6ba9056b5557b8852f427f7c39ff525d04b0f960
[deliverable/binutils-gdb.git] / opcodes / arc-opc.c
1 /* Opcode table for the ARC.
2 Copyright 1994, 1995, 1997, 1998, 2000, 2001, 2002, 2004, 2005, 2007
3 Free Software Foundation, Inc.
4 Contributed by Doug Evans (dje@cygnus.com).
5
6 This file is part of libopcodes.
7
8 This library is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 It is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software Foundation,
20 Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include <stdio.h>
24 #include "ansidecl.h"
25 #include "bfd.h"
26 #include "opcode/arc.h"
27 #include "opintl.h"
28
29 enum operand {OP_NONE,OP_REG,OP_SHIMM,OP_LIMM};
30
31 #define OPERANDS 3
32
33 enum operand ls_operand[OPERANDS];
34
35 struct arc_opcode *arc_ext_opcodes;
36 struct arc_ext_operand_value *arc_ext_operands;
37
38 #define LS_VALUE 0
39 #define LS_DEST 0
40 #define LS_BASE 1
41 #define LS_OFFSET 2
42
43 /* Given a format letter, yields the index into `arc_operands'.
44 eg: arc_operand_map['a'] = REGA. */
45 unsigned char arc_operand_map[256];
46
47 /* Nonzero if we've seen an 'f' suffix (in certain insns). */
48 static int flag_p;
49
50 /* Nonzero if we've finished processing the 'f' suffix. */
51 static int flagshimm_handled_p;
52
53 /* Nonzero if we've seen a 'a' suffix (address writeback). */
54 static int addrwb_p;
55
56 /* Nonzero if we've seen a 'q' suffix (condition code). */
57 static int cond_p;
58
59 /* Nonzero if we've inserted a nullify condition. */
60 static int nullify_p;
61
62 /* The value of the a nullify condition we inserted. */
63 static int nullify;
64
65 /* Nonzero if we've inserted jumpflags. */
66 static int jumpflags_p;
67
68 /* Nonzero if we've inserted a shimm. */
69 static int shimm_p;
70
71 /* The value of the shimm we inserted (each insn only gets one but it can
72 appear multiple times). */
73 static int shimm;
74
75 /* Nonzero if we've inserted a limm (during assembly) or seen a limm
76 (during disassembly). */
77 static int limm_p;
78
79 /* The value of the limm we inserted. Each insn only gets one but it can
80 appear multiple times. */
81 static long limm;
82 \f
83 #define INSERT_FN(fn) \
84 static arc_insn fn (arc_insn, const struct arc_operand *, \
85 int, const struct arc_operand_value *, long, \
86 const char **)
87
88 #define EXTRACT_FN(fn) \
89 static long fn (arc_insn *, const struct arc_operand *, \
90 int, const struct arc_operand_value **, int *)
91
92 INSERT_FN (insert_reg);
93 INSERT_FN (insert_shimmfinish);
94 INSERT_FN (insert_limmfinish);
95 INSERT_FN (insert_offset);
96 INSERT_FN (insert_base);
97 INSERT_FN (insert_st_syntax);
98 INSERT_FN (insert_ld_syntax);
99 INSERT_FN (insert_addr_wb);
100 INSERT_FN (insert_flag);
101 INSERT_FN (insert_nullify);
102 INSERT_FN (insert_flagfinish);
103 INSERT_FN (insert_cond);
104 INSERT_FN (insert_forcelimm);
105 INSERT_FN (insert_reladdr);
106 INSERT_FN (insert_absaddr);
107 INSERT_FN (insert_jumpflags);
108 INSERT_FN (insert_unopmacro);
109
110 EXTRACT_FN (extract_reg);
111 EXTRACT_FN (extract_ld_offset);
112 EXTRACT_FN (extract_ld_syntax);
113 EXTRACT_FN (extract_st_offset);
114 EXTRACT_FN (extract_st_syntax);
115 EXTRACT_FN (extract_flag);
116 EXTRACT_FN (extract_cond);
117 EXTRACT_FN (extract_reladdr);
118 EXTRACT_FN (extract_jumpflags);
119 EXTRACT_FN (extract_unopmacro);
120
121 /* Various types of ARC operands, including insn suffixes. */
122
123 /* Insn format values:
124
125 'a' REGA register A field
126 'b' REGB register B field
127 'c' REGC register C field
128 'S' SHIMMFINISH finish inserting a shimm value
129 'L' LIMMFINISH finish inserting a limm value
130 'o' OFFSET offset in st insns
131 'O' OFFSET offset in ld insns
132 '0' SYNTAX_ST_NE enforce store insn syntax, no errors
133 '1' SYNTAX_LD_NE enforce load insn syntax, no errors
134 '2' SYNTAX_ST enforce store insn syntax, errors, last pattern only
135 '3' SYNTAX_LD enforce load insn syntax, errors, last pattern only
136 's' BASE base in st insn
137 'f' FLAG F flag
138 'F' FLAGFINISH finish inserting the F flag
139 'G' FLAGINSN insert F flag in "flag" insn
140 'n' DELAY N field (nullify field)
141 'q' COND condition code field
142 'Q' FORCELIMM set `cond_p' to 1 to ensure a constant is a limm
143 'B' BRANCH branch address (22 bit pc relative)
144 'J' JUMP jump address (26 bit absolute)
145 'j' JUMPFLAGS optional high order bits of 'J'
146 'z' SIZE1 size field in ld a,[b,c]
147 'Z' SIZE10 size field in ld a,[b,shimm]
148 'y' SIZE22 size field in st c,[b,shimm]
149 'x' SIGN0 sign extend field ld a,[b,c]
150 'X' SIGN9 sign extend field ld a,[b,shimm]
151 'w' ADDRESS3 write-back field in ld a,[b,c]
152 'W' ADDRESS12 write-back field in ld a,[b,shimm]
153 'v' ADDRESS24 write-back field in st c,[b,shimm]
154 'e' CACHEBYPASS5 cache bypass in ld a,[b,c]
155 'E' CACHEBYPASS14 cache bypass in ld a,[b,shimm]
156 'D' CACHEBYPASS26 cache bypass in st c,[b,shimm]
157 'U' UNOPMACRO fake operand to copy REGB to REGC for unop macros
158
159 The following modifiers may appear between the % and char (eg: %.f):
160
161 '.' MODDOT '.' prefix must be present
162 'r' REG generic register value, for register table
163 'A' AUXREG auxiliary register in lr a,[b], sr c,[b]
164
165 Fields are:
166
167 CHAR BITS SHIFT FLAGS INSERT_FN EXTRACT_FN */
168
169 const struct arc_operand arc_operands[] =
170 {
171 /* Place holder (??? not sure if needed). */
172 #define UNUSED 0
173 { 0, 0, 0, 0, 0, 0 },
174
175 /* Register A or shimm/limm indicator. */
176 #define REGA (UNUSED + 1)
177 { 'a', 6, ARC_SHIFT_REGA, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
178
179 /* Register B or shimm/limm indicator. */
180 #define REGB (REGA + 1)
181 { 'b', 6, ARC_SHIFT_REGB, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
182
183 /* Register C or shimm/limm indicator. */
184 #define REGC (REGB + 1)
185 { 'c', 6, ARC_SHIFT_REGC, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
186
187 /* Fake operand used to insert shimm value into most instructions. */
188 #define SHIMMFINISH (REGC + 1)
189 { 'S', 9, 0, ARC_OPERAND_SIGNED + ARC_OPERAND_FAKE, insert_shimmfinish, 0 },
190
191 /* Fake operand used to insert limm value into most instructions. */
192 #define LIMMFINISH (SHIMMFINISH + 1)
193 { 'L', 32, 32, ARC_OPERAND_ADDRESS + ARC_OPERAND_LIMM + ARC_OPERAND_FAKE, insert_limmfinish, 0 },
194
195 /* Shimm operand when there is no reg indicator (st). */
196 #define ST_OFFSET (LIMMFINISH + 1)
197 { 'o', 9, 0, ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED | ARC_OPERAND_STORE, insert_offset, extract_st_offset },
198
199 /* Shimm operand when there is no reg indicator (ld). */
200 #define LD_OFFSET (ST_OFFSET + 1)
201 { 'O', 9, 0,ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED | ARC_OPERAND_LOAD, insert_offset, extract_ld_offset },
202
203 /* Operand for base. */
204 #define BASE (LD_OFFSET + 1)
205 { 's', 6, ARC_SHIFT_REGB, ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED, insert_base, extract_reg},
206
207 /* 0 enforce syntax for st insns. */
208 #define SYNTAX_ST_NE (BASE + 1)
209 { '0', 9, 0, ARC_OPERAND_FAKE, insert_st_syntax, extract_st_syntax },
210
211 /* 1 enforce syntax for ld insns. */
212 #define SYNTAX_LD_NE (SYNTAX_ST_NE + 1)
213 { '1', 9, 0, ARC_OPERAND_FAKE, insert_ld_syntax, extract_ld_syntax },
214
215 /* 0 enforce syntax for st insns. */
216 #define SYNTAX_ST (SYNTAX_LD_NE + 1)
217 { '2', 9, 0, ARC_OPERAND_FAKE | ARC_OPERAND_ERROR, insert_st_syntax, extract_st_syntax },
218
219 /* 0 enforce syntax for ld insns. */
220 #define SYNTAX_LD (SYNTAX_ST + 1)
221 { '3', 9, 0, ARC_OPERAND_FAKE | ARC_OPERAND_ERROR, insert_ld_syntax, extract_ld_syntax },
222
223 /* Flag update bit (insertion is defered until we know how). */
