Updated ARC assembler from arccores.com
[deliverable/binutils-gdb.git] / opcodes / arc-opc.c
1 /* Opcode table for the ARC.
2 Copyright 1994, 1995, 1997, 1998, 2000 Free Software Foundation, Inc.
3 Contributed by Doug Evans (dje@cygnus.com).
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2, or (at your option)
8 any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software Foundation,
17 Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
18
19 #include <stdio.h>
20 #include "ansidecl.h"
21 #include "opcode/arc.h"
22
23 #define INSERT_FN(fn) \
24 static arc_insn fn PARAMS ((arc_insn, const struct arc_operand *, \
25 int, const struct arc_operand_value *, long, \
26 const char **))
27 #define EXTRACT_FN(fn) \
28 static long fn PARAMS ((arc_insn *, const struct arc_operand *, \
29 int, const struct arc_operand_value **, int *))
30
31 INSERT_FN (insert_reg);
32 INSERT_FN (insert_shimmfinish);
33 INSERT_FN (insert_limmfinish);
34 INSERT_FN (insert_offset);
35 INSERT_FN (insert_base);
36 INSERT_FN (insert_st_syntax);
37 INSERT_FN (insert_ld_syntax);
38 INSERT_FN (insert_addr_wb);
39 INSERT_FN (insert_flag);
40 INSERT_FN (insert_nullify);
41 INSERT_FN (insert_flagfinish);
42 INSERT_FN (insert_cond);
43 INSERT_FN (insert_forcelimm);
44 INSERT_FN (insert_reladdr);
45 INSERT_FN (insert_absaddr);
46 INSERT_FN (insert_jumpflags);
47 INSERT_FN (insert_unopmacro);
48
49 EXTRACT_FN (extract_reg);
50 EXTRACT_FN (extract_ld_offset);
51 EXTRACT_FN (extract_ld_syntax);
52 EXTRACT_FN (extract_st_offset);
53 EXTRACT_FN (extract_st_syntax);
54 EXTRACT_FN (extract_flag);
55 EXTRACT_FN (extract_cond);
56 EXTRACT_FN (extract_reladdr);
57 EXTRACT_FN (extract_jumpflags);
58 EXTRACT_FN (extract_unopmacro);
59
60 enum operand {OP_NONE,OP_REG,OP_SHIMM,OP_LIMM};
61
62 #define OPERANDS 3
63
64 enum operand ls_operand[OPERANDS];
65
66 #define LS_VALUE 0
67 #define LS_DEST 0
68 #define LS_BASE 1
69 #define LS_OFFSET 2
70
71 /* Various types of ARC operands, including insn suffixes. */
72
73 /* Insn format values:
74
75 'a' REGA register A field
76 'b' REGB register B field
77 'c' REGC register C field
78 'S' SHIMMFINISH finish inserting a shimm value
79 'L' LIMMFINISH finish inserting a limm value
80 'o' OFFSET offset in st insns
81 'O' OFFSET offset in ld insns
82 '0' SYNTAX_ST_NE enforce store insn syntax, no errors
83 '1' SYNTAX_LD_NE enforce load insn syntax, no errors
84 '2' SYNTAX_ST enforce store insn syntax, errors, last pattern only
85 '3' SYNTAX_LD enforce load insn syntax, errors, last pattern only
86 's' BASE base in st insn
87 'f' FLAG F flag
88 'F' FLAGFINISH finish inserting the F flag
89 'G' FLAGINSN insert F flag in "flag" insn
90 'n' DELAY N field (nullify field)
91 'q' COND condition code field
92 'Q' FORCELIMM set `cond_p' to 1 to ensure a constant is a limm
93 'B' BRANCH branch address (22 bit pc relative)
94 'J' JUMP jump address (26 bit absolute)
95 'j' JUMPFLAGS optional high order bits of 'J'
96 'z' SIZE1 size field in ld a,[b,c]
97 'Z' SIZE10 size field in ld a,[b,shimm]
98 'y' SIZE22 size field in st c,[b,shimm]
99 'x' SIGN0 sign extend field ld a,[b,c]
100 'X' SIGN9 sign extend field ld a,[b,shimm]
101 'w' ADDRESS3 write-back field in ld a,[b,c]
102 'W' ADDRESS12 write-back field in ld a,[b,shimm]
103 'v' ADDRESS24 write-back field in st c,[b,shimm]
104 'e' CACHEBYPASS5 cache bypass in ld a,[b,c]
105 'E' CACHEBYPASS14 cache bypass in ld a,[b,shimm]
106 'D' CACHEBYPASS26 cache bypass in st c,[b,shimm]
107 'U' UNOPMACRO fake operand to copy REGB to REGC for unop macros
108
109 The following modifiers may appear between the % and char (eg: %.f):
110
111 '.' MODDOT '.' prefix must be present
112 'r' REG generic register value, for register table
113 'A' AUXREG auxiliary register in lr a,[b], sr c,[b]
114
115 Fields are:
116
117 CHAR BITS SHIFT FLAGS INSERT_FN EXTRACT_FN */
118
119 const struct arc_operand arc_operands[] =
120 {
121 /* place holder (??? not sure if needed). */
122 #define UNUSED 0
123 { 0, 0, 0, 0, 0, 0 },
124
125 /* register A or shimm/limm indicator. */
126 #define REGA (UNUSED + 1)
127 { 'a', 6, ARC_SHIFT_REGA, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
128
129 /* register B or shimm/limm indicator. */
130 #define REGB (REGA + 1)
131 { 'b', 6, ARC_SHIFT_REGB, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
132
133 /* register C or shimm/limm indicator. */
134 #define REGC (REGB + 1)
135 { 'c', 6, ARC_SHIFT_REGC, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
136
137 /* fake operand used to insert shimm value into most instructions. */
138 #define SHIMMFINISH (REGC + 1)
139 { 'S', 9, 0, ARC_OPERAND_SIGNED + ARC_OPERAND_FAKE, insert_shimmfinish, 0 },
140
141 /* fake operand used to insert limm value into most instructions. */
142 #define LIMMFINISH (SHIMMFINISH + 1)
143 { 'L', 32, 32, ARC_OPERAND_ADDRESS + ARC_OPERAND_LIMM + ARC_OPERAND_FAKE, insert_limmfinish, 0 },
144
145 /* shimm operand when there is no reg indicator (st). */
146 #define ST_OFFSET (LIMMFINISH + 1)
147 { 'o', 9, 0, ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED | ARC_OPERAND_STORE, insert_offset, extract_st_offset },
148
149 /* shimm operand when there is no reg indicator (ld). */
150 #define LD_OFFSET (ST_OFFSET + 1)
151 { 'O', 9, 0,ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED | ARC_OPERAND_LOAD, insert_offset, extract_ld_offset },
152
153 /* operand for base. */
154 #define BASE (LD_OFFSET + 1)
155 { 's', 6, ARC_SHIFT_REGB, ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED, insert_base, extract_reg},
156
157 /* 0 enforce syntax for st insns. */
158 #define SYNTAX_ST_NE (BASE + 1)
159 { '0', 9, 0, ARC_OPERAND_FAKE, insert_st_syntax, extract_st_syntax },
160
161 /* 1 enforce syntax for ld insns. */
162 #define SYNTAX_LD_NE (SYNTAX_ST_NE + 1)
163 { '1', 9, 0, ARC_OPERAND_FAKE, insert_ld_syntax, extract_ld_syntax },
164
165 /* 0 enforce syntax for st insns. */
166 #define SYNTAX_ST (SYNTAX_LD_NE + 1)
167 { '2', 9, 0, ARC_OPERAND_FAKE | ARC_OPERAND_ERROR, insert_st_syntax, extract_st_syntax },
168
169 /* 0 enforce syntax for ld insns. */
170 #define SYNTAX_LD (SYNTAX_ST + 1)
171 { '3', 9, 0, ARC_OPERAND_FAKE | ARC_OPERAND_ERROR, insert_ld_syntax, extract_ld_syntax },
172
173 /* flag update bit (insertion is defered until we know how). */
174 #define FLAG (SYNTAX_LD + 1)
175 { 'f', 1, 8, ARC_OPERAND_SUFFIX, insert_flag, extract_flag },
176
177 /* fake utility operand to finish 'f' suffix handling. */
178 #define FLAGFINISH (FLAG + 1)
179 { 'F', 1, 8, ARC_OPERAND_FAKE, insert_flagfinish, 0 },
180
