDR_PCREL14:
3531 case AARCH64_OPND_ADDR_PCREL19:
3532 case AARCH64_OPND_ADDR_PCREL21:
3533 case AARCH64_OPND_ADDR_PCREL26:
3534 addr = pc + AARCH64_PCREL_OFFSET + opnd->imm.value;
3535 if (pcrel_p)
3536 *pcrel_p = 1;
3537 if (address)
3538 *address = addr;
3539 /* This is not necessary during the disassembling, as print_address_func
3540 in the disassemble_info will take care of the printing. But some
3541 other callers may be still interested in getting the string in *STR,
3542 so here we do snprintf regardless. */
3543 snprintf (buf, size, "#0x%" PRIx64, addr);
3544 break;
3545
3546 case AARCH64_OPND_ADDR_SIMPLE:
3547 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
3548 case AARCH64_OPND_SIMD_ADDR_POST:
3549 name = get_64bit_int_reg_name (opnd->addr.base_regno, 1);
3550 if (opnd->type == AARCH64_OPND_SIMD_ADDR_POST)
3551 {
3552 if (opnd->addr.offset.is_reg)
3553 snprintf (buf, size, "[%s], x%d", name, opnd->addr.offset.regno);
3554 else
3555 snprintf (buf, size, "[%s], #%d", name, opnd->addr.offset.imm);
3556 }
3557 else
3558 snprintf (buf, size, "[%s]", name);
3559 break;
3560
3561 case AARCH64_OPND_ADDR_REGOFF:
3562 case AARCH64_OPND_SVE_ADDR_R:
3563 case AARCH64_OPND_SVE_ADDR_RR:
3564 case AARCH64_OPND_SVE_ADDR_RR_LSL1:
3565 case AARCH64_OPND_SVE_ADDR_RR_LSL2:
3566 case AARCH64_OPND_SVE_ADDR_RR_LSL3:
3567 case AARCH64_OPND_SVE_ADDR_RX:
3568 case AARCH64_OPND_SVE_ADDR_RX_LSL1:
3569 case AARCH64_OPND_SVE_ADDR_RX_LSL2:
3570 case AARCH64_OPND_SVE_ADDR_RX_LSL3:
3571 print_register_offset_address
3572 (buf, size, opnd, get_64bit_int_reg_name (opnd->addr.base_regno, 1),
3573 get_offset_int_reg_name (opnd));
3574 break;
3575
3576 case AARCH64_OPND_SVE_ADDR_RZ:
3577 case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
3578 case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
3579 case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
3580 case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
3581 case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
3582 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
3583 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
3584 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
3585 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
3586 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
3587 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
3588 print_register_offset_address
3589 (buf, size, opnd, get_64bit_int_reg_name (opnd->addr.base_regno, 1),
3590 get_addr_sve_reg_name (opnd->addr.offset.regno, opnd->qualifier));
3591 break;
3592
3593 case AARCH64_OPND_ADDR_SIMM7:
3594 case AARCH64_OPND_ADDR_SIMM9:
3595 case AARCH64_OPND_ADDR_SIMM9_2:
3596 case AARCH64_OPND_ADDR_SIMM10:
3597 case AARCH64_OPND_ADDR_SIMM11:
3598 case AARCH64_OPND_ADDR_SIMM13:
3599 case AARCH64_OPND_ADDR_OFFSET:
3600 case AARCH64_OPND_SVE_ADDR_RI_S4x16:
3601 case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
3602 case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
3603 case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
3604 case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
3605 case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
3606 case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
3607 case AARCH64_OPND_SVE_ADDR_RI_U6:
3608 case AARCH64_OPND_SVE_ADDR_RI_U6x2:
3609 case AARCH64_OPND_SVE_ADDR_RI_U6x4:
3610 case AARCH64_OPND_SVE_ADDR_RI_U6x8:
3611 print_immediate_offset_address
3612 (buf, size, opnd, get_64bit_int_reg_name (opnd->addr.base_regno, 1));
3613 break;
3614
3615 case AARCH64_OPND_SVE_ADDR_ZI_U5:
3616 case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
3617 case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
3618 case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
3619 print_immediate_offset_address
3620 (buf, size, opnd,
3621 get_addr_sve_reg_name (opnd->addr.base_regno, opnd->qualifier));
3622 break;
3623
3624 case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
3625 case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
3626 case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
3627 print_register_offset_address
3628 (buf, size, opnd,
3629 get_addr_sve_reg_name (opnd->addr.base_regno, opnd->qualifier),
3630 get_addr_sve_reg_name (opnd->addr.offset.regno, opnd->qualifier));
3631 break;
3632
3633 case AARCH64_OPND_ADDR_UIMM12:
3634 name = get_64bit_int_reg_name (opnd->addr.base_regno, 1);
3635 if (opnd->addr.offset.imm)
3636 snprintf (buf, size, "[%s, #%d]", name, opnd->addr.offset.imm);
3637 else
3638 snprintf (buf, size, "[%s]", name);
3639 break;
3640
3641 case AARCH64_OPND_SYSREG:
3642 for (i = 0; aarch64_sys_regs[i].name; ++i)
3643 {
3644 bfd_boolean exact_match
3645 = (aarch64_sys_regs[i].flags & opnd->sysreg.flags)
3646 == opnd->sysreg.flags;
3647
3648 /* Try and find an exact match, But if that fails, return the first
3649 partial match that was found. */
3650 if (aarch64_sys_regs[i].value == opnd->sysreg.value
3651 && ! aarch64_sys_reg_deprecated_p (&aarch64_sys_regs[i])
3652 && (name == NULL || exact_match))
3653 {
3654 name = aarch64_sys_regs[i].name;
3655 if (exact_match)
3656 {
3657 if (notes)
3658 *notes = NULL;
3659 break;
3660 }
3661
3662 /* If we didn't match exactly, that means the presense of a flag
3663 indicates what we didn't want for this instruction. e.g. If
3664 F_REG_READ is there, that means we were looking for a write
3665 register. See aarch64_ext_sysreg. */
3666 if (aarch64_sys_regs[i].flags & F_REG_WRITE)
3667 *notes = _("reading from a write-only register");
3668 else if (aarch64_sys_regs[i].flags & F_REG_READ)
3669 *notes = _("writing to a read-only register");
3670 }
3671 }
3672
3673 if (name)
3674 snprintf (buf, size, "%s", name);
3675 else
3676 {
3677 /* Implementation defined system register. */
3678 unsigned int value = opnd->sysreg.value;
3679 snprintf (buf, size, "s%u_%u_c%u_c%u_%u", (value >> 14) & 0x3,
3680 (value >> 11) & 0x7, (value >> 7) & 0xf, (value >> 3) & 0xf,
3681 value & 0x7);
3682 }
3683 break;
3684
3685 case AARCH64_OPND_PSTATEFIELD:
3686 for (i = 0; aarch64_pstatefields[i].name; ++i)
3687 if (aarch64_pstatefields[i].value == opnd->pstatefield)
3688 break;
3689 assert (aarch64_pstatefields[i].name);
3690 snprintf (buf, size, "%s", aarch64_pstatefields[i].name);
3691 break;
3692
3693 case AARCH64_OPND_SYSREG_AT:
3694 case AARCH64_OPND_SYSREG_DC:
3695 case AARCH64_OPND_SYSREG_IC:
3696 case AARCH64_OPND_SYSREG_TLBI:
3697 case AARCH64_OPND_SYSREG_SR:
3698 snprintf (buf, size, "%s", opnd->sysins_op->name);
3699 break;
3700
3701 case AARCH64_OPND_BARRIER:
3702 snprintf (buf, size, "%s", opnd->barrier->name);
3703 break;
3704
3705 case AARCH64_OPND_BARRIER_ISB:
3706 /* Operand can be omitted, e.g. in DCPS1. */
3707 if (! optional_operand_p (opcode, idx)
3708 || (opnd->barrier->value
3709 != get_optional_operand_default_value (opcode)))
3710 snprintf (buf, size, "#0x%x", opnd->barrier->value);
3711 break;
3712
3713 case AARCH64_OPND_PRFOP:
3714 if (opnd->prfop->name != NULL)
3715 snprintf (buf, size, "%s", opnd->prfop->name);
3716 else
3717 snprintf (buf, size, "#0x%02x", opnd->prfop->value);
3718 break;
3719
3720 case AARCH64_OPND_BARRIER_PSB:
3721 case AARCH64_OPND_BTI_TARGET:
3722 if ((HINT_FLAG (opnd->hint_option->value) & HINT_OPD_F_NOPRINT) == 0)
3723 snprintf (buf, size, "%s", opnd->hint_option->name);
3724 break;
3725
3726 default:
3727 assert (0);
3728 }
3729 }
3730 \f
3731 #define CPENC(op0,op1,crn,crm,op2) \
3732 ((((op0) << 19) | ((op1) << 16) | ((crn) << 12) | ((crm) << 8) | ((op2) << 5)) >> 5)
3733 /* for 3.9.3 Instructions for Accessing Special Purpose Registers */
3734 #define CPEN_(op1,crm,op2) CPENC(3,(op1),4,(crm),(op2))
3735 /* for 3.9.10 System Instructions */
3736 #define CPENS(op1,crn,crm,op2) CPENC(1,(op1),(crn),(crm),(op2))
3737
3738 #define C0 0
3739 #define C1 1
3740 #define C2 2
3741 #define C3 3
3742 #define C4 4
3743 #define C5 5
3744 #define C6 6
3745 #define C7 7
