2002-11-18 Klee Dienes <kdienes@apple.com>
[deliverable/binutils-gdb.git] / opcodes / arc-opc.c
1 /* Opcode table for the ARC.
2 Copyright 1994, 1995, 1997, 1998, 2000, 2001
3 Free Software Foundation, Inc.
4 Contributed by Doug Evans (dje@cygnus.com).
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software Foundation,
18 Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "sysdep.h"
21 #include <stdio.h>
22 #include "ansidecl.h"
23 #include "bfd.h"
24 #include "opcode/arc.h"
25
26 #define INSERT_FN(fn) \
27 static arc_insn fn PARAMS ((arc_insn, const struct arc_operand *, \
28 int, const struct arc_operand_value *, long, \
29 const char **))
30 #define EXTRACT_FN(fn) \
31 static long fn PARAMS ((arc_insn *, const struct arc_operand *, \
32 int, const struct arc_operand_value **, int *))
33
34 INSERT_FN (insert_reg);
35 INSERT_FN (insert_shimmfinish);
36 INSERT_FN (insert_limmfinish);
37 INSERT_FN (insert_offset);
38 INSERT_FN (insert_base);
39 INSERT_FN (insert_st_syntax);
40 INSERT_FN (insert_ld_syntax);
41 INSERT_FN (insert_addr_wb);
42 INSERT_FN (insert_flag);
43 INSERT_FN (insert_nullify);
44 INSERT_FN (insert_flagfinish);
45 INSERT_FN (insert_cond);
46 INSERT_FN (insert_forcelimm);
47 INSERT_FN (insert_reladdr);
48 INSERT_FN (insert_absaddr);
49 INSERT_FN (insert_jumpflags);
50 INSERT_FN (insert_unopmacro);
51
52 EXTRACT_FN (extract_reg);
53 EXTRACT_FN (extract_ld_offset);
54 EXTRACT_FN (extract_ld_syntax);
55 EXTRACT_FN (extract_st_offset);
56 EXTRACT_FN (extract_st_syntax);
57 EXTRACT_FN (extract_flag);
58 EXTRACT_FN (extract_cond);
59 EXTRACT_FN (extract_reladdr);
60 EXTRACT_FN (extract_jumpflags);
61 EXTRACT_FN (extract_unopmacro);
62
63 enum operand {OP_NONE,OP_REG,OP_SHIMM,OP_LIMM};
64
65 #define OPERANDS 3
66
67 enum operand ls_operand[OPERANDS];
68
69 struct arc_opcode *arc_ext_opcodes;
70 struct arc_ext_operand_value *arc_ext_operands;
71
72 #define LS_VALUE 0
73 #define LS_DEST 0
74 #define LS_BASE 1
75 #define LS_OFFSET 2
76
77 /* Various types of ARC operands, including insn suffixes. */
78
79 /* Insn format values:
80
81 'a' REGA register A field
82 'b' REGB register B field
83 'c' REGC register C field
84 'S' SHIMMFINISH finish inserting a shimm value
85 'L' LIMMFINISH finish inserting a limm value
86 'o' OFFSET offset in st insns
87 'O' OFFSET offset in ld insns
88 '0' SYNTAX_ST_NE enforce store insn syntax, no errors
89 '1' SYNTAX_LD_NE enforce load insn syntax, no errors
90 '2' SYNTAX_ST enforce store insn syntax, errors, last pattern only
91 '3' SYNTAX_LD enforce load insn syntax, errors, last pattern only
92 's' BASE base in st insn
93 'f' FLAG F flag
94 'F' FLAGFINISH finish inserting the F flag
95 'G' FLAGINSN insert F flag in "flag" insn
96 'n' DELAY N field (nullify field)
97 'q' COND condition code field
98 'Q' FORCELIMM set `cond_p' to 1 to ensure a constant is a limm
99 'B' BRANCH branch address (22 bit pc relative)
100 'J' JUMP jump address (26 bit absolute)
101 'j' JUMPFLAGS optional high order bits of 'J'
102 'z' SIZE1 size field in ld a,[b,c]
103 'Z' SIZE10 size field in ld a,[b,shimm]
104 'y' SIZE22 size field in st c,[b,shimm]
105 'x' SIGN0 sign extend field ld a,[b,c]
106 'X' SIGN9 sign extend field ld a,[b,shimm]
107 'w' ADDRESS3 write-back field in ld a,[b,c]
108 'W' ADDRESS12 write-back field in ld a,[b,shimm]
109 'v' ADDRESS24 write-back field in st c,[b,shimm]
110 'e' CACHEBYPASS5 cache bypass in ld a,[b,c]
111 'E' CACHEBYPASS14 cache bypass in ld a,[b,shimm]
112 'D' CACHEBYPASS26 cache bypass in st c,[b,shimm]
113 'U' UNOPMACRO fake operand to copy REGB to REGC for unop macros
114
115 The following modifiers may appear between the % and char (eg: %.f):
116
117 '.' MODDOT '.' prefix must be present
118 'r' REG generic register value, for register table
119 'A' AUXREG auxiliary register in lr a,[b], sr c,[b]
120
121 Fields are:
122
123 CHAR BITS SHIFT FLAGS INSERT_FN EXTRACT_FN */
124
125 const struct arc_operand arc_operands[] =
126 {
127 /* place holder (??? not sure if needed). */
128 #define UNUSED 0
129 { 0, 0, 0, 0, 0, 0 },
130
131 /* register A or shimm/limm indicator. */
132 #define REGA (UNUSED + 1)
133 { 'a', 6, ARC_SHIFT_REGA, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
134
135 /* register B or shimm/limm indicator. */
136 #define REGB (REGA + 1)
137 { 'b', 6, ARC_SHIFT_REGB, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
138
139 /* register C or shimm/limm indicator. */
140 #define REGC (REGB + 1)
141 { 'c', 6, ARC_SHIFT_REGC, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
142
143 /* fake operand used to insert shimm value into most instructions. */
144 #define SHIMMFINISH (REGC + 1)
145 { 'S', 9, 0, ARC_OPERAND_SIGNED + ARC_OPERAND_FAKE, insert_shimmfinish, 0 },
146
147 /* fake operand used to insert limm value into most instructions. */
148 #define LIMMFINISH (SHIMMFINISH + 1)
149 { 'L', 32, 32, ARC_OPERAND_ADDRESS + ARC_OPERAND_LIMM + ARC_OPERAND_FAKE, insert_limmfinish, 0 },
150
151 /* shimm operand when there is no reg indicator (st). */
152 #define ST_OFFSET (LIMMFINISH + 1)
153 { 'o', 9, 0, ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED | ARC_OPERAND_STORE, insert_offset, extract_st_offset },
154
155 /* shimm operand when there is no reg indicator (ld). */
156 #define LD_OFFSET (ST_OFFSET + 1)
157 { 'O', 9, 0,ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED | ARC_OPERAND_LOAD, insert_offset, extract_ld_offset },
158
159 /* operand for base. */
160 #define BASE (LD_OFFSET + 1)
161 { 's', 6, ARC_SHIFT_REGB, ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED, insert_base, extract_reg},
162
163 /* 0 enforce syntax for st insns. */
164 #define SYNTAX_ST_NE (BASE + 1)
165 { '0', 9, 0, ARC_OPERAND_FAKE, insert_st_syntax, extract_st_syntax },
166
167 /* 1 enforce syntax for ld insns. */
168 #define SYNTAX_LD_NE (SYNTAX_ST_NE + 1)
169 { '1', 9, 0, ARC_OPERAND_FAKE, insert_ld_syntax, extract_ld_syntax },
170
171 /* 0 enforce syntax for st insns. */
172 #define SYNTAX_ST (SYNTAX_LD_NE + 1)
173 { '2', 9, 0, ARC_OPERAND_FAKE | ARC_OPERAND_ERROR, insert_st_syntax, extract_st_syntax },
174
175 /* 0 enforce syntax for ld insns. */
176 #define SYNTAX_LD (SYNTAX_ST + 1)
177 { '3', 9, 0, ARC_OPERAND_FAKE | ARC_OPERAND_ERROR, insert_ld_syntax, extract_ld_syntax },
178
179 /* flag update bit (insertion is defered until we know how). */
180 #define FLAG (SYNTAX_LD + 1)
181 { 'f', 1, 8, ARC_OPERAND_SUFFIX, insert_flag, extract_flag },
182
183 /* fake utility operand to finish 'f' suffix handling. */
184 #define FLAGFINISH (FLAG + 1)
185 { 'F', 1, 8, ARC_OPERAND_FAKE, insert_flagfinish, 0 },
