Linux process record and replay support.
[deliverable/binutils-gdb.git] / opcodes / m68k-dis.c
1 /* Print Motorola 68k instructions.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of the GNU opcodes library.
7
8 This library is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 It is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "dis-asm.h"
25 #include "floatformat.h"
26 #include "libiberty.h"
27 #include "opintl.h"
28
29 #include "opcode/m68k.h"
30
31 /* Local function prototypes. */
32
33 const char * const fpcr_names[] =
34 {
35 "", "%fpiar", "%fpsr", "%fpiar/%fpsr", "%fpcr",
36 "%fpiar/%fpcr", "%fpsr/%fpcr", "%fpiar/%fpsr/%fpcr"
37 };
38
39 static char *const reg_names[] =
40 {
41 "%d0", "%d1", "%d2", "%d3", "%d4", "%d5", "%d6", "%d7",
42 "%a0", "%a1", "%a2", "%a3", "%a4", "%a5", "%fp", "%sp",
43 "%ps", "%pc"
44 };
45
46 /* Name of register halves for MAC/EMAC.
47 Seperate from reg_names since 'spu', 'fpl' look weird. */
48 static char *const reg_half_names[] =
49 {
50 "%d0", "%d1", "%d2", "%d3", "%d4", "%d5", "%d6", "%d7",
51 "%a0", "%a1", "%a2", "%a3", "%a4", "%a5", "%a6", "%a7",
52 "%ps", "%pc"
53 };
54
55 /* Sign-extend an (unsigned char). */
56 #if __STDC__ == 1
57 #define COERCE_SIGNED_CHAR(ch) ((signed char) (ch))
58 #else
59 #define COERCE_SIGNED_CHAR(ch) ((int) (((ch) ^ 0x80) & 0xFF) - 128)
60 #endif
61
62 /* Get a 1 byte signed integer. */
63 #define NEXTBYTE(p, val) \
64 do \
65 { \
66 p += 2; \
67 if (!FETCH_DATA (info, p)) \
68 return -3; \
69 val = COERCE_SIGNED_CHAR (p[-1]); \
70 } \
71 while (0)
72
73 /* Get a 2 byte signed integer. */
74 #define COERCE16(x) ((int) (((x) ^ 0x8000) - 0x8000))
75
76 #define NEXTWORD(p, val, ret_val) \
77 do \
78 { \
79 p += 2; \
80 if (!FETCH_DATA (info, p)) \
81 return ret_val; \
82 val = COERCE16 ((p[-2] << 8) + p[-1]); \
83 } \
84 while (0)
85
86 /* Get a 4 byte signed integer. */
87 #define COERCE32(x) ((bfd_signed_vma) ((x) ^ 0x80000000) - 0x80000000)
88
89 #define NEXTLONG(p, val, ret_val) \
90 do \
91 { \
92 p += 4; \
93 if (!FETCH_DATA (info, p)) \
94 return ret_val; \
95 val = COERCE32 ((((((p[-4] << 8) + p[-3]) << 8) + p[-2]) << 8) + p[-1]); \
96 } \
97 while (0)
98
99 /* Get a 4 byte unsigned integer. */
100 #define NEXTULONG(p, val) \
101 do \
102 { \
103 p += 4; \
104 if (!FETCH_DATA (info, p)) \
105 return -3; \
106 val = (unsigned int) ((((((p[-4] << 8) + p[-3]) << 8) + p[-2]) << 8) + p[-1]); \
107 } \
108 while (0)
109
110 /* Get a single precision float. */
111 #define NEXTSINGLE(val, p) \
112 do \
113 { \
114 p += 4; \
115 if (!FETCH_DATA (info, p)) \
116 return -3; \
117 floatformat_to_double (& floatformat_ieee_single_big, \
118 (char *) p - 4, & val); \
119 } \
120 while (0)
121
122 /* Get a double precision float. */
123 #define NEXTDOUBLE(val, p) \
124 do \
125 { \
126 p += 8; \
127 if (!FETCH_DATA (info, p)) \
128 return -3; \
129 floatformat_to_double (& floatformat_ieee_double_big, \
130 (char *) p - 8, & val); \
131 } \
132 while (0)
133
134 /* Get an extended precision float. */
135 #define NEXTEXTEND(val, p) \
136 do \
137 { \
138 p += 12; \
139 if (!FETCH_DATA (info, p)) \
140 return -3; \
141 floatformat_to_double (& floatformat_m68881_ext, \
142 (char *) p - 12, & val); \
143 } \
144 while (0)
145
146 /* Need a function to convert from packed to double
147 precision. Actually, it's easier to print a
148 packed number than a double anyway, so maybe
149 there should be a special case to handle this... */
150 #define NEXTPACKED(p, val) \
151 do \
152 { \
153 p += 12; \
154 if (!FETCH_DATA (info, p)) \
155 return -3; \
156 val = 0.0; \
157 } \
158 while (0)
159
160 \f
161 /* Maximum length of an instruction. */
162 #define MAXLEN 22
163
164 #include <setjmp.h>
165
166 struct private
167 {
168 /* Points to first byte not fetched. */
169 bfd_byte *max_fetched;
170 bfd_byte the_buffer[MAXLEN];
171 bfd_vma insn_start;
172 };
173
174 /* Make sure that bytes from INFO->PRIVATE_DATA->BUFFER (inclusive)
175 to ADDR (exclusive) are valid. Returns 1 for success, 0 on error. */
176 #define FETCH_DATA(info, addr) \
177 ((addr) <= ((struct private *) (info->private_data))->max_fetched \
178 ? 1 : fetch_data ((info), (addr)))
179
180 static int
181 fetch_data (struct disassemble_info *info, bfd_byte *addr)
182 {
183 int status;
184 struct private *priv = (struct private *)info->private_data;
185 bfd_vma start = priv->insn_start + (priv->max_fetched - priv->the_buffer);
186
187 status = (*info->read_memory_func) (start,
188 priv->max_fetched,
189 addr - priv->max_fetched,
190 info);
191 if (status != 0)
192 {
193 (*info->memory_error_func) (status, start, info);
194 return 0;
195 }
196 else
197 priv->max_fetched = addr;
198 return 1;
199 }
200 \f
201 /* This function is used to print to the bit-bucket. */
202 static int
203 dummy_printer (FILE *file ATTRIBUTE_UNUSED,
204 const char *format ATTRIBUTE_UNUSED,
205 ...)