181 /* fake utility operand to set the 'f' flag for the "flag" insn. */
182 #define FLAGINSN (FLAGFINISH + 1)
183 { 'G', 1, 8, ARC_OPERAND_FAKE, insert_flag, 0 },
184
185 /* branch delay types. */
186 #define DELAY (FLAGINSN + 1)
187 { 'n', 2, 5, ARC_OPERAND_SUFFIX , insert_nullify, 0 },
188
189 /* conditions. */
190 #define COND (DELAY + 1)
191 { 'q', 5, 0, ARC_OPERAND_SUFFIX, insert_cond, extract_cond },
192
193 /* set `cond_p' to 1 to ensure a constant is treated as a limm. */
194 #define FORCELIMM (COND + 1)
195 { 'Q', 0, 0, ARC_OPERAND_FAKE, insert_forcelimm, 0 },
196
197 /* branch address; b, bl, and lp insns. */
198 #define BRANCH (FORCELIMM + 1)
199 { 'B', 20, 7, (ARC_OPERAND_RELATIVE_BRANCH + ARC_OPERAND_SIGNED) | ARC_OPERAND_ERROR, insert_reladdr, extract_reladdr },
200
201 /* jump address; j insn (this is basically the same as 'L' except that the
202 value is right shifted by 2). */
203 #define JUMP (BRANCH + 1)
204 { 'J', 24, 32, ARC_OPERAND_ERROR | (ARC_OPERAND_ABSOLUTE_BRANCH + ARC_OPERAND_LIMM + ARC_OPERAND_FAKE), insert_absaddr, 0 },
205
206 /* jump flags; j{,l} insn value or'ed into 'J' addr for flag values. */
207 #define JUMPFLAGS (JUMP + 1)
208 { 'j', 6, 26, ARC_OPERAND_JUMPFLAGS | ARC_OPERAND_ERROR, insert_jumpflags, extract_jumpflags },
209
210 /* size field, stored in bit 1,2. */
211 #define SIZE1 (JUMPFLAGS + 1)
212 { 'z', 2, 1, ARC_OPERAND_SUFFIX, 0, 0 },
213
214 /* size field, stored in bit 10,11. */
215 #define SIZE10 (SIZE1 + 1)
216 { 'Z', 2, 10, ARC_OPERAND_SUFFIX, 0, 0 },
217
218 /* size field, stored in bit 22,23. */
219 #define SIZE22 (SIZE10 + 1)
220 { 'y', 2, 22, ARC_OPERAND_SUFFIX, 0, 0 },
221
222 /* sign extend field, stored in bit 0. */
223 #define SIGN0 (SIZE22 + 1)
224 { 'x', 1, 0, ARC_OPERAND_SUFFIX, 0, 0 },
225
226 /* sign extend field, stored in bit 9. */
227 #define SIGN9 (SIGN0 + 1)
228 { 'X', 1, 9, ARC_OPERAND_SUFFIX, 0, 0 },
229
230 /* address write back, stored in bit 3. */
231 #define ADDRESS3 (SIGN9 + 1)
232 { 'w', 1, 3, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
233
234 /* address write back, stored in bit 12. */
235 #define ADDRESS12 (ADDRESS3 + 1)
236 { 'W', 1, 12, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
237
238 /* address write back, stored in bit 24. */
239 #define ADDRESS24 (ADDRESS12 + 1)
240 { 'v', 1, 24, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
241
242 /* cache bypass, stored in bit 5. */
243 #define CACHEBYPASS5 (ADDRESS24 + 1)
244 { 'e', 1, 5, ARC_OPERAND_SUFFIX, 0, 0 },
245
246 /* cache bypass, stored in bit 14. */
247 #define CACHEBYPASS14 (CACHEBYPASS5 + 1)
248 { 'E', 1, 14, ARC_OPERAND_SUFFIX, 0, 0 },
249
250 /* cache bypass, stored in bit 26. */
251 #define CACHEBYPASS26 (CACHEBYPASS14 + 1)
252 { 'D', 1, 26, ARC_OPERAND_SUFFIX, 0, 0 },
253
254 /* unop macro, used to copy REGB to REGC. */
255 #define UNOPMACRO (CACHEBYPASS26 + 1)
256 { 'U', 6, ARC_SHIFT_REGC, ARC_OPERAND_FAKE, insert_unopmacro, extract_unopmacro },
257
258 /* '.' modifier ('.' required). */
259 #define MODDOT (UNOPMACRO + 1)
260 { '.', 1, 0, ARC_MOD_DOT, 0, 0 },
261
262 /* Dummy 'r' modifier for the register table.
263 It's called a "dummy" because there's no point in inserting an 'r' into all
264 the %a/%b/%c occurrences in the insn table. */
265 #define REG (MODDOT + 1)
266 { 'r', 6, 0, ARC_MOD_REG, 0, 0 },
267
268 /* Known auxiliary register modifier (stored in shimm field). */
269 #define AUXREG (REG + 1)
270 { 'A', 9, 0, ARC_MOD_AUXREG, 0, 0 },
271
272 /* end of list place holder. */
273 { 0, 0, 0, 0, 0, 0 }
274 };
275 \f
276 /* Given a format letter, yields the index into `arc_operands'.
277 eg: arc_operand_map['a'] = REGA. */
278 unsigned char arc_operand_map[256];
279
280 /* ARC instructions.
281
282 Longer versions of insns must appear before shorter ones (if gas sees
283 "lsr r2,r3,1" when it's parsing "lsr %a,%b" it will think the ",1" is
284 junk). This isn't necessary for `ld' because of the trailing ']'.
285
286 Instructions that are really macros based on other insns must appear
287 before the real insn so they're chosen when disassembling. Eg: The `mov'
288 insn is really the `and' insn. */
289
290 struct arc_opcode arc_opcodes[] =
291 {
292 /* Base case instruction set (core versions 5-8) */
293
294 /* "mov" is really an "and". */
295 { "mov%.q%.f %a,%b%F%S%L%U", I(-1), I(12), ARC_MACH_5, 0, 0 },
296 /* "asl" is really an "add". */
297 { "asl%.q%.f %a,%b%F%S%L%U", I(-1), I(8), ARC_MACH_5, 0, 0 },
298 /* "lsl" is really an "add". */
299 { "lsl%.q%.f %a,%b%F%S%L%U", I(-1), I(8), ARC_MACH_5, 0, 0 },
300 /* "nop" is really an "xor". */
301 { "nop", 0x7fffffff, 0x7fffffff, ARC_MACH_5, 0, 0 },
302 /* "rlc" is really an "adc". */
303 { "rlc%.q%.f %a,%b%F%S%L%U", I(-1), I(9), ARC_MACH_5, 0, 0 },
304 { "adc%.q%.f %a,%b,%c%F%S%L", I(-1), I(9), ARC_MACH_5, 0, 0 },
305 { "add%.q%.f %a,%b,%c%F%S%L", I(-1), I(8), ARC_MACH_5, 0, 0 },
306 { "and%.q%.f %a,%b,%c%F%S%L", I(-1), I(12), ARC_MACH_5, 0, 0 },
307 { "asr%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(1), ARC_MACH_5, 0, 0 },
308 { "bic%.q%.f %a,%b,%c%F%S%L", I(-1), I(14), ARC_MACH_5, 0, 0 },
309 { "b%q%.n %B", I(-1), I(4), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
310 { "bl%q%.n %B", I(-1), I(5), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
311 { "extb%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(7), ARC_MACH_5, 0, 0 },
312 { "extw%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(8), ARC_MACH_5, 0, 0 },
313 { "flag%.q %b%G%S%L", I(-1)|A(-1)|C(-1), I(3)|A(ARC_REG_SHIMM_UPDATE)|C(0), ARC_MACH_5, 0, 0 },
314 { "brk", 0x1ffffe00, 0x1ffffe00, ARC_MACH_7, 0, 0 },
315 { "sleep", 0x1ffffe01, 0x1ffffe01, ARC_MACH_7, 0, 0 },
316 { "swi", 0x1ffffe02, 0x1ffffe02, ARC_MACH_8, 0, 0 },
317 /* %Q: force cond_p=1 -> no shimm values. This insn allows an
318 optional flags spec. */
319 { "j%q%Q%.n%.f %b%F%J,%j", I(-1)|A(-1)|C(-1)|R(-1,7,1), I(7)|A(0)|C(0)|R(0,7,1), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
320 { "j%q%Q%.n%.f %b%F%J", I(-1)|A(-1)|C(-1)|R(-1,7,1), I(7)|A(0)|C(0)|R(0,7,1), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
321 /* This insn allows an optional flags spec. */
322 { "jl%q%Q%.n%.f %b%F%J,%j", I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1), I(7)|A(0)|C(0)|R(0,7,1)|R(1,9,1), ARC_MACH_6 | ARC_OPCODE_COND_BRANCH, 0, 0 },
323 { "jl%q%Q%.n%.f %b%F%J", I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1), I(7)|A(0)|C(0)|R(0,7,1)|R(1,9,1), ARC_MACH_6 | ARC_OPCODE_COND_BRANCH, 0, 0 },
324 /* Put opcode 1 ld insns first so shimm gets prefered over limm.