186
187 /* fake utility operand to set the 'f' flag for the "flag" insn. */
188 #define FLAGINSN (FLAGFINISH + 1)
189 { 'G', 1, 8, ARC_OPERAND_FAKE, insert_flag, 0 },
190
191 /* branch delay types. */
192 #define DELAY (FLAGINSN + 1)
193 { 'n', 2, 5, ARC_OPERAND_SUFFIX , insert_nullify, 0 },
194
195 /* conditions. */
196 #define COND (DELAY + 1)
197 { 'q', 5, 0, ARC_OPERAND_SUFFIX, insert_cond, extract_cond },
198
199 /* set `cond_p' to 1 to ensure a constant is treated as a limm. */
200 #define FORCELIMM (COND + 1)
201 { 'Q', 0, 0, ARC_OPERAND_FAKE, insert_forcelimm, 0 },
202
203 /* branch address; b, bl, and lp insns. */
204 #define BRANCH (FORCELIMM + 1)
205 { 'B', 20, 7, (ARC_OPERAND_RELATIVE_BRANCH + ARC_OPERAND_SIGNED) | ARC_OPERAND_ERROR, insert_reladdr, extract_reladdr },
206
207 /* jump address; j insn (this is basically the same as 'L' except that the
208 value is right shifted by 2). */
209 #define JUMP (BRANCH + 1)
210 { 'J', 24, 32, ARC_OPERAND_ERROR | (ARC_OPERAND_ABSOLUTE_BRANCH + ARC_OPERAND_LIMM + ARC_OPERAND_FAKE), insert_absaddr, 0 },
211
212 /* jump flags; j{,l} insn value or'ed into 'J' addr for flag values. */
213 #define JUMPFLAGS (JUMP + 1)
214 { 'j', 6, 26, ARC_OPERAND_JUMPFLAGS | ARC_OPERAND_ERROR, insert_jumpflags, extract_jumpflags },
215
216 /* size field, stored in bit 1,2. */
217 #define SIZE1 (JUMPFLAGS + 1)
218 { 'z', 2, 1, ARC_OPERAND_SUFFIX, 0, 0 },
219
220 /* size field, stored in bit 10,11. */
221 #define SIZE10 (SIZE1 + 1)
222 { 'Z', 2, 10, ARC_OPERAND_SUFFIX, 0, 0 },
223
224 /* size field, stored in bit 22,23. */
225 #define SIZE22 (SIZE10 + 1)
226 { 'y', 2, 22, ARC_OPERAND_SUFFIX, 0, 0 },
227
228 /* sign extend field, stored in bit 0. */
229 #define SIGN0 (SIZE22 + 1)
230 { 'x', 1, 0, ARC_OPERAND_SUFFIX, 0, 0 },
231
232 /* sign extend field, stored in bit 9. */
233 #define SIGN9 (SIGN0 + 1)
234 { 'X', 1, 9, ARC_OPERAND_SUFFIX, 0, 0 },
235
236 /* address write back, stored in bit 3. */
237 #define ADDRESS3 (SIGN9 + 1)
238 { 'w', 1, 3, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
239
240 /* address write back, stored in bit 12. */
241 #define ADDRESS12 (ADDRESS3 + 1)
242 { 'W', 1, 12, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
243
244 /* address write back, stored in bit 24. */
245 #define ADDRESS24 (ADDRESS12 + 1)
246 { 'v', 1, 24, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
247
248 /* cache bypass, stored in bit 5. */
249 #define CACHEBYPASS5 (ADDRESS24 + 1)
250 { 'e', 1, 5, ARC_OPERAND_SUFFIX, 0, 0 },
251
252 /* cache bypass, stored in bit 14. */
253 #define CACHEBYPASS14 (CACHEBYPASS5 + 1)
254 { 'E', 1, 14, ARC_OPERAND_SUFFIX, 0, 0 },
255
256 /* cache bypass, stored in bit 26. */
257 #define CACHEBYPASS26 (CACHEBYPASS14 + 1)
258 { 'D', 1, 26, ARC_OPERAND_SUFFIX, 0, 0 },
259
260 /* unop macro, used to copy REGB to REGC. */
261 #define UNOPMACRO (CACHEBYPASS26 + 1)
262 { 'U', 6, ARC_SHIFT_REGC, ARC_OPERAND_FAKE, insert_unopmacro, extract_unopmacro },
263
264 /* '.' modifier ('.' required). */
265 #define MODDOT (UNOPMACRO + 1)
266 { '.', 1, 0, ARC_MOD_DOT, 0, 0 },
267
268 /* Dummy 'r' modifier for the register table.
269 It's called a "dummy" because there's no point in inserting an 'r' into all
270 the %a/%b/%c occurrences in the insn table. */
271 #define REG (MODDOT + 1)
272 { 'r', 6, 0, ARC_MOD_REG, 0, 0 },
273
274 /* Known auxiliary register modifier (stored in shimm field). */
275 #define AUXREG (REG + 1)
276 { 'A', 9, 0, ARC_MOD_AUXREG, 0, 0 },
277
278 /* end of list place holder. */
279 { 0, 0, 0, 0, 0, 0 }
280 };
281 \f
282 /* Given a format letter, yields the index into `arc_operands'.
283 eg: arc_operand_map['a'] = REGA. */
284 unsigned char arc_operand_map[256];
285
286 /* ARC instructions.
287
288 Longer versions of insns must appear before shorter ones (if gas sees
289 "lsr r2,r3,1" when it's parsing "lsr %a,%b" it will think the ",1" is
290 junk). This isn't necessary for `ld' because of the trailing ']'.
291
292 Instructions that are really macros based on other insns must appear
293 before the real insn so they're chosen when disassembling. Eg: The `mov'
294 insn is really the `and' insn. */
295
296 struct arc_opcode arc_opcodes[] =
297 {
298 /* Base case instruction set (core versions 5-8) */
299
300 /* "mov" is really an "and". */
301 { "mov%.q%.f %a,%b%F%S%L%U", I(-1), I(12), ARC_MACH_5, 0, 0 },
302 /* "asl" is really an "add". */
303 { "asl%.q%.f %a,%b%F%S%L%U", I(-1), I(8), ARC_MACH_5, 0, 0 },
304 /* "lsl" is really an "add". */
305 { "lsl%.q%.f %a,%b%F%S%L%U", I(-1), I(8), ARC_MACH_5, 0, 0 },
306 /* "nop" is really an "xor". */
307 { "nop", 0x7fffffff, 0x7fffffff, ARC_MACH_5, 0, 0 },
308 /* "rlc" is really an "adc". */
309 { "rlc%.q%.f %a,%b%F%S%L%U", I(-1), I(9), ARC_MACH_5, 0, 0 },
310 { "adc%.q%.f %a,%b,%c%F%S%L", I(-1), I(9), ARC_MACH_5, 0, 0 },
311 { "add%.q%.f %a,%b,%c%F%S%L", I(-1), I(8), ARC_MACH_5, 0, 0 },
312 { "and%.q%.f %a,%b,%c%F%S%L", I(-1), I(12), ARC_MACH_5, 0, 0 },
313 { "asr%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(1), ARC_MACH_5, 0, 0 },
314 { "bic%.q%.f %a,%b,%c%F%S%L", I(-1), I(14), ARC_MACH_5, 0, 0 },
315 { "b%q%.n %B", I(-1), I(4), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
316 { "bl%q%.n %B", I(-1), I(5), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
317 { "extb%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(7), ARC_MACH_5, 0, 0 },
318 { "extw%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(8), ARC_MACH_5, 0, 0 },
319 { "flag%.q %b%G%S%L", I(-1)|A(-1)|C(-1), I(3)|A(ARC_REG_SHIMM_UPDATE)|C(0), ARC_MACH_5, 0, 0 },
320 { "brk", 0x1ffffe00, 0x1ffffe00, ARC_MACH_7, 0, 0 },
321 { "sleep", 0x1ffffe01, 0x1ffffe01, ARC_MACH_7, 0, 0 },
322 { "swi", 0x1ffffe02, 0x1ffffe02, ARC_MACH_8, 0, 0 },
323 /* %Q: force cond_p=1 -> no shimm values. This insn allows an
324 optional flags spec. */
325 { "j%q%Q%.n%.f %b%F%J,%j", I(-1)|A(-1)|C(-1)|R(-1,7,1), I(7)|A(0)|C(0)|R(0,7,1), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
326 { "j%q%Q%.n%.f %b%F%J", I(-1)|A(-1)|C(-1)|R(-1,7,1), I(7)|A(0)|C(0)|R(0,7,1), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
327 /* This insn allows an optional flags spec. */
328 { "jl%q%Q%.n%.f %b%F%J,%j", I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1), I(7)|A(0)|C(0)|R(0,7,1)|R(1,9,1), ARC_MACH_6 | ARC_OPCODE_COND_BRANCH, 0, 0 },
329 { "jl%q%Q%.n%.f %b%F%J", I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1), I(7)|A(0)|C(0)|R(0,7,1)|R(1,9,1), ARC_MACH_6 | ARC_OPCODE_COND_BRANCH, 0, 0 },
330 /* Put opcode 1 ld insns first so shimm gets prefered over limm.