224 #define FLAG (SYNTAX_LD + 1)
225 { 'f', 1, 8, ARC_OPERAND_SUFFIX, insert_flag, extract_flag },
226
227 /* Fake utility operand to finish 'f' suffix handling. */
228 #define FLAGFINISH (FLAG + 1)
229 { 'F', 1, 8, ARC_OPERAND_FAKE, insert_flagfinish, 0 },
230
231 /* Fake utility operand to set the 'f' flag for the "flag" insn. */
232 #define FLAGINSN (FLAGFINISH + 1)
233 { 'G', 1, 8, ARC_OPERAND_FAKE, insert_flag, 0 },
234
235 /* Branch delay types. */
236 #define DELAY (FLAGINSN + 1)
237 { 'n', 2, 5, ARC_OPERAND_SUFFIX , insert_nullify, 0 },
238
239 /* Conditions. */
240 #define COND (DELAY + 1)
241 { 'q', 5, 0, ARC_OPERAND_SUFFIX, insert_cond, extract_cond },
242
243 /* Set `cond_p' to 1 to ensure a constant is treated as a limm. */
244 #define FORCELIMM (COND + 1)
245 { 'Q', 0, 0, ARC_OPERAND_FAKE, insert_forcelimm, 0 },
246
247 /* Branch address; b, bl, and lp insns. */
248 #define BRANCH (FORCELIMM + 1)
249 { 'B', 20, 7, (ARC_OPERAND_RELATIVE_BRANCH + ARC_OPERAND_SIGNED) | ARC_OPERAND_ERROR, insert_reladdr, extract_reladdr },
250
251 /* Jump address; j insn (this is basically the same as 'L' except that the
252 value is right shifted by 2). */
253 #define JUMP (BRANCH + 1)
254 { 'J', 24, 32, ARC_OPERAND_ERROR | (ARC_OPERAND_ABSOLUTE_BRANCH + ARC_OPERAND_LIMM + ARC_OPERAND_FAKE), insert_absaddr, 0 },
255
256 /* Jump flags; j{,l} insn value or'ed into 'J' addr for flag values. */
257 #define JUMPFLAGS (JUMP + 1)
258 { 'j', 6, 26, ARC_OPERAND_JUMPFLAGS | ARC_OPERAND_ERROR, insert_jumpflags, extract_jumpflags },
259
260 /* Size field, stored in bit 1,2. */
261 #define SIZE1 (JUMPFLAGS + 1)
262 { 'z', 2, 1, ARC_OPERAND_SUFFIX, 0, 0 },
263
264 /* Size field, stored in bit 10,11. */
265 #define SIZE10 (SIZE1 + 1)
266 { 'Z', 2, 10, ARC_OPERAND_SUFFIX, 0, 0 },
267
268 /* Size field, stored in bit 22,23. */
269 #define SIZE22 (SIZE10 + 1)
270 { 'y', 2, 22, ARC_OPERAND_SUFFIX, 0, 0 },
271
272 /* Sign extend field, stored in bit 0. */
273 #define SIGN0 (SIZE22 + 1)
274 { 'x', 1, 0, ARC_OPERAND_SUFFIX, 0, 0 },
275
276 /* Sign extend field, stored in bit 9. */
277 #define SIGN9 (SIGN0 + 1)
278 { 'X', 1, 9, ARC_OPERAND_SUFFIX, 0, 0 },
279
280 /* Address write back, stored in bit 3. */
281 #define ADDRESS3 (SIGN9 + 1)
282 { 'w', 1, 3, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
283
284 /* Address write back, stored in bit 12. */
285 #define ADDRESS12 (ADDRESS3 + 1)
286 { 'W', 1, 12, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
287
288 /* Address write back, stored in bit 24. */
289 #define ADDRESS24 (ADDRESS12 + 1)
290 { 'v', 1, 24, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
291
292 /* Cache bypass, stored in bit 5. */
293 #define CACHEBYPASS5 (ADDRESS24 + 1)
294 { 'e', 1, 5, ARC_OPERAND_SUFFIX, 0, 0 },
295
296 /* Cache bypass, stored in bit 14. */
297 #define CACHEBYPASS14 (CACHEBYPASS5 + 1)
298 { 'E', 1, 14, ARC_OPERAND_SUFFIX, 0, 0 },
299
300 /* Cache bypass, stored in bit 26. */
301 #define CACHEBYPASS26 (CACHEBYPASS14 + 1)
302 { 'D', 1, 26, ARC_OPERAND_SUFFIX, 0, 0 },
303
304 /* Unop macro, used to copy REGB to REGC. */
305 #define UNOPMACRO (CACHEBYPASS26 + 1)
306 { 'U', 6, ARC_SHIFT_REGC, ARC_OPERAND_FAKE, insert_unopmacro, extract_unopmacro },
307
308 /* '.' modifier ('.' required). */
309 #define MODDOT (UNOPMACRO + 1)
310 { '.', 1, 0, ARC_MOD_DOT, 0, 0 },
311
312 /* Dummy 'r' modifier for the register table.
313 It's called a "dummy" because there's no point in inserting an 'r' into all
314 the %a/%b/%c occurrences in the insn table. */
315 #define REG (MODDOT + 1)
316 { 'r', 6, 0, ARC_MOD_REG, 0, 0 },
317
318 /* Known auxiliary register modifier (stored in shimm field). */
319 #define AUXREG (REG + 1)
320 { 'A', 9, 0, ARC_MOD_AUXREG, 0, 0 },
321
322 /* End of list place holder. */
323 { 0, 0, 0, 0, 0, 0 }
324 };
325 \f
326 /* Insert a value into a register field.
327 If REG is NULL, then this is actually a constant.
328
329 We must also handle auxiliary registers for lr/sr insns. */
330
331 static arc_insn
332 insert_reg (arc_insn insn,
333 const struct arc_operand *operand,
334 int mods,
335 const struct arc_operand_value *reg,
336 long value,
337 const char **errmsg)
338 {
339 static char buf[100];
340 enum operand op_type = OP_NONE;
341
342 if (reg == NULL)
343 {
344 /* We have a constant that also requires a value stored in a register
345 field. Handle these by updating the register field and saving the
346 value for later handling by either %S (shimm) or %L (limm). */
347
348 /* Try to use a shimm value before a limm one. */
349 if (ARC_SHIMM_CONST_P (value)
350 /* If we've seen a conditional suffix we have to use a limm. */
351 && !cond_p
352 /* If we already have a shimm value that is different than ours
353 we have to use a limm. */
354 && (!shimm_p || shimm == value))
355 {
356 int marker;
357
358 op_type = OP_SHIMM;
359 /* Forget about shimm as dest mlm. */
360
361 if ('a' != operand->fmt)
362 {
363 shimm_p = 1;
364 shimm = value;
365 flagshimm_handled_p = 1;
366 marker = flag_p ? ARC_REG_SHIMM_UPDATE : ARC_REG_SHIMM;
367 }
368 else
369 {
370 /* Don't request flag setting on shimm as dest. */
371 marker = ARC_REG_SHIMM;
372 }
373 insn |= marker << operand->shift;
374 /* insn |= value & 511; - done later. */
375 }
376 /* We have to use a limm. If we've already seen one they must match. */
377 else if (!limm_p || limm == value)
378 {
379 op_type = OP_LIMM;
380 limm_p = 1;
381 limm = value;
382 insn |= ARC_REG_LIMM << operand->shift;
383 /* The constant is stored later. */
384 }
385 else
386 *errmsg = _("unable to fit different valued constants into instruction");
387 }
388 else
389 {
390 /* We have to handle both normal and auxiliary registers. */
391
392 if (reg->type == AUXREG)
393 {
394 if (!(mods & ARC_MOD_AUXREG))
395 *errmsg = _("auxiliary register not allowed here");
396 else
397 {
398 if ((insn & I(-1)) == I(2)) /* Check for use validity. */
399 {
400 if (reg->flags & ARC_REGISTER_READONLY)
401 *errmsg = _("attempt to set readonly register");
402 }
403 else
404 {
405 if (reg->flags & ARC_REGISTER_WRITEONLY)
406 *errmsg = _("attempt to read writeonly register");
407 }
408 insn |= ARC_REG_SHIMM << operand->shift;
409 insn |= reg->value << arc_operands[reg->type].shift;
410 }
411 }
412 else
413 {
414 /* check for use validity. */
415 if ('a' == operand->fmt || ((insn & I(-1)) < I(2)))
416 {
417 if (reg->flags & ARC_REGISTER_READONLY)
418 *errmsg = _("attempt to set readonly register");
419 }
420 if ('a' != operand->fmt)
421 {
422 if (reg->flags & ARC_REGISTER_WRITEONLY)
423 *errmsg = _("attempt to read writeonly register");
424 }
425 /* We should never get an invalid register number here. */
426 if ((unsigned int) reg->value > 60)
427 {
428 sprintf (buf, _("invalid register number `%d'"), reg->value);
429 *errmsg = buf;
430 }
431 insn |= reg->value << operand->shift;
432 op_type = OP_REG;
433 }
434 }
435
436 switch (operand->fmt)
437 {
438 case 'a':
439 ls_operand[LS_DEST] = op_type;
440 break;
441 case 's':
442 ls_operand[LS_BASE] = op_type;
443 break;
444 case 'c':
445 if ((insn & I(-1)) == I(2))
446 ls_operand[LS_VALUE] = op_type;
447 else
448 ls_operand[LS_OFFSET] = op_type;
449 break;
450 case 'o': case 'O':
451 ls_operand[LS_OFFSET] = op_type;
452 break;
453 }
454
455 return insn;
456 }
457
458 /* Called when we see an 'f' flag. */
459
460 static arc_insn
461 insert_flag (arc_insn insn,
462 const struct arc_operand *operand ATTRIBUTE_UNUSED,
463 int mods ATTRIBUTE_UNUSED,
464 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
465 long value ATTRIBUTE_UNUSED,
466 const char **errmsg ATTRIBUTE_UNUSED)
467 {
468 /* We can't store anything in the insn until we've parsed the registers.