325 "[%b]" is before "[%b,%o]" so 0 offsets don't get printed. */
326 { "ld%Z%.X%.W%.E %a,[%s]%S%L%1", I(-1)|R(-1,13,1)|R(-1,0,511), I(1)|R(0,13,1)|R(0,0,511), ARC_MACH_5, 0, 0 },
327 { "ld%z%.x%.w%.e %a,[%s]%S%L%1", I(-1)|R(-1,4,1)|R(-1,6,7), I(0)|R(0,4,1)|R(0,6,7), ARC_MACH_5, 0, 0 },
328 { "ld%z%.x%.w%.e %a,[%s,%O]%S%L%1", I(-1)|R(-1,4,1)|R(-1,6,7), I(0)|R(0,4,1)|R(0,6,7), ARC_MACH_5, 0, 0 },
329 { "ld%Z%.X%.W%.E %a,[%s,%O]%S%L%3", I(-1)|R(-1,13,1), I(1)|R(0,13,1), ARC_MACH_5, 0, 0 },
330 { "lp%q%.n %B", I(-1), I(6), ARC_MACH_5, 0, 0 },
331 { "lr %a,[%Ab]%S%L", I(-1)|C(-1), I(1)|C(0x10), ARC_MACH_5, 0, 0 },
332 { "lsr%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(2), ARC_MACH_5, 0, 0 },
333 { "or%.q%.f %a,%b,%c%F%S%L", I(-1), I(13), ARC_MACH_5, 0, 0 },
334 { "ror%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(3), ARC_MACH_5, 0, 0 },
335 { "rrc%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(4), ARC_MACH_5, 0, 0 },
336 { "sbc%.q%.f %a,%b,%c%F%S%L", I(-1), I(11), ARC_MACH_5, 0, 0 },
337 { "sexb%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(5), ARC_MACH_5, 0, 0 },
338 { "sexw%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(6), ARC_MACH_5, 0, 0 },
339 { "sr %c,[%Ab]%S%L", I(-1)|A(-1), I(2)|A(0x10), ARC_MACH_5, 0, 0 },
340 /* "[%b]" is before "[%b,%o]" so 0 offsets don't get printed. */
341 { "st%y%.v%.D %c,[%s]%L%S%0", I(-1)|R(-1,25,1)|R(-1,21,1), I(2)|R(0,25,1)|R(0,21,1), ARC_MACH_5, 0, 0 },
342 { "st%y%.v%.D %c,[%s,%o]%S%L%2", I(-1)|R(-1,25,1)|R(-1,21,1), I(2)|R(0,25,1)|R(0,21,1), ARC_MACH_5, 0, 0 },
343 { "sub%.q%.f %a,%b,%c%F%S%L", I(-1), I(10), ARC_MACH_5, 0, 0 },
344 { "xor%.q%.f %a,%b,%c%F%S%L", I(-1), I(15), ARC_MACH_5, 0, 0 }
345 };
346
347 const int arc_opcodes_count = sizeof (arc_opcodes) / sizeof (arc_opcodes[0]);
348
349 const struct arc_operand_value arc_reg_names[] =
350 {
351 /* Core register set r0-r63. */
352
353 /* r0-r28 - general purpose registers. */
354 { "r0", 0, REG, 0 }, { "r1", 1, REG, 0 }, { "r2", 2, REG, 0 },
355 { "r3", 3, REG, 0 }, { "r4", 4, REG, 0 }, { "r5", 5, REG, 0 },
356 { "r6", 6, REG, 0 }, { "r7", 7, REG, 0 }, { "r8", 8, REG, 0 },
357 { "r9", 9, REG, 0 }, { "r10", 10, REG, 0 }, { "r11", 11, REG, 0 },
358 { "r12", 12, REG, 0 }, { "r13", 13, REG, 0 }, { "r14", 14, REG, 0 },
359 { "r15", 15, REG, 0 }, { "r16", 16, REG, 0 }, { "r17", 17, REG, 0 },
360 { "r18", 18, REG, 0 }, { "r19", 19, REG, 0 }, { "r20", 20, REG, 0 },
361 { "r21", 21, REG, 0 }, { "r22", 22, REG, 0 }, { "r23", 23, REG, 0 },
362 { "r24", 24, REG, 0 }, { "r25", 25, REG, 0 }, { "r26", 26, REG, 0 },
363 { "r27", 27, REG, 0 }, { "r28", 28, REG, 0 },
364 /* Maskable interrupt link register. */
365 { "ilink1", 29, REG, 0 },
366 /* Maskable interrupt link register. */
367 { "ilink2", 30, REG, 0 },
368 /* Branch-link register. */
369 { "blink", 31, REG, 0 },
370
371 /* r32-r59 reserved for extensions. */
372 { "r32", 32, REG, 0 }, { "r33", 33, REG, 0 }, { "r34", 34, REG, 0 },
373 { "r35", 35, REG, 0 }, { "r36", 36, REG, 0 }, { "r37", 37, REG, 0 },
374 { "r38", 38, REG, 0 }, { "r39", 39, REG, 0 }, { "r40", 40, REG, 0 },
375 { "r41", 41, REG, 0 }, { "r42", 42, REG, 0 }, { "r43", 43, REG, 0 },
376 { "r44", 44, REG, 0 }, { "r45", 45, REG, 0 }, { "r46", 46, REG, 0 },
377 { "r47", 47, REG, 0 }, { "r48", 48, REG, 0 }, { "r49", 49, REG, 0 },
378 { "r50", 50, REG, 0 }, { "r51", 51, REG, 0 }, { "r52", 52, REG, 0 },
379 { "r53", 53, REG, 0 }, { "r54", 54, REG, 0 }, { "r55", 55, REG, 0 },
380 { "r56", 56, REG, 0 }, { "r57", 57, REG, 0 }, { "r58", 58, REG, 0 },
381 { "r59", 59, REG, 0 },
382
383 /* Loop count register (24 bits). */
384 { "lp_count", 60, REG, ARC_REGISTER_READONLY },
385 /* Short immediate data indicator setting flags. */
386 { "r61", 61, REG, ARC_REGISTER_READONLY },
387 /* Long immediate data indicator setting flags. */
388 { "r62", 62, REG, ARC_REGISTER_READONLY },
389 /* Short immediate data indicator not setting flags. */
390 { "r63", 63, REG, ARC_REGISTER_READONLY },
391
392 /* Small-data base register. */
393 { "gp", 26, REG, 0 },
394 /* Frame pointer. */
395 { "fp", 27, REG, 0 },
396 /* Stack pointer. */
397 { "sp", 28, REG, 0 },
398
399 { "r29", 29, REG, 0 },
400 { "r30", 30, REG, 0 },
401 { "r31", 31, REG, 0 },
402 { "r60", 60, REG, 0 },
403
404 /* Auxiliary register set. */
405
406 /* Auxiliary register address map:
407 0xffffffff-0xffffff00 (-1..-256) - customer shimm allocation
408 0xfffffeff-0x80000000 - customer limm allocation
409 0x7fffffff-0x00000100 - ARC limm allocation
410 0x000000ff-0x00000000 - ARC shimm allocation */
411
412 /* Base case auxiliary registers (shimm address). */
413 { "status", 0x00, AUXREG, 0 },
414 { "semaphore", 0x01, AUXREG, 0 },
415 { "lp_start", 0x02, AUXREG, 0 },
416 { "lp_end", 0x03, AUXREG, 0 },
417 { "identity", 0x04, AUXREG, ARC_REGISTER_READONLY },
418 { "debug", 0x05, AUXREG, 0 },
419 };
420
421 const int arc_reg_names_count =
422 sizeof (arc_reg_names) / sizeof (arc_reg_names[0]);
423
424 /* The suffix table.
425 Operands with the same name must be stored together. */
426
427 const struct arc_operand_value arc_suffixes[] =
428 {
429 /* Entry 0 is special, default values aren't printed by the disassembler. */
430 { "", 0, -1, 0 },
431
432 /* Base case condition codes. */
433 { "al", 0, COND, 0 },
434 { "ra", 0, COND, 0 },
435 { "eq", 1, COND, 0 },
436 { "z", 1, COND, 0 },
437 { "ne", 2, COND, 0 },
438 { "nz", 2, COND, 0 },
439 { "pl", 3, COND, 0 },
440 { "p", 3, COND, 0 },
441 { "mi", 4, COND, 0 },
442 { "n", 4, COND, 0 },
443 { "cs", 5, COND, 0 },
444 { "c", 5, COND, 0 },
445 { "lo", 5, COND, 0 },
446 { "cc", 6, COND, 0 },
447 { "nc", 6, COND, 0 },
448 { "hs", 6, COND, 0 },
449 { "vs", 7, COND, 0 },
450 { "v", 7, COND, 0 },
451 { "vc", 8, COND, 0 },
452 { "nv", 8, COND, 0 },
453 { "gt", 9, COND, 0 },
454 { "ge", 10, COND, 0 },
455 { "lt", 11, COND, 0 },
456 { "le", 12, COND, 0 },
457 { "hi", 13, COND, 0 },
458 { "ls", 14, COND, 0 },
459 { "pnz", 15, COND, 0 },
460
461 /* Condition codes 16-31 reserved for extensions. */
462
463 { "f", 1, FLAG, 0 },
464
465 { "nd", ARC_DELAY_NONE, DELAY, 0 },
466 { "d", ARC_DELAY_NORMAL, DELAY, 0 },
467 { "jd", ARC_DELAY_JUMP, DELAY, 0 },
468
469 { "b", 1, SIZE1, 0 },
470 { "b", 1, SIZE10, 0 },
471 { "b", 1, SIZE22, 0 },
472 { "w", 2, SIZE1, 0 },
473 { "w", 2, SIZE10, 0 },
474 { "w", 2, SIZE22, 0 },
475 { "x", 1, SIGN0, 0 },
476 { "x", 1, SIGN9, 0 },
477 { "a", 1, ADDRESS3, 0 },
478 { "a", 1, ADDRESS12, 0 },
479 { "a", 1, ADDRESS24, 0 },
480
481 { "di", 1, CACHEBYPASS5, 0 },
482 { "di", 1, CACHEBYPASS14, 0 },
483 { "di", 1, CACHEBYPASS26, 0 },
484 };
485
486 const int arc_suffixes_count =
487 sizeof (arc_suffixes) / sizeof (arc_suffixes[0]);
488
489 /* Indexed by first letter of opcode. Points to chain of opcodes with same
490 first letter. */
491 static struct arc_opcode *opcode_map[26 + 1];
492
493 /* Indexed by insn code. Points to chain of opcodes with same insn code. */
494 static struct arc_opcode *icode_map[32];
495 \f
496 /* Configuration flags. */
497
498 /* Various ARC_HAVE_XXX bits. */
499 static int cpu_type;
500
501 /* Translate a bfd_mach_arc_xxx value to a ARC_MACH_XXX value. */
502
503 int
504 arc_get_opcode_mach (bfd_mach, big_p)
505 int bfd_mach, big_p;
506 {
507 static int mach_type_map[] =
508 {
509 ARC_MACH_5,
510 ARC_MACH_6,
511 ARC_MACH_7,
512 ARC_MACH_8
513 };
514 return mach_type_map[bfd_mach] | (big_p ? ARC_MACH_BIG : 0);
515 }
516
517 /* Initialize any tables that need it.