206 {
207 return 0;
208 }
209
210 static void
211 dummy_print_address (bfd_vma vma ATTRIBUTE_UNUSED,
212 struct disassemble_info *info ATTRIBUTE_UNUSED)
213 {
214 }
215
216 /* Fetch BITS bits from a position in the instruction specified by CODE.
217 CODE is a "place to put an argument", or 'x' for a destination
218 that is a general address (mode and register).
219 BUFFER contains the instruction.
220 Returns -1 on failure. */
221
222 static int
223 fetch_arg (unsigned char *buffer,
224 int code,
225 int bits,
226 disassemble_info *info)
227 {
228 int val = 0;
229
230 switch (code)
231 {
232 case '/': /* MAC/EMAC mask bit. */
233 val = buffer[3] >> 5;
234 break;
235
236 case 'G': /* EMAC ACC load. */
237 val = ((buffer[3] >> 3) & 0x2) | ((~buffer[1] >> 7) & 0x1);
238 break;
239
240 case 'H': /* EMAC ACC !load. */
241 val = ((buffer[3] >> 3) & 0x2) | ((buffer[1] >> 7) & 0x1);
242 break;
243
244 case ']': /* EMAC ACCEXT bit. */
245 val = buffer[0] >> 2;
246 break;
247
248 case 'I': /* MAC/EMAC scale factor. */
249 val = buffer[2] >> 1;
250 break;
251
252 case 'F': /* EMAC ACCx. */
253 val = buffer[0] >> 1;
254 break;
255
256 case 'f':
257 val = buffer[1];
258 break;
259
260 case 's':
261 val = buffer[1];
262 break;
263
264 case 'd': /* Destination, for register or quick. */
265 val = (buffer[0] << 8) + buffer[1];
266 val >>= 9;
267 break;
268
269 case 'x': /* Destination, for general arg. */
270 val = (buffer[0] << 8) + buffer[1];
271 val >>= 6;
272 break;
273
274 case 'k':
275 if (! FETCH_DATA (info, buffer + 3))
276 return -1;
277 val = (buffer[3] >> 4);
278 break;
279
280 case 'C':
281 if (! FETCH_DATA (info, buffer + 3))
282 return -1;
283 val = buffer[3];
284 break;
285
286 case '1':
287 if (! FETCH_DATA (info, buffer + 3))
288 return -1;
289 val = (buffer[2] << 8) + buffer[3];
290 val >>= 12;
291 break;
292
293 case '2':
294 if (! FETCH_DATA (info, buffer + 3))
295 return -1;
296 val = (buffer[2] << 8) + buffer[3];
297 val >>= 6;
298 break;
299
300 case '3':
301 case 'j':
302 if (! FETCH_DATA (info, buffer + 3))
303 return -1;
304 val = (buffer[2] << 8) + buffer[3];
305 break;
306
307 case '4':
308 if (! FETCH_DATA (info, buffer + 5))
309 return -1;
310 val = (buffer[4] << 8) + buffer[5];
311 val >>= 12;
312 break;
313
314 case '5':
315 if (! FETCH_DATA (info, buffer + 5))
316 return -1;
317 val = (buffer[4] << 8) + buffer[5];
318 val >>= 6;
319 break;
320
321 case '6':
322 if (! FETCH_DATA (info, buffer + 5))
323 return -1;
324 val = (buffer[4] << 8) + buffer[5];
325 break;
326
327 case '7':
328 if (! FETCH_DATA (info, buffer + 3))
329 return -1;
330 val = (buffer[2] << 8) + buffer[3];
331 val >>= 7;
332 break;
333
334 case '8':
335 if (! FETCH_DATA (info, buffer + 3))
336 return -1;
337 val = (buffer[2] << 8) + buffer[3];
338 val >>= 10;
339 break;
340
341 case '9':
342 if (! FETCH_DATA (info, buffer + 3))
343 return -1;
344 val = (buffer[2] << 8) + buffer[3];
345 val >>= 5;
346 break;
347
348 case 'e':
349 val = (buffer[1] >> 6);
350 break;
351
352 case 'E':
353 if (! FETCH_DATA (info, buffer + 3))
354 return -1;
355 val = (buffer[2] >> 1);
356 break;
357
358 case 'm':
359 val = (buffer[1] & 0x40 ? 0x8 : 0)
360 | ((buffer[0] >> 1) & 0x7)
361 | (buffer[3] & 0x80 ? 0x10 : 0);
362 break;
363
364 case 'n':
365 val = (buffer[1] & 0x40 ? 0x8 : 0) | ((buffer[0] >> 1) & 0x7);
366 break;
367
368 case 'o':
369 val = (buffer[2] >> 4) | (buffer[3] & 0x80 ? 0x10 : 0);
370 break;
371
372 case 'M':
373 val = (buffer[1] & 0xf) | (buffer[3] & 0x40 ? 0x10 : 0);
374 break;
375
376 case 'N':
377 val = (buffer[3] & 0xf) | (buffer[3] & 0x40 ? 0x10 : 0);
378 break;
379
380 case 'h':
381 val = buffer[2] >> 2;
382 break;
383
384 default:
385 abort ();
386 }
387
388 /* bits is never too big. */
389 return val & ((1 << bits) - 1);
390 }
391
392 /* Check if an EA is valid for a particular code. This is required
393 for the EMAC instructions since the type of source address determines
394 if it is a EMAC-load instruciton if the EA is mode 2-5, otherwise it
395 is a non-load EMAC instruction and the bits mean register Ry.