331 "[%b]" is before "[%b,%o]" so 0 offsets don't get printed. */
332 { "ld%Z%.X%.W%.E %a,[%s]%S%L%1", I(-1)|R(-1,13,1)|R(-1,0,511), I(1)|R(0,13,1)|R(0,0,511), ARC_MACH_5, 0, 0 },
333 { "ld%z%.x%.w%.e %a,[%s]%S%L%1", I(-1)|R(-1,4,1)|R(-1,6,7), I(0)|R(0,4,1)|R(0,6,7), ARC_MACH_5, 0, 0 },
334 { "ld%z%.x%.w%.e %a,[%s,%O]%S%L%1", I(-1)|R(-1,4,1)|R(-1,6,7), I(0)|R(0,4,1)|R(0,6,7), ARC_MACH_5, 0, 0 },
335 { "ld%Z%.X%.W%.E %a,[%s,%O]%S%L%3", I(-1)|R(-1,13,1), I(1)|R(0,13,1), ARC_MACH_5, 0, 0 },
336 { "lp%q%.n %B", I(-1), I(6), ARC_MACH_5, 0, 0 },
337 { "lr %a,[%Ab]%S%L", I(-1)|C(-1), I(1)|C(0x10), ARC_MACH_5, 0, 0 },
338 { "lsr%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(2), ARC_MACH_5, 0, 0 },
339 { "or%.q%.f %a,%b,%c%F%S%L", I(-1), I(13), ARC_MACH_5, 0, 0 },
340 { "ror%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(3), ARC_MACH_5, 0, 0 },
341 { "rrc%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(4), ARC_MACH_5, 0, 0 },
342 { "sbc%.q%.f %a,%b,%c%F%S%L", I(-1), I(11), ARC_MACH_5, 0, 0 },
343 { "sexb%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(5), ARC_MACH_5, 0, 0 },
344 { "sexw%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(6), ARC_MACH_5, 0, 0 },
345 { "sr %c,[%Ab]%S%L", I(-1)|A(-1), I(2)|A(0x10), ARC_MACH_5, 0, 0 },
346 /* "[%b]" is before "[%b,%o]" so 0 offsets don't get printed. */
347 { "st%y%.v%.D %c,[%s]%L%S%0", I(-1)|R(-1,25,1)|R(-1,21,1), I(2)|R(0,25,1)|R(0,21,1), ARC_MACH_5, 0, 0 },
348 { "st%y%.v%.D %c,[%s,%o]%S%L%2", I(-1)|R(-1,25,1)|R(-1,21,1), I(2)|R(0,25,1)|R(0,21,1), ARC_MACH_5, 0, 0 },
349 { "sub%.q%.f %a,%b,%c%F%S%L", I(-1), I(10), ARC_MACH_5, 0, 0 },
350 { "xor%.q%.f %a,%b,%c%F%S%L", I(-1), I(15), ARC_MACH_5, 0, 0 }
351 };
352
353 const int arc_opcodes_count = sizeof (arc_opcodes) / sizeof (arc_opcodes[0]);
354
355 const struct arc_operand_value arc_reg_names[] =
356 {
357 /* Core register set r0-r63. */
358
359 /* r0-r28 - general purpose registers. */
360 { "r0", 0, REG, 0 }, { "r1", 1, REG, 0 }, { "r2", 2, REG, 0 },
361 { "r3", 3, REG, 0 }, { "r4", 4, REG, 0 }, { "r5", 5, REG, 0 },
362 { "r6", 6, REG, 0 }, { "r7", 7, REG, 0 }, { "r8", 8, REG, 0 },
363 { "r9", 9, REG, 0 }, { "r10", 10, REG, 0 }, { "r11", 11, REG, 0 },
364 { "r12", 12, REG, 0 }, { "r13", 13, REG, 0 }, { "r14", 14, REG, 0 },
365 { "r15", 15, REG, 0 }, { "r16", 16, REG, 0 }, { "r17", 17, REG, 0 },
366 { "r18", 18, REG, 0 }, { "r19", 19, REG, 0 }, { "r20", 20, REG, 0 },
367 { "r21", 21, REG, 0 }, { "r22", 22, REG, 0 }, { "r23", 23, REG, 0 },
368 { "r24", 24, REG, 0 }, { "r25", 25, REG, 0 }, { "r26", 26, REG, 0 },
369 { "r27", 27, REG, 0 }, { "r28", 28, REG, 0 },
370 /* Maskable interrupt link register. */
371 { "ilink1", 29, REG, 0 },
372 /* Maskable interrupt link register. */
373 { "ilink2", 30, REG, 0 },
374 /* Branch-link register. */
375 { "blink", 31, REG, 0 },
376
377 /* r32-r59 reserved for extensions. */
378 { "r32", 32, REG, 0 }, { "r33", 33, REG, 0 }, { "r34", 34, REG, 0 },
379 { "r35", 35, REG, 0 }, { "r36", 36, REG, 0 }, { "r37", 37, REG, 0 },
380 { "r38", 38, REG, 0 }, { "r39", 39, REG, 0 }, { "r40", 40, REG, 0 },
381 { "r41", 41, REG, 0 }, { "r42", 42, REG, 0 }, { "r43", 43, REG, 0 },
382 { "r44", 44, REG, 0 }, { "r45", 45, REG, 0 }, { "r46", 46, REG, 0 },
383 { "r47", 47, REG, 0 }, { "r48", 48, REG, 0 }, { "r49", 49, REG, 0 },
384 { "r50", 50, REG, 0 }, { "r51", 51, REG, 0 }, { "r52", 52, REG, 0 },
385 { "r53", 53, REG, 0 }, { "r54", 54, REG, 0 }, { "r55", 55, REG, 0 },
386 { "r56", 56, REG, 0 }, { "r57", 57, REG, 0 }, { "r58", 58, REG, 0 },
387 { "r59", 59, REG, 0 },
388
389 /* Loop count register (24 bits). */
390 { "lp_count", 60, REG, 0 },
391 /* Short immediate data indicator setting flags. */
392 { "r61", 61, REG, ARC_REGISTER_READONLY },
393 /* Long immediate data indicator setting flags. */
394 { "r62", 62, REG, ARC_REGISTER_READONLY },
395 /* Short immediate data indicator not setting flags. */
396 { "r63", 63, REG, ARC_REGISTER_READONLY },
397
398 /* Small-data base register. */
399 { "gp", 26, REG, 0 },
400 /* Frame pointer. */
401 { "fp", 27, REG, 0 },
402 /* Stack pointer. */
403 { "sp", 28, REG, 0 },
404
405 { "r29", 29, REG, 0 },
406 { "r30", 30, REG, 0 },
407 { "r31", 31, REG, 0 },
408 { "r60", 60, REG, 0 },
409
410 /* Auxiliary register set. */
411
412 /* Auxiliary register address map:
413 0xffffffff-0xffffff00 (-1..-256) - customer shimm allocation
414 0xfffffeff-0x80000000 - customer limm allocation
415 0x7fffffff-0x00000100 - ARC limm allocation
416 0x000000ff-0x00000000 - ARC shimm allocation */
417
418 /* Base case auxiliary registers (shimm address). */
419 { "status", 0x00, AUXREG, 0 },
420 { "semaphore", 0x01, AUXREG, 0 },
421 { "lp_start", 0x02, AUXREG, 0 },
422 { "lp_end", 0x03, AUXREG, 0 },
423 { "identity", 0x04, AUXREG, ARC_REGISTER_READONLY },
424 { "debug", 0x05, AUXREG, 0 },
425 };
426
427 const int arc_reg_names_count =
428 sizeof (arc_reg_names) / sizeof (arc_reg_names[0]);
429
430 /* The suffix table.