518 Must be called once at start up (or when first needed).
519
520 FLAGS is a set of bits that say what version of the cpu we have,
521 and in particular at least (one of) ARC_MACH_XXX. */
522
523 void
524 arc_opcode_init_tables (flags)
525 int flags;
526 {
527 static int init_p = 0;
528
529 cpu_type = flags;
530
531 /* We may be intentionally called more than once (for example gdb will call
532 us each time the user switches cpu). These tables only need to be init'd
533 once though. */
534 if (!init_p)
535 {
536 register int i,n;
537
538 memset (arc_operand_map, 0, sizeof (arc_operand_map));
539 n = sizeof (arc_operands) / sizeof (arc_operands[0]);
540 for (i = 0; i < n; ++i)
541 arc_operand_map[arc_operands[i].fmt] = i;
542
543 memset (opcode_map, 0, sizeof (opcode_map));
544 memset (icode_map, 0, sizeof (icode_map));
545 /* Scan the table backwards so macros appear at the front. */
546 for (i = arc_opcodes_count - 1; i >= 0; --i)
547 {
548 int opcode_hash = ARC_HASH_OPCODE (arc_opcodes[i].syntax);
549 int icode_hash = ARC_HASH_ICODE (arc_opcodes[i].value);
550
551 arc_opcodes[i].next_asm = opcode_map[opcode_hash];
552 opcode_map[opcode_hash] = &arc_opcodes[i];
553
554 arc_opcodes[i].next_dis = icode_map[icode_hash];
555 icode_map[icode_hash] = &arc_opcodes[i];
556 }
557
558 init_p = 1;
559 }
560 }
561
562 /* Return non-zero if OPCODE is supported on the specified cpu.
563 Cpu selection is made when calling `arc_opcode_init_tables'. */
564
565 int
566 arc_opcode_supported (opcode)
567 const struct arc_opcode *opcode;
568 {
569 if (ARC_OPCODE_CPU (opcode->flags) <= cpu_type)
570 return 1;
571 return 0;
572 }
573
574 /* Return the first insn in the chain for assembling INSN. */
575
576 const struct arc_opcode *
577 arc_opcode_lookup_asm (insn)
578 const char *insn;
579 {
580 return opcode_map[ARC_HASH_OPCODE (insn)];
581 }
582
583 /* Return the first insn in the chain for disassembling INSN. */
584
585 const struct arc_opcode *
586 arc_opcode_lookup_dis (insn)
587 unsigned int insn;
588 {
589 return icode_map[ARC_HASH_ICODE (insn)];
590 }
591 \f
592 /* Nonzero if we've seen an 'f' suffix (in certain insns). */
593 static int flag_p;
594
595 /* Nonzero if we've finished processing the 'f' suffix. */
596 static int flagshimm_handled_p;
597
598 /* Nonzero if we've seen a 'a' suffix (address writeback). */
599 static int addrwb_p;
600
601 /* Nonzero if we've seen a 'q' suffix (condition code). */
602 static int cond_p;
603
604 /* Nonzero if we've inserted a nullify condition. */
605 static int nullify_p;
606
607 /* The value of the a nullify condition we inserted. */
608 static int nullify;
609
610 /* Nonzero if we've inserted jumpflags. */
611 static int jumpflags_p;
612
613 /* Nonzero if we've inserted a shimm. */
614 static int shimm_p;
615
616 /* The value of the shimm we inserted (each insn only gets one but it can
617 appear multiple times). */
618 static int shimm;
619
620 /* Nonzero if we've inserted a limm (during assembly) or seen a limm
621 (during disassembly). */
622 static int limm_p;
623
624 /* The value of the limm we inserted. Each insn only gets one but it can
625 appear multiple times. */
626 static long limm;
627 \f
628 /* Insertion functions. */
629
630 /* Called by the assembler before parsing an instruction. */
631
632 void
633 arc_opcode_init_insert ()
634 {
635 int i;
636
637 for(i = 0; i < OPERANDS; i++)
638 ls_operand[i] = OP_NONE;
639
640 flag_p = 0;
641 flagshimm_handled_p = 0;
642 cond_p = 0;
643 addrwb_p = 0;
644 shimm_p = 0;
645 limm_p = 0;
646 jumpflags_p = 0;
647 nullify_p = 0;
648 nullify = 0; /* the default is important. */
649 }
650
651 /* Called by the assembler to see if the insn has a limm operand.
652 Also called by the disassembler to see if the insn contains a limm. */
653
654 int
655 arc_opcode_limm_p (limmp)
656 long *limmp;
657 {
658 if (limmp)
659 *limmp = limm;
660 return limm_p;
661 }
662
663 /* Insert a value into a register field.
664 If REG is NULL, then this is actually a constant.
665
666 We must also handle auxiliary registers for lr/sr insns. */
667
668 static arc_insn
669 insert_reg (insn, operand, mods, reg, value, errmsg)
670 arc_insn insn;
671 const struct arc_operand *operand;
672 int mods;
673 const struct arc_operand_value *reg;
674 long value;
675 const char **errmsg;
676 {
677 static char buf[100];
678 enum operand op_type = OP_NONE;
679
680 if (reg == NULL)
681 {
682 /* We have a constant that also requires a value stored in a register
683 field. Handle these by updating the register field and saving the
684 value for later handling by either %S (shimm) or %L (limm). */
685
686 /* Try to use a shimm value before a limm one. */
687 if (ARC_SHIMM_CONST_P (value)
688 /* If we've seen a conditional suffix we have to use a limm. */
689 && !cond_p
690 /* If we already have a shimm value that is different than ours
691 we have to use a limm. */
692 && (!shimm_p || shimm == value))
693 {
694 int marker;
695
696 op_type = OP_SHIMM;
697 /* forget about shimm as dest mlm. */
698
699 if('a' != operand->fmt)
700 {
701 shimm_p = 1;
702 shimm = value;
703 flagshimm_handled_p = 1;
704 marker = flag_p ? ARC_REG_SHIMM_UPDATE : ARC_REG_SHIMM;
705 }
706 else
707 {
708 /* don't request flag setting on shimm as dest. */
709 marker = ARC_REG_SHIMM;
710 }
711 insn |= marker << operand->shift;
712 /* insn |= value & 511; - done later. */
713 }
714 /* We have to use a limm. If we've already seen one they must match. */
715 else if (!limm_p || limm == value)
716 {
717 op_type = OP_LIMM;
718 limm_p = 1;
719 limm = value;
720 insn |= ARC_REG_LIMM << operand->shift;
721 /* The constant is stored later. */
722 }
723 else
724 {
725 *errmsg = "unable to fit different valued constants into instruction";
726 }
727 }
728 else
729 {
730 /* We have to handle both normal and auxiliary registers. */
731
732 if (reg->type == AUXREG)
733 {
734 if (!(mods & ARC_MOD_AUXREG))
735 *errmsg = "auxiliary register not allowed here";
736 else
737 {
738 if((insn & I(-1)) == I(2)) /* check for use validity. */
739 {
740 if(reg->flags & ARC_REGISTER_READONLY)
741 *errmsg = "attempt to set readonly register";
742 }
743 else
744 {
745 if(reg->flags & ARC_REGISTER_WRITEONLY)
746 *errmsg = "attempt to read writeonly register";
747 }
748 insn |= ARC_REG_SHIMM << operand->shift;
749 insn |= reg->value << arc_operands[reg->type].shift;
750 }
751 }
752 else
753 {
754 /* check for use validity. */
755 if('a' == operand->fmt || ((insn & I(-1)) < I(2)))
756 {
757 if(reg->flags & ARC_REGISTER_READONLY)
758 *errmsg = "attempt to set readonly register";
759 }
760 if('a' != operand->fmt)
761 {
762 if(reg->flags & ARC_REGISTER_WRITEONLY)
763 *errmsg = "attempt to read writeonly register";
764 }
765 /* We should never get an invalid register number here. */
766 if ((unsigned int) reg->value > 60)
767 {
768 sprintf (buf, "invalid register number `%d'", reg->value);
769 *errmsg = buf;
770 }
771 insn |= reg->value << operand->shift;
772 op_type = OP_REG;
773 }
774 }
775
776 switch (operand->fmt)
777 {
778 case 'a':
779 ls_operand[LS_DEST] = op_type;
780 break;
781 case 's':
782 ls_operand[LS_BASE] = op_type;
783 break;
784 case 'c':
785 if ((insn & I(-1)) == I(2))
786 ls_operand[LS_VALUE] = op_type;
787 else
788 ls_operand[LS_OFFSET] = op_type;
789 break;
790 case 'o': case 'O':
791 ls_operand[LS_OFFSET] = op_type;
792 break;
793 }
794
795 return insn;
796 }
797
798 /* Called when we see an 'f' flag. */
799
800 static arc_insn
801 insert_flag (insn, operand, mods, reg, value, errmsg)
802 arc_insn insn;
803 const struct arc_operand *operand ATTRIBUTE_UNUSED;
804 int mods ATTRIBUTE_UNUSED;
805 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
806 long value ATTRIBUTE_UNUSED;
807 const char **errmsg ATTRIBUTE_UNUSED;
808 {
809 /* We can't store anything in the insn until we've parsed the registers.