3746 #define C8 8
3747 #define C9 9
3748 #define C10 10
3749 #define C11 11
3750 #define C12 12
3751 #define C13 13
3752 #define C14 14
3753 #define C15 15
3754
3755 /* TODO there is one more issues need to be resolved
3756 1. handle cpu-implementation-defined system registers. */
3757 const aarch64_sys_reg aarch64_sys_regs [] =
3758 {
3759 { "spsr_el1", CPEN_(0,C0,0), 0 }, /* = spsr_svc */
3760 { "spsr_el12", CPEN_ (5, C0, 0), F_ARCHEXT },
3761 { "elr_el1", CPEN_(0,C0,1), 0 },
3762 { "elr_el12", CPEN_ (5, C0, 1), F_ARCHEXT },
3763 { "sp_el0", CPEN_(0,C1,0), 0 },
3764 { "spsel", CPEN_(0,C2,0), 0 },
3765 { "daif", CPEN_(3,C2,1), 0 },
3766 { "currentel", CPEN_(0,C2,2), F_REG_READ }, /* RO */
3767 { "pan", CPEN_(0,C2,3), F_ARCHEXT },
3768 { "uao", CPEN_ (0, C2, 4), F_ARCHEXT },
3769 { "nzcv", CPEN_(3,C2,0), 0 },
3770 { "ssbs", CPEN_(3,C2,6), F_ARCHEXT },
3771 { "fpcr", CPEN_(3,C4,0), 0 },
3772 { "fpsr", CPEN_(3,C4,1), 0 },
3773 { "dspsr_el0", CPEN_(3,C5,0), 0 },
3774 { "dlr_el0", CPEN_(3,C5,1), 0 },
3775 { "spsr_el2", CPEN_(4,C0,0), 0 }, /* = spsr_hyp */
3776 { "elr_el2", CPEN_(4,C0,1), 0 },
3777 { "sp_el1", CPEN_(4,C1,0), 0 },
3778 { "spsr_irq", CPEN_(4,C3,0), 0 },
3779 { "spsr_abt", CPEN_(4,C3,1), 0 },
3780 { "spsr_und", CPEN_(4,C3,2), 0 },
3781 { "spsr_fiq", CPEN_(4,C3,3), 0 },
3782 { "spsr_el3", CPEN_(6,C0,0), 0 },
3783 { "elr_el3", CPEN_(6,C0,1), 0 },
3784 { "sp_el2", CPEN_(6,C1,0), 0 },
3785 { "spsr_svc", CPEN_(0,C0,0), F_DEPRECATED }, /* = spsr_el1 */
3786 { "spsr_hyp", CPEN_(4,C0,0), F_DEPRECATED }, /* = spsr_el2 */
3787 { "midr_el1", CPENC(3,0,C0,C0,0), F_REG_READ }, /* RO */
3788 { "ctr_el0", CPENC(3,3,C0,C0,1), F_REG_READ }, /* RO */
3789 { "mpidr_el1", CPENC(3,0,C0,C0,5), F_REG_READ }, /* RO */
3790 { "revidr_el1", CPENC(3,0,C0,C0,6), F_REG_READ }, /* RO */
3791 { "aidr_el1", CPENC(3,1,C0,C0,7), F_REG_READ }, /* RO */
3792 { "dczid_el0", CPENC(3,3,C0,C0,7), F_REG_READ }, /* RO */
3793 { "id_dfr0_el1", CPENC(3,0,C0,C1,2), F_REG_READ }, /* RO */
3794 { "id_pfr0_el1", CPENC(3,0,C0,C1,0), F_REG_READ }, /* RO */
3795 { "id_pfr1_el1", CPENC(3,0,C0,C1,1), F_REG_READ }, /* RO */
3796 { "id_pfr2_el1", CPENC(3,0,C0,C3,4), F_ARCHEXT | F_REG_READ}, /* RO */
3797 { "id_afr0_el1", CPENC(3,0,C0,C1,3), F_REG_READ }, /* RO */
3798 { "id_mmfr0_el1", CPENC(3,0,C0,C1,4), F_REG_READ }, /* RO */
3799 { "id_mmfr1_el1", CPENC(3,0,C0,C1,5), F_REG_READ }, /* RO */
3800 { "id_mmfr2_el1", CPENC(3,0,C0,C1,6), F_REG_READ }, /* RO */
3801 { "id_mmfr3_el1", CPENC(3,0,C0,C1,7), F_REG_READ }, /* RO */
3802 { "id_mmfr4_el1", CPENC(3,0,C0,C2,6), F_REG_READ }, /* RO */
3803 { "id_isar0_el1", CPENC(3,0,C0,C2,0), F_REG_READ }, /* RO */
3804 { "id_isar1_el1", CPENC(3,0,C0,C2,1), F_REG_READ }, /* RO */
3805 { "id_isar2_el1", CPENC(3,0,C0,C2,2), F_REG_READ }, /* RO */
3806 { "id_isar3_el1", CPENC(3,0,C0,C2,3), F_REG_READ }, /* RO */
3807 { "id_isar4_el1", CPENC(3,0,C0,C2,4), F_REG_READ }, /* RO */
3808 { "id_isar5_el1", CPENC(3,0,C0,C2,5), F_REG_READ }, /* RO */
3809 { "mvfr0_el1", CPENC(3,0,C0,C3,0), F_REG_READ }, /* RO */
3810 { "mvfr1_el1", CPENC(3,0,C0,C3,1), F_REG_READ }, /* RO */
3811 { "mvfr2_el1", CPENC(3,0,C0,C3,2), F_REG_READ }, /* RO */
3812 { "ccsidr_el1", CPENC(3,1,C0,C0,0), F_REG_READ }, /* RO */
3813 { "id_aa64pfr0_el1", CPENC(3,0,C0,C4,0), F_REG_READ }, /* RO */
3814 { "id_aa64pfr1_el1", CPENC(3,0,C0,C4,1), F_REG_READ }, /* RO */
3815 { "id_aa64dfr0_el1", CPENC(3,0,C0,C5,0), F_REG_READ }, /* RO */
3816 { "id_aa64dfr1_el1", CPENC(3,0,C0,C5,1), F_REG_READ }, /* RO */
3817 { "id_aa64isar0_el1", CPENC(3,0,C0,C6,0), F_REG_READ }, /* RO */
3818 { "id_aa64isar1_el1", CPENC(3,0,C0,C6,1), F_REG_READ }, /* RO */
3819 { "id_aa64mmfr0_el1", CPENC(3,0,C0,C7,0), F_REG_READ }, /* RO */
3820 { "id_aa64mmfr1_el1", CPENC(3,0,C0,C7,1), F_REG_READ }, /* RO */
3821 { "id_aa64mmfr2_el1", CPENC (3, 0, C0, C7, 2), F_ARCHEXT | F_REG_READ }, /* RO */
3822 { "id_aa64afr0_el1", CPENC(3,0,C0,C5,4), F_REG_READ }, /* RO */
3823 { "id_aa64afr1_el1", CPENC(3,0,C0,C5,5), F_REG_READ }, /* RO */
3824 { "id_aa64zfr0_el1", CPENC (3, 0, C0, C4, 4), F_ARCHEXT | F_REG_READ }, /* RO */
3825 { "clidr_el1", CPENC(3,1,C0,C0,1), F_REG_READ }, /* RO */
3826 { "csselr_el1", CPENC(3,2,C0,C0,0), 0 },
3827 { "vpidr_el2", CPENC(3,4,C0,C0,0), 0 },
3828 { "vmpidr_el2", CPENC(3,4,C0,C0,5), 0 },
3829 { "sctlr_el1", CPENC(3,0,C1,C0,0), 0 },
3830 { "sctlr_el2", CPENC(3,4,C1,C0,0), 0 },
3831 { "sctlr_el3", CPENC(3,6,C1,C0,0), 0 },
3832 { "sctlr_el12", CPENC (3, 5, C1, C0, 0), F_ARCHEXT },
3833 { "actlr_el1", CPENC(3,0,C1,C0,1), 0 },
3834 { "actlr_el2", CPENC(3,4,C1,C0,1), 0 },
3835 { "actlr_el3", CPENC(3,6,C1,C0,1), 0 },
3836 { "cpacr_el1", CPENC(3,0,C1,C0,2), 0 },
3837 { "cpacr_el12", CPENC (3, 5, C1, C0, 2), F_ARCHEXT },
3838 { "cptr_el2", CPENC(3,4,C1,C1,2), 0 },
3839 { "cptr_el3", CPENC(3,6,C1,C1,2), 0 },
3840 { "scr_el3", CPENC(3,6,C1,C1,0), 0 },
3841 { "hcr_el2", CPENC(3,4,C1,C1,0), 0 },
3842 { "mdcr_el2", CPENC(3,4,C1,C1,1), 0 },
3843 { "mdcr_el3", CPENC(3,6,C1,C3,1), 0 },
3844 { "hstr_el2", CPENC(3,4,C1,C1,3), 0 },
3845 { "hacr_el2", CPENC(3,4,C1,C1,7), 0 },
3846 { "zcr_el1", CPENC (3, 0, C1, C2, 0), F_ARCHEXT },
3847 { "zcr_el12", CPENC (3, 5, C1, C2, 0), F_ARCHEXT },
3848 { "zcr_el2", CPENC (3, 4, C1, C2, 0), F_ARCHEXT },
3849 { "zcr_el3", CPENC (3, 6, C1, C2, 0), F_ARCHEXT },
3850 { "zidr_el1", CPENC (3, 0, C0, C0, 7), F_ARCHEXT },
3851 { "ttbr0_el1", CPENC(3,0,C2,C0,0), 0 },
3852 { "ttbr1_el1", CPENC(3,0,C2,C0,1), 0 },
3853 { "ttbr0_el2", CPENC(3,4,C2,C0,0), 0 },
3854 { "ttbr1_el2", CPENC (3, 4, C2, C0, 1), F_ARCHEXT },
3855 { "ttbr0_el3", CPENC(3,6,C2,C0,0), 0 },
3856 { "ttbr0_el12", CPENC (3, 5, C2, C0, 0), F_ARCHEXT },
3857 { "ttbr1_el12", CPENC (3, 5, C2, C0, 1), F_ARCHEXT },
3858 { "vttbr_el2", CPENC(3,4,C2,C1,0), 0 },
3859 { "tcr_el1", CPENC(3,0,C2,C0,2), 0 },
3860 { "tcr_el2", CPENC(3,4,C2,C0,2), 0 },
3861 { "tcr_el3", CPENC(3,6,C2,C0,2), 0 },
3862 { "tcr_el12", CPENC (3, 5, C2, C0, 2), F_ARCHEXT },
3863 { "vtcr_el2", CPENC(3,4,C2,C1,2), 0 },
3864 { "apiakeylo_el1", CPENC (3, 0, C2, C1, 0), F_ARCHEXT },
3865 { "apiakeyhi_el1", CPENC (3, 0, C2, C1, 1), F_ARCHEXT },
3866 { "apibkeylo_el1", CPENC (3, 0, C2, C1, 2), F_ARCHEXT },
3867 { "apibkeyhi_el1", CPENC (3, 0, C2, C1, 3), F_ARCHEXT },
3868 { "apdakeylo_el1", CPENC (3, 0, C2, C2, 0), F_ARCHEXT },
3869 { "apdakeyhi_el1", CPENC (3, 0, C2, C2, 1), F_ARCHEXT },
3870 { "apdbkeylo_el1", CPENC (3, 0, C2, C2, 2), F_ARCHEXT },
3871 { "apdbkeyhi_el1", CPENC (3, 0, C2, C2, 3), F_ARCHEXT },
3872 { "apgakeylo_el1", CPENC (3, 0, C2, C3, 0), F_ARCHEXT },
3873 { "apgakeyhi_el1", CPENC (3, 0, C2, C3, 1), F_ARCHEXT },
3874 { "afsr0_el1", CPENC(3,0,C5,C1,0), 0 },
3875 { "afsr1_el1", CPENC(3,0,C5,C1,1), 0 },
3876 { "afsr0_el2", CPENC(3,4,C5,C1,0), 0 },
3877 { "afsr1_el2", CPENC(3,4,C5,C1,1), 0 },
3878 { "afsr0_el3", CPENC(3,6,C5,C1,0), 0 },
3879 { "afsr0_el12", CPENC (3, 5, C5, C1, 0), F_ARCHEXT },
3880 { "afsr1_el3", CPENC(3,6,C5,C1,1), 0 },
3881 { "afsr1_el12", CPENC (3, 5, C5, C1, 1), F_ARCHEXT },
3882 { "esr_el1", CPENC(3,0,C5,C2,0), 0 },
3883 { "esr_el2", CPENC(3,4,C5,C2,0), 0 },
3884 { "esr_el3", CPENC(3,6,C5,C2,0), 0 },
3885 { "esr_el12", CPENC (3, 5, C5, C2, 0), F_ARCHEXT },
3886 { "vsesr_el2", CPENC (3, 4, C5, C2, 3), F_ARCHEXT },
3887 { "fpexc32_el2", CPENC(3,4,C5,C3,0), 0 },
3888 { "erridr_el1", CPENC (3, 0, C5, C3, 0), F_ARCHEXT | F_REG_READ }, /* RO */
3889 { "errselr_el1", CPENC (3, 0, C5, C3, 1), F_ARCHEXT },
3890 { "erxfr_el1", CPENC (3, 0, C5, C4, 0), F_ARCHEXT | F_REG_READ }, /* RO */
3891 { "erxctlr_el1", CPENC (3, 0, C5, C4, 1), F_ARCHEXT },
3892 { "erxstatus_el1", CPENC (3, 0, C5, C4, 2), F_ARCHEXT },
3893 { "erxaddr_el1", CPENC (3, 0, C5, C4, 3), F_ARCHEXT },
3894 { "erxmisc0_el1", CPENC (3, 0, C5, C5, 0), F_ARCHEXT },
3895 { "erxmisc1_el1", CPENC (3, 0, C5, C5, 1), F_ARCHEXT },
3896 { "far_el1", CPENC(3,0,C6,C0,0), 0 },
3897 { "far_el2", CPENC(3,4,C6,C0,0), 0 },