431 Operands with the same name must be stored together. */
432
433 const struct arc_operand_value arc_suffixes[] =
434 {
435 /* Entry 0 is special, default values aren't printed by the disassembler. */
436 { "", 0, -1, 0 },
437
438 /* Base case condition codes. */
439 { "al", 0, COND, 0 },
440 { "ra", 0, COND, 0 },
441 { "eq", 1, COND, 0 },
442 { "z", 1, COND, 0 },
443 { "ne", 2, COND, 0 },
444 { "nz", 2, COND, 0 },
445 { "pl", 3, COND, 0 },
446 { "p", 3, COND, 0 },
447 { "mi", 4, COND, 0 },
448 { "n", 4, COND, 0 },
449 { "cs", 5, COND, 0 },
450 { "c", 5, COND, 0 },
451 { "lo", 5, COND, 0 },
452 { "cc", 6, COND, 0 },
453 { "nc", 6, COND, 0 },
454 { "hs", 6, COND, 0 },
455 { "vs", 7, COND, 0 },
456 { "v", 7, COND, 0 },
457 { "vc", 8, COND, 0 },
458 { "nv", 8, COND, 0 },
459 { "gt", 9, COND, 0 },
460 { "ge", 10, COND, 0 },
461 { "lt", 11, COND, 0 },
462 { "le", 12, COND, 0 },
463 { "hi", 13, COND, 0 },
464 { "ls", 14, COND, 0 },
465 { "pnz", 15, COND, 0 },
466
467 /* Condition codes 16-31 reserved for extensions. */
468
469 { "f", 1, FLAG, 0 },
470
471 { "nd", ARC_DELAY_NONE, DELAY, 0 },
472 { "d", ARC_DELAY_NORMAL, DELAY, 0 },
473 { "jd", ARC_DELAY_JUMP, DELAY, 0 },
474
475 { "b", 1, SIZE1, 0 },
476 { "b", 1, SIZE10, 0 },
477 { "b", 1, SIZE22, 0 },
478 { "w", 2, SIZE1, 0 },
479 { "w", 2, SIZE10, 0 },
480 { "w", 2, SIZE22, 0 },
481 { "x", 1, SIGN0, 0 },
482 { "x", 1, SIGN9, 0 },
483 { "a", 1, ADDRESS3, 0 },
484 { "a", 1, ADDRESS12, 0 },
485 { "a", 1, ADDRESS24, 0 },
486
487 { "di", 1, CACHEBYPASS5, 0 },
488 { "di", 1, CACHEBYPASS14, 0 },
489 { "di", 1, CACHEBYPASS26, 0 },
490 };
491
492 const int arc_suffixes_count =
493 sizeof (arc_suffixes) / sizeof (arc_suffixes[0]);
494
495 /* Indexed by first letter of opcode. Points to chain of opcodes with same
496 first letter. */
497 static struct arc_opcode *opcode_map[26 + 1];
498
499 /* Indexed by insn code. Points to chain of opcodes with same insn code. */
500 static struct arc_opcode *icode_map[32];
501 \f
502 /* Configuration flags. */
503
504 /* Various ARC_HAVE_XXX bits. */
505 static int cpu_type;
506
507 /* Translate a bfd_mach_arc_xxx value to a ARC_MACH_XXX value. */
508
509 int
510 arc_get_opcode_mach (bfd_mach, big_p)
511 int bfd_mach, big_p;
512 {
513 static int mach_type_map[] =
514 {
515 ARC_MACH_5,
516 ARC_MACH_6,
517 ARC_MACH_7,
518 ARC_MACH_8
519 };
520 return mach_type_map[bfd_mach - bfd_mach_arc_5] | (big_p ? ARC_MACH_BIG : 0);
521 }
522
523 /* Initialize any tables that need it.
524 Must be called once at start up (or when first needed).
525
526 FLAGS is a set of bits that say what version of the cpu we have,
527 and in particular at least (one of) ARC_MACH_XXX. */
528
529 void
530 arc_opcode_init_tables (flags)
531 int flags;
532 {
533 static int init_p = 0;
534
535 cpu_type = flags;
536
537 /* We may be intentionally called more than once (for example gdb will call
538 us each time the user switches cpu). These tables only need to be init'd
539 once though. */
540 if (!init_p)
541 {
542 register int i,n;
543
544 memset (arc_operand_map, 0, sizeof (arc_operand_map));
545 n = sizeof (arc_operands) / sizeof (arc_operands[0]);
546 for (i = 0; i < n; ++i)
547 arc_operand_map[arc_operands[i].fmt] = i;
548
549 memset (opcode_map, 0, sizeof (opcode_map));
550 memset (icode_map, 0, sizeof (icode_map));
551 /* Scan the table backwards so macros appear at the front. */
552 for (i = arc_opcodes_count - 1; i >= 0; --i)
553 {
554 int opcode_hash = ARC_HASH_OPCODE (arc_opcodes[i].syntax);
555 int icode_hash = ARC_HASH_ICODE (arc_opcodes[i].value);
556
557 arc_opcodes[i].next_asm = opcode_map[opcode_hash];
558 opcode_map[opcode_hash] = &arc_opcodes[i];
559
560 arc_opcodes[i].next_dis = icode_map[icode_hash];
561 icode_map[icode_hash] = &arc_opcodes[i];
562 }
563
564 init_p = 1;
565 }
566 }
567
568 /* Return non-zero if OPCODE is supported on the specified cpu.
569 Cpu selection is made when calling `arc_opcode_init_tables'. */
570
571 int
572 arc_opcode_supported (opcode)
573 const struct arc_opcode *opcode;
574 {
575 if (ARC_OPCODE_CPU (opcode->flags) <= cpu_type)
576 return 1;
577 return 0;
578 }
579
580 /* Return the first insn in the chain for assembling INSN. */
581
582 const struct arc_opcode *
583 arc_opcode_lookup_asm (insn)
584 const char *insn;
585 {
586 return opcode_map[ARC_HASH_OPCODE (insn)];
587 }
588
589 /* Return the first insn in the chain for disassembling INSN. */
590
591 const struct arc_opcode *
592 arc_opcode_lookup_dis (insn)
593 unsigned int insn;
594 {
595 return icode_map[ARC_HASH_ICODE (insn)];
596 }
597 \f
598 /* Nonzero if we've seen an 'f' suffix (in certain insns). */
599 static int flag_p;
600
601 /* Nonzero if we've finished processing the 'f' suffix. */
602 static int flagshimm_handled_p;
603
604 /* Nonzero if we've seen a 'a' suffix (address writeback). */
605 static int addrwb_p;
606
607 /* Nonzero if we've seen a 'q' suffix (condition code). */
608 static int cond_p;
609
610 /* Nonzero if we've inserted a nullify condition. */
611 static int nullify_p;
612
613 /* The value of the a nullify condition we inserted. */
614 static int nullify;
615
616 /* Nonzero if we've inserted jumpflags. */
617 static int jumpflags_p;
618
619 /* Nonzero if we've inserted a shimm. */
620 static int shimm_p;
621
622 /* The value of the shimm we inserted (each insn only gets one but it can
623 appear multiple times). */
624 static int shimm;
625
626 /* Nonzero if we've inserted a limm (during assembly) or seen a limm
627 (during disassembly). */
628 static int limm_p;
629
630 /* The value of the limm we inserted. Each insn only gets one but it can
631 appear multiple times. */
632 static long limm;
633 \f
634 /* Insertion functions. */
635
636 /* Called by the assembler before parsing an instruction. */
637
638 void
639 arc_opcode_init_insert ()
640 {
641 int i;
642
643 for(i = 0; i < OPERANDS; i++)
644 ls_operand[i] = OP_NONE;
645
646 flag_p = 0;
647 flagshimm_handled_p = 0;
648 cond_p = 0;
649 addrwb_p = 0;
650 shimm_p = 0;
651 limm_p = 0;
652 jumpflags_p = 0;
653 nullify_p = 0;
654 nullify = 0; /* the default is important. */
655 }
656
657 /* Called by the assembler to see if the insn has a limm operand.
658 Also called by the disassembler to see if the insn contains a limm. */
659
660 int
661 arc_opcode_limm_p (limmp)
662 long *limmp;
663 {
664 if (limmp)
665 *limmp = limm;
666 return limm_p;
667 }
668
669 /* Insert a value into a register field.
670 If REG is NULL, then this is actually a constant.
671
672 We must also handle auxiliary registers for lr/sr insns. */
673
674 static arc_insn
675 insert_reg (insn, operand, mods, reg, value, errmsg)
676 arc_insn insn;
677 const struct arc_operand *operand;
678 int mods;
679 const struct arc_operand_value *reg;
680 long value;
681 const char **errmsg;
682 {
683 static char buf[100];
684 enum operand op_type = OP_NONE;
685
686 if (reg == NULL)
687 {
688 /* We have a constant that also requires a value stored in a register
689 field. Handle these by updating the register field and saving the
690 value for later handling by either %S (shimm) or %L (limm). */
691
692 /* Try to use a shimm value before a limm one. */
693 if (ARC_SHIMM_CONST_P (value)
694 /* If we've seen a conditional suffix we have to use a limm. */
695 && !cond_p
696 /* If we already have a shimm value that is different than ours
697 we have to use a limm. */
698 && (!shimm_p || shimm == value))
699 {
700 int marker;
701
702 op_type = OP_SHIMM;
703 /* forget about shimm as dest mlm. */
704
705 if ('a' != operand->fmt)
706 {
707 shimm_p = 1;
708 shimm = value;
709 flagshimm_handled_p = 1;
710 marker = flag_p ? ARC_REG_SHIMM_UPDATE : ARC_REG_SHIMM;
711 }
712 else
713 {
714 /* don't request flag setting on shimm as dest. */
715 marker = ARC_REG_SHIMM;
716 }
717 insn |= marker << operand->shift;
718 /* insn |= value & 511; - done later. */
719 }
720 /* We have to use a limm. If we've already seen one they must match. */
721 else if (!limm_p || limm == value)
722 {
723 op_type = OP_LIMM;
724 limm_p = 1;
725 limm = value;
726 insn |= ARC_REG_LIMM << operand->shift;
727 /* The constant is stored later. */
728 }
729 else
730 {
731 *errmsg = "unable to fit different valued constants into instruction";
732 }
733 }
734 else
735 {
736 /* We have to handle both normal and auxiliary registers. */
737
738 if (reg->type == AUXREG)
739 {
740 if (!(mods & ARC_MOD_AUXREG))
741 *errmsg = "auxiliary register not allowed here";
742 else
743 {
744 if ((insn & I(-1)) == I(2)) /* check for use validity. */
745 {
746 if (reg->flags & ARC_REGISTER_READONLY)
747 *errmsg = "attempt to set readonly register";
748 }
749 else
750 {
751 if (reg->flags & ARC_REGISTER_WRITEONLY)
752 *errmsg = "attempt to read writeonly register";
753 }
754 insn |= ARC_REG_SHIMM << operand->shift;
755 insn |= reg->value << arc_operands[reg->type].shift;
756 }
757 }
758 else
759 {
760 /* check for use validity. */
761 if ('a' == operand->fmt || ((insn & I(-1)) < I(2)))
762 {
763 if (reg->flags & ARC_REGISTER_READONLY)
764 *errmsg = "attempt to set readonly register";
765 }
766 if ('a' != operand->fmt)
767 {
768 if (reg->flags & ARC_REGISTER_WRITEONLY)
769 *errmsg = "attempt to read writeonly register";
770 }
771 /* We should never get an invalid register number here. */
772 if ((unsigned int) reg->value > 60)
773 {
774 sprintf (buf, "invalid register number `%d'", reg->value);
775 *errmsg = buf;
776 }
777 insn |= reg->value << operand->shift;
778 op_type = OP_REG;
779 }
780 }
781
782 switch (operand->fmt)
783 {
784 case 'a':
785 ls_operand[LS_DEST] = op_type;
786 break;
787 case 's':
788 ls_operand[LS_BASE] = op_type;
789 break;
790 case 'c':
791 if ((insn & I(-1)) == I(2))
792 ls_operand[LS_VALUE] = op_type;
793 else
794 ls_operand[LS_OFFSET] = op_type;
795 break;
796 case 'o': case 'O':
797 ls_operand[LS_OFFSET] = op_type;
798 break;
799 }
800
801 return insn;
802 }
803
804 /* Called when we see an 'f' flag. */
805
806 static arc_insn
807 insert_flag (insn, operand, mods, reg, value, errmsg)
808 arc_insn insn;
809 const struct arc_operand *operand ATTRIBUTE_UNUSED;
810 int mods ATTRIBUTE_UNUSED;
811 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
812 long value ATTRIBUTE_UNUSED;
813 const char **errmsg ATTRIBUTE_UNUSED;
814 {
815 /* We can't store anything in the insn until we've parsed the registers.