810 Just record the fact that we've got this flag. `insert_reg' will use it
811 to store the correct value (ARC_REG_SHIMM_UPDATE or bit 0x100). */
812 flag_p = 1;
813 return insn;
814 }
815
816 /* Called when we see an nullify condition. */
817
818 static arc_insn
819 insert_nullify (insn, operand, mods, reg, value, errmsg)
820 arc_insn insn;
821 const struct arc_operand *operand;
822 int mods ATTRIBUTE_UNUSED;
823 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
824 long value;
825 const char **errmsg ATTRIBUTE_UNUSED;
826 {
827 nullify_p = 1;
828 insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
829 nullify = value;
830 return insn;
831 }
832
833 /* Called after completely building an insn to ensure the 'f' flag gets set
834 properly. This is needed because we don't know how to set this flag until
835 we've parsed the registers. */
836
837 static arc_insn
838 insert_flagfinish (insn, operand, mods, reg, value, errmsg)
839 arc_insn insn;
840 const struct arc_operand *operand;
841 int mods ATTRIBUTE_UNUSED;
842 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
843 long value ATTRIBUTE_UNUSED;
844 const char **errmsg ATTRIBUTE_UNUSED;
845 {
846 if (flag_p && !flagshimm_handled_p)
847 {
848 if (shimm_p)
849 abort ();
850 flagshimm_handled_p = 1;
851 insn |= (1 << operand->shift);
852 }
853 return insn;
854 }
855
856 /* Called when we see a conditional flag (eg: .eq). */
857
858 static arc_insn
859 insert_cond (insn, operand, mods, reg, value, errmsg)
860 arc_insn insn;
861 const struct arc_operand *operand;
862 int mods ATTRIBUTE_UNUSED;
863 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
864 long value;
865 const char **errmsg ATTRIBUTE_UNUSED;
866 {
867 cond_p = 1;
868 insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
869 return insn;
870 }
871
872 /* Used in the "j" instruction to prevent constants from being interpreted as
873 shimm values (which the jump insn doesn't accept). This can also be used
874 to force the use of limm values in other situations (eg: ld r0,[foo] uses
875 this).
876 ??? The mechanism is sound. Access to it is a bit klunky right now. */
877
878 static arc_insn
879 insert_forcelimm (insn, operand, mods, reg, value, errmsg)
880 arc_insn insn;
881 const struct arc_operand *operand ATTRIBUTE_UNUSED;
882 int mods ATTRIBUTE_UNUSED;
883 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
884 long value ATTRIBUTE_UNUSED;
885 const char **errmsg ATTRIBUTE_UNUSED;
886 {
887 cond_p = 1;
888 return insn;
889 }
890
891 static arc_insn
892 insert_addr_wb (insn, operand, mods, reg, value, errmsg)
893 arc_insn insn;
894 const struct arc_operand *operand;
895 int mods ATTRIBUTE_UNUSED;
896 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
897 long value ATTRIBUTE_UNUSED;
898 const char **errmsg ATTRIBUTE_UNUSED;
899 {
900 addrwb_p = 1 << operand->shift;
901 return insn;
902 }
903
904 static arc_insn
905 insert_base (insn, operand, mods, reg, value, errmsg)
906 arc_insn insn;
907 const struct arc_operand *operand;
908 int mods;
909 const struct arc_operand_value *reg;
910 long value;
911 const char **errmsg;
912 {
913 if (reg != NULL)
914 {
915 arc_insn myinsn;
916 myinsn = insert_reg (0, operand,mods, reg, value, errmsg) >> operand->shift;
917 insn |= B(myinsn);
918 ls_operand[LS_BASE] = OP_REG;
919 }
920 else if (ARC_SHIMM_CONST_P (value) && !cond_p)
921 {
922 if (shimm_p && value != shimm)
923 {
924 /* convert the previous shimm operand to a limm. */
925 limm_p = 1;
926 limm = shimm;
927 insn &= ~C(-1); /* we know where the value is in insn. */
928 insn |= C(ARC_REG_LIMM);
929 ls_operand[LS_VALUE] = OP_LIMM;
930 }
931 insn |= ARC_REG_SHIMM << operand->shift;
932 shimm_p = 1;
933 shimm = value;
934 ls_operand[LS_BASE] = OP_SHIMM;
935 }
936 else
937 {
938 if (limm_p && value != limm)
939 {
940 *errmsg = "too many long constants";
941 return insn;
942 }
943 limm_p = 1;
944 limm = value;
945 insn |= B(ARC_REG_LIMM);
946 ls_operand[LS_BASE] = OP_LIMM;
947 }
948
949 return insn;
950 }
951
952 /* Used in ld/st insns to handle the offset field. We don't try to
953 match operand syntax here. we catch bad combinations later. */
954
955 static arc_insn
956 insert_offset (insn, operand, mods, reg, value, errmsg)
957 arc_insn insn;
958 const struct arc_operand *operand;
959 int mods;
960 const struct arc_operand_value *reg;
961 long value;
962 const char **errmsg;
963 {
964 long minval, maxval;
965
966 if (reg != NULL)
967 {
968 arc_insn myinsn;
969 myinsn = insert_reg (0,operand,mods,reg,value,errmsg) >> operand->shift;
970 ls_operand[LS_OFFSET] = OP_REG;
971 if (operand->flags & ARC_OPERAND_LOAD) /* not if store, catch it later. */
972 if ((insn & I(-1)) != I(1)) /* not if opcode == 1, catch it later. */
973 insn |= C(myinsn);
974 }
975 else
976 {
977 /* This is *way* more general than necessary, but maybe some day it'll
978 be useful. */
979 if (operand->flags & ARC_OPERAND_SIGNED)
980 {
981 minval = -(1 << (operand->bits - 1));
982 maxval = (1 << (operand->bits - 1)) - 1;
983 }
984 else
985 {
986 minval = 0;
987 maxval = (1 << operand->bits) - 1;
988 }
989 if ((cond_p && !limm_p) || (value < minval || value > maxval))
990 {
991 if (limm_p && value != limm)
992 {
993 *errmsg = "too many long constants";
994 }
995 else
996 {
997 limm_p = 1;
998 limm = value;
999 if (operand->flags & ARC_OPERAND_STORE)
1000 insn |= B(ARC_REG_LIMM);
1001 if (operand->flags & ARC_OPERAND_LOAD)
1002 insn |= C(ARC_REG_LIMM);
1003 ls_operand[LS_OFFSET] = OP_LIMM;
1004 }
1005 }
1006 else
1007 {
1008 if ((value < minval || value > maxval))
1009 *errmsg = "need too many limms";
1010 else if (shimm_p && value != shimm)
1011 {
1012 /* check for bad operand combinations before we lose info about them. */
1013 if ((insn & I(-1)) == I(1))
1014 {
1015 *errmsg = "to many shimms in load";
1016 goto out;
1017 }
1018 if (limm_p && operand->flags & ARC_OPERAND_LOAD)
1019 {
1020 *errmsg = "too many long constants";
1021 goto out;
1022 }
1023 /* convert what we thought was a shimm to a limm. */
1024 limm_p = 1;
1025 limm = shimm;
1026 if (ls_operand[LS_VALUE] == OP_SHIMM && operand->flags & ARC_OPERAND_STORE)
1027 {
1028 insn &= ~C(-1);
1029 insn |= C(ARC_REG_LIMM);
1030 ls_operand[LS_VALUE] = OP_LIMM;
1031 }
1032 if (ls_operand[LS_BASE] == OP_SHIMM && operand->flags & ARC_OPERAND_STORE)
1033 {
1034 insn &= ~B(-1);
1035 insn |= B(ARC_REG_LIMM);
1036 ls_operand[LS_BASE] = OP_LIMM;
1037 }
1038 }
1039 shimm = value;
1040 shimm_p = 1;
1041 ls_operand[LS_OFFSET] = OP_SHIMM;
1042 }
1043 }
1044 out:
1045 return insn;
1046 }
1047
1048 /* Used in st insns to do final disasemble syntax check. */
1049
1050 static long
1051 extract_st_syntax (insn, operand, mods, opval, invalid)
1052 arc_insn *insn;
1053 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1054 int mods ATTRIBUTE_UNUSED;
1055 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1056 int *invalid;
1057 {
1058 #define ST_SYNTAX(V,B,O) \
1059 ((ls_operand[LS_VALUE] == (V) && \
1060 ls_operand[LS_BASE] == (B) && \
1061 ls_operand[LS_OFFSET] == (O)))
1062 if (!((ST_SYNTAX(OP_REG,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
1063 || ST_SYNTAX(OP_REG,OP_LIMM,OP_NONE)
1064 || (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