3898 { "far_el3", CPENC(3,6,C6,C0,0), 0 },
3899 { "far_el12", CPENC (3, 5, C6, C0, 0), F_ARCHEXT },
3900 { "hpfar_el2", CPENC(3,4,C6,C0,4), 0 },
3901 { "par_el1", CPENC(3,0,C7,C4,0), 0 },
3902 { "mair_el1", CPENC(3,0,C10,C2,0), 0 },
3903 { "mair_el2", CPENC(3,4,C10,C2,0), 0 },
3904 { "mair_el3", CPENC(3,6,C10,C2,0), 0 },
3905 { "mair_el12", CPENC (3, 5, C10, C2, 0), F_ARCHEXT },
3906 { "amair_el1", CPENC(3,0,C10,C3,0), 0 },
3907 { "amair_el2", CPENC(3,4,C10,C3,0), 0 },
3908 { "amair_el3", CPENC(3,6,C10,C3,0), 0 },
3909 { "amair_el12", CPENC (3, 5, C10, C3, 0), F_ARCHEXT },
3910 { "vbar_el1", CPENC(3,0,C12,C0,0), 0 },
3911 { "vbar_el2", CPENC(3,4,C12,C0,0), 0 },
3912 { "vbar_el3", CPENC(3,6,C12,C0,0), 0 },
3913 { "vbar_el12", CPENC (3, 5, C12, C0, 0), F_ARCHEXT },
3914 { "rvbar_el1", CPENC(3,0,C12,C0,1), F_REG_READ }, /* RO */
3915 { "rvbar_el2", CPENC(3,4,C12,C0,1), F_REG_READ }, /* RO */
3916 { "rvbar_el3", CPENC(3,6,C12,C0,1), F_REG_READ }, /* RO */
3917 { "rmr_el1", CPENC(3,0,C12,C0,2), 0 },
3918 { "rmr_el2", CPENC(3,4,C12,C0,2), 0 },
3919 { "rmr_el3", CPENC(3,6,C12,C0,2), 0 },
3920 { "isr_el1", CPENC(3,0,C12,C1,0), F_REG_READ }, /* RO */
3921 { "disr_el1", CPENC (3, 0, C12, C1, 1), F_ARCHEXT },
3922 { "vdisr_el2", CPENC (3, 4, C12, C1, 1), F_ARCHEXT },
3923 { "contextidr_el1", CPENC(3,0,C13,C0,1), 0 },
3924 { "contextidr_el2", CPENC (3, 4, C13, C0, 1), F_ARCHEXT },
3925 { "contextidr_el12", CPENC (3, 5, C13, C0, 1), F_ARCHEXT },
3926 { "rndr", CPENC(3,3,C2,C4,0), F_ARCHEXT | F_REG_READ }, /* RO */
3927 { "rndrrs", CPENC(3,3,C2,C4,1), F_ARCHEXT | F_REG_READ }, /* RO */
3928 { "tco", CPENC(3,3,C4,C2,7), F_ARCHEXT },
3929 { "tfsre0_el1", CPENC(3,0,C6,C6,1), F_ARCHEXT },
3930 { "tfsr_el1", CPENC(3,0,C6,C5,0), F_ARCHEXT },
3931 { "tfsr_el2", CPENC(3,4,C6,C5,0), F_ARCHEXT },
3932 { "tfsr_el3", CPENC(3,6,C6,C6,0), F_ARCHEXT },
3933 { "tfsr_el12", CPENC(3,5,C6,C6,0), F_ARCHEXT },
3934 { "rgsr_el1", CPENC(3,0,C1,C0,5), F_ARCHEXT },
3935 { "gcr_el1", CPENC(3,0,C1,C0,6), F_ARCHEXT },
3936 { "tpidr_el0", CPENC(3,3,C13,C0,2), 0 },
3937 { "tpidrro_el0", CPENC(3,3,C13,C0,3), 0 }, /* RW */
3938 { "tpidr_el1", CPENC(3,0,C13,C0,4), 0 },
3939 { "tpidr_el2", CPENC(3,4,C13,C0,2), 0 },
3940 { "tpidr_el3", CPENC(3,6,C13,C0,2), 0 },
3941 { "scxtnum_el0", CPENC(3,3,C13,C0,7), F_ARCHEXT },
3942 { "scxtnum_el1", CPENC(3,0,C13,C0,7), F_ARCHEXT },
3943 { "scxtnum_el2", CPENC(3,4,C13,C0,7), F_ARCHEXT },
3944 { "scxtnum_el12", CPENC(3,5,C13,C0,7), F_ARCHEXT },
3945 { "scxtnum_el3", CPENC(3,6,C13,C0,7), F_ARCHEXT },
3946 { "teecr32_el1", CPENC(2,2,C0, C0,0), 0 }, /* See section 3.9.7.1 */
3947 { "cntfrq_el0", CPENC(3,3,C14,C0,0), 0 }, /* RW */
3948 { "cntpct_el0", CPENC(3,3,C14,C0,1), F_REG_READ }, /* RO */
3949 { "cntvct_el0", CPENC(3,3,C14,C0,2), F_REG_READ }, /* RO */
3950 { "cntvoff_el2", CPENC(3,4,C14,C0,3), 0 },
3951 { "cntkctl_el1", CPENC(3,0,C14,C1,0), 0 },
3952 { "cntkctl_el12", CPENC (3, 5, C14, C1, 0), F_ARCHEXT },
3953 { "cnthctl_el2", CPENC(3,4,C14,C1,0), 0 },
3954 { "cntp_tval_el0", CPENC(3,3,C14,C2,0), 0 },
3955 { "cntp_tval_el02", CPENC (3, 5, C14, C2, 0), F_ARCHEXT },
3956 { "cntp_ctl_el0", CPENC(3,3,C14,C2,1), 0 },
3957 { "cntp_ctl_el02", CPENC (3, 5, C14, C2, 1), F_ARCHEXT },
3958 { "cntp_cval_el0", CPENC(3,3,C14,C2,2), 0 },
3959 { "cntp_cval_el02", CPENC (3, 5, C14, C2, 2), F_ARCHEXT },
3960 { "cntv_tval_el0", CPENC(3,3,C14,C3,0), 0 },
3961 { "cntv_tval_el02", CPENC (3, 5, C14, C3, 0), F_ARCHEXT },
3962 { "cntv_ctl_el0", CPENC(3,3,C14,C3,1), 0 },
3963 { "cntv_ctl_el02", CPENC (3, 5, C14, C3, 1), F_ARCHEXT },
3964 { "cntv_cval_el0", CPENC(3,3,C14,C3,2), 0 },
3965 { "cntv_cval_el02", CPENC (3, 5, C14, C3, 2), F_ARCHEXT },
3966 { "cnthp_tval_el2", CPENC(3,4,C14,C2,0), 0 },
3967 { "cnthp_ctl_el2", CPENC(3,4,C14,C2,1), 0 },
3968 { "cnthp_cval_el2", CPENC(3,4,C14,C2,2), 0 },
3969 { "cntps_tval_el1", CPENC(3,7,C14,C2,0), 0 },
3970 { "cntps_ctl_el1", CPENC(3,7,C14,C2,1), 0 },
3971 { "cntps_cval_el1", CPENC(3,7,C14,C2,2), 0 },
3972 { "cnthv_tval_el2", CPENC (3, 4, C14, C3, 0), F_ARCHEXT },
3973 { "cnthv_ctl_el2", CPENC (3, 4, C14, C3, 1), F_ARCHEXT },
3974 { "cnthv_cval_el2", CPENC (3, 4, C14, C3, 2), F_ARCHEXT },
3975 { "dacr32_el2", CPENC(3,4,C3,C0,0), 0 },
3976 { "ifsr32_el2", CPENC(3,4,C5,C0,1), 0 },
3977 { "teehbr32_el1", CPENC(2,2,C1,C0,0), 0 },
3978 { "sder32_el3", CPENC(3,6,C1,C1,1), 0 },
3979 { "mdscr_el1", CPENC(2,0,C0, C2, 2), 0 },
3980 { "mdccsr_el0", CPENC(2,3,C0, C1, 0), F_REG_READ }, /* r */
3981 { "mdccint_el1", CPENC(2,0,C0, C2, 0), 0 },
3982 { "dbgdtr_el0", CPENC(2,3,C0, C4, 0), 0 },
3983 { "dbgdtrrx_el0", CPENC(2,3,C0, C5, 0), F_REG_READ }, /* r */
3984 { "dbgdtrtx_el0", CPENC(2,3,C0, C5, 0), F_REG_WRITE }, /* w */
3985 { "osdtrrx_el1", CPENC(2,0,C0, C0, 2), 0 },
3986 { "osdtrtx_el1", CPENC(2,0,C0, C3, 2), 0 },
3987 { "oseccr_el1", CPENC(2,0,C0, C6, 2), 0 },
3988 { "dbgvcr32_el2", CPENC(2,4,C0, C7, 0), 0 },
3989 { "dbgbvr0_el1", CPENC(2,0,C0, C0, 4), 0 },
3990 { "dbgbvr1_el1", CPENC(2,0,C0, C1, 4), 0 },
3991 { "dbgbvr2_el1", CPENC(2,0,C0, C2, 4), 0 },
3992 { "dbgbvr3_el1", CPENC(2,0,C0, C3, 4), 0 },
3993 { "dbgbvr4_el1", CPENC(2,0,C0, C4, 4), 0 },
3994 { "dbgbvr5_el1", CPENC(2,0,C0, C5, 4), 0 },
3995 { "dbgbvr6_el1", CPENC(2,0,C0, C6, 4), 0 },
3996 { "dbgbvr7_el1", CPENC(2,0,C0, C7, 4), 0 },
3997 { "dbgbvr8_el1", CPENC(2,0,C0, C8, 4), 0 },
3998 { "dbgbvr9_el1", CPENC(2,0,C0, C9, 4), 0 },
3999 { "dbgbvr10_el1", CPENC(2,0,C0, C10,4), 0 },
4000 { "dbgbvr11_el1", CPENC(2,0,C0, C11,4), 0 },
4001 { "dbgbvr12_el1", CPENC(2,0,C0, C12,4), 0 },
4002 { "dbgbvr13_el1", CPENC(2,0,C0, C13,4), 0 },
4003 { "dbgbvr14_el1", CPENC(2,0,C0, C14,4), 0 },
4004 { "dbgbvr15_el1", CPENC(2,0,C0, C15,4), 0 },
4005 { "dbgbcr0_el1", CPENC(2,0,C0, C0, 5), 0 },
4006 { "dbgbcr1_el1", CPENC(2,0,C0, C1, 5), 0 },
4007 { "dbgbcr2_el1", CPENC(2,0,C0, C2, 5), 0 },
4008 { "dbgbcr3_el1", CPENC(2,0,C0, C3, 5), 0 },
4009 { "dbgbcr4_el1", CPENC(2,0,C0, C4, 5), 0 },
4010 { "dbgbcr5_el1", CPENC(2,0,C0, C5, 5), 0 },
4011 { "dbgbcr6_el1", CPENC(2,0,C0, C6, 5), 0 },
4012 { "dbgbcr7_el1", CPENC(2,0,C0, C7, 5), 0 },
4013 { "dbgbcr8_el1", CPENC(2,0,C0, C8, 5), 0 },
4014 { "dbgbcr9_el1", CPENC(2,0,C0, C9, 5), 0 },
4015 { "dbgbcr10_el1", CPENC(2,0,C0, C10,5), 0 },
4016 { "dbgbcr11_el1", CPENC(2,0,C0, C11,5), 0 },
4017 { "dbgbcr12_el1", CPENC(2,0,C0, C12,5), 0 },
4018 { "dbgbcr13_el1", CPENC(2,0,C0, C13,5), 0 },
4019 { "dbgbcr14_el1", CPENC(2,0,C0, C14,5), 0 },
4020 { "dbgbcr15_el1", CPENC(2,0,C0, C15,5), 0 },
4021 { "dbgwvr0_el1", CPENC(2,0,C0, C0, 6), 0 },
4022 { "dbgwvr1_el1", CPENC(2,0,C0, C1, 6), 0 },
4023 { "dbgwvr2_el1", CPENC(2,0,C0, C2, 6), 0 },
4024 { "dbgwvr3_el1", CPENC(2,0,C0, C3, 6), 0 },
4025 { "dbgwvr4_el1", CPENC(2,0,C0, C4, 6), 0 },
4026 { "dbgwvr5_el1", CPENC(2,0,C0, C5, 6), 0 },
4027 { "dbgwvr6_el1", CPENC(2,0,C0, C6, 6), 0 },
4028 { "dbgwvr7_el1", CPENC(2,0,C0, C7, 6), 0 },
4029 { "dbgwvr8_el1", CPENC(2,0,C0, C8, 6), 0 },
4030 { "dbgwvr9_el1", CPENC(2,0,C0, C9, 6), 0 },
4031 { "dbgwvr10_el1", CPENC(2,0,C0, C10,6), 0 },
4032 { "dbgwvr11_el1", CPENC(2,0,C0, C11,6), 0 },
4033 { "dbgwvr12_el1", CPENC(2,0,C0, C12,6), 0 },
4034 { "dbgwvr13_el1", CPENC(2,0,C0, C13,6), 0 },
4035 { "dbgwvr14_el1", CPENC(2,0,C0, C14,6), 0 },
4036 { "dbgwvr15_el1", CPENC(2,0,C0, C15,6), 0 },
4037 { "dbgwcr0_el1", CPENC(2,0,C0, C0, 7), 0 },
4038 { "dbgwcr1_el1", CPENC(2,0,C0, C1, 7), 0 },
4039 { "dbgwcr2_el1", CPENC(2,0,C0, C2, 7), 0 },
4040 { "dbgwcr3_el1", CPENC(2,0,C0, C3, 7), 0 },
4041 { "dbgwcr4_el1", CPENC(2,0,C0, C4, 7), 0 },
4042 { "dbgwcr5_el1", CPENC(2,0,C0, C5, 7), 0 },
4043 { "dbgwcr6_el1", CPENC(2,0,C0, C6, 7), 0 },
4044 { "dbgwcr7_el1", CPENC(2,0,C0, C7, 7), 0 },
4045 { "dbgwcr8_el1", CPENC(2,0,C0, C8, 7), 0 },
4046 { "dbgwcr9_el1", CPENC(2,0,C0, C9, 7), 0 },
4047 { "dbgwcr10_el1", CPENC(2,0,C0, C10,7), 0 },
4048 { "dbgwcr11_el1", CPENC(2,0,C0, C11,7), 0 },
4049 { "dbgwcr12_el1", CPENC(2,0,C0, C12,7), 0 },