469 Just record the fact that we've got this flag. `insert_reg' will use it
470 to store the correct value (ARC_REG_SHIMM_UPDATE or bit 0x100). */
471 flag_p = 1;
472 return insn;
473 }
474
475 /* Called when we see an nullify condition. */
476
477 static arc_insn
478 insert_nullify (arc_insn insn,
479 const struct arc_operand *operand,
480 int mods ATTRIBUTE_UNUSED,
481 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
482 long value,
483 const char **errmsg ATTRIBUTE_UNUSED)
484 {
485 nullify_p = 1;
486 insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
487 nullify = value;
488 return insn;
489 }
490
491 /* Called after completely building an insn to ensure the 'f' flag gets set
492 properly. This is needed because we don't know how to set this flag until
493 we've parsed the registers. */
494
495 static arc_insn
496 insert_flagfinish (arc_insn insn,
497 const struct arc_operand *operand,
498 int mods ATTRIBUTE_UNUSED,
499 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
500 long value ATTRIBUTE_UNUSED,
501 const char **errmsg ATTRIBUTE_UNUSED)
502 {
503 if (flag_p && !flagshimm_handled_p)
504 {
505 if (shimm_p)
506 abort ();
507 flagshimm_handled_p = 1;
508 insn |= (1 << operand->shift);
509 }
510 return insn;
511 }
512
513 /* Called when we see a conditional flag (eg: .eq). */
514
515 static arc_insn
516 insert_cond (arc_insn insn,
517 const struct arc_operand *operand,
518 int mods ATTRIBUTE_UNUSED,
519 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
520 long value,
521 const char **errmsg ATTRIBUTE_UNUSED)
522 {
523 cond_p = 1;
524 insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
525 return insn;
526 }
527
528 /* Used in the "j" instruction to prevent constants from being interpreted as
529 shimm values (which the jump insn doesn't accept). This can also be used
530 to force the use of limm values in other situations (eg: ld r0,[foo] uses
531 this).
532 ??? The mechanism is sound. Access to it is a bit klunky right now. */
533
534 static arc_insn
535 insert_forcelimm (arc_insn insn,
536 const struct arc_operand *operand ATTRIBUTE_UNUSED,
537 int mods ATTRIBUTE_UNUSED,
538 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
539 long value ATTRIBUTE_UNUSED,
540 const char **errmsg ATTRIBUTE_UNUSED)
541 {
542 cond_p = 1;
543 return insn;
544 }
545
546 static arc_insn
547 insert_addr_wb (arc_insn insn,
548 const struct arc_operand *operand,
549 int mods ATTRIBUTE_UNUSED,
550 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
551 long value ATTRIBUTE_UNUSED,
552 const char **errmsg ATTRIBUTE_UNUSED)
553 {
554 addrwb_p = 1 << operand->shift;
555 return insn;
556 }
557
558 static arc_insn
559 insert_base (arc_insn insn,
560 const struct arc_operand *operand,
561 int mods,
562 const struct arc_operand_value *reg,
563 long value,
564 const char **errmsg)
565 {
566 if (reg != NULL)
567 {
568 arc_insn myinsn;
569 myinsn = insert_reg (0, operand,mods, reg, value, errmsg) >> operand->shift;
570 insn |= B(myinsn);
571 ls_operand[LS_BASE] = OP_REG;
572 }
573 else if (ARC_SHIMM_CONST_P (value) && !cond_p)
574 {
575 if (shimm_p && value != shimm)
576 {
577 /* Convert the previous shimm operand to a limm. */
578 limm_p = 1;
579 limm = shimm;
580 insn &= ~C(-1); /* We know where the value is in insn. */
581 insn |= C(ARC_REG_LIMM);
582 ls_operand[LS_VALUE] = OP_LIMM;
583 }
584 insn |= ARC_REG_SHIMM << operand->shift;
585 shimm_p = 1;
586 shimm = value;
587 ls_operand[LS_BASE] = OP_SHIMM;
588 ls_operand[LS_OFFSET] = OP_SHIMM;
589 }
590 else
591 {
592 if (limm_p && value != limm)
593 {
594 *errmsg = _("too many long constants");
595 return insn;
596 }
597 limm_p = 1;
598 limm = value;
599 insn |= B(ARC_REG_LIMM);
600 ls_operand[LS_BASE] = OP_LIMM;
601 }
602
603 return insn;
604 }
605
606 /* Used in ld/st insns to handle the offset field. We don't try to
607 match operand syntax here. we catch bad combinations later. */
608
609 static arc_insn
610 insert_offset (arc_insn insn,
611 const struct arc_operand *operand,
612 int mods,
613 const struct arc_operand_value *reg,
614 long value,
615 const char **errmsg)
616 {
617 long minval, maxval;
618
619 if (reg != NULL)
620 {
621 arc_insn myinsn;
622 myinsn = insert_reg (0,operand,mods,reg,value,errmsg) >> operand->shift;
623 ls_operand[LS_OFFSET] = OP_REG;
624 if (operand->flags & ARC_OPERAND_LOAD) /* Not if store, catch it later. */
625 if ((insn & I(-1)) != I(1)) /* Not if opcode == 1, catch it later. */
626 insn |= C (myinsn);
627 }
628 else
629 {
630 /* This is *way* more general than necessary, but maybe some day it'll
631 be useful. */
632 if (operand->flags & ARC_OPERAND_SIGNED)
633 {
634 minval = -(1 << (operand->bits - 1));
635 maxval = (1 << (operand->bits - 1)) - 1;
636 }
637 else
638 {
639 minval = 0;
640 maxval = (1 << operand->bits) - 1;
641 }
642 if ((cond_p && !limm_p) || (value < minval || value > maxval))
643 {
644 if (limm_p && value != limm)
645 *errmsg = _("too many long constants");
646
647 else
648 {
649 limm_p = 1;
650 limm = value;
651 if (operand->flags & ARC_OPERAND_STORE)
652 insn |= B(ARC_REG_LIMM);
653 if (operand->flags & ARC_OPERAND_LOAD)
654 insn |= C(ARC_REG_LIMM);
655 ls_operand[LS_OFFSET] = OP_LIMM;
656 }
657 }
658 else
659 {
660 if ((value < minval || value > maxval))
661 *errmsg = "need too many limms";
662 else if (shimm_p && value != shimm)
663 {
664 /* Check for bad operand combinations
665 before we lose info about them. */
666 if ((insn & I(-1)) == I(1))
667 {
668 *errmsg = _("to many shimms in load");
669 goto out;
670 }
671 if (limm_p && operand->flags & ARC_OPERAND_LOAD)
672 {
673 *errmsg = _("too many long constants");
674 goto out;
675 }
676 /* Convert what we thought was a shimm to a limm. */
677 limm_p = 1;
678 limm = shimm;
679 if (ls_operand[LS_VALUE] == OP_SHIMM
680 && operand->flags & ARC_OPERAND_STORE)
681 {
682 insn &= ~C(-1);
683 insn |= C(ARC_REG_LIMM);
684 ls_operand[LS_VALUE] = OP_LIMM;
685 }
686 if (ls_operand[LS_BASE] == OP_SHIMM
687 && operand->flags & ARC_OPERAND_STORE)
688 {
689 insn &= ~B(-1);
690 insn |= B(ARC_REG_LIMM);
691 ls_operand[LS_BASE] = OP_LIMM;
692 }
693 }
694 shimm = value;
695 shimm_p = 1;
696 ls_operand[LS_OFFSET] = OP_SHIMM;
697 }
698 }
699 out:
700 return insn;
701 }
702
703 /* Used in st insns to do final disasemble syntax check. */
704
705 static long
706 extract_st_syntax (arc_insn *insn,
707 const struct arc_operand *operand ATTRIBUTE_UNUSED,
708 int mods ATTRIBUTE_UNUSED,
709 const struct arc_operand_value **opval ATTRIBUTE_UNUSED,
710 int *invalid)
711 {
712 #define ST_SYNTAX(V,B,O) \
713 ((ls_operand[LS_VALUE] == (V) && \