1065 || (ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_NONE) && (insn[0] & 511) == 0)
1066 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE)
1067 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_SHIMM)
1068 || ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_SHIMM)
1069 || (ST_SYNTAX(OP_LIMM,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
1070 || ST_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1071 || ST_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1072 || ST_SYNTAX(OP_SHIMM,OP_REG,OP_SHIMM)
1073 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_SHIMM)
1074 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_NONE)
1075 || ST_SYNTAX(OP_LIMM,OP_REG,OP_SHIMM)))
1076 *invalid = 1;
1077 return 0;
1078 }
1079
1080 int
1081 arc_limm_fixup_adjust(insn)
1082 arc_insn insn;
1083 {
1084 int retval = 0;
1085
1086 /* check for st shimm,[limm]. */
1087 if ((insn & (I(-1) | C(-1) | B(-1))) ==
1088 (I(2) | C(ARC_REG_SHIMM) | B(ARC_REG_LIMM)))
1089 {
1090 retval = insn & 0x1ff;
1091 if (retval & 0x100) /* sign extend 9 bit offset. */
1092 retval |= ~0x1ff;
1093 }
1094 return(-retval); /* negate offset for return. */
1095 }
1096
1097 /* Used in st insns to do final syntax check. */
1098
1099 static arc_insn
1100 insert_st_syntax (insn, operand, mods, reg, value, errmsg)
1101 arc_insn insn;
1102 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1103 int mods ATTRIBUTE_UNUSED;
1104 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1105 long value ATTRIBUTE_UNUSED;
1106 const char **errmsg;
1107 {
1108 if (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && shimm != 0)
1109 {
1110 /* change an illegal insn into a legal one, it's easier to
1111 do it here than to try to handle it during operand scan. */
1112 limm_p = 1;
1113 limm = shimm;
1114 shimm_p = 0;
1115 shimm = 0;
1116 insn = insn & ~(C(-1) | 511);
1117 insn |= ARC_REG_LIMM << ARC_SHIFT_REGC;
1118 ls_operand[LS_VALUE] = OP_LIMM;
1119 }
1120
1121 if (ST_SYNTAX(OP_REG,OP_SHIMM,OP_NONE) || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_NONE))
1122 {
1123 /* try to salvage this syntax. */
1124 if (shimm & 0x1) /* odd shimms won't work. */
1125 {
1126 if (limm_p) /* do we have a limm already? */
1127 {
1128 *errmsg = "impossible store";
1129 }
1130 limm_p = 1;
1131 limm = shimm;
1132 shimm = 0;
1133 shimm_p = 0;
1134 insn = insn & ~(B(-1) | 511);
1135 insn |= B(ARC_REG_LIMM);
1136 ls_operand[LS_BASE] = OP_LIMM;
1137 }
1138 else
1139 {
1140 shimm >>= 1;
1141 insn = insn & ~511;
1142 insn |= shimm;
1143 ls_operand[LS_OFFSET] = OP_SHIMM;
1144 }
1145 }
1146 if (ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE))
1147 {
1148 limm += arc_limm_fixup_adjust(insn);
1149 }
1150 if (ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_SHIMM) && (shimm * 2 == limm))
1151 {
1152 insn &= ~C(-1);
1153 limm_p = 0;
1154 limm = 0;
1155 insn |= C(ARC_REG_SHIMM);
1156 ls_operand[LS_VALUE] = OP_SHIMM;
1157 }
1158 if (!(ST_SYNTAX(OP_REG,OP_REG,OP_NONE)
1159 || ST_SYNTAX(OP_REG,OP_LIMM,OP_NONE)
1160 || ST_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1161 || ST_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1162 || (ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_NONE) && (shimm == 0))
1163 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE)
1164 || ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE)
1165 || ST_SYNTAX(OP_SHIMM,OP_REG,OP_SHIMM)
1166 || ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_SHIMM)
1167 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_SHIMM)
1168 || ST_SYNTAX(OP_LIMM,OP_REG,OP_NONE)
1169 || ST_SYNTAX(OP_LIMM,OP_REG,OP_SHIMM)))
1170 *errmsg = "st operand error";
1171 if (addrwb_p)
1172 {
1173 if (ls_operand[LS_BASE] != OP_REG)
1174 *errmsg = "address writeback not allowed";
1175 insn |= addrwb_p;
1176 }
1177 if (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && shimm)
1178 *errmsg = "store value must be zero";
1179 return insn;
1180 }
1181
1182 /* Used in ld insns to do final syntax check. */
1183
1184 static arc_insn
1185 insert_ld_syntax (insn, operand, mods, reg, value, errmsg)
1186 arc_insn insn;
1187 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1188 int mods ATTRIBUTE_UNUSED;
1189 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1190 long value ATTRIBUTE_UNUSED;
1191 const char **errmsg;
1192 {
1193 #define LD_SYNTAX(D,B,O) \
1194 ((ls_operand[LS_DEST] == (D) && \
1195 ls_operand[LS_BASE] == (B) && \
1196 ls_operand[LS_OFFSET] == (O)))
1197
1198 int test = insn & I(-1);
1199
1200 if (!(test == I(1)))
1201 {
1202 if ((ls_operand[LS_DEST] == OP_SHIMM || ls_operand[LS_BASE] == OP_SHIMM
1203 || ls_operand[LS_OFFSET] == OP_SHIMM))
1204 *errmsg = "invalid load/shimm insn";
1205 }
1206 if (!(LD_SYNTAX(OP_REG,OP_REG,OP_NONE)
1207 || LD_SYNTAX(OP_REG,OP_REG,OP_REG)
1208 || LD_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1209 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_REG) && !(test == I(1)))
1210 || (LD_SYNTAX(OP_REG,OP_REG,OP_LIMM) && !(test == I(1)))
1211 || LD_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1212 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_NONE) && (test == I(1)))))
1213 *errmsg = "ld operand error";
1214 if (addrwb_p)
1215 {
1216 if (ls_operand[LS_BASE] != OP_REG)
1217 *errmsg = "address writeback not allowed";
1218 insn |= addrwb_p;
1219 }
1220 return insn;
1221 }
1222
1223 /* Used in ld insns to do final syntax check. */
1224
1225 static long
1226 extract_ld_syntax (insn, operand, mods, opval, invalid)
1227 arc_insn *insn;
1228 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1229 int mods ATTRIBUTE_UNUSED;
1230 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1231 int *invalid;
1232 {
1233 int test = insn[0] & I(-1);
1234
1235 if (!(test == I(1)))
1236 {
1237 if((ls_operand[LS_DEST] == OP_SHIMM || ls_operand[LS_BASE] == OP_SHIMM
1238 || ls_operand[LS_OFFSET] == OP_SHIMM))
1239 *invalid = 1;
1240 }
1241 if (!((LD_SYNTAX(OP_REG,OP_REG,OP_NONE) && (test == I(1)))
1242 || LD_SYNTAX(OP_REG,OP_REG,OP_REG)
1243 || LD_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1244 || (LD_SYNTAX(OP_REG,OP_REG,OP_LIMM) && !(test == I(1)))
1245 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_REG) && !(test == I(1)))
1246 || (LD_SYNTAX(OP_REG,OP_SHIMM,OP_NONE) && (shimm == 0))
1247 || LD_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1248 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_NONE) && (test == I(1)))))
1249 *invalid = 1;
1250 return 0;
1251 }
1252
1253 /* Called at the end of processing normal insns (eg: add) to insert a shimm
1254 value (if present) into the insn. */
1255
1256 static arc_insn
1257 insert_shimmfinish (insn, operand, mods, reg, value, errmsg)
1258 arc_insn insn;
1259 const struct arc_operand *operand;
1260 int mods ATTRIBUTE_UNUSED;
1261 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1262 long value ATTRIBUTE_UNUSED;
1263 const char **errmsg ATTRIBUTE_UNUSED;
1264 {
1265 if (shimm_p)
1266 insn |= (shimm & ((1 << operand->bits) - 1)) << operand->shift;
1267 return insn;
1268 }
1269
1270 /* Called at the end of processing normal insns (eg: add) to insert a limm
1271 value (if present) into the insn.