4050 { "dbgwcr13_el1", CPENC(2,0,C0, C13,7), 0 },
4051 { "dbgwcr14_el1", CPENC(2,0,C0, C14,7), 0 },
4052 { "dbgwcr15_el1", CPENC(2,0,C0, C15,7), 0 },
4053 { "mdrar_el1", CPENC(2,0,C1, C0, 0), F_REG_READ }, /* r */
4054 { "oslar_el1", CPENC(2,0,C1, C0, 4), F_REG_WRITE }, /* w */
4055 { "oslsr_el1", CPENC(2,0,C1, C1, 4), F_REG_READ }, /* r */
4056 { "osdlr_el1", CPENC(2,0,C1, C3, 4), 0 },
4057 { "dbgprcr_el1", CPENC(2,0,C1, C4, 4), 0 },
4058 { "dbgclaimset_el1", CPENC(2,0,C7, C8, 6), 0 },
4059 { "dbgclaimclr_el1", CPENC(2,0,C7, C9, 6), 0 },
4060 { "dbgauthstatus_el1", CPENC(2,0,C7, C14,6), F_REG_READ }, /* r */
4061 { "pmblimitr_el1", CPENC (3, 0, C9, C10, 0), F_ARCHEXT }, /* rw */
4062 { "pmbptr_el1", CPENC (3, 0, C9, C10, 1), F_ARCHEXT }, /* rw */
4063 { "pmbsr_el1", CPENC (3, 0, C9, C10, 3), F_ARCHEXT }, /* rw */
4064 { "pmbidr_el1", CPENC (3, 0, C9, C10, 7), F_ARCHEXT | F_REG_READ }, /* ro */
4065 { "pmscr_el1", CPENC (3, 0, C9, C9, 0), F_ARCHEXT }, /* rw */
4066 { "pmsicr_el1", CPENC (3, 0, C9, C9, 2), F_ARCHEXT }, /* rw */
4067 { "pmsirr_el1", CPENC (3, 0, C9, C9, 3), F_ARCHEXT }, /* rw */
4068 { "pmsfcr_el1", CPENC (3, 0, C9, C9, 4), F_ARCHEXT }, /* rw */
4069 { "pmsevfr_el1", CPENC (3, 0, C9, C9, 5), F_ARCHEXT }, /* rw */
4070 { "pmslatfr_el1", CPENC (3, 0, C9, C9, 6), F_ARCHEXT }, /* rw */
4071 { "pmsidr_el1", CPENC (3, 0, C9, C9, 7), F_ARCHEXT }, /* rw */
4072 { "pmscr_el2", CPENC (3, 4, C9, C9, 0), F_ARCHEXT }, /* rw */
4073 { "pmscr_el12", CPENC (3, 5, C9, C9, 0), F_ARCHEXT }, /* rw */
4074 { "pmcr_el0", CPENC(3,3,C9,C12, 0), 0 },
4075 { "pmcntenset_el0", CPENC(3,3,C9,C12, 1), 0 },
4076 { "pmcntenclr_el0", CPENC(3,3,C9,C12, 2), 0 },
4077 { "pmovsclr_el0", CPENC(3,3,C9,C12, 3), 0 },
4078 { "pmswinc_el0", CPENC(3,3,C9,C12, 4), F_REG_WRITE }, /* w */
4079 { "pmselr_el0", CPENC(3,3,C9,C12, 5), 0 },
4080 { "pmceid0_el0", CPENC(3,3,C9,C12, 6), F_REG_READ }, /* r */
4081 { "pmceid1_el0", CPENC(3,3,C9,C12, 7), F_REG_READ }, /* r */
4082 { "pmccntr_el0", CPENC(3,3,C9,C13, 0), 0 },
4083 { "pmxevtyper_el0", CPENC(3,3,C9,C13, 1), 0 },
4084 { "pmxevcntr_el0", CPENC(3,3,C9,C13, 2), 0 },
4085 { "pmuserenr_el0", CPENC(3,3,C9,C14, 0), 0 },
4086 { "pmintenset_el1", CPENC(3,0,C9,C14, 1), 0 },
4087 { "pmintenclr_el1", CPENC(3,0,C9,C14, 2), 0 },
4088 { "pmovsset_el0", CPENC(3,3,C9,C14, 3), 0 },
4089 { "pmevcntr0_el0", CPENC(3,3,C14,C8, 0), 0 },
4090 { "pmevcntr1_el0", CPENC(3,3,C14,C8, 1), 0 },
4091 { "pmevcntr2_el0", CPENC(3,3,C14,C8, 2), 0 },
4092 { "pmevcntr3_el0", CPENC(3,3,C14,C8, 3), 0 },
4093 { "pmevcntr4_el0", CPENC(3,3,C14,C8, 4), 0 },
4094 { "pmevcntr5_el0", CPENC(3,3,C14,C8, 5), 0 },
4095 { "pmevcntr6_el0", CPENC(3,3,C14,C8, 6), 0 },
4096 { "pmevcntr7_el0", CPENC(3,3,C14,C8, 7), 0 },
4097 { "pmevcntr8_el0", CPENC(3,3,C14,C9, 0), 0 },
4098 { "pmevcntr9_el0", CPENC(3,3,C14,C9, 1), 0 },
4099 { "pmevcntr10_el0", CPENC(3,3,C14,C9, 2), 0 },
4100 { "pmevcntr11_el0", CPENC(3,3,C14,C9, 3), 0 },
4101 { "pmevcntr12_el0", CPENC(3,3,C14,C9, 4), 0 },
4102 { "pmevcntr13_el0", CPENC(3,3,C14,C9, 5), 0 },
4103 { "pmevcntr14_el0", CPENC(3,3,C14,C9, 6), 0 },
4104 { "pmevcntr15_el0", CPENC(3,3,C14,C9, 7), 0 },
4105 { "pmevcntr16_el0", CPENC(3,3,C14,C10,0), 0 },
4106 { "pmevcntr17_el0", CPENC(3,3,C14,C10,1), 0 },
4107 { "pmevcntr18_el0", CPENC(3,3,C14,C10,2), 0 },
4108 { "pmevcntr19_el0", CPENC(3,3,C14,C10,3), 0 },
4109 { "pmevcntr20_el0", CPENC(3,3,C14,C10,4), 0 },
4110 { "pmevcntr21_el0", CPENC(3,3,C14,C10,5), 0 },
4111 { "pmevcntr22_el0", CPENC(3,3,C14,C10,6), 0 },
4112 { "pmevcntr23_el0", CPENC(3,3,C14,C10,7), 0 },
4113 { "pmevcntr24_el0", CPENC(3,3,C14,C11,0), 0 },
4114 { "pmevcntr25_el0", CPENC(3,3,C14,C11,1), 0 },
4115 { "pmevcntr26_el0", CPENC(3,3,C14,C11,2), 0 },
4116 { "pmevcntr27_el0", CPENC(3,3,C14,C11,3), 0 },
4117 { "pmevcntr28_el0", CPENC(3,3,C14,C11,4), 0 },
4118 { "pmevcntr29_el0", CPENC(3,3,C14,C11,5), 0 },
4119 { "pmevcntr30_el0", CPENC(3,3,C14,C11,6), 0 },
4120 { "pmevtyper0_el0", CPENC(3,3,C14,C12,0), 0 },
4121 { "pmevtyper1_el0", CPENC(3,3,C14,C12,1), 0 },
4122 { "pmevtyper2_el0", CPENC(3,3,C14,C12,2), 0 },
4123 { "pmevtyper3_el0", CPENC(3,3,C14,C12,3), 0 },
4124 { "pmevtyper4_el0", CPENC(3,3,C14,C12,4), 0 },
4125 { "pmevtyper5_el0", CPENC(3,3,C14,C12,5), 0 },
4126 { "pmevtyper6_el0", CPENC(3,3,C14,C12,6), 0 },
4127 { "pmevtyper7_el0", CPENC(3,3,C14,C12,7), 0 },
4128 { "pmevtyper8_el0", CPENC(3,3,C14,C13,0), 0 },
4129 { "pmevtyper9_el0", CPENC(3,3,C14,C13,1), 0 },
4130 { "pmevtyper10_el0", CPENC(3,3,C14,C13,2), 0 },
4131 { "pmevtyper11_el0", CPENC(3,3,C14,C13,3), 0 },
4132 { "pmevtyper12_el0", CPENC(3,3,C14,C13,4), 0 },
4133 { "pmevtyper13_el0", CPENC(3,3,C14,C13,5), 0 },
4134 { "pmevtyper14_el0", CPENC(3,3,C14,C13,6), 0 },
4135 { "pmevtyper15_el0", CPENC(3,3,C14,C13,7), 0 },
4136 { "pmevtyper16_el0", CPENC(3,3,C14,C14,0), 0 },
4137 { "pmevtyper17_el0", CPENC(3,3,C14,C14,1), 0 },
4138 { "pmevtyper18_el0", CPENC(3,3,C14,C14,2), 0 },
4139 { "pmevtyper19_el0", CPENC(3,3,C14,C14,3), 0 },
4140 { "pmevtyper20_el0", CPENC(3,3,C14,C14,4), 0 },
4141 { "pmevtyper21_el0", CPENC(3,3,C14,C14,5), 0 },
4142 { "pmevtyper22_el0", CPENC(3,3,C14,C14,6), 0 },
4143 { "pmevtyper23_el0", CPENC(3,3,C14,C14,7), 0 },
4144 { "pmevtyper24_el0", CPENC(3,3,C14,C15,0), 0 },
4145 { "pmevtyper25_el0", CPENC(3,3,C14,C15,1), 0 },
4146 { "pmevtyper26_el0", CPENC(3,3,C14,C15,2), 0 },
4147 { "pmevtyper27_el0", CPENC(3,3,C14,C15,3), 0 },
4148 { "pmevtyper28_el0", CPENC(3,3,C14,C15,4), 0 },
4149 { "pmevtyper29_el0", CPENC(3,3,C14,C15,5), 0 },
4150 { "pmevtyper30_el0", CPENC(3,3,C14,C15,6), 0 },
4151 { "pmccfiltr_el0", CPENC(3,3,C14,C15,7), 0 },
4152
4153 { "dit", CPEN_ (3, C2, 5), F_ARCHEXT },
4154 { "vstcr_el2", CPENC(3, 4, C2, C6, 2), F_ARCHEXT },
4155 { "vsttbr_el2", CPENC(3, 4, C2, C6, 0), F_ARCHEXT },
4156 { "cnthvs_tval_el2", CPENC(3, 4, C14, C4, 0), F_ARCHEXT },
4157 { "cnthvs_cval_el2", CPENC(3, 4, C14, C4, 2), F_ARCHEXT },
4158 { "cnthvs_ctl_el2", CPENC(3, 4, C14, C4, 1), F_ARCHEXT },
4159 { "cnthps_tval_el2", CPENC(3, 4, C14, C5, 0), F_ARCHEXT },
4160 { "cnthps_cval_el2", CPENC(3, 4, C14, C5, 2), F_ARCHEXT },
4161 { "cnthps_ctl_el2", CPENC(3, 4, C14, C5, 1), F_ARCHEXT },
4162 { "sder32_el2", CPENC(3, 4, C1, C3, 1), F_ARCHEXT },
4163 { "vncr_el2", CPENC(3, 4, C2, C2, 0), F_ARCHEXT },
4164 { 0, CPENC(0,0,0,0,0), 0 },
4165 };
4166
4167 bfd_boolean
4168 aarch64_sys_reg_deprecated_p (const aarch64_sys_reg *reg)
4169 {
4170 return (reg->flags & F_DEPRECATED) != 0;
4171 }
4172
4173 bfd_boolean
4174 aarch64_sys_reg_supported_p (const aarch64_feature_set features,
4175 const aarch64_sys_reg *reg)
4176 {
4177 if (!(reg->flags & F_ARCHEXT))
4178 return TRUE;
4179
4180 /* PAN. Values are from aarch64_sys_regs. */
4181 if (reg->value == CPEN_(0,C2,3)
4182 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_PAN))
4183 return FALSE;
4184
4185 /* SCXTNUM_ELx registers. */
4186 if ((reg->value == CPENC (3, 3, C13, C0, 7)
4187 || reg->value == CPENC (3, 0, C13, C0, 7)
4188 || reg->value == CPENC (3, 4, C13, C0, 7)
4189 || reg->value == CPENC (3, 6, C13, C0, 7)
4190 || reg->value == CPENC (3, 5, C13, C0, 7))
4191 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_SCXTNUM))
4192 return FALSE;
4193
4194 /* ID_PFR2_EL1 register. */
4195 if (reg->value == CPENC(3, 0, C0, C3, 4)
4196 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_ID_PFR2))
4197 return FALSE;
4198
4199 /* SSBS. Values are from aarch64_sys_regs. */
4200 if (reg->value == CPEN_(3,C2,6)
4201 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_SSBS))
4202 return FALSE;
4203
4204 /* Virtualization host extensions: system registers. */
4205 if ((reg->value == CPENC (3, 4, C2, C0, 1)
4206 || reg->value == CPENC (3, 4, C13, C0, 1)
4207 || reg->value == CPENC (3, 4, C14, C3, 0)
4208 || reg->value == CPENC (3, 4, C14, C3, 1)
4209 || reg->value == CPENC (3, 4, C14, C3, 2))
4210 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_1))
4211 return FALSE;