816 Just record the fact that we've got this flag. `insert_reg' will use it
817 to store the correct value (ARC_REG_SHIMM_UPDATE or bit 0x100). */
818 flag_p = 1;
819 return insn;
820 }
821
822 /* Called when we see an nullify condition. */
823
824 static arc_insn
825 insert_nullify (insn, operand, mods, reg, value, errmsg)
826 arc_insn insn;
827 const struct arc_operand *operand;
828 int mods ATTRIBUTE_UNUSED;
829 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
830 long value;
831 const char **errmsg ATTRIBUTE_UNUSED;
832 {
833 nullify_p = 1;
834 insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
835 nullify = value;
836 return insn;
837 }
838
839 /* Called after completely building an insn to ensure the 'f' flag gets set
840 properly. This is needed because we don't know how to set this flag until
841 we've parsed the registers. */
842
843 static arc_insn
844 insert_flagfinish (insn, operand, mods, reg, value, errmsg)
845 arc_insn insn;
846 const struct arc_operand *operand;
847 int mods ATTRIBUTE_UNUSED;
848 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
849 long value ATTRIBUTE_UNUSED;
850 const char **errmsg ATTRIBUTE_UNUSED;
851 {
852 if (flag_p && !flagshimm_handled_p)
853 {
854 if (shimm_p)
855 abort ();
856 flagshimm_handled_p = 1;
857 insn |= (1 << operand->shift);
858 }
859 return insn;
860 }
861
862 /* Called when we see a conditional flag (eg: .eq). */
863
864 static arc_insn
865 insert_cond (insn, operand, mods, reg, value, errmsg)
866 arc_insn insn;
867 const struct arc_operand *operand;
868 int mods ATTRIBUTE_UNUSED;
869 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
870 long value;
871 const char **errmsg ATTRIBUTE_UNUSED;
872 {
873 cond_p = 1;
874 insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
875 return insn;
876 }
877
878 /* Used in the "j" instruction to prevent constants from being interpreted as
879 shimm values (which the jump insn doesn't accept). This can also be used
880 to force the use of limm values in other situations (eg: ld r0,[foo] uses
881 this).
882 ??? The mechanism is sound. Access to it is a bit klunky right now. */
883
884 static arc_insn
885 insert_forcelimm (insn, operand, mods, reg, value, errmsg)
886 arc_insn insn;
887 const struct arc_operand *operand ATTRIBUTE_UNUSED;
888 int mods ATTRIBUTE_UNUSED;
889 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
890 long value ATTRIBUTE_UNUSED;
891 const char **errmsg ATTRIBUTE_UNUSED;
892 {
893 cond_p = 1;
894 return insn;
895 }
896
897 static arc_insn
898 insert_addr_wb (insn, operand, mods, reg, value, errmsg)
899 arc_insn insn;
900 const struct arc_operand *operand;
901 int mods ATTRIBUTE_UNUSED;
902 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
903 long value ATTRIBUTE_UNUSED;
904 const char **errmsg ATTRIBUTE_UNUSED;
905 {
906 addrwb_p = 1 << operand->shift;
907 return insn;
908 }
909
910 static arc_insn
911 insert_base (insn, operand, mods, reg, value, errmsg)
912 arc_insn insn;
913 const struct arc_operand *operand;
914 int mods;
915 const struct arc_operand_value *reg;
916 long value;
917 const char **errmsg;
918 {
919 if (reg != NULL)
920 {
921 arc_insn myinsn;
922 myinsn = insert_reg (0, operand,mods, reg, value, errmsg) >> operand->shift;
923 insn |= B(myinsn);
924 ls_operand[LS_BASE] = OP_REG;
925 }
926 else if (ARC_SHIMM_CONST_P (value) && !cond_p)
927 {
928 if (shimm_p && value != shimm)
929 {
930 /* convert the previous shimm operand to a limm. */
931 limm_p = 1;
932 limm = shimm;
933 insn &= ~C(-1); /* we know where the value is in insn. */
934 insn |= C(ARC_REG_LIMM);
935 ls_operand[LS_VALUE] = OP_LIMM;
936 }
937 insn |= ARC_REG_SHIMM << operand->shift;
938 shimm_p = 1;
939 shimm = value;
940 ls_operand[LS_BASE] = OP_SHIMM;
941 }
942 else
943 {
944 if (limm_p && value != limm)
945 {
946 *errmsg = "too many long constants";
947 return insn;
948 }
949 limm_p = 1;
950 limm = value;
951 insn |= B(ARC_REG_LIMM);
952 ls_operand[LS_BASE] = OP_LIMM;
953 }
954
955 return insn;
956 }
957
958 /* Used in ld/st insns to handle the offset field. We don't try to
959 match operand syntax here. we catch bad combinations later. */
960
961 static arc_insn
962 insert_offset (insn, operand, mods, reg, value, errmsg)
963 arc_insn insn;
964 const struct arc_operand *operand;
965 int mods;
966 const struct arc_operand_value *reg;
967 long value;
968 const char **errmsg;
969 {
970 long minval, maxval;
971
972 if (reg != NULL)
973 {
974 arc_insn myinsn;
975 myinsn = insert_reg (0,operand,mods,reg,value,errmsg) >> operand->shift;
976 ls_operand[LS_OFFSET] = OP_REG;
977 if (operand->flags & ARC_OPERAND_LOAD) /* not if store, catch it later. */
978 if ((insn & I(-1)) != I(1)) /* not if opcode == 1, catch it later. */
979 insn |= C(myinsn);
980 }
981 else
982 {
983 /* This is *way* more general than necessary, but maybe some day it'll
984 be useful. */
985 if (operand->flags & ARC_OPERAND_SIGNED)
986 {
987 minval = -(1 << (operand->bits - 1));
988 maxval = (1 << (operand->bits - 1)) - 1;
989 }
990 else
991 {
992 minval = 0;
993 maxval = (1 << operand->bits) - 1;
994 }
995 if ((cond_p && !limm_p) || (value < minval || value > maxval))
996 {
997 if (limm_p && value != limm)
998 {
999 *errmsg = "too many long constants";
1000 }
1001 else
1002 {
1003 limm_p = 1;
1004 limm = value;
1005 if (operand->flags & ARC_OPERAND_STORE)
1006 insn |= B(ARC_REG_LIMM);
1007 if (operand->flags & ARC_OPERAND_LOAD)
1008 insn |= C(ARC_REG_LIMM);
1009 ls_operand[LS_OFFSET] = OP_LIMM;
1010 }
1011 }
1012 else
1013 {
1014 if ((value < minval || value > maxval))
1015 *errmsg = "need too many limms";
1016 else if (shimm_p && value != shimm)
1017 {
1018 /* check for bad operand combinations before we lose info about them. */
1019 if ((insn & I(-1)) == I(1))
1020 {
1021 *errmsg = "to many shimms in load";
1022 goto out;
1023 }
1024 if (limm_p && operand->flags & ARC_OPERAND_LOAD)
1025 {
1026 *errmsg = "too many long constants";
1027 goto out;
1028 }
1029 /* convert what we thought was a shimm to a limm. */
1030 limm_p = 1;
1031 limm = shimm;
1032 if (ls_operand[LS_VALUE] == OP_SHIMM && operand->flags & ARC_OPERAND_STORE)
1033 {
1034 insn &= ~C(-1);
1035 insn |= C(ARC_REG_LIMM);
1036 ls_operand[LS_VALUE] = OP_LIMM;
1037 }
1038 if (ls_operand[LS_BASE] == OP_SHIMM && operand->flags & ARC_OPERAND_STORE)
1039 {
1040 insn &= ~B(-1);
1041 insn |= B(ARC_REG_LIMM);
1042 ls_operand[LS_BASE] = OP_LIMM;
1043 }
1044 }
1045 shimm = value;
1046 shimm_p = 1;
1047 ls_operand[LS_OFFSET] = OP_SHIMM;
1048 }
1049 }
1050 out:
1051 return insn;
1052 }
1053
1054 /* Used in st insns to do final disasemble syntax check. */
1055
1056 static long
1057 extract_st_syntax (insn, operand, mods, opval, invalid)
1058 arc_insn *insn;
1059 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1060 int mods ATTRIBUTE_UNUSED;
1061 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1062 int *invalid;
1063 {
1064 #define ST_SYNTAX(V,B,O) \
1065 ((ls_operand[LS_VALUE] == (V) && \
1066 ls_operand[LS_BASE] == (B) && \
1067 ls_operand[LS_OFFSET] == (O)))
1068
1069 if (!((ST_SYNTAX(OP_REG,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