1272
1273 Note that this function is only intended to handle instructions (with 4 byte
1274 immediate operands). It is not intended to handle data. */
1275
1276 /* ??? Actually, there's nothing for us to do as we can't call frag_more, the
1277 caller must do that. The extract fns take a pointer to two words. The
1278 insert fns could be converted and then we could do something useful, but
1279 then the reloc handlers would have to know to work on the second word of
1280 a 2 word quantity. That's too much so we don't handle them. */
1281
1282 static arc_insn
1283 insert_limmfinish (insn, operand, mods, reg, value, errmsg)
1284 arc_insn insn;
1285 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1286 int mods ATTRIBUTE_UNUSED;
1287 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1288 long value ATTRIBUTE_UNUSED;
1289 const char **errmsg ATTRIBUTE_UNUSED;
1290 {
1291 #if 0
1292 if (limm_p)
1293 ; /* nothing to do, gas does it. */
1294 #endif
1295 return insn;
1296 }
1297
1298 static arc_insn
1299 insert_jumpflags (insn, operand, mods, reg, value, errmsg)
1300 arc_insn insn;
1301 const struct arc_operand *operand;
1302 int mods ATTRIBUTE_UNUSED;
1303 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1304 long value;
1305 const char **errmsg;
1306 {
1307 if (!flag_p)
1308 {
1309 *errmsg = "jump flags, but no .f seen";
1310 }
1311 if (!limm_p)
1312 {
1313 *errmsg = "jump flags, but no limm addr";
1314 }
1315 if (limm & 0xfc000000)
1316 {
1317 *errmsg = "flag bits of jump address limm lost";
1318 }
1319 if (limm & 0x03000000)
1320 {
1321 *errmsg = "attempt to set HR bits";
1322 }
1323 if ((value & ((1 << operand->bits) - 1)) != value)
1324 {
1325 *errmsg = "bad jump flags value";
1326 }
1327 jumpflags_p = 1;
1328 limm = (limm & ((1 << operand->shift) - 1))
1329 | ((value & ((1 << operand->bits) - 1)) << operand->shift);
1330 return insn;
1331 }
1332
1333 /* Called at the end of unary operand macros to copy the B field to C. */
1334
1335 static arc_insn
1336 insert_unopmacro (insn, operand, mods, reg, value, errmsg)
1337 arc_insn insn;
1338 const struct arc_operand *operand;
1339 int mods ATTRIBUTE_UNUSED;
1340 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1341 long value ATTRIBUTE_UNUSED;
1342 const char **errmsg ATTRIBUTE_UNUSED;
1343 {
1344 insn |= ((insn >> ARC_SHIFT_REGB) & ARC_MASK_REG) << operand->shift;
1345 return insn;
1346 }
1347
1348 /* Insert a relative address for a branch insn (b, bl, or lp). */
1349
1350 static arc_insn
1351 insert_reladdr (insn, operand, mods, reg, value, errmsg)
1352 arc_insn insn;
1353 const struct arc_operand *operand;
1354 int mods ATTRIBUTE_UNUSED;
1355 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1356 long value;
1357 const char **errmsg;
1358 {
1359 if (value & 3)
1360 *errmsg = "branch address not on 4 byte boundary";
1361 insn |= ((value >> 2) & ((1 << operand->bits) - 1)) << operand->shift;
1362 return insn;
1363 }
1364
1365 /* Insert a limm value as a 26 bit address right shifted 2 into the insn.
1366
1367 Note that this function is only intended to handle instructions (with 4 byte
1368 immediate operands). It is not intended to handle data. */
1369
1370 /* ??? Actually, there's little for us to do as we can't call frag_more, the
1371 caller must do that. The extract fns take a pointer to two words. The
1372 insert fns could be converted and then we could do something useful, but
1373 then the reloc handlers would have to know to work on the second word of
1374 a 2 word quantity. That's too much so we don't handle them.
1375
1376 We do check for correct usage of the nullify suffix, or we
1377 set the default correctly, though. */
1378
1379 static arc_insn
1380 insert_absaddr (insn, operand, mods, reg, value, errmsg)
1381 arc_insn insn;
1382 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1383 int mods ATTRIBUTE_UNUSED;
1384 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1385 long value ATTRIBUTE_UNUSED;
1386 const char **errmsg;
1387 {
1388 if (limm_p)
1389 {
1390 /* if it is a jump and link, .jd must be specified. */
1391 if (insn & R(-1,9,1))
1392 {
1393 if (!nullify_p)
1394 {
1395 insn |= 0x02 << 5; /* default nullify to .jd. */
1396 }
1397 else
1398 {
1399 if(nullify != 0x02)
1400 {
1401 *errmsg = "must specify .jd or no nullify suffix";
1402 }
1403 }
1404 }
1405 }
1406 return insn;
1407 }
1408 \f
1409 /* Extraction functions.
1410
1411 The suffix extraction functions' return value is redundant since it can be
1412 obtained from (*OPVAL)->value. However, the boolean suffixes don't have
1413 a suffix table entry for the "false" case, so values of zero must be
1414 obtained from the return value (*OPVAL == NULL). */
1415
1416 static const struct arc_operand_value *lookup_register (int type, long regno);
1417
1418 /* Called by the disassembler before printing an instruction. */
1419
1420 void
1421 arc_opcode_init_extract ()
1422 {
1423 arc_opcode_init_insert();
1424 }
1425
1426 /* As we're extracting registers, keep an eye out for the 'f' indicator
1427 (ARC_REG_SHIMM_UPDATE). If we find a register (not a constant marker,
1428 like ARC_REG_SHIMM), set OPVAL so our caller will know this is a register.
1429
1430 We must also handle auxiliary registers for lr/sr insns. They are just
1431 constants with special names. */
1432
1433 static long
1434 extract_reg (insn, operand, mods, opval, invalid)
1435 arc_insn *insn;
1436 const struct arc_operand *operand;
1437 int mods;
1438 const struct arc_operand_value **opval;
1439 int *invalid ATTRIBUTE_UNUSED;
1440 {
1441 int regno;
1442 long value;
1443 enum operand op_type;
1444
1445 /* Get the register number. */
1446 regno = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1447
1448 /* Is it a constant marker? */
1449 if (regno == ARC_REG_SHIMM)
1450 {
1451 op_type = OP_SHIMM;
1452 /* always return zero if dest is a shimm mlm. */
1453
1454 if ('a' != operand->fmt)
1455 {
1456 value = *insn & 511;
1457 if ((operand->flags & ARC_OPERAND_SIGNED)
1458 && (value & 256))
1459 value -= 512;
1460 if (!flagshimm_handled_p)
1461 flag_p = 0;
1462 flagshimm_handled_p = 1;
1463 }
1464 else
1465 {
1466 value = 0;
1467 }
1468 }
1469 else if (regno == ARC_REG_SHIMM_UPDATE)
1470 {
1471 op_type = OP_SHIMM;
1472
1473 /* always return zero if dest is a shimm mlm. */
1474
1475 if ('a' != operand->fmt)
1476 {
1477 value = *insn & 511;
1478 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1479 value -= 512;
1480 }
1481 else
1482 {
1483 value = 0;
1484 }
1485 flag_p = 1;
1486 flagshimm_handled_p = 1;
1487 }
1488 else if (regno == ARC_REG_LIMM)
1489 {
1490 op_type = OP_LIMM;
1491 value = insn[1];
1492 limm_p = 1;
1493 /* if this is a jump instruction (j,jl), show new pc correctly. */
1494 if(0x07 == ((*insn & I(-1)) >> 27))
1495 {
1496 value = (value & 0xffffff);
1497 }
1498 }
1499 /* It's a register, set OPVAL (that's the only way we distinguish registers
1500 from constants here). */
1501 else
1502 {
1503 const struct arc_operand_value *reg = lookup_register (REG, regno);
1504 op_type = OP_REG;
1505
1506 if (reg == NULL)
1507 abort ();
1508 if (opval != NULL)
1509 *opval = reg;
1510 value = regno;
1511 }
1512
1513 /* If this field takes an auxiliary register, see if it's a known one. */
1514 if ((mods & ARC_MOD_AUXREG)
1515 && ARC_REG_CONSTANT_P (regno))
1516 {
1517 const struct arc_operand_value *reg = lookup_register (AUXREG, value);
1518
1519 /* This is really a constant, but tell the caller it has a special
1520 name. */
1521 if (reg != NULL && opval != NULL)
1522 *opval = reg;
1523 }
1524 switch(operand->fmt)
1525 {
1526 case 'a':
1527 ls_operand[LS_DEST] = op_type;
1528 break;
1529 case 's':
1530 ls_operand[LS_BASE] = op_type;
1531 break;
1532 case 'c':
1533 if((insn[0]& I(-1)) == I(2))
1534 ls_operand[LS_VALUE] = op_type;
1535 else
1536 ls_operand[LS_OFFSET] = op_type;
1537 break;
1538 case 'o': case 'O':
1539 ls_operand[LS_OFFSET] = op_type;
1540 break;
1541 }
1542
1543 return value;
1544 }
1545
1546 /* Return the value of the "flag update" field for shimm insns.