4212
4213 /* Virtualization host extensions: *_el12 names of *_el1 registers. */
4214 if ((reg->value == CPEN_ (5, C0, 0)
4215 || reg->value == CPEN_ (5, C0, 1)
4216 || reg->value == CPENC (3, 5, C1, C0, 0)
4217 || reg->value == CPENC (3, 5, C1, C0, 2)
4218 || reg->value == CPENC (3, 5, C2, C0, 0)
4219 || reg->value == CPENC (3, 5, C2, C0, 1)
4220 || reg->value == CPENC (3, 5, C2, C0, 2)
4221 || reg->value == CPENC (3, 5, C5, C1, 0)
4222 || reg->value == CPENC (3, 5, C5, C1, 1)
4223 || reg->value == CPENC (3, 5, C5, C2, 0)
4224 || reg->value == CPENC (3, 5, C6, C0, 0)
4225 || reg->value == CPENC (3, 5, C10, C2, 0)
4226 || reg->value == CPENC (3, 5, C10, C3, 0)
4227 || reg->value == CPENC (3, 5, C12, C0, 0)
4228 || reg->value == CPENC (3, 5, C13, C0, 1)
4229 || reg->value == CPENC (3, 5, C14, C1, 0))
4230 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_1))
4231 return FALSE;
4232
4233 /* Virtualization host extensions: *_el02 names of *_el0 registers. */
4234 if ((reg->value == CPENC (3, 5, C14, C2, 0)
4235 || reg->value == CPENC (3, 5, C14, C2, 1)
4236 || reg->value == CPENC (3, 5, C14, C2, 2)
4237 || reg->value == CPENC (3, 5, C14, C3, 0)
4238 || reg->value == CPENC (3, 5, C14, C3, 1)
4239 || reg->value == CPENC (3, 5, C14, C3, 2))
4240 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_1))
4241 return FALSE;
4242
4243 /* ARMv8.2 features. */
4244
4245 /* ID_AA64MMFR2_EL1. */
4246 if (reg->value == CPENC (3, 0, C0, C7, 2)
4247 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_2))
4248 return FALSE;
4249
4250 /* PSTATE.UAO. */
4251 if (reg->value == CPEN_ (0, C2, 4)
4252 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_2))
4253 return FALSE;
4254
4255 /* RAS extension. */
4256
4257 /* ERRIDR_EL1, ERRSELR_EL1, ERXFR_EL1, ERXCTLR_EL1, ERXSTATUS_EL, ERXADDR_EL1,
4258 ERXMISC0_EL1 AND ERXMISC1_EL1. */
4259 if ((reg->value == CPENC (3, 0, C5, C3, 0)
4260 || reg->value == CPENC (3, 0, C5, C3, 1)
4261 || reg->value == CPENC (3, 0, C5, C3, 2)
4262 || reg->value == CPENC (3, 0, C5, C3, 3)
4263 || reg->value == CPENC (3, 0, C5, C4, 0)
4264 || reg->value == CPENC (3, 0, C5, C4, 1)
4265 || reg->value == CPENC (3, 0, C5, C4, 2)
4266 || reg->value == CPENC (3, 0, C5, C4, 3)
4267 || reg->value == CPENC (3, 0, C5, C5, 0)
4268 || reg->value == CPENC (3, 0, C5, C5, 1))
4269 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_RAS))
4270 return FALSE;
4271
4272 /* VSESR_EL2, DISR_EL1 and VDISR_EL2. */
4273 if ((reg->value == CPENC (3, 4, C5, C2, 3)
4274 || reg->value == CPENC (3, 0, C12, C1, 1)
4275 || reg->value == CPENC (3, 4, C12, C1, 1))
4276 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_RAS))
4277 return FALSE;
4278
4279 /* Statistical Profiling extension. */
4280 if ((reg->value == CPENC (3, 0, C9, C10, 0)
4281 || reg->value == CPENC (3, 0, C9, C10, 1)
4282 || reg->value == CPENC (3, 0, C9, C10, 3)
4283 || reg->value == CPENC (3, 0, C9, C10, 7)
4284 || reg->value == CPENC (3, 0, C9, C9, 0)
4285 || reg->value == CPENC (3, 0, C9, C9, 2)
4286 || reg->value == CPENC (3, 0, C9, C9, 3)
4287 || reg->value == CPENC (3, 0, C9, C9, 4)
4288 || reg->value == CPENC (3, 0, C9, C9, 5)
4289 || reg->value == CPENC (3, 0, C9, C9, 6)
4290 || reg->value == CPENC (3, 0, C9, C9, 7)
4291 || reg->value == CPENC (3, 4, C9, C9, 0)
4292 || reg->value == CPENC (3, 5, C9, C9, 0))
4293 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_PROFILE))
4294 return FALSE;
4295
4296 /* ARMv8.3 Pointer authentication keys. */
4297 if ((reg->value == CPENC (3, 0, C2, C1, 0)
4298 || reg->value == CPENC (3, 0, C2, C1, 1)
4299 || reg->value == CPENC (3, 0, C2, C1, 2)
4300 || reg->value == CPENC (3, 0, C2, C1, 3)
4301 || reg->value == CPENC (3, 0, C2, C2, 0)
4302 || reg->value == CPENC (3, 0, C2, C2, 1)
4303 || reg->value == CPENC (3, 0, C2, C2, 2)
4304 || reg->value == CPENC (3, 0, C2, C2, 3)
4305 || reg->value == CPENC (3, 0, C2, C3, 0)
4306 || reg->value == CPENC (3, 0, C2, C3, 1))
4307 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_3))
4308 return FALSE;
4309
4310 /* SVE. */
4311 if ((reg->value == CPENC (3, 0, C0, C4, 4)
4312 || reg->value == CPENC (3, 0, C1, C2, 0)
4313 || reg->value == CPENC (3, 4, C1, C2, 0)
4314 || reg->value == CPENC (3, 6, C1, C2, 0)
4315 || reg->value == CPENC (3, 5, C1, C2, 0)
4316 || reg->value == CPENC (3, 0, C0, C0, 7))
4317 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_SVE))
4318 return FALSE;
4319
4320 /* ARMv8.4 features. */
4321
4322 /* PSTATE.DIT. */
4323 if (reg->value == CPEN_ (3, C2, 5)
4324 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_4))
4325 return FALSE;
4326
4327 /* Virtualization extensions. */
4328 if ((reg->value == CPENC(3, 4, C2, C6, 2)
4329 || reg->value == CPENC(3, 4, C2, C6, 0)
4330 || reg->value == CPENC(3, 4, C14, C4, 0)
4331 || reg->value == CPENC(3, 4, C14, C4, 2)
4332 || reg->value == CPENC(3, 4, C14, C4, 1)
4333 || reg->value == CPENC(3, 4, C14, C5, 0)
4334 || reg->value == CPENC(3, 4, C14, C5, 2)
4335 || reg->value == CPENC(3, 4, C14, C5, 1)
4336 || reg->value == CPENC(3, 4, C1, C3, 1)
4337 || reg->value == CPENC(3, 4, C2, C2, 0))
4338 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_4))
4339 return FALSE;
4340
4341 /* ARMv8.4 TLB instructions. */
4342 if ((reg->value == CPENS (0, C8, C1, 0)
4343 || reg->value == CPENS (0, C8, C1, 1)
4344 || reg->value == CPENS (0, C8, C1, 2)
4345 || reg->value == CPENS (0, C8, C1, 3)
4346 || reg->value == CPENS (0, C8, C1, 5)
4347 || reg->value == CPENS (0, C8, C1, 7)
4348 || reg->value == CPENS (4, C8, C4, 0)
4349 || reg->value == CPENS (4, C8, C4, 4)
4350 || reg->value == CPENS (4, C8, C1, 1)
4351 || reg->value == CPENS (4, C8, C1, 5)
4352 || reg->value == CPENS (4, C8, C1, 6)
4353 || reg->value == CPENS (6, C8, C1, 1)
4354 || reg->value == CPENS (6, C8, C1, 5)
4355 || reg->value == CPENS (4, C8, C1, 0)
4356 || reg->value == CPENS (4, C8, C1, 4)
4357 || reg->value == CPENS (6, C8, C1, 0)
4358 || reg->value == CPENS (0, C8, C6, 1)
4359 || reg->value == CPENS (0, C8, C6, 3)
4360 || reg->value == CPENS (0, C8, C6, 5)
4361 || reg->value == CPENS (0, C8, C6, 7)
4362 || reg->value == CPENS (0, C8, C2, 1)
4363 || reg->value == CPENS (0, C8, C2, 3)
4364 || reg->value == CPENS (0, C8, C2, 5)
4365 || reg->value == CPENS (0, C8, C2, 7)
4366 || reg->value == CPENS (0, C8, C5, 1)
4367 || reg->value == CPENS (0, C8, C5, 3)
4368 || reg->value == CPENS (0, C8, C5, 5)
4369 || reg->value == CPENS (0, C8, C5, 7)
4370 || reg->value == CPENS (4, C8, C0, 2)
4371 || reg->value == CPENS (4, C8, C0, 6)
4372 || reg->value == CPENS (4, C8, C4, 2)
4373 || reg->value == CPENS (4, C8, C4, 6)
4374 || reg->value == CPENS (4, C8, C4, 3)
4375 || reg->value == CPENS (4, C8, C4, 7)
4376 || reg->value == CPENS (4, C8, C6, 1)
4377 || reg->value == CPENS (4, C8, C6, 5)
4378 || reg->value == CPENS (4, C8, C2, 1)
4379 || reg->value == CPENS (4, C8, C2, 5)
4380 || reg->value == CPENS (4, C8, C5, 1)
4381 || reg->value == CPENS (4, C8, C5, 5)
4382 || reg->value == CPENS (6, C8, C6, 1)
4383 || reg->value == CPENS (6, C8, C6, 5)
4384 || reg->value == CPENS (6, C8, C2, 1)
4385 || reg->value == CPENS (6, C8, C2, 5)
4386 || reg->value == CPENS (6, C8, C5, 1)
4387 || reg->value == CPENS (6, C8, C5, 5))
4388 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_4))
4389 return FALSE;
4390
4391 /* Random Number Instructions. For now they are available
4392 (and optional) only with ARMv8.5-A. */
4393 if ((reg->value == CPENC (3, 3, C2, C4, 0)
4394 || reg->value == CPENC (3, 3, C2, C4, 1))
4395 && !(AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_RNG)
4396 && AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_5)))
4397 return FALSE;
4398
4399 /* System Registers in ARMv8.5-A with AARCH64_FEATURE_MEMTAG. */
4400 if ((reg->value == CPENC (3, 3, C4, C2, 7)
4401 || reg->value == CPENC (3, 0, C6, C6, 1)
4402 || reg->value == CPENC (3, 0, C6, C5, 0)
4403 || reg->value == CPENC (3, 4, C6, C5, 0)