396 A similar case exists for the movem instructions where the register
397 mask is interpreted differently for different EAs. */
398
399 static bfd_boolean
400 m68k_valid_ea (char code, int val)
401 {
402 int mode, mask;
403 #define M(n0,n1,n2,n3,n4,n5,n6,n70,n71,n72,n73,n74) \
404 (n0 | n1 << 1 | n2 << 2 | n3 << 3 | n4 << 4 | n5 << 5 | n6 << 6 \
405 | n70 << 7 | n71 << 8 | n72 << 9 | n73 << 10 | n74 << 11)
406
407 switch (code)
408 {
409 case '*':
410 mask = M (1,1,1,1,1,1,1,1,1,1,1,1);
411 break;
412 case '~':
413 mask = M (0,0,1,1,1,1,1,1,1,0,0,0);
414 break;
415 case '%':
416 mask = M (1,1,1,1,1,1,1,1,1,0,0,0);
417 break;
418 case ';':
419 mask = M (1,0,1,1,1,1,1,1,1,1,1,1);
420 break;
421 case '@':
422 mask = M (1,0,1,1,1,1,1,1,1,1,1,0);
423 break;
424 case '!':
425 mask = M (0,0,1,0,0,1,1,1,1,1,1,0);
426 break;
427 case '&':
428 mask = M (0,0,1,0,0,1,1,1,1,0,0,0);
429 break;
430 case '$':
431 mask = M (1,0,1,1,1,1,1,1,1,0,0,0);
432 break;
433 case '?':
434 mask = M (1,0,1,0,0,1,1,1,1,0,0,0);
435 break;
436 case '/':
437 mask = M (1,0,1,0,0,1,1,1,1,1,1,0);
438 break;
439 case '|':
440 mask = M (0,0,1,0,0,1,1,1,1,1,1,0);
441 break;
442 case '>':
443 mask = M (0,0,1,0,1,1,1,1,1,0,0,0);
444 break;
445 case '<':
446 mask = M (0,0,1,1,0,1,1,1,1,1,1,0);
447 break;
448 case 'm':
449 mask = M (1,1,1,1,1,0,0,0,0,0,0,0);
450 break;
451 case 'n':
452 mask = M (0,0,0,0,0,1,0,0,0,1,0,0);
453 break;
454 case 'o':
455 mask = M (0,0,0,0,0,0,1,1,1,0,1,1);
456 break;
457 case 'p':
458 mask = M (1,1,1,1,1,1,0,0,0,0,0,0);
459 break;
460 case 'q':
461 mask = M (1,0,1,1,1,1,0,0,0,0,0,0);
462 break;
463 case 'v':
464 mask = M (1,0,1,1,1,1,0,1,1,0,0,0);
465 break;
466 case 'b':
467 mask = M (1,0,1,1,1,1,0,0,0,1,0,0);
468 break;
469 case 'w':
470 mask = M (0,0,1,1,1,1,0,0,0,1,0,0);
471 break;
472 case 'y':
473 mask = M (0,0,1,0,0,1,0,0,0,0,0,0);
474 break;
475 case 'z':
476 mask = M (0,0,1,0,0,1,0,0,0,1,0,0);
477 break;
478 case '4':
479 mask = M (0,0,1,1,1,1,0,0,0,0,0,0);
480 break;
481 default:
482 abort ();
483 }
484 #undef M
485
486 mode = (val >> 3) & 7;
487 if (mode == 7)
488 mode += val & 7;
489 return (mask & (1 << mode)) != 0;
490 }
491
492 /* Print a base register REGNO and displacement DISP, on INFO->STREAM.
493 REGNO = -1 for pc, -2 for none (suppressed). */
494
495 static void
496 print_base (int regno, bfd_vma disp, disassemble_info *info)
497 {
498 if (regno == -1)
499 {
500 (*info->fprintf_func) (info->stream, "%%pc@(");
501 (*info->print_address_func) (disp, info);
502 }
503 else
504 {
505 char buf[50];
506
507 if (regno == -2)
508 (*info->fprintf_func) (info->stream, "@(");
509 else if (regno == -3)
510 (*info->fprintf_func) (info->stream, "%%zpc@(");
511 else
512 (*info->fprintf_func) (info->stream, "%s@(", reg_names[regno]);
513
514 sprintf_vma (buf, disp);
515 (*info->fprintf_func) (info->stream, "%s", buf);
516 }
517 }
518
519 /* Print an indexed argument. The base register is BASEREG (-1 for pc).
520 P points to extension word, in buffer.
521 ADDR is the nominal core address of that extension word.
522 Returns NULL upon error. */
523
524 static unsigned char *
525 print_indexed (int basereg,
526 unsigned char *p,
527 bfd_vma addr,
528 disassemble_info *info)
529 {
530 int word;
531 static char *const scales[] = { "", ":2", ":4", ":8" };
532 bfd_vma base_disp;
533 bfd_vma outer_disp;
534 char buf[40];
535 char vmabuf[50];
536
537 NEXTWORD (p, word, NULL);
538
539 /* Generate the text for the index register.
540 Where this will be output is not yet determined. */
541 sprintf (buf, "%s:%c%s",
542 reg_names[(word >> 12) & 0xf],
543 (word & 0x800) ? 'l' : 'w',
544 scales[(word >> 9) & 3]);
545
546 /* Handle the 68000 style of indexing. */
547
548 if ((word & 0x100) == 0)
549 {
550 base_disp = word & 0xff;
551 if ((base_disp & 0x80) != 0)
552 base_disp -= 0x100;
553 if (basereg == -1)
554 base_disp += addr;
555 print_base (basereg, base_disp, info);
556 (*info->fprintf_func) (info->stream, ",%s)", buf);
557 return p;
558 }
559
560 /* Handle the generalized kind. */
561 /* First, compute the displacement to add to the base register. */
562 if (word & 0200)
563 {
564 if (basereg == -1)
565 basereg = -3;
566 else
567 basereg = -2;
568 }
569 if (word & 0100)
570 buf[0] = '\0';
571 base_disp = 0;
572 switch ((word >> 4) & 3)
573 {
574 case 2:
575 NEXTWORD (p, base_disp, NULL);
576 break;
577 case 3:
578 NEXTLONG (p, base_disp, NULL);
579 }
580 if (basereg == -1)
581 base_disp += addr;
582
583 /* Handle single-level case (not indirect). */
584 if ((word & 7) == 0)
585 {
586 print_base (basereg, base_disp, info);
587 if (buf[0] != '\0')
588 (*info->fprintf_func) (info->stream, ",%s", buf);
589 (*info->fprintf_func) (info->stream, ")");
590 return p;
591 }
592
593 /* Two level. Compute displacement to add after indirection. */
594 outer_disp = 0;
595 switch (word & 3)
596 {
597 case 2:
598 NEXTWORD (p, outer_disp, NULL);
599 break;
600 case 3:
601 NEXTLONG (p, outer_disp, NULL);
602 }
603
604 print_base (basereg, base_disp, info);
605 if ((word & 4) == 0 && buf[0] != '\0')
606 {
607 (*info->fprintf_func) (info->stream, ",%s", buf);
608 buf[0] = '\0';
609 }
610 sprintf_vma (vmabuf, outer_disp);
611 (*info->fprintf_func) (info->stream, ")@(%s", vmabuf);
612 if (buf[0] != '\0')
613 (*info->fprintf_func) (info->stream, ",%s", buf);
614 (*info->fprintf_func) (info->stream, ")");
615
616 return p;
617 }
618
619 #define FETCH_ARG(size, val) \
620 do \
621 { \
622 val = fetch_arg (buffer, place, size, info); \
623 if (val < 0) \
624 return -3; \
625 } \
626 while (0)
627
628 /* Returns number of bytes "eaten" by the operand, or
629 return -1 if an invalid operand was found, or -2 if
630 an opcode tabe error was found or -3 to simply abort.