1070 || ST_SYNTAX(OP_REG,OP_LIMM,OP_NONE)
1071 || (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
1072 || (ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_NONE) && (insn[0] & 511) == 0)
1073 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE)
1074 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_SHIMM)
1075 || ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_SHIMM)
1076 || (ST_SYNTAX(OP_LIMM,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
1077 || ST_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1078 || ST_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1079 || ST_SYNTAX(OP_SHIMM,OP_REG,OP_SHIMM)
1080 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_SHIMM)
1081 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_NONE)
1082 || ST_SYNTAX(OP_LIMM,OP_REG,OP_SHIMM)))
1083 *invalid = 1;
1084 return 0;
1085 }
1086
1087 int
1088 arc_limm_fixup_adjust(insn)
1089 arc_insn insn;
1090 {
1091 int retval = 0;
1092
1093 /* check for st shimm,[limm]. */
1094 if ((insn & (I(-1) | C(-1) | B(-1))) ==
1095 (I(2) | C(ARC_REG_SHIMM) | B(ARC_REG_LIMM)))
1096 {
1097 retval = insn & 0x1ff;
1098 if (retval & 0x100) /* sign extend 9 bit offset. */
1099 retval |= ~0x1ff;
1100 }
1101 return -retval; /* negate offset for return. */
1102 }
1103
1104 /* Used in st insns to do final syntax check. */
1105
1106 static arc_insn
1107 insert_st_syntax (insn, operand, mods, reg, value, errmsg)
1108 arc_insn insn;
1109 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1110 int mods ATTRIBUTE_UNUSED;
1111 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1112 long value ATTRIBUTE_UNUSED;
1113 const char **errmsg;
1114 {
1115 if (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && shimm != 0)
1116 {
1117 /* change an illegal insn into a legal one, it's easier to
1118 do it here than to try to handle it during operand scan. */
1119 limm_p = 1;
1120 limm = shimm;
1121 shimm_p = 0;
1122 shimm = 0;
1123 insn = insn & ~(C(-1) | 511);
1124 insn |= ARC_REG_LIMM << ARC_SHIFT_REGC;
1125 ls_operand[LS_VALUE] = OP_LIMM;
1126 }
1127
1128 if (ST_SYNTAX(OP_REG,OP_SHIMM,OP_NONE) || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_NONE))
1129 {
1130 /* try to salvage this syntax. */
1131 if (shimm & 0x1) /* odd shimms won't work. */
1132 {
1133 if (limm_p) /* do we have a limm already? */
1134 {
1135 *errmsg = "impossible store";
1136 }
1137 limm_p = 1;
1138 limm = shimm;
1139 shimm = 0;
1140 shimm_p = 0;
1141 insn = insn & ~(B(-1) | 511);
1142 insn |= B(ARC_REG_LIMM);
1143 ls_operand[LS_BASE] = OP_LIMM;
1144 }
1145 else
1146 {
1147 shimm >>= 1;
1148 insn = insn & ~511;
1149 insn |= shimm;
1150 ls_operand[LS_OFFSET] = OP_SHIMM;
1151 }
1152 }
1153 if (ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE))
1154 {
1155 limm += arc_limm_fixup_adjust(insn);
1156 }
1157 if (!(ST_SYNTAX(OP_REG,OP_REG,OP_NONE)
1158 || ST_SYNTAX(OP_REG,OP_LIMM,OP_NONE)
1159 || ST_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1160 || ST_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1161 || (ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_NONE) && (shimm == 0))
1162 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE)
1163 || ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE)
1164 || ST_SYNTAX(OP_SHIMM,OP_REG,OP_SHIMM)
1165 || ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_SHIMM)
1166 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_SHIMM)
1167 || ST_SYNTAX(OP_LIMM,OP_REG,OP_NONE)
1168 || ST_SYNTAX(OP_LIMM,OP_REG,OP_SHIMM)))
1169 *errmsg = "st operand error";
1170 if (addrwb_p)
1171 {
1172 if (ls_operand[LS_BASE] != OP_REG)
1173 *errmsg = "address writeback not allowed";
1174 insn |= addrwb_p;
1175 }
1176 if (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && shimm)
1177 *errmsg = "store value must be zero";
1178 return insn;
1179 }
1180
1181 /* Used in ld insns to do final syntax check. */
1182
1183 static arc_insn
1184 insert_ld_syntax (insn, operand, mods, reg, value, errmsg)
1185 arc_insn insn;
1186 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1187 int mods ATTRIBUTE_UNUSED;
1188 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1189 long value ATTRIBUTE_UNUSED;
1190 const char **errmsg;
1191 {
1192 #define LD_SYNTAX(D,B,O) \
1193 ((ls_operand[LS_DEST] == (D) && \
1194 ls_operand[LS_BASE] == (B) && \
1195 ls_operand[LS_OFFSET] == (O)))
1196
1197 int test = insn & I(-1);
1198
1199 if (!(test == I(1)))
1200 {
1201 if ((ls_operand[LS_DEST] == OP_SHIMM || ls_operand[LS_BASE] == OP_SHIMM
1202 || ls_operand[LS_OFFSET] == OP_SHIMM))
1203 *errmsg = "invalid load/shimm insn";
1204 }
1205 if (!(LD_SYNTAX(OP_REG,OP_REG,OP_NONE)
1206 || LD_SYNTAX(OP_REG,OP_REG,OP_REG)
1207 || LD_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1208 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_REG) && !(test == I(1)))
1209 || (LD_SYNTAX(OP_REG,OP_REG,OP_LIMM) && !(test == I(1)))
1210 || LD_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1211 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_NONE) && (test == I(1)))))
1212 *errmsg = "ld operand error";
1213 if (addrwb_p)
1214 {
1215 if (ls_operand[LS_BASE] != OP_REG)
1216 *errmsg = "address writeback not allowed";
1217 insn |= addrwb_p;
1218 }
1219 return insn;
1220 }
1221
1222 /* Used in ld insns to do final syntax check. */
1223
1224 static long
1225 extract_ld_syntax (insn, operand, mods, opval, invalid)
1226 arc_insn *insn;
1227 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1228 int mods ATTRIBUTE_UNUSED;
1229 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1230 int *invalid;
1231 {
1232 int test = insn[0] & I(-1);
1233
1234 if (!(test == I(1)))
1235 {
1236 if ((ls_operand[LS_DEST] == OP_SHIMM || ls_operand[LS_BASE] == OP_SHIMM
1237 || ls_operand[LS_OFFSET] == OP_SHIMM))
1238 *invalid = 1;
1239 }
1240 if (!((LD_SYNTAX(OP_REG,OP_REG,OP_NONE) && (test == I(1)))
1241 || LD_SYNTAX(OP_REG,OP_REG,OP_REG)
1242 || LD_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1243 || (LD_SYNTAX(OP_REG,OP_REG,OP_LIMM) && !(test == I(1)))
1244 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_REG) && !(test == I(1)))
1245 || (LD_SYNTAX(OP_REG,OP_SHIMM,OP_NONE) && (shimm == 0))
1246 || LD_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1247 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_NONE) && (test == I(1)))))
1248 *invalid = 1;
1249 return 0;
1250 }
1251
1252 /* Called at the end of processing normal insns (eg: add) to insert a shimm
1253 value (if present) into the insn. */
1254
1255 static arc_insn
1256 insert_shimmfinish (insn, operand, mods, reg, value, errmsg)
1257 arc_insn insn;
1258 const struct arc_operand *operand;
1259 int mods ATTRIBUTE_UNUSED;
1260 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1261 long value ATTRIBUTE_UNUSED;
1262 const char **errmsg ATTRIBUTE_UNUSED;
1263 {
1264 if (shimm_p)
1265 insn |= (shimm & ((1 << operand->bits) - 1)) << operand->shift;
1266 return insn;
1267 }
1268
1269 /* Called at the end of processing normal insns (eg: add) to insert a limm
1270 value (if present) into the insn.