714 ls_operand[LS_BASE] == (B) && \
715 ls_operand[LS_OFFSET] == (O)))
716
717 if (!((ST_SYNTAX(OP_REG,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
718 || ST_SYNTAX(OP_REG,OP_LIMM,OP_NONE)
719 || (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
720 || (ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_NONE) && (insn[0] & 511) == 0)
721 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE)
722 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_SHIMM)
723 || ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_SHIMM)
724 || (ST_SYNTAX(OP_LIMM,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
725 || ST_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
726 || ST_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
727 || ST_SYNTAX(OP_SHIMM,OP_REG,OP_SHIMM)
728 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_SHIMM)
729 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_NONE)
730 || ST_SYNTAX(OP_LIMM,OP_REG,OP_SHIMM)))
731 *invalid = 1;
732 return 0;
733 }
734
735 int
736 arc_limm_fixup_adjust (arc_insn insn)
737 {
738 int retval = 0;
739
740 /* Check for st shimm,[limm]. */
741 if ((insn & (I(-1) | C(-1) | B(-1))) ==
742 (I(2) | C(ARC_REG_SHIMM) | B(ARC_REG_LIMM)))
743 {
744 retval = insn & 0x1ff;
745 if (retval & 0x100) /* Sign extend 9 bit offset. */
746 retval |= ~0x1ff;
747 }
748 return -retval; /* Negate offset for return. */
749 }
750
751 /* Used in st insns to do final syntax check. */
752
753 static arc_insn
754 insert_st_syntax (arc_insn insn,
755 const struct arc_operand *operand ATTRIBUTE_UNUSED,
756 int mods ATTRIBUTE_UNUSED,
757 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
758 long value ATTRIBUTE_UNUSED,
759 const char **errmsg)
760 {
761 if (ST_SYNTAX (OP_SHIMM,OP_REG,OP_NONE) && shimm != 0)
762 {
763 /* Change an illegal insn into a legal one, it's easier to
764 do it here than to try to handle it during operand scan. */
765 limm_p = 1;
766 limm = shimm;
767 shimm_p = 0;
768 shimm = 0;
769 insn = insn & ~(C(-1) | 511);
770 insn |= ARC_REG_LIMM << ARC_SHIFT_REGC;
771 ls_operand[LS_VALUE] = OP_LIMM;
772 }
773
774 if (ST_SYNTAX (OP_REG, OP_SHIMM, OP_NONE)
775 || ST_SYNTAX (OP_LIMM, OP_SHIMM, OP_NONE))
776 {
777 /* Try to salvage this syntax. */
778 if (shimm & 0x1) /* Odd shimms won't work. */
779 {
780 if (limm_p) /* Do we have a limm already? */
781 *errmsg = _("impossible store");
782
783 limm_p = 1;
784 limm = shimm;
785 shimm = 0;
786 shimm_p = 0;
787 insn = insn & ~(B(-1) | 511);
788 insn |= B(ARC_REG_LIMM);
789 ls_operand[LS_BASE] = OP_LIMM;
790 }
791 else
792 {
793 shimm >>= 1;
794 insn = insn & ~511;
795 insn |= shimm;
796 ls_operand[LS_OFFSET] = OP_SHIMM;
797 }
798 }
799 if (ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE))
800 limm += arc_limm_fixup_adjust(insn);
801
802 if (! (ST_SYNTAX (OP_REG,OP_REG,OP_NONE)
803 || ST_SYNTAX (OP_REG,OP_LIMM,OP_NONE)
804 || ST_SYNTAX (OP_REG,OP_REG,OP_SHIMM)
805 || ST_SYNTAX (OP_REG,OP_SHIMM,OP_SHIMM)
806 || (ST_SYNTAX (OP_SHIMM,OP_SHIMM,OP_NONE) && (shimm == 0))
807 || ST_SYNTAX (OP_SHIMM,OP_LIMM,OP_NONE)
808 || ST_SYNTAX (OP_SHIMM,OP_REG,OP_NONE)
809 || ST_SYNTAX (OP_SHIMM,OP_REG,OP_SHIMM)
810 || ST_SYNTAX (OP_SHIMM,OP_SHIMM,OP_SHIMM)
811 || ST_SYNTAX (OP_LIMM,OP_SHIMM,OP_SHIMM)
812 || ST_SYNTAX (OP_LIMM,OP_REG,OP_NONE)
813 || ST_SYNTAX (OP_LIMM,OP_REG,OP_SHIMM)))
814 *errmsg = _("st operand error");
815 if (addrwb_p)
816 {
817 if (ls_operand[LS_BASE] != OP_REG)
818 *errmsg = _("address writeback not allowed");
819 insn |= addrwb_p;
820 }
821 if (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && shimm)
822 *errmsg = _("store value must be zero");
823 return insn;
824 }
825
826 /* Used in ld insns to do final syntax check. */
827
828 static arc_insn
829 insert_ld_syntax (arc_insn insn,
830 const struct arc_operand *operand ATTRIBUTE_UNUSED,
831 int mods ATTRIBUTE_UNUSED,
832 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
833 long value ATTRIBUTE_UNUSED,
834 const char **errmsg)
835 {
836 #define LD_SYNTAX(D, B, O) \
837 ( (ls_operand[LS_DEST] == (D) \
838 && ls_operand[LS_BASE] == (B) \
839 && ls_operand[LS_OFFSET] == (O)))
840
841 int test = insn & I (-1);
842
843 if (!(test == I (1)))
844 {
845 if ((ls_operand[LS_DEST] == OP_SHIMM || ls_operand[LS_BASE] == OP_SHIMM
846 || ls_operand[LS_OFFSET] == OP_SHIMM))
847 *errmsg = _("invalid load/shimm insn");
848 }
849 if (!(LD_SYNTAX(OP_REG,OP_REG,OP_NONE)
850 || LD_SYNTAX(OP_REG,OP_REG,OP_REG)
851 || LD_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
852 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_REG) && !(test == I(1)))
853 || (LD_SYNTAX(OP_REG,OP_REG,OP_LIMM) && !(test == I(1)))
854 || LD_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
855 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_NONE) && (test == I(1)))))
856 *errmsg = _("ld operand error");
857 if (addrwb_p)
858 {
859 if (ls_operand[LS_BASE] != OP_REG)
860 *errmsg = _("address writeback not allowed");
861 insn |= addrwb_p;
862 }
863 return insn;
864 }
865
866 /* Used in ld insns to do final syntax check. */
867
868 static long
869 extract_ld_syntax (arc_insn *insn,
870 const struct arc_operand *operand ATTRIBUTE_UNUSED,
871 int mods ATTRIBUTE_UNUSED,
872 const struct arc_operand_value **opval ATTRIBUTE_UNUSED,
873 int *invalid)
874 {
875 int test = insn[0] & I(-1);
876
877 if (!(test == I(1)))
878 {
879 if ((ls_operand[LS_DEST] == OP_SHIMM || ls_operand[LS_BASE] == OP_SHIMM
880 || ls_operand[LS_OFFSET] == OP_SHIMM))
881 *invalid = 1;
882 }
883 if (!( (LD_SYNTAX (OP_REG, OP_REG, OP_NONE) && (test == I(1)))
884 || LD_SYNTAX (OP_REG, OP_REG, OP_REG)
885 || LD_SYNTAX (OP_REG, OP_REG, OP_SHIMM)
886 || (LD_SYNTAX (OP_REG, OP_REG, OP_LIMM) && !(test == I(1)))
887 || (LD_SYNTAX (OP_REG, OP_LIMM, OP_REG) && !(test == I(1)))
888 || (LD_SYNTAX (OP_REG, OP_SHIMM, OP_NONE) && (shimm == 0))
889 || LD_SYNTAX (OP_REG, OP_SHIMM, OP_SHIMM)
890 || (LD_SYNTAX (OP_REG, OP_LIMM, OP_NONE) && (test == I(1)))))
891 *invalid = 1;
892 return 0;
893 }
894
895 /* Called at the end of processing normal insns (eg: add) to insert a shimm
896 value (if present) into the insn. */
897
898 static arc_insn
899 insert_shimmfinish (arc_insn insn,
900 const struct arc_operand *operand,
901 int mods ATTRIBUTE_UNUSED,
902 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
903 long value ATTRIBUTE_UNUSED,
904 const char **errmsg ATTRIBUTE_UNUSED)
905 {
906 if (shimm_p)
907 insn |= (shimm & ((1 << operand->bits) - 1)) << operand->shift;
908 return insn;
909 }
910
911 /* Called at the end of processing normal insns (eg: add) to insert a limm
912 value (if present) into the insn.