631 ADDR is the pc for this arg to be relative to. */
632
633 static int
634 print_insn_arg (const char *d,
635 unsigned char *buffer,
636 unsigned char *p0,
637 bfd_vma addr,
638 disassemble_info *info)
639 {
640 int val = 0;
641 int place = d[1];
642 unsigned char *p = p0;
643 int regno;
644 const char *regname;
645 unsigned char *p1;
646 double flval;
647 int flt_p;
648 bfd_signed_vma disp;
649 unsigned int uval;
650
651 switch (*d)
652 {
653 case 'c': /* Cache identifier. */
654 {
655 static char *const cacheFieldName[] = { "nc", "dc", "ic", "bc" };
656 FETCH_ARG (2, val);
657 (*info->fprintf_func) (info->stream, cacheFieldName[val]);
658 break;
659 }
660
661 case 'a': /* Address register indirect only. Cf. case '+'. */
662 {
663 FETCH_ARG (3, val);
664 (*info->fprintf_func) (info->stream, "%s@", reg_names[val + 8]);
665 break;
666 }
667
668 case '_': /* 32-bit absolute address for move16. */
669 {
670 NEXTULONG (p, uval);
671 (*info->print_address_func) (uval, info);
672 break;
673 }
674
675 case 'C':
676 (*info->fprintf_func) (info->stream, "%%ccr");
677 break;
678
679 case 'S':
680 (*info->fprintf_func) (info->stream, "%%sr");
681 break;
682
683 case 'U':
684 (*info->fprintf_func) (info->stream, "%%usp");
685 break;
686
687 case 'E':
688 (*info->fprintf_func) (info->stream, "%%acc");
689 break;
690
691 case 'G':
692 (*info->fprintf_func) (info->stream, "%%macsr");
693 break;
694
695 case 'H':
696 (*info->fprintf_func) (info->stream, "%%mask");
697 break;
698
699 case 'J':
700 {
701 /* FIXME: There's a problem here, different m68k processors call the
702 same address different names. This table can't get it right
703 because it doesn't know which processor it's disassembling for. */
704 static const struct { char *name; int value; } names[]
705 = {{"%sfc", 0x000}, {"%dfc", 0x001}, {"%cacr", 0x002},
706 {"%tc", 0x003}, {"%itt0",0x004}, {"%itt1", 0x005},
707 {"%dtt0",0x006}, {"%dtt1",0x007}, {"%buscr",0x008},
708 {"%usp", 0x800}, {"%vbr", 0x801}, {"%caar", 0x802},
709 {"%msp", 0x803}, {"%isp", 0x804},
710 /* reg c04 is sometimes called flashbar or rambar.
711 rec c05 is also sometimes called rambar. */
712 {"%rambar0", 0xc04}, {"%rambar1", 0xc05},
713
714 /* Should we be calling this psr like we do in case 'Y'? */
715 {"%mmusr",0x805},
716
717 {"%urp", 0x806}, {"%srp", 0x807}, {"%pcr", 0x808},
718
719 /* Fido added these. */
720 {"%cac", 0xffe}, {"%mbo", 0xfff}};
721
722 FETCH_ARG (12, val);
723 for (regno = sizeof names / sizeof names[0] - 1; regno >= 0; regno--)
724 if (names[regno].value == val)
725 {
726 (*info->fprintf_func) (info->stream, "%s", names[regno].name);
727 break;
728 }
729 if (regno < 0)
730 (*info->fprintf_func) (info->stream, "%d", val);
731 }
732 break;
733
734 case 'Q':
735 FETCH_ARG (3, val);
736 /* 0 means 8, except for the bkpt instruction... */
737 if (val == 0 && d[1] != 's')
738 val = 8;
739 (*info->fprintf_func) (info->stream, "#%d", val);
740 break;
741
742 case 'x':
743 FETCH_ARG (3, val);
744 /* 0 means -1. */
745 if (val == 0)
746 val = -1;
747 (*info->fprintf_func) (info->stream, "#%d", val);
748 break;
749
750 case 'j':
751 FETCH_ARG (3, val);
752 (*info->fprintf_func) (info->stream, "#%d", val+1);
753 break;
754
755 case 'K':
756 FETCH_ARG (9, val);
757 (*info->fprintf_func) (info->stream, "#%d", val);
758 break;
759
760 case 'M':
761 if (place == 'h')
762 {
763 static char *const scalefactor_name[] = { "<<", ">>" };
764
765 FETCH_ARG (1, val);
766 (*info->fprintf_func) (info->stream, scalefactor_name[val]);
767 }
768 else
769 {
770 FETCH_ARG (8, val);
771 if (val & 0x80)
772 val = val - 0x100;
773 (*info->fprintf_func) (info->stream, "#%d", val);
774 }
775 break;
776
777 case 'T':
778 FETCH_ARG (4, val);
779 (*info->fprintf_func) (info->stream, "#%d", val);
780 break;
781
782 case 'D':
783 FETCH_ARG (3, val);
784 (*info->fprintf_func) (info->stream, "%s", reg_names[val]);
785 break;
786
787 case 'A':
788 FETCH_ARG (3, val);
789 (*info->fprintf_func) (info->stream, "%s", reg_names[val + 010]);
790 break;
791
792 case 'R':
793 FETCH_ARG (4, val);
794 (*info->fprintf_func) (info->stream, "%s", reg_names[val]);
795 break;
796
797 case 'r':
798 FETCH_ARG (4, regno);
799 if (regno > 7)
800 (*info->fprintf_func) (info->stream, "%s@", reg_names[regno]);
801 else
802 (*info->fprintf_func) (info->stream, "@(%s)", reg_names[regno]);
803 break;
804
805 case 'F':
806 FETCH_ARG (3, val);
807 (*info->fprintf_func) (info->stream, "%%fp%d", val);
808 break;
809
810 case 'O':
811 FETCH_ARG (6, val);
812 if (val & 0x20)
813 (*info->fprintf_func) (info->stream, "%s", reg_names[val & 7]);
814 else
815 (*info->fprintf_func) (info->stream, "%d", val);
816 break;
817
818 case '+':
819 FETCH_ARG (3, val);
820 (*info->fprintf_func) (info->stream, "%s@+", reg_names[val + 8]);
821 break;
822