1271
1272 Note that this function is only intended to handle instructions (with 4 byte
1273 immediate operands). It is not intended to handle data. */
1274
1275 /* ??? Actually, there's nothing for us to do as we can't call frag_more, the
1276 caller must do that. The extract fns take a pointer to two words. The
1277 insert fns could be converted and then we could do something useful, but
1278 then the reloc handlers would have to know to work on the second word of
1279 a 2 word quantity. That's too much so we don't handle them. */
1280
1281 static arc_insn
1282 insert_limmfinish (insn, operand, mods, reg, value, errmsg)
1283 arc_insn insn;
1284 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1285 int mods ATTRIBUTE_UNUSED;
1286 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1287 long value ATTRIBUTE_UNUSED;
1288 const char **errmsg ATTRIBUTE_UNUSED;
1289 {
1290 #if 0
1291 if (limm_p)
1292 ; /* nothing to do, gas does it. */
1293 #endif
1294 return insn;
1295 }
1296
1297 static arc_insn
1298 insert_jumpflags (insn, operand, mods, reg, value, errmsg)
1299 arc_insn insn;
1300 const struct arc_operand *operand;
1301 int mods ATTRIBUTE_UNUSED;
1302 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1303 long value;
1304 const char **errmsg;
1305 {
1306 if (!flag_p)
1307 {
1308 *errmsg = "jump flags, but no .f seen";
1309 }
1310 if (!limm_p)
1311 {
1312 *errmsg = "jump flags, but no limm addr";
1313 }
1314 if (limm & 0xfc000000)
1315 {
1316 *errmsg = "flag bits of jump address limm lost";
1317 }
1318 if (limm & 0x03000000)
1319 {
1320 *errmsg = "attempt to set HR bits";
1321 }
1322 if ((value & ((1 << operand->bits) - 1)) != value)
1323 {
1324 *errmsg = "bad jump flags value";
1325 }
1326 jumpflags_p = 1;
1327 limm = ((limm & ((1 << operand->shift) - 1))
1328 | ((value & ((1 << operand->bits) - 1)) << operand->shift));
1329 return insn;
1330 }
1331
1332 /* Called at the end of unary operand macros to copy the B field to C. */
1333
1334 static arc_insn
1335 insert_unopmacro (insn, operand, mods, reg, value, errmsg)
1336 arc_insn insn;
1337 const struct arc_operand *operand;
1338 int mods ATTRIBUTE_UNUSED;
1339 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1340 long value ATTRIBUTE_UNUSED;
1341 const char **errmsg ATTRIBUTE_UNUSED;
1342 {
1343 insn |= ((insn >> ARC_SHIFT_REGB) & ARC_MASK_REG) << operand->shift;
1344 return insn;
1345 }
1346
1347 /* Insert a relative address for a branch insn (b, bl, or lp). */
1348
1349 static arc_insn
1350 insert_reladdr (insn, operand, mods, reg, value, errmsg)
1351 arc_insn insn;
1352 const struct arc_operand *operand;
1353 int mods ATTRIBUTE_UNUSED;
1354 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1355 long value;
1356 const char **errmsg;
1357 {
1358 if (value & 3)
1359 *errmsg = "branch address not on 4 byte boundary";
1360 insn |= ((value >> 2) & ((1 << operand->bits) - 1)) << operand->shift;
1361 return insn;
1362 }
1363
1364 /* Insert a limm value as a 26 bit address right shifted 2 into the insn.
1365
1366 Note that this function is only intended to handle instructions (with 4 byte
1367 immediate operands). It is not intended to handle data. */
1368
1369 /* ??? Actually, there's little for us to do as we can't call frag_more, the
1370 caller must do that. The extract fns take a pointer to two words. The
1371 insert fns could be converted and then we could do something useful, but
1372 then the reloc handlers would have to know to work on the second word of
1373 a 2 word quantity. That's too much so we don't handle them.
1374
1375 We do check for correct usage of the nullify suffix, or we
1376 set the default correctly, though. */
1377
1378 static arc_insn
1379 insert_absaddr (insn, operand, mods, reg, value, errmsg)
1380 arc_insn insn;
1381 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1382 int mods ATTRIBUTE_UNUSED;
1383 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1384 long value ATTRIBUTE_UNUSED;
1385 const char **errmsg;
1386 {
1387 if (limm_p)
1388 {
1389 /* if it is a jump and link, .jd must be specified. */
1390 if (insn & R(-1,9,1))
1391 {
1392 if (!nullify_p)
1393 {
1394 insn |= 0x02 << 5; /* default nullify to .jd. */
1395 }
1396 else
1397 {
1398 if (nullify != 0x02)
1399 {
1400 *errmsg = "must specify .jd or no nullify suffix";
1401 }
1402 }
1403 }
1404 }
1405 return insn;
1406 }
1407 \f
1408 /* Extraction functions.
1409
1410 The suffix extraction functions' return value is redundant since it can be
1411 obtained from (*OPVAL)->value. However, the boolean suffixes don't have
1412 a suffix table entry for the "false" case, so values of zero must be
1413 obtained from the return value (*OPVAL == NULL). */
1414
1415 static const struct arc_operand_value *lookup_register (int type, long regno);
1416
1417 /* Called by the disassembler before printing an instruction. */
1418
1419 void
1420 arc_opcode_init_extract ()
1421 {
1422 arc_opcode_init_insert();
1423 }
1424
1425 /* As we're extracting registers, keep an eye out for the 'f' indicator
1426 (ARC_REG_SHIMM_UPDATE). If we find a register (not a constant marker,
1427 like ARC_REG_SHIMM), set OPVAL so our caller will know this is a register.
1428
1429 We must also handle auxiliary registers for lr/sr insns. They are just
1430 constants with special names. */
1431
1432 static long
1433 extract_reg (insn, operand, mods, opval, invalid)
1434 arc_insn *insn;
1435 const struct arc_operand *operand;
1436 int mods;
1437 const struct arc_operand_value **opval;
1438 int *invalid ATTRIBUTE_UNUSED;
1439 {
1440 int regno;
1441 long value;
1442 enum operand op_type;
1443
1444 /* Get the register number. */
1445 regno = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1446
1447 /* Is it a constant marker? */
1448 if (regno == ARC_REG_SHIMM)
1449 {
1450 op_type = OP_SHIMM;
1451 /* always return zero if dest is a shimm mlm. */
1452
1453 if ('a' != operand->fmt)
1454 {
1455 value = *insn & 511;
1456 if ((operand->flags & ARC_OPERAND_SIGNED)
1457 && (value & 256))
1458 value -= 512;
1459 if (!flagshimm_handled_p)
1460 flag_p = 0;
1461 flagshimm_handled_p = 1;
1462 }
1463 else
1464 {
1465 value = 0;
1466 }
1467 }
1468 else if (regno == ARC_REG_SHIMM_UPDATE)
1469 {
1470 op_type = OP_SHIMM;
1471
1472 /* always return zero if dest is a shimm mlm. */
1473
1474 if ('a' != operand->fmt)
1475 {
1476 value = *insn & 511;
1477 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1478 value -= 512;
1479 }
1480 else
1481 {
1482 value = 0;
1483 }
1484 flag_p = 1;
1485 flagshimm_handled_p = 1;
1486 }
1487 else if (regno == ARC_REG_LIMM)
1488 {
1489 op_type = OP_LIMM;
1490 value = insn[1];
1491 limm_p = 1;
1492 /* if this is a jump instruction (j,jl), show new pc correctly. */
1493 if (0x07 == ((*insn & I(-1)) >> 27))
1494 {
1495 value = (value & 0xffffff);
1496 }
1497 }
1498 /* It's a register, set OPVAL (that's the only way we distinguish registers
1499 from constants here). */
1500 else
1501 {
1502 const struct arc_operand_value *reg = lookup_register (REG, regno);
1503 op_type = OP_REG;
1504
1505 if (reg == NULL)
1506 abort ();
1507 if (opval != NULL)
1508 *opval = reg;
1509 value = regno;
1510 }
1511
1512 /* If this field takes an auxiliary register, see if it's a known one. */
1513 if ((mods & ARC_MOD_AUXREG)
1514 && ARC_REG_CONSTANT_P (regno))
1515 {
1516 const struct arc_operand_value *reg = lookup_register (AUXREG, value);
1517
1518 /* This is really a constant, but tell the caller it has a special
1519 name. */
1520 if (reg != NULL && opval != NULL)
1521 *opval = reg;
1522 }
1523 switch(operand->fmt)
1524 {
1525 case 'a':
1526 ls_operand[LS_DEST] = op_type;
1527 break;
1528 case 's':
1529 ls_operand[LS_BASE] = op_type;
1530 break;
1531 case 'c':
1532 if ((insn[0]& I(-1)) == I(2))
1533 ls_operand[LS_VALUE] = op_type;
1534 else
1535 ls_operand[LS_OFFSET] = op_type;
1536 break;
1537 case 'o': case 'O':
1538 ls_operand[LS_OFFSET] = op_type;
1539 break;
1540 }
1541
1542 return value;
1543 }
1544
1545 /* Return the value of the "flag update" field for shimm insns.