913
914 Note that this function is only intended to handle instructions (with 4 byte
915 immediate operands). It is not intended to handle data. */
916
917 /* ??? Actually, there's nothing for us to do as we can't call frag_more, the
918 caller must do that. The extract fns take a pointer to two words. The
919 insert fns could be converted and then we could do something useful, but
920 then the reloc handlers would have to know to work on the second word of
921 a 2 word quantity. That's too much so we don't handle them. */
922
923 static arc_insn
924 insert_limmfinish (arc_insn insn,
925 const struct arc_operand *operand ATTRIBUTE_UNUSED,
926 int mods ATTRIBUTE_UNUSED,
927 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
928 long value ATTRIBUTE_UNUSED,
929 const char **errmsg ATTRIBUTE_UNUSED)
930 {
931 return insn;
932 }
933
934 static arc_insn
935 insert_jumpflags (arc_insn insn,
936 const struct arc_operand *operand,
937 int mods ATTRIBUTE_UNUSED,
938 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
939 long value,
940 const char **errmsg)
941 {
942 if (!flag_p)
943 *errmsg = _("jump flags, but no .f seen");
944
945 else if (!limm_p)
946 *errmsg = _("jump flags, but no limm addr");
947
948 else if (limm & 0xfc000000)
949 *errmsg = _("flag bits of jump address limm lost");
950
951 else if (limm & 0x03000000)
952 *errmsg = _("attempt to set HR bits");
953
954 else if ((value & ((1 << operand->bits) - 1)) != value)
955 *errmsg = _("bad jump flags value");
956
957 jumpflags_p = 1;
958 limm = ((limm & ((1 << operand->shift) - 1))
959 | ((value & ((1 << operand->bits) - 1)) << operand->shift));
960 return insn;
961 }
962
963 /* Called at the end of unary operand macros to copy the B field to C. */
964
965 static arc_insn
966 insert_unopmacro (arc_insn insn,
967 const struct arc_operand *operand,
968 int mods ATTRIBUTE_UNUSED,
969 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
970 long value ATTRIBUTE_UNUSED,
971 const char **errmsg ATTRIBUTE_UNUSED)
972 {
973 insn |= ((insn >> ARC_SHIFT_REGB) & ARC_MASK_REG) << operand->shift;
974 return insn;
975 }
976
977 /* Insert a relative address for a branch insn (b, bl, or lp). */
978
979 static arc_insn
980 insert_reladdr (arc_insn insn,
981 const struct arc_operand *operand,
982 int mods ATTRIBUTE_UNUSED,
983 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
984 long value,
985 const char **errmsg)
986 {
987 if (value & 3)
988 *errmsg = _("branch address not on 4 byte boundary");
989 insn |= ((value >> 2) & ((1 << operand->bits) - 1)) << operand->shift;
990 return insn;
991 }
992
993 /* Insert a limm value as a 26 bit address right shifted 2 into the insn.
994
995 Note that this function is only intended to handle instructions (with 4 byte
996 immediate operands). It is not intended to handle data. */
997
998 /* ??? Actually, there's little for us to do as we can't call frag_more, the
999 caller must do that. The extract fns take a pointer to two words. The
1000 insert fns could be converted and then we could do something useful, but
1001 then the reloc handlers would have to know to work on the second word of
1002 a 2 word quantity. That's too much so we don't handle them.
1003
1004 We do check for correct usage of the nullify suffix, or we
1005 set the default correctly, though. */
1006
1007 static arc_insn
1008 insert_absaddr (arc_insn insn,
1009 const struct arc_operand *operand ATTRIBUTE_UNUSED,
1010 int mods ATTRIBUTE_UNUSED,
1011 const struct arc_operand_value *reg ATTRIBUTE_UNUSED,
1012 long value ATTRIBUTE_UNUSED,
1013 const char **errmsg)
1014 {
1015 if (limm_p)
1016 {
1017 /* If it is a jump and link, .jd must be specified. */
1018 if (insn & R (-1, 9, 1))
1019 {
1020 if (!nullify_p)
1021 insn |= 0x02 << 5; /* Default nullify to .jd. */
1022
1023 else if (nullify != 0x02)
1024 *errmsg = _("must specify .jd or no nullify suffix");
1025 }
1026 }
1027 return insn;
1028 }
1029 \f
1030 /* Extraction functions.
1031
1032 The suffix extraction functions' return value is redundant since it can be
1033 obtained from (*OPVAL)->value. However, the boolean suffixes don't have
1034 a suffix table entry for the "false" case, so values of zero must be
1035 obtained from the return value (*OPVAL == NULL). */
1036
1037 /* Called by the disassembler before printing an instruction. */
1038
1039 void
1040 arc_opcode_init_extract (void)
1041 {
1042 arc_opcode_init_insert ();
1043 }
1044
1045 static const struct arc_operand_value *
1046 lookup_register (int type, long regno)
1047 {
1048 const struct arc_operand_value *r,*end;
1049 struct arc_ext_operand_value *ext_oper = arc_ext_operands;
1050
1051 while (ext_oper)
1052 {
1053 if (ext_oper->operand.type == type && ext_oper->operand.value == regno)
1054 return (&ext_oper->operand);
1055 ext_oper = ext_oper->next;
1056 }
1057
1058 if (type == REG)
1059 return &arc_reg_names[regno];
1060
1061 /* ??? This is a little slow and can be speeded up. */
1062 for (r = arc_reg_names, end = arc_reg_names + arc_reg_names_count;
1063 r < end; ++r)
1064 if (type == r->type && regno == r->value)
1065 return r;
1066 return 0;
1067 }
1068
1069 /* As we're extracting registers, keep an eye out for the 'f' indicator
1070 (ARC_REG_SHIMM_UPDATE). If we find a register (not a constant marker,
1071 like ARC_REG_SHIMM), set OPVAL so our caller will know this is a register.
1072
1073 We must also handle auxiliary registers for lr/sr insns. They are just
1074 constants with special names. */
1075
1076 static long
1077 extract_reg (arc_insn *insn,
1078 const struct arc_operand *operand,
1079 int mods,
1080 const struct arc_operand_value **opval,
1081 int *invalid ATTRIBUTE_UNUSED)
1082 {
1083 int regno;
1084 long value;
1085 enum operand op_type;
1086
1087 /* Get the register number. */
1088 regno = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1089
1090 /* Is it a constant marker? */
1091 if (regno == ARC_REG_SHIMM)
1092 {
1093 op_type = OP_SHIMM;
1094 /* Always return zero if dest is a shimm mlm. */
1095
1096 if ('a' != operand->fmt)
1097 {
1098 value = *insn & 511;
1099 if ((operand->flags & ARC_OPERAND_SIGNED)
1100 && (value & 256))
1101 value -= 512;
1102 if (!flagshimm_handled_p)
1103 flag_p = 0;
1104 flagshimm_handled_p = 1;
1105 }
1106 else
1107 value = 0;
1108 }
1109 else if (regno == ARC_REG_SHIMM_UPDATE)
1110 {
1111 op_type = OP_SHIMM;
1112
1113 /* Always return zero if dest is a shimm mlm. */
1114 if ('a' != operand->fmt)
1115 {
1116 value = *insn & 511;
1117 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1118 value -= 512;
1119 }
1120 else
1121 value = 0;
1122
1123 flag_p = 1;
1124 flagshimm_handled_p = 1;
1125 }
1126 else if (regno == ARC_REG_LIMM)
1127 {
1128 op_type = OP_LIMM;
1129 value = insn[1];
1130 limm_p = 1;
1131
1132 /* If this is a jump instruction (j,jl), show new pc correctly. */
1133 if (0x07 == ((*insn & I(-1)) >> 27))
1134 value = (value & 0xffffff);
1135 }
1136
1137 /* It's a register, set OPVAL (that's the only way we distinguish registers
1138 from constants here). */
1139 else
1140 {
1141 const struct arc_operand_value *reg = lookup_register (REG, regno);
1142
1143 op_type = OP_REG;
1144
1145 if (reg == NULL)
1146 abort ();
1147 if (opval != NULL)
1148 *opval = reg;
1149 value = regno;
1150 }
1151
1152 /* If this field takes an auxiliary register, see if it's a known one. */
1153 if ((mods & ARC_MOD_AUXREG)
1154 && ARC_REG_CONSTANT_P (regno))
1155 {
1156 const struct arc_operand_value *reg = lookup_register (AUXREG, value);
1157
1158 /* This is really a constant, but tell the caller it has a special
1159 name. */
1160 if (reg != NULL && opval != NULL)
1161 *opval = reg;
1162 }
1163
1164 switch(operand->fmt)
1165 {
1166 case 'a':
1167 ls_operand[LS_DEST] = op_type;
1168 break;
1169 case 's':
1170 ls_operand[LS_BASE] = op_type;
1171 break;
1172 case 'c':
1173 if ((insn[0]& I(-1)) == I(2))
1174 ls_operand[LS_VALUE] = op_type;
1175 else
1176 ls_operand[LS_OFFSET] = op_type;
1177 break;
1178 case 'o': case 'O':
1179 ls_operand[LS_OFFSET] = op_type;
1180 break;
1181 }
1182
1183 return value;
1184 }
1185
1186 /* Return the value of the "flag update" field for shimm insns.