4404 || reg->value == CPENC (3, 6, C6, C6, 0)
4405 || reg->value == CPENC (3, 5, C6, C6, 0)
4406 || reg->value == CPENC (3, 0, C1, C0, 5)
4407 || reg->value == CPENC (3, 0, C1, C0, 6))
4408 && !(AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_MEMTAG)))
4409 return FALSE;
4410
4411 return TRUE;
4412 }
4413
4414 /* The CPENC below is fairly misleading, the fields
4415 here are not in CPENC form. They are in op2op1 form. The fields are encoded
4416 by ins_pstatefield, which just shifts the value by the width of the fields
4417 in a loop. So if you CPENC them only the first value will be set, the rest
4418 are masked out to 0. As an example. op2 = 3, op1=2. CPENC would produce a
4419 value of 0b110000000001000000 (0x30040) while what you want is
4420 0b011010 (0x1a). */
4421 const aarch64_sys_reg aarch64_pstatefields [] =
4422 {
4423 { "spsel", 0x05, 0 },
4424 { "daifset", 0x1e, 0 },
4425 { "daifclr", 0x1f, 0 },
4426 { "pan", 0x04, F_ARCHEXT },
4427 { "uao", 0x03, F_ARCHEXT },
4428 { "ssbs", 0x19, F_ARCHEXT },
4429 { "dit", 0x1a, F_ARCHEXT },
4430 { "tco", 0x1c, F_ARCHEXT },
4431 { 0, CPENC(0,0,0,0,0), 0 },
4432 };
4433
4434 bfd_boolean
4435 aarch64_pstatefield_supported_p (const aarch64_feature_set features,
4436 const aarch64_sys_reg *reg)
4437 {
4438 if (!(reg->flags & F_ARCHEXT))
4439 return TRUE;
4440
4441 /* PAN. Values are from aarch64_pstatefields. */
4442 if (reg->value == 0x04
4443 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_PAN))
4444 return FALSE;
4445
4446 /* UAO. Values are from aarch64_pstatefields. */
4447 if (reg->value == 0x03
4448 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_2))
4449 return FALSE;
4450
4451 /* SSBS. Values are from aarch64_pstatefields. */
4452 if (reg->value == 0x19
4453 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_SSBS))
4454 return FALSE;
4455
4456 /* DIT. Values are from aarch64_pstatefields. */
4457 if (reg->value == 0x1a
4458 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_4))
4459 return FALSE;
4460
4461 /* TCO. Values are from aarch64_pstatefields. */
4462 if (reg->value == 0x1c
4463 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_MEMTAG))
4464 return FALSE;
4465
4466 return TRUE;
4467 }
4468
4469 const aarch64_sys_ins_reg aarch64_sys_regs_ic[] =
4470 {
4471 { "ialluis", CPENS(0,C7,C1,0), 0 },
4472 { "iallu", CPENS(0,C7,C5,0), 0 },
4473 { "ivau", CPENS (3, C7, C5, 1), F_HASXT },
4474 { 0, CPENS(0,0,0,0), 0 }
4475 };
4476
4477 const aarch64_sys_ins_reg aarch64_sys_regs_dc[] =
4478 {
4479 { "zva", CPENS (3, C7, C4, 1), F_HASXT },
4480 { "gva", CPENS (3, C7, C4, 3), F_HASXT | F_ARCHEXT },
4481 { "gzva", CPENS (3, C7, C4, 4), F_HASXT | F_ARCHEXT },
4482 { "ivac", CPENS (0, C7, C6, 1), F_HASXT },
4483 { "igvac", CPENS (0, C7, C6, 3), F_HASXT | F_ARCHEXT },
4484 { "igsw", CPENS (0, C7, C6, 4), F_HASXT | F_ARCHEXT },
4485 { "isw", CPENS (0, C7, C6, 2), F_HASXT },
4486 { "igdvac", CPENS (0, C7, C6, 5), F_HASXT | F_ARCHEXT },
4487 { "igdsw", CPENS (0, C7, C6, 6), F_HASXT | F_ARCHEXT },
4488 { "cvac", CPENS (3, C7, C10, 1), F_HASXT },
4489 { "cgvac", CPENS (3, C7, C10, 3), F_HASXT | F_ARCHEXT },
4490 { "cgdvac", CPENS (3, C7, C10, 5), F_HASXT | F_ARCHEXT },
4491 { "csw", CPENS (0, C7, C10, 2), F_HASXT },
4492 { "cgsw", CPENS (0, C7, C10, 4), F_HASXT | F_ARCHEXT },
4493 { "cgdsw", CPENS (0, C7, C10, 6), F_HASXT | F_ARCHEXT },
4494 { "cvau", CPENS (3, C7, C11, 1), F_HASXT },
4495 { "cvap", CPENS (3, C7, C12, 1), F_HASXT | F_ARCHEXT },
4496 { "cgvap", CPENS (3, C7, C12, 3), F_HASXT | F_ARCHEXT },
4497 { "cgdvap", CPENS (3, C7, C12, 5), F_HASXT | F_ARCHEXT },
4498 { "cvadp", CPENS (3, C7, C13, 1), F_HASXT | F_ARCHEXT },
4499 { "cgvadp", CPENS (3, C7, C13, 3), F_HASXT | F_ARCHEXT },
4500 { "cgdvadp", CPENS (3, C7, C13, 5), F_HASXT | F_ARCHEXT },
4501 { "civac", CPENS (3, C7, C14, 1), F_HASXT },
4502 { "cigvac", CPENS (3, C7, C14, 3), F_HASXT | F_ARCHEXT },
4503 { "cigdvac", CPENS (3, C7, C14, 5), F_HASXT | F_ARCHEXT },
4504 { "cisw", CPENS (0, C7, C14, 2), F_HASXT },
4505 { "cigsw", CPENS (0, C7, C14, 4), F_HASXT | F_ARCHEXT },
4506 { "cigdsw", CPENS (0, C7, C14, 6), F_HASXT | F_ARCHEXT },
4507 { 0, CPENS(0,0,0,0), 0 }
4508 };
4509
4510 const aarch64_sys_ins_reg aarch64_sys_regs_at[] =
4511 {
4512 { "s1e1r", CPENS (0, C7, C8, 0), F_HASXT },
4513 { "s1e1w", CPENS (0, C7, C8, 1), F_HASXT },
4514 { "s1e0r", CPENS (0, C7, C8, 2), F_HASXT },
4515 { "s1e0w", CPENS (0, C7, C8, 3), F_HASXT },
4516 { "s12e1r", CPENS (4, C7, C8, 4), F_HASXT },
4517 { "s12e1w", CPENS (4, C7, C8, 5), F_HASXT },
4518 { "s12e0r", CPENS (4, C7, C8, 6), F_HASXT },
4519 { "s12e0w", CPENS (4, C7, C8, 7), F_HASXT },
4520 { "s1e2r", CPENS (4, C7, C8, 0), F_HASXT },
4521 { "s1e2w", CPENS (4, C7, C8, 1), F_HASXT },
4522 { "s1e3r", CPENS (6, C7, C8, 0), F_HASXT },
4523 { "s1e3w", CPENS (6, C7, C8, 1), F_HASXT },
4524 { "s1e1rp", CPENS (0, C7, C9, 0), F_HASXT | F_ARCHEXT },
4525 { "s1e1wp", CPENS (0, C7, C9, 1), F_HASXT | F_ARCHEXT },
4526 { 0, CPENS(0,0,0,0), 0 }
4527 };
4528
4529 const aarch64_sys_ins_reg aarch64_sys_regs_tlbi[] =
4530 {
4531 { "vmalle1", CPENS(0,C8,C7,0), 0 },
4532 { "vae1", CPENS (0, C8, C7, 1), F_HASXT },
4533 { "aside1", CPENS (0, C8, C7, 2), F_HASXT },
4534 { "vaae1", CPENS (0, C8, C7, 3), F_HASXT },
4535 { "vmalle1is", CPENS(0,C8,C3,0), 0 },
4536 { "vae1is", CPENS (0, C8, C3, 1), F_HASXT },
4537 { "aside1is", CPENS (0, C8, C3, 2), F_HASXT },
4538 { "vaae1is", CPENS (0, C8, C3, 3), F_HASXT },
4539 { "ipas2e1is", CPENS (4, C8, C0, 1), F_HASXT },
4540 { "ipas2le1is",CPENS (4, C8, C0, 5), F_HASXT },
4541 { "ipas2e1", CPENS (4, C8, C4, 1), F_HASXT },
4542 { "ipas2le1", CPENS (4, C8, C4, 5), F_HASXT },
4543 { "vae2", CPENS (4, C8, C7, 1), F_HASXT },
4544 { "vae2is", CPENS (4, C8, C3, 1), F_HASXT },
4545 { "vmalls12e1",CPENS(4,C8,C7,6), 0 },
4546 { "vmalls12e1is",CPENS(4,C8,C3,6), 0 },
4547 { "vae3", CPENS (6, C8, C7, 1), F_HASXT },
4548 { "vae3is", CPENS (6, C8, C3, 1), F_HASXT },
4549 { "alle2", CPENS(4,C8,C7,0), 0 },
4550 { "alle2is", CPENS(4,C8,C3,0), 0 },
4551 { "alle1", CPENS(4,C8,C7,4), 0 },
4552 { "alle1is", CPENS(4,C8,C3,4), 0 },
4553 { "alle3", CPENS(6,C8,C7,0), 0 },
4554 { "alle3is", CPENS(6,C8,C3,0), 0 },
4555 { "vale1is", CPENS (0, C8, C3, 5), F_HASXT },
4556 { "vale2is", CPENS (4, C8, C3, 5), F_HASXT },
4557 { "vale3is", CPENS (6, C8, C3, 5), F_HASXT },
4558 { "vaale1is", CPENS (0, C8, C3, 7), F_HASXT },
4559 { "vale1", CPENS (0, C8, C7, 5), F_HASXT },
4560 { "vale2", CPENS (4, C8, C7, 5), F_HASXT },
4561 { "vale3", CPENS (6, C8, C7, 5), F_HASXT },
4562 { "vaale1", CPENS (0, C8, C7, 7), F_HASXT },
4563
4564 { "vmalle1os", CPENS (0, C8, C1, 0), F_ARCHEXT },
4565 { "vae1os", CPENS (0, C8, C1, 1), F_HASXT | F_ARCHEXT },
4566 { "aside1os", CPENS (0, C8, C1, 2), F_HASXT | F_ARCHEXT },
4567 { "vaae1os", CPENS (0, C8, C1, 3), F_HASXT | F_ARCHEXT },
4568 { "vale1os", CPENS (0, C8, C1, 5), F_HASXT | F_ARCHEXT },
4569 { "vaale1os", CPENS (0, C8, C1, 7), F_HASXT | F_ARCHEXT },
4570 { "ipas2e1os", CPENS (4, C8, C4, 0), F_HASXT | F_ARCHEXT },
4571 { "ipas2le1os", CPENS (4, C8, C4, 4), F_HASXT | F_ARCHEXT },
4572 { "vae2os", CPENS (4, C8, C1, 1), F_HASXT | F_ARCHEXT },
4573 { "vale2os", CPENS (4, C8, C1, 5), F_HASXT | F_ARCHEXT },
4574 { "vmalls12e1os", CPENS (4, C8, C1, 6), F_ARCHEXT },
4575 { "vae3os", CPENS (6, C8, C1, 1), F_HASXT | F_ARCHEXT },
4576 { "vale3os", CPENS (6, C8, C1, 5), F_HASXT | F_ARCHEXT },
4577 { "alle2os", CPENS (4, C8, C1, 0), F_ARCHEXT },
4578 { "alle1os", CPENS (4, C8, C1, 4), F_ARCHEXT },
4579 { "alle3os", CPENS (6, C8, C1, 0), F_ARCHEXT },
4580
4581 { "rvae1", CPENS (0, C8, C6, 1), F_HASXT | F_ARCHEXT },
4582 { "rvaae1", CPENS (0, C8, C6, 3), F_HASXT | F_ARCHEXT },
4583 { "rvale1", CPENS (0, C8, C6, 5), F_HASXT | F_ARCHEXT },
4584 { "rvaale1", CPENS (0, C8, C6, 7), F_HASXT | F_ARCHEXT },
4585 { "rvae1is", CPENS (0, C8, C2, 1), F_HASXT | F_ARCHEXT },
4586 { "rvaae1is", CPENS (0, C8, C2, 3), F_HASXT | F_ARCHEXT },