823 case '-':
824 FETCH_ARG (3, val);
825 (*info->fprintf_func) (info->stream, "%s@-", reg_names[val + 8]);
826 break;
827
828 case 'k':
829 if (place == 'k')
830 {
831 FETCH_ARG (3, val);
832 (*info->fprintf_func) (info->stream, "{%s}", reg_names[val]);
833 }
834 else if (place == 'C')
835 {
836 FETCH_ARG (7, val);
837 if (val > 63) /* This is a signed constant. */
838 val -= 128;
839 (*info->fprintf_func) (info->stream, "{#%d}", val);
840 }
841 else
842 return -1;
843 break;
844
845 case '#':
846 case '^':
847 p1 = buffer + (*d == '#' ? 2 : 4);
848 if (place == 's')
849 FETCH_ARG (4, val);
850 else if (place == 'C')
851 FETCH_ARG (7, val);
852 else if (place == '8')
853 FETCH_ARG (3, val);
854 else if (place == '3')
855 FETCH_ARG (8, val);
856 else if (place == 'b')
857 NEXTBYTE (p1, val);
858 else if (place == 'w' || place == 'W')
859 NEXTWORD (p1, val, -3);
860 else if (place == 'l')
861 NEXTLONG (p1, val, -3);
862 else
863 return -2;
864
865 (*info->fprintf_func) (info->stream, "#%d", val);
866 break;
867
868 case 'B':
869 if (place == 'b')
870 NEXTBYTE (p, disp);
871 else if (place == 'B')
872 disp = COERCE_SIGNED_CHAR (buffer[1]);
873 else if (place == 'w' || place == 'W')
874 NEXTWORD (p, disp, -3);
875 else if (place == 'l' || place == 'L' || place == 'C')
876 NEXTLONG (p, disp, -3);
877 else if (place == 'g')
878 {
879 NEXTBYTE (buffer, disp);
880 if (disp == 0)
881 NEXTWORD (p, disp, -3);
882 else if (disp == -1)
883 NEXTLONG (p, disp, -3);
884 }
885 else if (place == 'c')
886 {
887 if (buffer[1] & 0x40) /* If bit six is one, long offset. */
888 NEXTLONG (p, disp, -3);
889 else
890 NEXTWORD (p, disp, -3);
891 }
892 else
893 return -2;
894
895 (*info->print_address_func) (addr + disp, info);
896 break;
897
898 case 'd':
899 {
900 int val1;
901
902 NEXTWORD (p, val, -3);
903 FETCH_ARG (3, val1);
904 (*info->fprintf_func) (info->stream, "%s@(%d)", reg_names[val1 + 8], val);
905 break;
906 }
907
908 case 's':
909 FETCH_ARG (3, val);
910 (*info->fprintf_func) (info->stream, "%s", fpcr_names[val]);
911 break;
912
913 case 'e':
914 FETCH_ARG (2, val);
915 (*info->fprintf_func) (info->stream, "%%acc%d", val);
916 break;
917
918 case 'g':
919 FETCH_ARG (1, val);
920 (*info->fprintf_func) (info->stream, "%%accext%s", val == 0 ? "01" : "23");
921 break;
922
923 case 'i':
924 FETCH_ARG (2, val);
925 if (val == 1)
926 (*info->fprintf_func) (info->stream, "<<");
927 else if (val == 3)
928 (*info->fprintf_func) (info->stream, ">>");
929 else
930 return -1;
931 break;
932
933 case 'I':
934 /* Get coprocessor ID... */
935 val = fetch_arg (buffer, 'd', 3, info);
936 if (val < 0)
937 return -3;
938 if (val != 1) /* Unusual coprocessor ID? */
939 (*info->fprintf_func) (info->stream, "(cpid=%d) ", val);
940 break;
941
942 case '4':
943 case '*':
944 case '~':
945 case '%':
946 case ';':
947 case '@':
948 case '!':
949 case '$':
950 case '?':
951 case '/':
952 case '&':
953 case '|':
954 case '<':
955 case '>':
956 case 'm':
957 case 'n':
958 case 'o':
959 case 'p':
960 case 'q':
961 case 'v':
962 case 'b':
963 case 'w':
964 case 'y':
965 case 'z':
966 if (place == 'd')
967 {
968 val = fetch_arg (buffer, 'x', 6, info);
969 if (val < 0)
970 return -3;
971 val = ((val & 7) << 3) + ((val >> 3) & 7);
972 }
973 else
974 {
975 val = fetch_arg (buffer, 's', 6, info);
976 if (val < 0)
977 return -3;
978 }
979
980 /* If the <ea> is invalid for *d, then reject this match. */
981 if (!m68k_valid_ea (*d, val))
982 return -1;
983
984 /* Get register number assuming address register. */
985 regno = (val & 7) + 8;
986 regname = reg_names[regno];
987 switch (val >> 3)
988 {
989 case 0:
990 (*info->fprintf_func) (info->stream, "%s", reg_names[val]);
991 break;
992
993 case 1:
994 (*info->fprintf_func) (info->stream, "%s", regname);
995 break;
996
997 case 2:
998 (*info->fprintf_func) (info->stream, "%s@", regname);
999 break;
1000
1001 case 3:
1002 (*info->fprintf_func) (info->stream, "%s@+", regname);
1003 break;
1004
1005 case 4:
1006 (*info->fprintf_func) (info->stream, "%s@-", regname);
1007 break;
1008
1009 case 5:
1010 NEXTWORD (p, val, -3);
1011 (*info->fprintf_func) (info->stream, "%s@(%d)", regname, val);
1012 break;
1013
1014 case 6:
1015 p = print_indexed (regno, p, addr, info);
1016 if (p == NULL)
1017 return -3;
1018 break;
1019
1020 case 7:
1021 switch (val & 7)
1022 {
1023 case 0:
1024 NEXTWORD (p, val, -3);
1025 (*info->print_address_func) (val, info);
1026 break;
1027
1028 case 1:
1029 NEXTULONG (p, uval);
1030 (*info->print_address_func) (uval, info);
1031 break;
1032
1033 case 2:
1034 NEXTWORD (p, val, -3);
1035 (*info->fprintf_func) (info->stream, "%%pc@(");
1036 (*info->print_address_func) (addr + val, info);
1037 (*info->fprintf_func) (info->stream, ")");
1038 break;
1039
1040 case 3:
1041 p = print_indexed (-1, p, addr, info);