1187 This value is actually stored in the register field. */
1188
1189 static long
1190 extract_flag (arc_insn *insn,
1191 const struct arc_operand *operand,
1192 int mods ATTRIBUTE_UNUSED,
1193 const struct arc_operand_value **opval,
1194 int *invalid ATTRIBUTE_UNUSED)
1195 {
1196 int f;
1197 const struct arc_operand_value *val;
1198
1199 if (flagshimm_handled_p)
1200 f = flag_p != 0;
1201 else
1202 f = (*insn & (1 << operand->shift)) != 0;
1203
1204 /* There is no text for zero values. */
1205 if (f == 0)
1206 return 0;
1207 flag_p = 1;
1208 val = arc_opcode_lookup_suffix (operand, 1);
1209 if (opval != NULL && val != NULL)
1210 *opval = val;
1211 return val->value;
1212 }
1213
1214 /* Extract the condition code (if it exists).
1215 If we've seen a shimm value in this insn (meaning that the insn can't have
1216 a condition code field), then we don't store anything in OPVAL and return
1217 zero. */
1218
1219 static long
1220 extract_cond (arc_insn *insn,
1221 const struct arc_operand *operand,
1222 int mods ATTRIBUTE_UNUSED,
1223 const struct arc_operand_value **opval,
1224 int *invalid ATTRIBUTE_UNUSED)
1225 {
1226 long cond;
1227 const struct arc_operand_value *val;
1228
1229 if (flagshimm_handled_p)
1230 return 0;
1231
1232 cond = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1233 val = arc_opcode_lookup_suffix (operand, cond);
1234
1235 /* Ignore NULL values of `val'. Several condition code values are
1236 reserved for extensions. */
1237 if (opval != NULL && val != NULL)
1238 *opval = val;
1239 return cond;
1240 }
1241
1242 /* Extract a branch address.
1243 We return the value as a real address (not right shifted by 2). */
1244
1245 static long
1246 extract_reladdr (arc_insn *insn,
1247 const struct arc_operand *operand,
1248 int mods ATTRIBUTE_UNUSED,
1249 const struct arc_operand_value **opval ATTRIBUTE_UNUSED,
1250 int *invalid ATTRIBUTE_UNUSED)
1251 {
1252 long addr;
1253
1254 addr = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1255 if ((operand->flags & ARC_OPERAND_SIGNED)
1256 && (addr & (1 << (operand->bits - 1))))
1257 addr -= 1 << operand->bits;
1258 return addr << 2;
1259 }
1260
1261 /* Extract the flags bits from a j or jl long immediate. */
1262
1263 static long
1264 extract_jumpflags (arc_insn *insn,
1265 const struct arc_operand *operand,
1266 int mods ATTRIBUTE_UNUSED,
1267 const struct arc_operand_value **opval ATTRIBUTE_UNUSED,
1268 int *invalid)
1269 {
1270 if (!flag_p || !limm_p)
1271 *invalid = 1;
1272 return ((flag_p && limm_p)
1273 ? (insn[1] >> operand->shift) & ((1 << operand->bits) -1): 0);
1274 }
1275
1276 /* Extract st insn's offset. */
1277
1278 static long
1279 extract_st_offset (arc_insn *insn,
1280 const struct arc_operand *operand,
1281 int mods ATTRIBUTE_UNUSED,
1282 const struct arc_operand_value **opval ATTRIBUTE_UNUSED,
1283 int *invalid)
1284 {
1285 int value = 0;
1286
1287 if (ls_operand[LS_VALUE] != OP_SHIMM || ls_operand[LS_BASE] != OP_LIMM)
1288 {
1289 value = insn[0] & 511;
1290 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1291 value -= 512;
1292 if (value)
1293 ls_operand[LS_OFFSET] = OP_SHIMM;
1294 }
1295 else
1296 *invalid = 1;
1297
1298 return value;
1299 }
1300
1301 /* Extract ld insn's offset. */
1302
1303 static long
1304 extract_ld_offset (arc_insn *insn,
1305 const struct arc_operand *operand,
1306 int mods,
1307 const struct arc_operand_value **opval,
1308 int *invalid)
1309 {
1310 int test = insn[0] & I(-1);
1311 int value;
1312
1313 if (test)
1314 {
1315 value = insn[0] & 511;
1316 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1317 value -= 512;
1318 if (value)
1319 ls_operand[LS_OFFSET] = OP_SHIMM;
1320
1321 return value;
1322 }
1323 /* If it isn't in the insn, it's concealed behind reg 'c'. */
1324 return extract_reg (insn, &arc_operands[arc_operand_map['c']],
1325 mods, opval, invalid);
1326 }
1327
1328 /* The only thing this does is set the `invalid' flag if B != C.
1329 This is needed because the "mov" macro appears before it's real insn "and"
1330 and we don't want the disassembler to confuse them. */
1331
1332 static long
1333 extract_unopmacro (arc_insn *insn,
1334 const struct arc_operand *operand ATTRIBUTE_UNUSED,
1335 int mods ATTRIBUTE_UNUSED,
1336 const struct arc_operand_value **opval ATTRIBUTE_UNUSED,
1337 int *invalid)
1338 {
1339 /* This misses the case where B == ARC_REG_SHIMM_UPDATE &&
1340 C == ARC_REG_SHIMM (or vice versa). No big deal. Those insns will get
1341 printed as "and"s. */
1342 if (((*insn >> ARC_SHIFT_REGB) & ARC_MASK_REG)
1343 != ((*insn >> ARC_SHIFT_REGC) & ARC_MASK_REG))
1344 if (invalid != NULL)
1345 *invalid = 1;
1346 return 0;
1347 }
1348 \f
1349 /* ARC instructions.
1350
1351 Longer versions of insns must appear before shorter ones (if gas sees
1352 "lsr r2,r3,1" when it's parsing "lsr %a,%b" it will think the ",1" is
1353 junk). This isn't necessary for `ld' because of the trailing ']'.
1354
1355 Instructions that are really macros based on other insns must appear
1356 before the real insn so they're chosen when disassembling. Eg: The `mov'
1357 insn is really the `and' insn. */
1358
1359 struct arc_opcode arc_opcodes[] =
1360 {
1361 /* Base case instruction set (core versions 5-8). */
1362
1363 /* "mov" is really an "and". */
1364 { "mov%.q%.f %a,%b%F%S%L%U", I(-1), I(12), ARC_MACH_5, 0, 0 },
1365 /* "asl" is really an "add". */
1366 { "asl%.q%.f %a,%b%F%S%L%U", I(-1), I(8), ARC_MACH_5, 0, 0 },
1367 /* "lsl" is really an "add". */
1368 { "lsl%.q%.f %a,%b%F%S%L%U", I(-1), I(8), ARC_MACH_5, 0, 0 },
1369 /* "nop" is really an "xor". */
1370 { "nop", 0x7fffffff, 0x7fffffff, ARC_MACH_5, 0, 0 },
1371 /* "rlc" is really an "adc". */
1372 { "rlc%.q%.f %a,%b%F%S%L%U", I(-1), I(9), ARC_MACH_5, 0, 0 },
1373 { "adc%.q%.f %a,%b,%c%F%S%L", I(-1), I(9), ARC_MACH_5, 0, 0 },
1374 { "add%.q%.f %a,%b,%c%F%S%L", I(-1), I(8), ARC_MACH_5, 0, 0 },
1375 { "and%.q%.f %a,%b,%c%F%S%L", I(-1), I(12), ARC_MACH_5, 0, 0 },
1376 { "asr%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(1), ARC_MACH_5, 0, 0 },
1377 { "bic%.q%.f %a,%b,%c%F%S%L", I(-1), I(14), ARC_MACH_5, 0, 0 },
1378 { "b%q%.n %B", I(-1), I(4), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
1379 { "bl%q%.n %B", I(-1), I(5), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
1380 { "extb%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(7), ARC_MACH_5, 0, 0 },
1381 { "extw%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(8), ARC_MACH_5, 0, 0 },
1382 { "flag%.q %b%G%S%L", I(-1)|A(-1)|C(-1), I(3)|A(ARC_REG_SHIMM_UPDATE)|C(0), ARC_MACH_5, 0, 0 },
1383 { "brk", 0x1ffffe00, 0x1ffffe00, ARC_MACH_7, 0, 0 },
1384 { "sleep", 0x1ffffe01, 0x1ffffe01, ARC_MACH_7, 0, 0 },
1385 { "swi", 0x1ffffe02, 0x1ffffe02, ARC_MACH_8, 0, 0 },
1386 /* %Q: force cond_p=1 -> no shimm values. This insn allows an
1387 optional flags spec. */
1388 { "j%q%Q%.n%.f %b%F%J,%j", I(-1)|A(-1)|C(-1)|R(-1,7,1), I(7)|A(0)|C(0)|R(0,7,1), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
1389 { "j%q%Q%.n%.f %b%F%J", I(-1)|A(-1)|C(-1)|R(-1,7,1), I(7)|A(0)|C(0)|R(0,7,1), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
1390 /* This insn allows an optional flags spec. */
1391 { "jl%q%Q%.n%.f %b%F%J,%j", I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1), I(7)|A(0)|C(0)|R(0,7,1)|R(1,9,1), ARC_MACH_6 | ARC_OPCODE_COND_BRANCH, 0, 0 },
1392 { "jl%q%Q%.n%.f %b%F%J", I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1), I(7)|A(0)|C(0)|R(0,7,1)|R(1,9,1), ARC_MACH_6 | ARC_OPCODE_COND_BRANCH, 0, 0 },
1393 /* Put opcode 1 ld insns first so shimm gets prefered over limm.