4587 { "rvale1is", CPENS (0, C8, C2, 5), F_HASXT | F_ARCHEXT },
4588 { "rvaale1is", CPENS (0, C8, C2, 7), F_HASXT | F_ARCHEXT },
4589 { "rvae1os", CPENS (0, C8, C5, 1), F_HASXT | F_ARCHEXT },
4590 { "rvaae1os", CPENS (0, C8, C5, 3), F_HASXT | F_ARCHEXT },
4591 { "rvale1os", CPENS (0, C8, C5, 5), F_HASXT | F_ARCHEXT },
4592 { "rvaale1os", CPENS (0, C8, C5, 7), F_HASXT | F_ARCHEXT },
4593 { "ripas2e1is", CPENS (4, C8, C0, 2), F_HASXT | F_ARCHEXT },
4594 { "ripas2le1is",CPENS (4, C8, C0, 6), F_HASXT | F_ARCHEXT },
4595 { "ripas2e1", CPENS (4, C8, C4, 2), F_HASXT | F_ARCHEXT },
4596 { "ripas2le1", CPENS (4, C8, C4, 6), F_HASXT | F_ARCHEXT },
4597 { "ripas2e1os", CPENS (4, C8, C4, 3), F_HASXT | F_ARCHEXT },
4598 { "ripas2le1os",CPENS (4, C8, C4, 7), F_HASXT | F_ARCHEXT },
4599 { "rvae2", CPENS (4, C8, C6, 1), F_HASXT | F_ARCHEXT },
4600 { "rvale2", CPENS (4, C8, C6, 5), F_HASXT | F_ARCHEXT },
4601 { "rvae2is", CPENS (4, C8, C2, 1), F_HASXT | F_ARCHEXT },
4602 { "rvale2is", CPENS (4, C8, C2, 5), F_HASXT | F_ARCHEXT },
4603 { "rvae2os", CPENS (4, C8, C5, 1), F_HASXT | F_ARCHEXT },
4604 { "rvale2os", CPENS (4, C8, C5, 5), F_HASXT | F_ARCHEXT },
4605 { "rvae3", CPENS (6, C8, C6, 1), F_HASXT | F_ARCHEXT },
4606 { "rvale3", CPENS (6, C8, C6, 5), F_HASXT | F_ARCHEXT },
4607 { "rvae3is", CPENS (6, C8, C2, 1), F_HASXT | F_ARCHEXT },
4608 { "rvale3is", CPENS (6, C8, C2, 5), F_HASXT | F_ARCHEXT },
4609 { "rvae3os", CPENS (6, C8, C5, 1), F_HASXT | F_ARCHEXT },
4610 { "rvale3os", CPENS (6, C8, C5, 5), F_HASXT | F_ARCHEXT },
4611
4612 { 0, CPENS(0,0,0,0), 0 }
4613 };
4614
4615 const aarch64_sys_ins_reg aarch64_sys_regs_sr[] =
4616 {
4617 /* RCTX is somewhat unique in a way that it has different values
4618 (op2) based on the instruction in which it is used (cfp/dvp/cpp).
4619 Thus op2 is masked out and instead encoded directly in the
4620 aarch64_opcode_table entries for the respective instructions. */
4621 { "rctx", CPENS(3,C7,C3,0), F_HASXT | F_ARCHEXT | F_REG_WRITE}, /* WO */
4622
4623 { 0, CPENS(0,0,0,0), 0 }
4624 };
4625
4626 bfd_boolean
4627 aarch64_sys_ins_reg_has_xt (const aarch64_sys_ins_reg *sys_ins_reg)
4628 {
4629 return (sys_ins_reg->flags & F_HASXT) != 0;
4630 }
4631
4632 extern bfd_boolean
4633 aarch64_sys_ins_reg_supported_p (const aarch64_feature_set features,
4634 const aarch64_sys_ins_reg *reg)
4635 {
4636 if (!(reg->flags & F_ARCHEXT))
4637 return TRUE;
4638
4639 /* DC CVAP. Values are from aarch64_sys_regs_dc. */
4640 if (reg->value == CPENS (3, C7, C12, 1)
4641 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_2))
4642 return FALSE;
4643
4644 /* DC CVADP. Values are from aarch64_sys_regs_dc. */
4645 if (reg->value == CPENS (3, C7, C13, 1)
4646 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_CVADP))
4647 return FALSE;
4648
4649 /* DC <dc_op> for ARMv8.5-A Memory Tagging Extension. */
4650 if ((reg->value == CPENS (0, C7, C6, 3)
4651 || reg->value == CPENS (0, C7, C6, 4)
4652 || reg->value == CPENS (0, C7, C10, 4)
4653 || reg->value == CPENS (0, C7, C14, 4)
4654 || reg->value == CPENS (3, C7, C10, 3)
4655 || reg->value == CPENS (3, C7, C12, 3)
4656 || reg->value == CPENS (3, C7, C13, 3)
4657 || reg->value == CPENS (3, C7, C14, 3)
4658 || reg->value == CPENS (3, C7, C4, 3)
4659 || reg->value == CPENS (0, C7, C6, 5)
4660 || reg->value == CPENS (0, C7, C6, 6)
4661 || reg->value == CPENS (0, C7, C10, 6)
4662 || reg->value == CPENS (0, C7, C14, 6)
4663 || reg->value == CPENS (3, C7, C10, 5)
4664 || reg->value == CPENS (3, C7, C12, 5)
4665 || reg->value == CPENS (3, C7, C13, 5)
4666 || reg->value == CPENS (3, C7, C14, 5)
4667 || reg->value == CPENS (3, C7, C4, 4))
4668 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_MEMTAG))
4669 return FALSE;
4670
4671 /* AT S1E1RP, AT S1E1WP. Values are from aarch64_sys_regs_at. */
4672 if ((reg->value == CPENS (0, C7, C9, 0)
4673 || reg->value == CPENS (0, C7, C9, 1))
4674 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_2))
4675 return FALSE;
4676
4677 /* CFP/DVP/CPP RCTX : Value are from aarch64_sys_regs_sr. */
4678 if (reg->value == CPENS (3, C7, C3, 0)
4679 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_PREDRES))
4680 return FALSE;
4681
4682 return TRUE;
4683 }
4684
4685 #undef C0
4686 #undef C1
4687 #undef C2
4688 #undef C3
4689 #undef C4
4690 #undef C5
4691 #undef C6
4692 #undef C7
4693 #undef C8
4694 #undef C9
4695 #undef C10
4696 #undef C11
4697 #undef C12
4698 #undef C13
4699 #undef C14
4700 #undef C15
4701
4702 #define BIT(INSN,BT) (((INSN) >> (BT)) & 1)
4703 #define BITS(INSN,HI,LO) (((INSN) >> (LO)) & ((1 << (((HI) - (LO)) + 1)) - 1))
4704
4705 static enum err_type
4706 verify_ldpsw (const struct aarch64_inst *inst ATTRIBUTE_UNUSED,
4707 const aarch64_insn insn, bfd_vma pc ATTRIBUTE_UNUSED,
4708 bfd_boolean encoding ATTRIBUTE_UNUSED,
4709 aarch64_operand_error *mismatch_detail ATTRIBUTE_UNUSED,
4710 aarch64_instr_sequence *insn_sequence ATTRIBUTE_UNUSED)
4711 {
4712 int t = BITS (insn, 4, 0);
4713 int n = BITS (insn, 9, 5);
4714 int t2 = BITS (insn, 14, 10);
4715
4716 if (BIT (insn, 23))
4717 {
4718 /* Write back enabled. */
4719 if ((t == n || t2 == n) && n != 31)
4720 return ERR_UND;
4721 }
4722
4723 if (BIT (insn, 22))
4724 {
4725 /* Load */
4726 if (t == t2)
4727 return ERR_UND;
4728 }
4729
4730 return ERR_OK;
4731 }
4732
4733 /* Verifier for vector by element 3 operands functions where the
4734 conditions `if sz:L == 11 then UNDEFINED` holds. */
4735
4736 static enum err_type
4737 verify_elem_sd (const struct aarch64_inst *inst, const aarch64_insn insn,
4738 bfd_vma pc ATTRIBUTE_UNUSED, bfd_boolean encoding,
4739 aarch64_operand_error *mismatch_detail ATTRIBUTE_UNUSED,
4740 aarch64_instr_sequence *insn_sequence ATTRIBUTE_UNUSED)
4741 {
4742 const aarch64_insn undef_pattern = 0x3;
4743 aarch64_insn value;
4744
4745 assert (inst->opcode);
4746 assert (inst->opcode->operands[2] == AARCH64_OPND_Em);
4747 value = encoding ? inst->value : insn;
4748 assert (value);
4749
4750 if (undef_pattern == extract_fields (value, 0, 2, FLD_sz, FLD_L))
4751 return ERR_UND;
4752
4753 return ERR_OK;
4754 }
4755
4756 /* Initialize an instruction sequence insn_sequence with the instruction INST.
4757 If INST is NULL the given insn_sequence is cleared and the sequence is left
4758 uninitialized. */
4759
4760 void
4761 init_insn_sequence (const struct aarch64_inst *inst,
4762 aarch64_instr_sequence *insn_sequence)
4763 {
4764 int num_req_entries = 0;
4765 insn_sequence->next_insn = 0;
4766 insn_sequence->num_insns = num_req_entries;
4767 if (insn_sequence->instr)
4768 XDELETE (insn_sequence->instr);
4769 insn_sequence->instr = NULL;
4770
4771 if (inst)
4772 {
4773 insn_sequence->instr = XNEW (aarch64_inst);
4774 memcpy (insn_sequence->instr, inst, sizeof (aarch64_inst));
4775 }
4776
4777 /* Handle all the cases here. May need to think of something smarter than
4778 a giant if/else chain if this grows. At that time, a lookup table may be
4779 best. */
4780 if (inst && inst->opcode->constraints & C_SCAN_MOVPRFX)
4781 num_req_entries = 1;
4782
4783 if (insn_sequence->current_insns)
4784 XDELETEVEC (insn_sequence->current_insns);
4785 insn_sequence->current_insns = NULL;
4786
4787 if (num_req_entries != 0)
4788 {
4789 size_t size = num_req_entries * sizeof (aarch64_inst);
4790 insn_sequence->current_insns
4791 = (aarch64_inst**) XNEWVEC (aarch64_inst, num_req_entries);
4792 memset (insn_sequence->current_insns, 0, size);
4793 }
4794 }
4795
4796
4797 /* This function verifies that the instruction INST adheres to its specified
4798 constraints. If it does then ERR_OK is returned, if not then ERR_VFI is
4799 returned and MISMATCH_DETAIL contains the reason why verification failed.
4800
4801 The function is called both during assembly and disassembly. If assembling
4802 then ENCODING will be TRUE, else FALSE. If dissassembling PC will be set
4803 and will contain the PC of the current instruction w.r.t to the section.