1546 This value is actually stored in the register field. */
1547
1548 static long
1549 extract_flag (insn, operand, mods, opval, invalid)
1550 arc_insn *insn;
1551 const struct arc_operand *operand;
1552 int mods ATTRIBUTE_UNUSED;
1553 const struct arc_operand_value **opval;
1554 int *invalid ATTRIBUTE_UNUSED;
1555 {
1556 int f;
1557 const struct arc_operand_value *val;
1558
1559 if (flagshimm_handled_p)
1560 f = flag_p != 0;
1561 else
1562 f = (*insn & (1 << operand->shift)) != 0;
1563
1564 /* There is no text for zero values. */
1565 if (f == 0)
1566 return 0;
1567 flag_p = 1;
1568 val = arc_opcode_lookup_suffix (operand, 1);
1569 if (opval != NULL && val != NULL)
1570 *opval = val;
1571 return val->value;
1572 }
1573
1574 /* Extract the condition code (if it exists).
1575 If we've seen a shimm value in this insn (meaning that the insn can't have
1576 a condition code field), then we don't store anything in OPVAL and return
1577 zero. */
1578
1579 static long
1580 extract_cond (insn, operand, mods, opval, invalid)
1581 arc_insn *insn;
1582 const struct arc_operand *operand;
1583 int mods ATTRIBUTE_UNUSED;
1584 const struct arc_operand_value **opval;
1585 int *invalid ATTRIBUTE_UNUSED;
1586 {
1587 long cond;
1588 const struct arc_operand_value *val;
1589
1590 if (flagshimm_handled_p)
1591 return 0;
1592
1593 cond = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1594 val = arc_opcode_lookup_suffix (operand, cond);
1595
1596 /* Ignore NULL values of `val'. Several condition code values are
1597 reserved for extensions. */
1598 if (opval != NULL && val != NULL)
1599 *opval = val;
1600 return cond;
1601 }
1602
1603 /* Extract a branch address.
1604 We return the value as a real address (not right shifted by 2). */
1605
1606 static long
1607 extract_reladdr (insn, operand, mods, opval, invalid)
1608 arc_insn *insn;
1609 const struct arc_operand *operand;
1610 int mods ATTRIBUTE_UNUSED;
1611 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1612 int *invalid ATTRIBUTE_UNUSED;
1613 {
1614 long addr;
1615
1616 addr = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1617 if ((operand->flags & ARC_OPERAND_SIGNED)
1618 && (addr & (1 << (operand->bits - 1))))
1619 addr -= 1 << operand->bits;
1620 return addr << 2;
1621 }
1622
1623 /* extract the flags bits from a j or jl long immediate. */
1624 static long
1625 extract_jumpflags(insn, operand, mods, opval, invalid)
1626 arc_insn *insn;
1627 const struct arc_operand *operand;
1628 int mods ATTRIBUTE_UNUSED;
1629 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1630 int *invalid;
1631 {
1632 if (!flag_p || !limm_p)
1633 *invalid = 1;
1634 return ((flag_p && limm_p)
1635 ? (insn[1] >> operand->shift) & ((1 << operand->bits) -1): 0);
1636 }
1637
1638 /* extract st insn's offset. */
1639
1640 static long
1641 extract_st_offset (insn, operand, mods, opval, invalid)
1642 arc_insn *insn;
1643 const struct arc_operand *operand;
1644 int mods ATTRIBUTE_UNUSED;
1645 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1646 int *invalid;
1647 {
1648 int value = 0;
1649
1650 if (ls_operand[LS_VALUE] != OP_SHIMM || ls_operand[LS_BASE] != OP_LIMM)
1651 {
1652 value = insn[0] & 511;
1653 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1654 value -= 512;
1655 if (value)
1656 ls_operand[LS_OFFSET] = OP_SHIMM;
1657 }
1658 else
1659 {
1660 *invalid = 1;
1661 }
1662 return(value);
1663 }
1664
1665 /* extract ld insn's offset. */
1666
1667 static long
1668 extract_ld_offset (insn, operand, mods, opval, invalid)
1669 arc_insn *insn;
1670 const struct arc_operand *operand;
1671 int mods;
1672 const struct arc_operand_value **opval;
1673 int *invalid;
1674 {
1675 int test = insn[0] & I(-1);
1676 int value;
1677
1678 if (test)
1679 {
1680 value = insn[0] & 511;
1681 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1682 value -= 512;
1683 if (value)
1684 ls_operand[LS_OFFSET] = OP_SHIMM;
1685 return(value);
1686 }
1687 /* if it isn't in the insn, it's concealed behind reg 'c'. */
1688 return extract_reg (insn, &arc_operands[arc_operand_map['c']],
1689 mods, opval, invalid);
1690 }
1691
1692 /* The only thing this does is set the `invalid' flag if B != C.
1693 This is needed because the "mov" macro appears before it's real insn "and"
1694 and we don't want the disassembler to confuse them. */
1695
1696 static long
1697 extract_unopmacro (insn, operand, mods, opval, invalid)
1698 arc_insn *insn;
1699 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1700 int mods ATTRIBUTE_UNUSED;
1701 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1702 int *invalid;
1703 {
1704 /* This misses the case where B == ARC_REG_SHIMM_UPDATE &&
1705 C == ARC_REG_SHIMM (or vice versa). No big deal. Those insns will get
1706 printed as "and"s. */
1707 if (((*insn >> ARC_SHIFT_REGB) & ARC_MASK_REG)
1708 != ((*insn >> ARC_SHIFT_REGC) & ARC_MASK_REG))
1709 if (invalid != NULL)
1710 *invalid = 1;
1711 return 0;
1712 }
1713
1714 /* Utility for the extraction functions to return the index into
1715 `arc_suffixes'. */
1716
1717 const struct arc_operand_value *
1718 arc_opcode_lookup_suffix (type, value)
1719 const struct arc_operand *type;
1720 int value;
1721 {
1722 register const struct arc_operand_value *v,*end;
1723 struct arc_ext_operand_value *ext_oper = arc_ext_operands;
1724
1725 while (ext_oper)
1726 {
1727 if (type == &arc_operands[ext_oper->operand.type]
1728 && value == ext_oper->operand.value)
1729 return (&ext_oper->operand);
1730 ext_oper = ext_oper->next;
1731 }
1732
1733 /* ??? This is a little slow and can be speeded up. */
1734
1735 for (v = arc_suffixes, end = arc_suffixes + arc_suffixes_count; v < end; ++v)
1736 if (type == &arc_operands[v->type]
1737 && value == v->value)
1738 return v;
1739 return 0;
1740 }
1741
1742 static const struct arc_operand_value *
1743 lookup_register (type, regno)
1744 int type;
1745 long regno;
1746 {
1747 register const struct arc_operand_value *r,*end;
1748 struct arc_ext_operand_value *ext_oper = arc_ext_operands;
1749
1750 while (ext_oper)
1751 {
1752 if (ext_oper->operand.type == type && ext_oper->operand.value == regno)
1753 return (&ext_oper->operand);
1754 ext_oper = ext_oper->next;
1755 }
1756
1757 if (type == REG)
1758 return &arc_reg_names[regno];
1759
1760 /* ??? This is a little slow and can be speeded up. */
1761
1762 for (r = arc_reg_names, end = arc_reg_names + arc_reg_names_count;
1763 r < end; ++r)
1764 if (type == r->type && regno == r->value)
1765 return r;
1766 return 0;
1767 }
1768
1769 int
1770 arc_insn_is_j(insn)
1771 arc_insn insn;
1772 {
1773 return (insn & (I(-1))) == I(0x7);
1774 }
1775
1776 int
1777 arc_insn_not_jl(insn)
1778 arc_insn insn;
1779 {
1780 return ((insn & (I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1)))
1781 != (I(0x7) | R(-1,9,1)));
1782 }
1783
1784 int
1785 arc_operand_type(int opertype)
1786 {
1787 switch (opertype)
1788 {
1789 case 0:
1790 return(COND);
1791 break;
1792 case 1:
1793 return(REG);
1794 break;
1795 case 2:
1796 return(AUXREG);
1797 break;
1798 }
1799 return -1;
1800 }
1801
1802 struct arc_operand_value *
1803 get_ext_suffix(s)
1804 char *s;
1805 {
1806 struct arc_ext_operand_value *suffix = arc_ext_operands;
1807
1808 while (suffix)
1809 {
1810 if ((COND == suffix->operand.type)
1811 && !strcmp(s,suffix->operand.name))
1812 return(&suffix->operand);
1813 suffix = suffix->next;
1814 }
1815 return NULL;
1816 }
1817
1818 int
1819 arc_get_noshortcut_flag()
1820 {
1821 return ARC_REGISTER_NOSHORT_CUT;
1822 }
This page took 0.073125 seconds and 4 git commands to generate.