1394 "[%b]" is before "[%b,%o]" so 0 offsets don't get printed. */
1395 { "ld%Z%.X%.W%.E %a,[%s]%S%L%1", I(-1)|R(-1,13,1)|R(-1,0,511), I(1)|R(0,13,1)|R(0,0,511), ARC_MACH_5, 0, 0 },
1396 { "ld%z%.x%.w%.e %a,[%s]%S%L%1", I(-1)|R(-1,4,1)|R(-1,6,7), I(0)|R(0,4,1)|R(0,6,7), ARC_MACH_5, 0, 0 },
1397 { "ld%z%.x%.w%.e %a,[%s,%O]%S%L%1", I(-1)|R(-1,4,1)|R(-1,6,7), I(0)|R(0,4,1)|R(0,6,7), ARC_MACH_5, 0, 0 },
1398 { "ld%Z%.X%.W%.E %a,[%s,%O]%S%L%3", I(-1)|R(-1,13,1), I(1)|R(0,13,1), ARC_MACH_5, 0, 0 },
1399 { "lp%q%.n %B", I(-1), I(6), ARC_MACH_5, 0, 0 },
1400 { "lr %a,[%Ab]%S%L", I(-1)|C(-1), I(1)|C(0x10), ARC_MACH_5, 0, 0 },
1401 { "lsr%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(2), ARC_MACH_5, 0, 0 },
1402 { "or%.q%.f %a,%b,%c%F%S%L", I(-1), I(13), ARC_MACH_5, 0, 0 },
1403 { "ror%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(3), ARC_MACH_5, 0, 0 },
1404 { "rrc%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(4), ARC_MACH_5, 0, 0 },
1405 { "sbc%.q%.f %a,%b,%c%F%S%L", I(-1), I(11), ARC_MACH_5, 0, 0 },
1406 { "sexb%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(5), ARC_MACH_5, 0, 0 },
1407 { "sexw%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(6), ARC_MACH_5, 0, 0 },
1408 { "sr %c,[%Ab]%S%L", I(-1)|A(-1), I(2)|A(0x10), ARC_MACH_5, 0, 0 },
1409 /* "[%b]" is before "[%b,%o]" so 0 offsets don't get printed. */
1410 { "st%y%.v%.D %c,[%s]%L%S%0", I(-1)|R(-1,25,1)|R(-1,21,1), I(2)|R(0,25,1)|R(0,21,1), ARC_MACH_5, 0, 0 },
1411 { "st%y%.v%.D %c,[%s,%o]%S%L%2", I(-1)|R(-1,25,1)|R(-1,21,1), I(2)|R(0,25,1)|R(0,21,1), ARC_MACH_5, 0, 0 },
1412 { "sub%.q%.f %a,%b,%c%F%S%L", I(-1), I(10), ARC_MACH_5, 0, 0 },
1413 { "xor%.q%.f %a,%b,%c%F%S%L", I(-1), I(15), ARC_MACH_5, 0, 0 }
1414 };
1415
1416 const int arc_opcodes_count = sizeof (arc_opcodes) / sizeof (arc_opcodes[0]);
1417
1418 const struct arc_operand_value arc_reg_names[] =
1419 {
1420 /* Core register set r0-r63. */
1421
1422 /* r0-r28 - general purpose registers. */
1423 { "r0", 0, REG, 0 }, { "r1", 1, REG, 0 }, { "r2", 2, REG, 0 },
1424 { "r3", 3, REG, 0 }, { "r4", 4, REG, 0 }, { "r5", 5, REG, 0 },
1425 { "r6", 6, REG, 0 }, { "r7", 7, REG, 0 }, { "r8", 8, REG, 0 },
1426 { "r9", 9, REG, 0 }, { "r10", 10, REG, 0 }, { "r11", 11, REG, 0 },
1427 { "r12", 12, REG, 0 }, { "r13", 13, REG, 0 }, { "r14", 14, REG, 0 },
1428 { "r15", 15, REG, 0 }, { "r16", 16, REG, 0 }, { "r17", 17, REG, 0 },
1429 { "r18", 18, REG, 0 }, { "r19", 19, REG, 0 }, { "r20", 20, REG, 0 },
1430 { "r21", 21, REG, 0 }, { "r22", 22, REG, 0 }, { "r23", 23, REG, 0 },
1431 { "r24", 24, REG, 0 }, { "r25", 25, REG, 0 }, { "r26", 26, REG, 0 },
1432 { "r27", 27, REG, 0 }, { "r28", 28, REG, 0 },
1433 /* Maskable interrupt link register. */
1434 { "ilink1", 29, REG, 0 },
1435 /* Maskable interrupt link register. */
1436 { "ilink2", 30, REG, 0 },
1437 /* Branch-link register. */
1438 { "blink", 31, REG, 0 },
1439
1440 /* r32-r59 reserved for extensions. */
1441 { "r32", 32, REG, 0 }, { "r33", 33, REG, 0 }, { "r34", 34, REG, 0 },
1442 { "r35", 35, REG, 0 }, { "r36", 36, REG, 0 }, { "r37", 37, REG, 0 },
1443 { "r38", 38, REG, 0 }, { "r39", 39, REG, 0 }, { "r40", 40, REG, 0 },
1444 { "r41", 41, REG, 0 }, { "r42", 42, REG, 0 }, { "r43", 43, REG, 0 },
1445 { "r44", 44, REG, 0 }, { "r45", 45, REG, 0 }, { "r46", 46, REG, 0 },
1446 { "r47", 47, REG, 0 }, { "r48", 48, REG, 0 }, { "r49", 49, REG, 0 },
1447 { "r50", 50, REG, 0 }, { "r51", 51, REG, 0 }, { "r52", 52, REG, 0 },
1448 { "r53", 53, REG, 0 }, { "r54", 54, REG, 0 }, { "r55", 55, REG, 0 },
1449 { "r56", 56, REG, 0 }, { "r57", 57, REG, 0 }, { "r58", 58, REG, 0 },
1450 { "r59", 59, REG, 0 },
1451
1452 /* Loop count register (24 bits). */
1453 { "lp_count", 60, REG, 0 },
1454 /* Short immediate data indicator setting flags. */
1455 { "r61", 61, REG, ARC_REGISTER_READONLY },
1456 /* Long immediate data indicator setting flags. */
1457 { "r62", 62, REG, ARC_REGISTER_READONLY },
1458 /* Short immediate data indicator not setting flags. */
1459 { "r63", 63, REG, ARC_REGISTER_READONLY },
1460
1461 /* Small-data base register. */
1462 { "gp", 26, REG, 0 },
1463 /* Frame pointer. */
1464 { "fp", 27, REG, 0 },
1465 /* Stack pointer. */
1466 { "sp", 28, REG, 0 },
1467
1468 { "r29", 29, REG, 0 },
1469 { "r30", 30, REG, 0 },
1470 { "r31", 31, REG, 0 },
1471 { "r60", 60, REG, 0 },
1472
1473 /* Auxiliary register set. */
1474
1475 /* Auxiliary register address map:
1476 0xffffffff-0xffffff00 (-1..-256) - customer shimm allocation
1477 0xfffffeff-0x80000000 - customer limm allocation
1478 0x7fffffff-0x00000100 - ARC limm allocation
1479 0x000000ff-0x00000000 - ARC shimm allocation */
1480
1481 /* Base case auxiliary registers (shimm address). */
1482 { "status", 0x00, AUXREG, 0 },
1483 { "semaphore", 0x01, AUXREG, 0 },
1484 { "lp_start", 0x02, AUXREG, 0 },
1485 { "lp_end", 0x03, AUXREG, 0 },
1486 { "identity", 0x04, AUXREG, ARC_REGISTER_READONLY },
1487 { "debug", 0x05, AUXREG, 0 },
1488 };
1489
1490 const int arc_reg_names_count =
1491 sizeof (arc_reg_names) / sizeof (arc_reg_names[0]);
1492
1493 /* The suffix table.