4804
4805 If ENCODING and PC=0 then you are at a start of a section. The constraints
4806 are verified against the given state insn_sequence which is updated as it
4807 transitions through the verification. */
4808
4809 enum err_type
4810 verify_constraints (const struct aarch64_inst *inst,
4811 const aarch64_insn insn ATTRIBUTE_UNUSED,
4812 bfd_vma pc,
4813 bfd_boolean encoding,
4814 aarch64_operand_error *mismatch_detail,
4815 aarch64_instr_sequence *insn_sequence)
4816 {
4817 assert (inst);
4818 assert (inst->opcode);
4819
4820 const struct aarch64_opcode *opcode = inst->opcode;
4821 if (!opcode->constraints && !insn_sequence->instr)
4822 return ERR_OK;
4823
4824 assert (insn_sequence);
4825
4826 enum err_type res = ERR_OK;
4827
4828 /* This instruction puts a constraint on the insn_sequence. */
4829 if (opcode->flags & F_SCAN)
4830 {
4831 if (insn_sequence->instr)
4832 {
4833 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
4834 mismatch_detail->error = _("instruction opens new dependency "
4835 "sequence without ending previous one");
4836 mismatch_detail->index = -1;
4837 mismatch_detail->non_fatal = TRUE;
4838 res = ERR_VFI;
4839 }
4840
4841 init_insn_sequence (inst, insn_sequence);
4842 return res;
4843 }
4844
4845 /* Verify constraints on an existing sequence. */
4846 if (insn_sequence->instr)
4847 {
4848 const struct aarch64_opcode* inst_opcode = insn_sequence->instr->opcode;
4849 /* If we're decoding and we hit PC=0 with an open sequence then we haven't
4850 closed a previous one that we should have. */
4851 if (!encoding && pc == 0)
4852 {
4853 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
4854 mismatch_detail->error = _("previous `movprfx' sequence not closed");
4855 mismatch_detail->index = -1;
4856 mismatch_detail->non_fatal = TRUE;
4857 res = ERR_VFI;
4858 /* Reset the sequence. */
4859 init_insn_sequence (NULL, insn_sequence);
4860 return res;
4861 }
4862
4863 /* Validate C_SCAN_MOVPRFX constraints. Move this to a lookup table. */
4864 if (inst_opcode->constraints & C_SCAN_MOVPRFX)
4865 {
4866 /* Check to see if the MOVPRFX SVE instruction is followed by an SVE
4867 instruction for better error messages. */
4868 if (!opcode->avariant || !(*opcode->avariant & AARCH64_FEATURE_SVE))
4869 {
4870 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
4871 mismatch_detail->error = _("SVE instruction expected after "
4872 "`movprfx'");
4873 mismatch_detail->index = -1;
4874 mismatch_detail->non_fatal = TRUE;
4875 res = ERR_VFI;
4876 goto done;
4877 }
4878
4879 /* Check to see if the MOVPRFX SVE instruction is followed by an SVE
4880 instruction that is allowed to be used with a MOVPRFX. */
4881 if (!(opcode->constraints & C_SCAN_MOVPRFX))
4882 {
4883 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
4884 mismatch_detail->error = _("SVE `movprfx' compatible instruction "
4885 "expected");
4886 mismatch_detail->index = -1;
4887 mismatch_detail->non_fatal = TRUE;
4888 res = ERR_VFI;
4889 goto done;
4890 }
4891
4892 /* Next check for usage of the predicate register. */
4893 aarch64_opnd_info blk_dest = insn_sequence->instr->operands[0];
4894 aarch64_opnd_info blk_pred, inst_pred;
4895 memset (&blk_pred, 0, sizeof (aarch64_opnd_info));
4896 memset (&inst_pred, 0, sizeof (aarch64_opnd_info));
4897 bfd_boolean predicated = FALSE;
4898 assert (blk_dest.type == AARCH64_OPND_SVE_Zd);
4899
4900 /* Determine if the movprfx instruction used is predicated or not. */
4901 if (insn_sequence->instr->operands[1].type == AARCH64_OPND_SVE_Pg3)
4902 {
4903 predicated = TRUE;
4904 blk_pred = insn_sequence->instr->operands[1];
4905 }
4906
4907 unsigned char max_elem_size = 0;
4908 unsigned char current_elem_size;
4909 int num_op_used = 0, last_op_usage = 0;
4910 int i, inst_pred_idx = -1;
4911 int num_ops = aarch64_num_of_operands (opcode);
4912 for (i = 0; i < num_ops; i++)
4913 {
4914 aarch64_opnd_info inst_op = inst->operands[i];
4915 switch (inst_op.type)
4916 {
4917 case AARCH64_OPND_SVE_Zd:
4918 case AARCH64_OPND_SVE_Zm_5:
4919 case AARCH64_OPND_SVE_Zm_16:
4920 case AARCH64_OPND_SVE_Zn:
4921 case AARCH64_OPND_SVE_Zt:
4922 case AARCH64_OPND_SVE_Vm:
4923 case AARCH64_OPND_SVE_Vn:
4924 case AARCH64_OPND_Va:
4925 case AARCH64_OPND_Vn:
4926 case AARCH64_OPND_Vm:
4927 case AARCH64_OPND_Sn:
4928 case AARCH64_OPND_Sm:
4929 case AARCH64_OPND_Rn:
4930 case AARCH64_OPND_Rm:
4931 case AARCH64_OPND_Rn_SP:
4932 case AARCH64_OPND_Rt_SP:
4933 case AARCH64_OPND_Rm_SP:
4934 if (inst_op.reg.regno == blk_dest.reg.regno)
4935 {
4936 num_op_used++;
4937 last_op_usage = i;
4938 }
4939 current_elem_size
4940 = aarch64_get_qualifier_esize (inst_op.qualifier);
4941 if (current_elem_size > max_elem_size)
4942 max_elem_size = current_elem_size;
4943 break;
4944 case AARCH64_OPND_SVE_Pd:
4945 case AARCH64_OPND_SVE_Pg3:
4946 case AARCH64_OPND_SVE_Pg4_5:
4947 case AARCH64_OPND_SVE_Pg4_10:
4948 case AARCH64_OPND_SVE_Pg4_16:
4949 case AARCH64_OPND_SVE_Pm:
4950 case AARCH64_OPND_SVE_Pn:
4951 case AARCH64_OPND_SVE_Pt:
4952 inst_pred = inst_op;
4953 inst_pred_idx = i;
4954 break;
4955 default:
4956 break;
4957 }
4958 }
4959
4960 assert (max_elem_size != 0);
4961 aarch64_opnd_info inst_dest = inst->operands[0];
4962 /* Determine the size that should be used to compare against the
4963 movprfx size. */
4964 current_elem_size
4965 = opcode->constraints & C_MAX_ELEM
4966 ? max_elem_size
4967 : aarch64_get_qualifier_esize (inst_dest.qualifier);
4968
4969 /* If movprfx is predicated do some extra checks. */
4970 if (predicated)
4971 {
4972 /* The instruction must be predicated. */
4973 if (inst_pred_idx < 0)
4974 {
4975 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
4976 mismatch_detail->error = _("predicated instruction expected "
4977 "after `movprfx'");
4978 mismatch_detail->index = -1;
4979 mismatch_detail->non_fatal = TRUE;
4980 res = ERR_VFI;
4981 goto done;
4982 }
4983
4984 /* The instruction must have a merging predicate. */
4985 if (inst_pred.qualifier != AARCH64_OPND_QLF_P_M)
4986 {
4987 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
4988 mismatch_detail->error = _("merging predicate expected due "
4989 "to preceding `movprfx'");
4990 mismatch_detail->index = inst_pred_idx;
4991 mismatch_detail->non_fatal = TRUE;
4992 res = ERR_VFI;
4993 goto done;
4994 }
4995
4996 /* The same register must be used in instruction. */
4997 if (blk_pred.reg.regno != inst_pred.reg.regno)
4998 {
4999 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
5000 mismatch_detail->error = _("predicate register differs "
5001 "from that in preceding "
5002 "`movprfx'");
5003 mismatch_detail->index = inst_pred_idx;
5004 mismatch_detail->non_fatal = TRUE;
5005 res = ERR_VFI;
5006 goto done;
5007 }
5008 }
5009
5010 /* Destructive operations by definition must allow one usage of the
5011 same register. */
5012 int allowed_usage
5013 = aarch64_is_destructive_by_operands (opcode) ? 2 : 1;
5014
5015 /* Operand is not used at all. */
5016 if (num_op_used == 0)
5017 {
5018 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
5019 mismatch_detail->error = _("output register of preceding "
5020 "`movprfx' not used in current "
5021 "instruction");
5022 mismatch_detail->index = 0;
5023 mismatch_detail->non_fatal = TRUE;
5024 res = ERR_VFI;
5025 goto done;
5026 }
5027
5028 /* We now know it's used, now determine exactly where it's used. */
5029 if (blk_dest.reg.regno != inst_dest.reg.regno)
5030 {
5031 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
5032 mismatch_detail->error = _("output register of preceding "
5033 "`movprfx' expected as output");
5034 mismatch_detail->index = 0;
5035 mismatch_detail->non_fatal = TRUE;
5036 res = ERR_VFI;
5037 goto done;
5038 }
5039
5040 /* Operand used more than allowed for the specific opcode type. */
5041 if (num_op_used > allowed_usage)
5042 {
5043 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
5044 mismatch_detail->error = _("output register of preceding "
5045 "`movprfx' used as input");
5046 mismatch_detail->index = last_op_usage;
5047 mismatch_detail->non_fatal = TRUE;
5048 res = ERR_VFI;
5049 goto done;
5050 }
5051
5052 /* Now the only thing left is the qualifiers checks. The register
5053 must have the same maximum element size. */
5054 if (inst_dest.qualifier
5055 && blk_dest.qualifier
5056 && current_elem_size
5057 != aarch64_get_qualifier_esize (blk_dest.qualifier))
5058 {
5059 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
5060 mismatch_detail->error = _("register size not compatible with "
5061 "previous `movprfx'");
5062 mismatch_detail->index = 0;
5063 mismatch_detail->non_fatal = TRUE;
5064 res = ERR_VFI;
5065 goto done;
5066 }
5067 }
5068
5069 done:
5070 /* Add the new instruction to the sequence. */
5071 memcpy (insn_sequence->current_insns + insn_sequence->next_insn++,
5072 inst, sizeof (aarch64_inst));
5073
5074 /* Check if sequence is now full. */
5075 if (insn_sequence->next_insn >= insn_sequence->num_insns)
5076 {
5077 /* Sequence is full, but we don't have anything special to do for now,
5078 so clear and reset it. */
5079 init_insn_sequence (NULL, insn_sequence);
5080 }
5081 }
5082
5083 return res;
5084 }
5085
5086
5087 /* Return true if VALUE cannot be moved into an SVE register using DUP
5088 (with any element size, not just ESIZE) and if using DUPM would
5089 therefore be OK. ESIZE is the number of bytes in the immediate. */
5090
5091 bfd_boolean
5092 aarch64_sve_dupm_mov_immediate_p (uint64_t uvalue, int esize)
5093 {
5094 int64_t svalue = uvalue;
5095 uint64_t upper = (uint64_t) -1 << (esize * 4) << (esize * 4);
5096
5097 if ((uvalue & ~upper) != uvalue && (uvalue | upper) != uvalue)
5098 return FALSE;
5099 if (esize <= 4 || (uint32_t) uvalue == (uint32_t) (uvalue >> 32))
5100 {
5101 svalue = (int32_t) uvalue;
5102 if (esize <= 2 || (uint16_t) uvalue == (uint16_t) (uvalue >> 16))
5103 {
5104 svalue = (int16_t) uvalue;
5105 if (esize == 1 || (uint8_t) uvalue == (uint8_t) (uvalue >> 8))
5106 return FALSE;
5107 }
5108 }
5109 if ((svalue & 0xff) == 0)
5110 svalue /= 256;
5111 return svalue < -128 || svalue >= 128;
5112 }
5113
5114 /* Include the opcode description table as well as the operand description
5115 table. */
5116 #define VERIFIER(x) verify_##x
5117 #include "aarch64-tbl.h"
This page took 0.149889 seconds and 4 git commands to generate.