1547 This value is actually stored in the register field. */
1548
1549 static long
1550 extract_flag (insn, operand, mods, opval, invalid)
1551 arc_insn *insn;
1552 const struct arc_operand *operand;
1553 int mods ATTRIBUTE_UNUSED;
1554 const struct arc_operand_value **opval;
1555 int *invalid ATTRIBUTE_UNUSED;
1556 {
1557 int f;
1558 const struct arc_operand_value *val;
1559
1560 if (flagshimm_handled_p)
1561 f = flag_p != 0;
1562 else
1563 f = (*insn & (1 << operand->shift)) != 0;
1564
1565 /* There is no text for zero values. */
1566 if (f == 0)
1567 return 0;
1568 flag_p = 1;
1569 val = arc_opcode_lookup_suffix (operand, 1);
1570 if (opval != NULL && val != NULL)
1571 *opval = val;
1572 return val->value;
1573 }
1574
1575 /* Extract the condition code (if it exists).
1576 If we've seen a shimm value in this insn (meaning that the insn can't have
1577 a condition code field), then we don't store anything in OPVAL and return
1578 zero. */
1579
1580 static long
1581 extract_cond (insn, operand, mods, opval, invalid)
1582 arc_insn *insn;
1583 const struct arc_operand *operand;
1584 int mods ATTRIBUTE_UNUSED;
1585 const struct arc_operand_value **opval;
1586 int *invalid ATTRIBUTE_UNUSED;
1587 {
1588 long cond;
1589 const struct arc_operand_value *val;
1590
1591 if (flagshimm_handled_p)
1592 return 0;
1593
1594 cond = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1595 val = arc_opcode_lookup_suffix (operand, cond);
1596
1597 /* Ignore NULL values of `val'. Several condition code values are
1598 reserved for extensions. */
1599 if (opval != NULL && val != NULL)
1600 *opval = val;
1601 return cond;
1602 }
1603
1604 /* Extract a branch address.
1605 We return the value as a real address (not right shifted by 2). */
1606
1607 static long
1608 extract_reladdr (insn, operand, mods, opval, invalid)
1609 arc_insn *insn;
1610 const struct arc_operand *operand;
1611 int mods ATTRIBUTE_UNUSED;
1612 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1613 int *invalid ATTRIBUTE_UNUSED;
1614 {
1615 long addr;
1616
1617 addr = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1618 if ((operand->flags & ARC_OPERAND_SIGNED)
1619 && (addr & (1 << (operand->bits - 1))))
1620 addr -= 1 << operand->bits;
1621 return addr << 2;
1622 }
1623
1624 /* extract the flags bits from a j or jl long immediate. */
1625 static long
1626 extract_jumpflags(insn, operand, mods, opval, invalid)
1627 arc_insn *insn;
1628 const struct arc_operand *operand;
1629 int mods ATTRIBUTE_UNUSED;
1630 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1631 int *invalid;
1632 {
1633 if (!flag_p || !limm_p)
1634 *invalid = 1;
1635 return((flag_p && limm_p)
1636 ? (insn[1] >> operand->shift) & ((1 << operand->bits) -1): 0);
1637 }
1638
1639 /* extract st insn's offset. */
1640
1641 static long
1642 extract_st_offset (insn, operand, mods, opval, invalid)
1643 arc_insn *insn;
1644 const struct arc_operand *operand;
1645 int mods ATTRIBUTE_UNUSED;
1646 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1647 int *invalid;
1648 {
1649 int value = 0;
1650
1651 if (ls_operand[LS_VALUE] != OP_SHIMM || ls_operand[LS_BASE] != OP_LIMM)
1652 {
1653 value = insn[0] & 511;
1654 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1655 value -= 512;
1656 if(value)
1657 ls_operand[LS_OFFSET] = OP_SHIMM;
1658 }
1659 else
1660 {
1661 *invalid = 1;
1662 }
1663 return(value);
1664 }
1665
1666 /* extract ld insn's offset. */
1667
1668 static long
1669 extract_ld_offset (insn, operand, mods, opval, invalid)
1670 arc_insn *insn;
1671 const struct arc_operand *operand;
1672 int mods;
1673 const struct arc_operand_value **opval;
1674 int *invalid;
1675 {
1676 int test = insn[0] & I(-1);
1677 int value;
1678
1679 if (test)
1680 {
1681 value = insn[0] & 511;
1682 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1683 value -= 512;
1684 if (value)
1685 ls_operand[LS_OFFSET] = OP_SHIMM;
1686 return(value);
1687 }
1688 /* if it isn't in the insn, it's concealed behind reg 'c'. */
1689 return extract_reg(insn,
1690 &arc_operands[arc_operand_map['c']], mods, opval, invalid);
1691 }
1692
1693 /* The only thing this does is set the `invalid' flag if B != C.
1694 This is needed because the "mov" macro appears before it's real insn "and"
1695 and we don't want the disassembler to confuse them. */
1696
1697 static long
1698 extract_unopmacro (insn, operand, mods, opval, invalid)
1699 arc_insn *insn;
1700 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1701 int mods ATTRIBUTE_UNUSED;
1702 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1703 int *invalid;
1704 {
1705 /* This misses the case where B == ARC_REG_SHIMM_UPDATE &&
1706 C == ARC_REG_SHIMM (or vice versa). No big deal. Those insns will get
1707 printed as "and"s. */
1708 if (((*insn >> ARC_SHIFT_REGB) & ARC_MASK_REG)
1709 != ((*insn >> ARC_SHIFT_REGC) & ARC_MASK_REG))
1710 if (invalid != NULL)
1711 *invalid = 1;
1712 return 0;
1713 }
1714
1715 /* Utility for the extraction functions to return the index into
1716 `arc_suffixes'. */
1717
1718 const struct arc_operand_value *
1719 arc_opcode_lookup_suffix (type, value)
1720 const struct arc_operand *type;
1721 int value;
1722 {
1723 register const struct arc_operand_value *v,*end;
1724 struct arc_ext_operand_value *ext_oper = arc_ext_operands;
1725
1726 while (ext_oper)
1727 {
1728 if (type == &arc_operands[ext_oper->operand.type]
1729 && value == ext_oper->operand.value)
1730 return (&ext_oper->operand);
1731 ext_oper = ext_oper->next;
1732 }
1733
1734 /* ??? This is a little slow and can be speeded up. */
1735
1736 for (v = arc_suffixes, end = arc_suffixes + arc_suffixes_count; v < end; ++v)
1737 if (type == &arc_operands[v->type]
1738 && value == v->value)
1739 return v;
1740 return 0;
1741 }
1742
1743 static const struct arc_operand_value *
1744 lookup_register (type, regno)
1745 int type;
1746 long regno;
1747 {
1748 register const struct arc_operand_value *r,*end;
1749 struct arc_ext_operand_value *ext_oper = arc_ext_operands;
1750
1751 while (ext_oper)
1752 {
1753 if (ext_oper->operand.type == type && ext_oper->operand.value == regno)
1754 return (&ext_oper->operand);
1755 ext_oper = ext_oper->next;
1756 }
1757
1758 if (type == REG)
1759 return &arc_reg_names[regno];
1760
1761 /* ??? This is a little slow and can be speeded up. */
1762
1763 for (r = arc_reg_names, end = arc_reg_names + arc_reg_names_count;
1764 r < end; ++r)
1765 if (type == r->type && regno == r->value)
1766 return r;
1767 return 0;
1768 }
1769
1770 int
1771 arc_insn_is_j(insn)
1772 arc_insn insn;
1773 {
1774 return (insn & (I(-1))) == I(0x7);
1775 }
1776
1777 int
1778 arc_insn_not_jl(insn)
1779 arc_insn insn;
1780 {
1781 return (insn & (I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1))) !=
1782 (I(0x7) | R(-1,9,1));
1783 }
1784
1785 int
1786 arc_operand_type(int opertype)
1787 {
1788 switch (opertype)
1789 {
1790 case 0:
1791 return(COND);
1792 break;
1793 case 1:
1794 return(REG);
1795 break;
1796 case 2:
1797 return(AUXREG);
1798 break;
1799 }
1800 return -1;
1801 }
1802
1803 struct arc_operand_value *
1804 get_ext_suffix(s)
1805 char *s;
1806 {
1807 struct arc_ext_operand_value *suffix = arc_ext_operands;
1808
1809 while (suffix)
1810 {
1811 if ((COND == suffix->operand.type)
1812 && !strcmp(s,suffix->operand.name))
1813 return(&suffix->operand);
1814 suffix = suffix->next;
1815 }
1816 return(NULL);
1817 }
1818
1819 int
1820 arc_get_noshortcut_flag()
1821 {
1822 return(ARC_REGISTER_NOSHORT_CUT);
1823 }
This page took 0.101841 seconds and 5 git commands to generate.