1494 Operands with the same name must be stored together. */
1495
1496 const struct arc_operand_value arc_suffixes[] =
1497 {
1498 /* Entry 0 is special, default values aren't printed by the disassembler. */
1499 { "", 0, -1, 0 },
1500
1501 /* Base case condition codes. */
1502 { "al", 0, COND, 0 },
1503 { "ra", 0, COND, 0 },
1504 { "eq", 1, COND, 0 },
1505 { "z", 1, COND, 0 },
1506 { "ne", 2, COND, 0 },
1507 { "nz", 2, COND, 0 },
1508 { "pl", 3, COND, 0 },
1509 { "p", 3, COND, 0 },
1510 { "mi", 4, COND, 0 },
1511 { "n", 4, COND, 0 },
1512 { "cs", 5, COND, 0 },
1513 { "c", 5, COND, 0 },
1514 { "lo", 5, COND, 0 },
1515 { "cc", 6, COND, 0 },
1516 { "nc", 6, COND, 0 },
1517 { "hs", 6, COND, 0 },
1518 { "vs", 7, COND, 0 },
1519 { "v", 7, COND, 0 },
1520 { "vc", 8, COND, 0 },
1521 { "nv", 8, COND, 0 },
1522 { "gt", 9, COND, 0 },
1523 { "ge", 10, COND, 0 },
1524 { "lt", 11, COND, 0 },
1525 { "le", 12, COND, 0 },
1526 { "hi", 13, COND, 0 },
1527 { "ls", 14, COND, 0 },
1528 { "pnz", 15, COND, 0 },
1529
1530 /* Condition codes 16-31 reserved for extensions. */
1531
1532 { "f", 1, FLAG, 0 },
1533
1534 { "nd", ARC_DELAY_NONE, DELAY, 0 },
1535 { "d", ARC_DELAY_NORMAL, DELAY, 0 },
1536 { "jd", ARC_DELAY_JUMP, DELAY, 0 },
1537
1538 { "b", 1, SIZE1, 0 },
1539 { "b", 1, SIZE10, 0 },
1540 { "b", 1, SIZE22, 0 },
1541 { "w", 2, SIZE1, 0 },
1542 { "w", 2, SIZE10, 0 },
1543 { "w", 2, SIZE22, 0 },
1544 { "x", 1, SIGN0, 0 },
1545 { "x", 1, SIGN9, 0 },
1546 { "a", 1, ADDRESS3, 0 },
1547 { "a", 1, ADDRESS12, 0 },
1548 { "a", 1, ADDRESS24, 0 },
1549
1550 { "di", 1, CACHEBYPASS5, 0 },
1551 { "di", 1, CACHEBYPASS14, 0 },
1552 { "di", 1, CACHEBYPASS26, 0 },
1553 };
1554
1555 const int arc_suffixes_count =
1556 sizeof (arc_suffixes) / sizeof (arc_suffixes[0]);
1557
1558 /* Indexed by first letter of opcode. Points to chain of opcodes with same
1559 first letter. */
1560 static struct arc_opcode *opcode_map[26 + 1];
1561
1562 /* Indexed by insn code. Points to chain of opcodes with same insn code. */
1563 static struct arc_opcode *icode_map[32];
1564 \f
1565 /* Configuration flags. */
1566
1567 /* Various ARC_HAVE_XXX bits. */
1568 static int cpu_type;
1569
1570 /* Translate a bfd_mach_arc_xxx value to a ARC_MACH_XXX value. */
1571
1572 int
1573 arc_get_opcode_mach (int bfd_mach, int big_p)
1574 {
1575 static int mach_type_map[] =
1576 {
1577 ARC_MACH_5,
1578 ARC_MACH_6,
1579 ARC_MACH_7,
1580 ARC_MACH_8
1581 };
1582 return mach_type_map[bfd_mach - bfd_mach_arc_5] | (big_p ? ARC_MACH_BIG : 0);
1583 }
1584
1585 /* Initialize any tables that need it.
1586 Must be called once at start up (or when first needed).
1587
1588 FLAGS is a set of bits that say what version of the cpu we have,
1589 and in particular at least (one of) ARC_MACH_XXX. */
1590
1591 void
1592 arc_opcode_init_tables (int flags)
1593 {
1594 static int init_p = 0;
1595
1596 cpu_type = flags;
1597
1598 /* We may be intentionally called more than once (for example gdb will call
1599 us each time the user switches cpu). These tables only need to be init'd
1600 once though. */
1601 if (!init_p)
1602 {
1603 int i,n;
1604
1605 memset (arc_operand_map, 0, sizeof (arc_operand_map));
1606 n = sizeof (arc_operands) / sizeof (arc_operands[0]);
1607 for (i = 0; i < n; ++i)
1608 arc_operand_map[arc_operands[i].fmt] = i;
1609
1610 memset (opcode_map, 0, sizeof (opcode_map));
1611 memset (icode_map, 0, sizeof (icode_map));
1612 /* Scan the table backwards so macros appear at the front. */
1613 for (i = arc_opcodes_count - 1; i >= 0; --i)
1614 {
1615 int opcode_hash = ARC_HASH_OPCODE (arc_opcodes[i].syntax);
1616 int icode_hash = ARC_HASH_ICODE (arc_opcodes[i].value);
1617
1618 arc_opcodes[i].next_asm = opcode_map[opcode_hash];
1619 opcode_map[opcode_hash] = &arc_opcodes[i];
1620
1621 arc_opcodes[i].next_dis = icode_map[icode_hash];
1622 icode_map[icode_hash] = &arc_opcodes[i];
1623 }
1624
1625 init_p = 1;
1626 }
1627 }
1628
1629 /* Return non-zero if OPCODE is supported on the specified cpu.
1630 Cpu selection is made when calling `arc_opcode_init_tables'. */
1631
1632 int
1633 arc_opcode_supported (const struct arc_opcode *opcode)
1634 {
1635 if (ARC_OPCODE_CPU (opcode->flags) <= cpu_type)
1636 return 1;
1637 return 0;
1638 }
1639
1640 /* Return the first insn in the chain for assembling INSN. */
1641
1642 const struct arc_opcode *
1643 arc_opcode_lookup_asm (const char *insn)
1644 {
1645 return opcode_map[ARC_HASH_OPCODE (insn)];
1646 }
1647
1648 /* Return the first insn in the chain for disassembling INSN. */
1649
1650 const struct arc_opcode *
1651 arc_opcode_lookup_dis (unsigned int insn)
1652 {
1653 return icode_map[ARC_HASH_ICODE (insn)];
1654 }
1655
1656 /* Called by the assembler before parsing an instruction. */
1657
1658 void
1659 arc_opcode_init_insert (void)
1660 {
1661 int i;
1662
1663 for(i = 0; i < OPERANDS; i++)
1664 ls_operand[i] = OP_NONE;
1665
1666 flag_p = 0;
1667 flagshimm_handled_p = 0;
1668 cond_p = 0;
1669 addrwb_p = 0;
1670 shimm_p = 0;
1671 limm_p = 0;
1672 jumpflags_p = 0;
1673 nullify_p = 0;
1674 nullify = 0; /* The default is important. */
1675 }
1676
1677 /* Called by the assembler to see if the insn has a limm operand.
1678 Also called by the disassembler to see if the insn contains a limm. */
1679
1680 int
1681 arc_opcode_limm_p (long *limmp)
1682 {
1683 if (limmp)
1684 *limmp = limm;
1685 return limm_p;
1686 }
1687
1688 /* Utility for the extraction functions to return the index into
1689 `arc_suffixes'. */
1690
1691 const struct arc_operand_value *
1692 arc_opcode_lookup_suffix (const struct arc_operand *type, int value)
1693 {
1694 const struct arc_operand_value *v,*end;
1695 struct arc_ext_operand_value *ext_oper = arc_ext_operands;
1696
1697 while (ext_oper)
1698 {
1699 if (type == &arc_operands[ext_oper->operand.type]
1700 && value == ext_oper->operand.value)
1701 return (&ext_oper->operand);
1702 ext_oper = ext_oper->next;
1703 }
1704
1705 /* ??? This is a little slow and can be speeded up. */
1706 for (v = arc_suffixes, end = arc_suffixes + arc_suffixes_count; v < end; ++v)
1707 if (type == &arc_operands[v->type]
1708 && value == v->value)
1709 return v;
1710 return 0;
1711 }
1712
1713 int
1714 arc_insn_is_j (arc_insn insn)
1715 {
1716 return (insn & (I(-1))) == I(0x7);
1717 }
1718
1719 int
1720 arc_insn_not_jl (arc_insn insn)
1721 {
1722 return ((insn & (I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1)))
1723 != (I(0x7) | R(-1,9,1)));
1724 }
1725
1726 int
1727 arc_operand_type (int opertype)
1728 {
1729 switch (opertype)
1730 {
1731 case 0:
1732 return COND;
1733 break;
1734 case 1:
1735 return REG;
1736 break;
1737 case 2:
1738 return AUXREG;
1739 break;
1740 }
1741 return -1;
1742 }
1743
1744 struct arc_operand_value *
1745 get_ext_suffix (char *s)
1746 {
1747 struct arc_ext_operand_value *suffix = arc_ext_operands;
1748
1749 while (suffix)
1750 {
1751 if ((COND == suffix->operand.type)
1752 && !strcmp(s,suffix->operand.name))
1753 return(&suffix->operand);
1754 suffix = suffix->next;
1755 }
1756 return NULL;
1757 }
1758
1759 int
1760 arc_get_noshortcut_flag (void)
1761 {
1762 return ARC_REGISTER_NOSHORT_CUT;
1763 }
This page took 0.06832 seconds and 4 git commands to generate.