1042 if (p == NULL)
1043 return -3;
1044 break;
1045
1046 case 4:
1047 flt_p = 1; /* Assume it's a float... */
1048 switch (place)
1049 {
1050 case 'b':
1051 NEXTBYTE (p, val);
1052 flt_p = 0;
1053 break;
1054
1055 case 'w':
1056 NEXTWORD (p, val, -3);
1057 flt_p = 0;
1058 break;
1059
1060 case 'l':
1061 NEXTLONG (p, val, -3);
1062 flt_p = 0;
1063 break;
1064
1065 case 'f':
1066 NEXTSINGLE (flval, p);
1067 break;
1068
1069 case 'F':
1070 NEXTDOUBLE (flval, p);
1071 break;
1072
1073 case 'x':
1074 NEXTEXTEND (flval, p);
1075 break;
1076
1077 case 'p':
1078 NEXTPACKED (p, flval);
1079 break;
1080
1081 default:
1082 return -1;
1083 }
1084 if (flt_p) /* Print a float? */
1085 (*info->fprintf_func) (info->stream, "#%g", flval);
1086 else
1087 (*info->fprintf_func) (info->stream, "#%d", val);
1088 break;
1089
1090 default:
1091 return -1;
1092 }
1093 }
1094
1095 /* If place is '/', then this is the case of the mask bit for
1096 mac/emac loads. Now that the arg has been printed, grab the
1097 mask bit and if set, add a '&' to the arg. */
1098 if (place == '/')
1099 {
1100 FETCH_ARG (1, val);
1101 if (val)
1102 info->fprintf_func (info->stream, "&");
1103 }
1104 break;
1105
1106 case 'L':
1107 case 'l':
1108 if (place == 'w')
1109 {
1110 char doneany;
1111 p1 = buffer + 2;
1112 NEXTWORD (p1, val, -3);
1113 /* Move the pointer ahead if this point is farther ahead
1114 than the last. */
1115 p = p1 > p ? p1 : p;
1116 if (val == 0)
1117 {
1118 (*info->fprintf_func) (info->stream, "#0");
1119 break;
1120 }
1121 if (*d == 'l')
1122 {
1123 int newval = 0;
1124
1125 for (regno = 0; regno < 16; ++regno)
1126 if (val & (0x8000 >> regno))
1127 newval |= 1 << regno;
1128 val = newval;
1129 }
1130 val &= 0xffff;
1131 doneany = 0;
1132 for (regno = 0; regno < 16; ++regno)
1133 if (val & (1 << regno))
1134 {
1135 int first_regno;
1136
1137 if (doneany)
1138 (*info->fprintf_func) (info->stream, "/");
1139 doneany = 1;
1140 (*info->fprintf_func) (info->stream, "%s", reg_names[regno]);
1141 first_regno = regno;
1142 while (val & (1 << (regno + 1)))
1143 ++regno;
1144 if (regno > first_regno)
1145 (*info->fprintf_func) (info->stream, "-%s",
1146 reg_names[regno]);
1147 }
1148 }
1149 else if (place == '3')
1150 {
1151 /* `fmovem' insn. */
1152 char doneany;
1153
1154 FETCH_ARG (8, val);
1155 if (val == 0)
1156 {
1157 (*info->fprintf_func) (info->stream, "#0");
1158 break;
1159 }
1160 if (*d == 'l')
1161 {
1162 int newval = 0;
1163
1164 for (regno = 0; regno < 8; ++regno)
1165 if (val & (0x80 >> regno))
1166 newval |= 1 << regno;
1167 val = newval;
1168 }
1169 val &= 0xff;
1170 doneany = 0;
1171 for (regno = 0; regno < 8; ++regno)
1172 if (val & (1 << regno))
1173 {
1174 int first_regno;
1175 if (doneany)
1176 (*info->fprintf_func) (info->stream, "/");
1177 doneany = 1;
1178 (*info->fprintf_func) (info->stream, "%%fp%d", regno);
1179 first_regno = regno;
1180 while (val & (1 << (regno + 1)))
1181 ++regno;
1182 if (regno > first_regno)
1183 (*info->fprintf_func) (info->stream, "-%%fp%d", regno);
1184 }
1185 }
1186 else if (place == '8')
1187 {
1188 FETCH_ARG (3, val);
1189 /* fmoveml for FP status registers. */
1190 (*info->fprintf_func) (info->stream, "%s", fpcr_names[val]);
1191 }
1192 else
1193 return -2;
1194 break;
1195
1196 case 'X':
1197 place = '8';
1198 case 'Y':
1199 case 'Z':
1200 case 'W':
1201 case '0':
1202 case '1':
1203 case '2':
1204 case '3':
1205 {
1206 int val;
1207 char *name = 0;
1208
1209 FETCH_ARG (5, val);
1210 switch (val)
1211 {
1212 case 2: name = "%tt0"; break;
1213 case 3: name = "%tt1"; break;
1214 case 0x10: name = "%tc"; break;
1215 case 0x11: name = "%drp"; break;
1216 case 0x12: name = "%srp"; break;
1217 case 0x13: name = "%crp"; break;
1218 case 0x14: name = "%cal"; break;
1219 case 0x15: name = "%val"; break;
1220 case 0x16: name = "%scc"; break;
1221 case 0x17: name = "%ac"; break;
1222 case 0x18: name = "%psr"; break;
1223 case 0x19: name = "%pcsr"; break;
1224 case 0x1c:
1225 case 0x1d:
1226 {
1227 int break_reg = ((buffer[3] >> 2) & 7);
1228
1229 (*info->fprintf_func)
1230 (info->stream, val == 0x1c ? "%%bad%d" : "%%bac%d",
1231 break_reg);
1232 }
1233 break;
1234 default:
1235 (*info->fprintf_func) (info->stream, "<mmu register %d>", val);
1236 }
1237 if (name)
1238 (*info->fprintf_func) (info->stream, "%s", name);
1239 }
1240 break;
1241
1242 case 'f':
1243 {
1244 int fc;
1245
1246 FETCH_ARG (5, fc);
1247 if (fc == 1)
1248 (*info->fprintf_func) (info->stream, "%%dfc");
1249 else if (fc == 0)
1250 (*info->fprintf_func) (info->stream, "%%sfc");
1251 else
1252 /* xgettext:c-format */
1253 (*info->fprintf_func) (info->stream, _("<function code %d>"), fc);
1254 }
1255 break;
1256
1257 case 'V':
1258 (*info->fprintf_func) (info->stream, "%%val");
1259 break;
1260
1261 case 't':
1262 {
1263 int level;
1264
1265 FETCH_ARG (3, level);
1266 (*info->fprintf_func) (info->stream, "%d", level);
1267 }
1268 break;
1269
1270 case 'u':
1271 {
1272 short is_upper = 0;
1273 int reg;
1274
1275 FETCH_ARG (5, reg);
1276 if (reg & 0x10)
1277 {
1278 is_upper = 1;
1279 reg &= 0xf;
1280 }
1281 (*info->fprintf_func) (info->stream, "%s%s",
1282 reg_half_names[reg],
1283 is_upper ? "u" : "l");
1284 }
1285 break;
1286
1287 default:
1288 return -2;
1289 }
1290
1291 return p - p0;
1292 }
1293
1294 /* Try to match the current instruction to best and if so, return the
1295 number of bytes consumed from the instruction stream, else zero. */
1296
1297 static int
1298 match_insn_m68k (bfd_vma memaddr,
1299 disassemble_info * info,
1300 const struct m68k_opcode * best)
1301 {
1302 unsigned char *save_p;
1303 unsigned char *p;
1304 const char *d;
1305 const char *args = best->args;
1306
1307 struct private *priv = (struct private *) info->private_data;
1308 bfd_byte *buffer = priv->the_buffer;
1309 fprintf_ftype save_printer = info->fprintf_func;
1310 void (* save_print_address) (bfd_vma, struct disassemble_info *)
1311 = info->print_address_func;
1312
1313 if (*args == '.')
1314 args++;
1315
1316 /* Point at first word of argument data,
1317 and at descriptor for first argument. */
1318 p = buffer + 2;
1319
1320 /* Figure out how long the fixed-size portion of the instruction is.
1321 The only place this is stored in the opcode table is
1322 in the arguments--look for arguments which specify fields in the 2nd
1323 or 3rd words of the instruction. */
1324 for (d = args; *d; d += 2)
1325 {
1326 /* I don't think it is necessary to be checking d[0] here;
1327 I suspect all this could be moved to the case statement below. */
1328 if (d[0] == '#')
1329 {
1330 if (d[1] == 'l' && p - buffer < 6)
1331 p = buffer + 6;
1332 else if (p - buffer < 4 && d[1] != 'C' && d[1] != '8')
1333 p = buffer + 4;
1334 }
1335
1336 if ((d[0] == 'L' || d[0] == 'l') && d[1] == 'w' && p - buffer < 4)
1337 p = buffer + 4;
1338
1339 switch (d[1])
1340 {
1341 case '1':
1342 case '2':
1343 case '3':
1344 case '7':
1345 case '8':
1346 case '9':
1347 case 'i':
1348 if (p - buffer < 4)
1349 p = buffer + 4;
1350 break;
1351 case '4':
1352 case '5':
1353 case '6':
1354 if (p - buffer < 6)
1355 p = buffer + 6;
1356 break;
1357 default:
1358 break;
1359 }
1360 }
1361
1362 /* pflusha is an exceptions. It takes no arguments but is two words
1363 long. Recognize it by looking at the lower 16 bits of the mask. */
1364 if (p - buffer < 4 && (best->match & 0xFFFF) != 0)
1365 p = buffer + 4;
1366
1367 /* lpstop is another exception. It takes a one word argument but is
1368 three words long. */
1369 if (p - buffer < 6
1370 && (best->match & 0xffff) == 0xffff
1371 && args[0] == '#'
1372 && args[1] == 'w')
1373 {
1374 /* Copy the one word argument into the usual location for a one
1375 word argument, to simplify printing it. We can get away with
1376 this because we know exactly what the second word is, and we
1377 aren't going to print anything based on it. */
1378 p = buffer + 6;
1379 FETCH_DATA (info, p);
1380 buffer[2] = buffer[4];
1381 buffer[3] = buffer[5];
1382 }
1383
1384 FETCH_DATA (info, p);
1385
1386 save_p = p;
1387 info->print_address_func = dummy_print_address;
1388 info->fprintf_func = (fprintf_ftype) dummy_printer;
1389
1390 /* We scan the operands twice. The first time we don't print anything,
1391 but look for errors. */
1392 for (d = args; *d; d += 2)
1393 {
1394 int eaten = print_insn_arg (d, buffer, p, memaddr + (p - buffer), info);
1395
1396 if (eaten >= 0)
1397 p += eaten;
1398 else if (eaten == -1 || eaten == -3)
1399 {
1400 info->fprintf_func = save_printer;
1401 info->print_address_func = save_print_address;
1402 return 0;
1403 }
1404 else
1405 {
1406 /* We must restore the print functions before trying to print the
1407 error message. */
1408 info->fprintf_func = save_printer;
1409 info->print_address_func = save_print_address;
1410 info->fprintf_func (info->stream,
1411 /* xgettext:c-format */
1412 _("<internal error in opcode table: %s %s>\n"),
1413 best->name, best->args);
1414 return 2;
1415 }
1416 }
1417
1418 p = save_p;
1419 info->fprintf_func = save_printer;
1420 info->print_address_func = save_print_address;
1421
1422 d = args;
1423
1424 info->fprintf_func (info->stream, "%s", best->name);
1425
1426 if (*d)
1427 info->fprintf_func (info->stream, " ");
1428
1429 while (*d)
1430 {
1431 p += print_insn_arg (d, buffer, p, memaddr + (p - buffer), info);
1432 d += 2;
1433
1434 if (*d && *(d - 2) != 'I' && *d != 'k')
1435 info->fprintf_func (info->stream, ",");
1436 }
1437
1438 return p - buffer;
1439 }
1440
1441 /* Try to interpret the instruction at address MEMADDR as one that
1442 can execute on a processor with the features given by ARCH_MASK.
1443 If successful, print the instruction to INFO->STREAM and return
1444 its length in bytes. Return 0 otherwise. */
1445
1446 static int
1447 m68k_scan_mask (bfd_vma memaddr, disassemble_info *info,
1448 unsigned int arch_mask)
1449 {
1450 int i;
1451 const char *d;
1452 static const struct m68k_opcode **opcodes[16];
1453 static int numopcodes[16];
1454 int val;
1455 int major_opcode;
1456
1457 struct private *priv = (struct private *) info->private_data;
1458 bfd_byte *buffer = priv->the_buffer;
1459
1460 if (!opcodes[0])
1461 {
1462 /* Speed up the matching by sorting the opcode
1463 table on the upper four bits of the opcode. */
1464 const struct m68k_opcode **opc_pointer[16];
1465
1466 /* First count how many opcodes are in each of the sixteen buckets. */
1467 for (i = 0; i < m68k_numopcodes; i++)
1468 numopcodes[(m68k_opcodes[i].opcode >> 28) & 15]++;
1469
1470 /* Then create a sorted table of pointers
1471 that point into the unsorted table. */
1472 opc_pointer[0] = xmalloc (sizeof (struct m68k_opcode *)
1473 * m68k_numopcodes);
1474 opcodes[0] = opc_pointer[0];
1475
1476 for (i = 1; i < 16; i++)
1477 {
1478 opc_pointer[i] = opc_pointer[i - 1] + numopcodes[i - 1];
1479 opcodes[i] = opc_pointer[i];
1480 }
1481
1482 for (i = 0; i < m68k_numopcodes; i++)
1483 *opc_pointer[(m68k_opcodes[i].opcode >> 28) & 15]++ = &m68k_opcodes[i];
1484 }
1485
1486 FETCH_DATA (info, buffer + 2);
1487 major_opcode = (buffer[0] >> 4) & 15;
1488
1489 for (i = 0; i < numopcodes[major_opcode]; i++)
1490 {
1491 const struct m68k_opcode *opc = opcodes[major_opcode][i];
1492 unsigned long opcode = opc->opcode;
1493 unsigned long match = opc->match;
1494 const char *args = opc->args;
1495
1496 if (*args == '.')
1497 args++;
1498
1499 if (((0xff & buffer[0] & (match >> 24)) == (0xff & (opcode >> 24)))
1500 && ((0xff & buffer[1] & (match >> 16)) == (0xff & (opcode >> 16)))
1501 /* Only fetch the next two bytes if we need to. */
1502 && (((0xffff & match) == 0)
1503 ||
1504 (FETCH_DATA (info, buffer + 4)
1505 && ((0xff & buffer[2] & (match >> 8)) == (0xff & (opcode >> 8)))
1506 && ((0xff & buffer[3] & match) == (0xff & opcode)))
1507 )
1508 && (opc->arch & arch_mask) != 0)
1509 {
1510 /* Don't use for printout the variants of divul and divsl
1511 that have the same register number in two places.
1512 The more general variants will match instead. */
1513 for (d = args; *d; d += 2)
1514 if (d[1] == 'D')
1515 break;
1516
1517 /* Don't use for printout the variants of most floating
1518 point coprocessor instructions which use the same
1519 register number in two places, as above. */
1520 if (*d == '\0')
1521 for (d = args; *d; d += 2)
1522 if (d[1] == 't')
1523 break;
1524
1525 /* Don't match fmovel with more than one register;
1526 wait for fmoveml. */
1527 if (*d == '\0')
1528 {
1529 for (d = args; *d; d += 2)
1530 {
1531 if (d[0] == 's' && d[1] == '8')
1532 {
1533 val = fetch_arg (buffer, d[1], 3, info);
1534 if (val < 0)
1535 return 0;
1536 if ((val & (val - 1)) != 0)
1537 break;
1538 }
1539 }
1540 }
1541
1542 /* Don't match FPU insns with non-default coprocessor ID. */
1543 if (*d == '\0')
1544 {
1545 for (d = args; *d; d += 2)
1546 {
1547 if (d[0] == 'I')
1548 {
1549 val = fetch_arg (buffer, 'd', 3, info);
1550 if (val != 1)
1551 break;
1552 }
1553 }
1554 }
1555
1556 if (*d == '\0')
1557 if ((val = match_insn_m68k (memaddr, info, opc)))
1558 return val;
1559 }
1560 }
1561 return 0;
1562 }
1563
1564 /* Print the m68k instruction at address MEMADDR in debugged memory,
1565 on INFO->STREAM. Returns length of the instruction, in bytes. */
1566
1567 int
1568 print_insn_m68k (bfd_vma memaddr, disassemble_info *info)
1569 {
1570 unsigned int arch_mask;
1571 struct private priv;
1572 int val;
1573
1574 bfd_byte *buffer = priv.the_buffer;
1575
1576 info->private_data = & priv;
1577 /* Tell objdump to use two bytes per chunk
1578 and six bytes per line for displaying raw data. */
1579 info->bytes_per_chunk = 2;
1580 info->bytes_per_line = 6;
1581 info->display_endian = BFD_ENDIAN_BIG;
1582 priv.max_fetched = priv.the_buffer;
1583 priv.insn_start = memaddr;
1584
1585 arch_mask = bfd_m68k_mach_to_features (info->mach);
1586 if (!arch_mask)
1587 {
1588 /* First try printing an m680x0 instruction. Try printing a Coldfire
1589 one if that fails. */
1590 val = m68k_scan_mask (memaddr, info, m68k_mask);
1591 if (val == 0)
1592 val = m68k_scan_mask (memaddr, info, mcf_mask);
1593 }
1594 else
1595 {
1596 val = m68k_scan_mask (memaddr, info, arch_mask);
1597 }
1598
1599 if (val == 0)
1600 /* Handle undefined instructions. */
1601 info->fprintf_func (info->stream, "0%o", (buffer[0] << 8) + buffer[1]);
1602
1603 return val ? val : 2;
1604 }
This page took 0.063864 seconds and 4 git commands to generate.