0a4280108da449257a9d7caa092c1fae42ce734b
[deliverable/binutils-gdb.git] / opcodes / mips-dis.c
1 /* Print mips instructions for GDB, the GNU debugger, or for objdump.
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002
4 Free Software Foundation, Inc.
5 Contributed by Nobuyuki Hikichi(hikichi@sra.co.jp).
6
7 This file is part of GDB, GAS, and the GNU binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 #include "sysdep.h"
24 #include "dis-asm.h"
25 #include "opcode/mips.h"
26 #include "opintl.h"
27
28 /* FIXME: These are needed to figure out if the code is mips16 or
29 not. The low bit of the address is often a good indicator. No
30 symbol table is available when this code runs out in an embedded
31 system as when it is used for disassembler support in a monitor. */
32
33 #if !defined(EMBEDDED_ENV)
34 #define SYMTAB_AVAILABLE 1
35 #include "elf-bfd.h"
36 #include "elf/mips.h"
37 #endif
38
39 /* Mips instructions are at maximum this many bytes long. */
40 #define INSNLEN 4
41
42 static int _print_insn_mips
43 PARAMS ((bfd_vma, struct disassemble_info *, enum bfd_endian));
44 static int print_insn_mips
45 PARAMS ((bfd_vma, unsigned long int, struct disassemble_info *));
46 static void print_insn_arg
47 PARAMS ((const char *, unsigned long, bfd_vma, struct disassemble_info *));
48 static void mips_isa_type
49 PARAMS ((int, int *, int *));
50 static int print_insn_mips16
51 PARAMS ((bfd_vma, struct disassemble_info *));
52 static int is_newabi
53 PARAMS ((Elf_Internal_Ehdr *));
54 static void print_mips16_insn_arg
55 PARAMS ((int, const struct mips_opcode *, int, boolean, int, bfd_vma,
56 struct disassemble_info *));
57 \f
58 /* FIXME: These should be shared with gdb somehow. */
59
60 /* The mips16 register names. */
61 static const char * const mips16_reg_names[] = {
62 "s0", "s1", "v0", "v1", "a0", "a1", "a2", "a3"
63 };
64
65 static const char * const mips32_reg_names[] = {
66 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
67 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
68 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
69 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
70 "sr", "lo", "hi", "bad", "cause", "pc",
71 "fv0", "$f1", "fv1", "$f3", "ft0", "$f5", "ft1", "$f7",
72 "ft2", "$f9", "ft3", "$f11", "fa0", "$f13", "fa1", "$f15",
73 "ft4", "f17", "ft5", "f19", "fs0", "f21", "fs1", "f23",
74 "fs2", "$f25", "fs3", "$f27", "fs4", "$f29", "fs5", "$f31",
75 "fsr", "fir", "fp", "inx", "rand", "tlblo", "ctxt", "tlbhi",
76 "epc", "prid"
77 };
78
79 static const char * const mips64_reg_names[] = {
80 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
81 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
82 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
83 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
84 "sr", "lo", "hi", "bad", "cause", "pc",
85 "fv0", "$f1", "fv1", "$f3", "ft0", "ft1", "ft2", "ft3",
86 "ft4", "ft5", "ft6", "ft7", "fa0", "fa1", "fa2", "fa3",
87 "fa4", "fa5", "fa6", "fa7", "ft8", "ft9", "ft10", "ft11",
88 "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7",
89 "fsr", "fir", "fp", "inx", "rand", "tlblo", "ctxt", "tlbhi",
90 "epc", "prid"
91 };
92
93 /* Scalar register names. _print_insn_mips() decides which register name
94 table to use. */
95 static const char * const *reg_names = NULL;
96 \f
97 /* Print insn arguments for 32/64-bit code. */
98
99 static void
100 print_insn_arg (d, l, pc, info)
101 const char *d;
102 register unsigned long int l;
103 bfd_vma pc;
104 struct disassemble_info *info;
105 {
106 int delta;
107
108 switch (*d)
109 {
110 case ',':
111 case '(':
112 case ')':
113 case '[':
114 case ']':
115 (*info->fprintf_func) (info->stream, "%c", *d);
116 break;
117
118 case 's':
119 case 'b':
120 case 'r':
121 case 'v':
122 (*info->fprintf_func) (info->stream, "%s",
123 reg_names[(l >> OP_SH_RS) & OP_MASK_RS]);
124 break;
125
126 case 't':
127 case 'w':
128 (*info->fprintf_func) (info->stream, "%s",
129 reg_names[(l >> OP_SH_RT) & OP_MASK_RT]);
130 break;
131
132 case 'i':
133 case 'u':
134 (*info->fprintf_func) (info->stream, "0x%x",
135 (l >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE);
136 break;
137
138 case 'j': /* Same as i, but sign-extended. */
139 case 'o':
140 delta = (l >> OP_SH_DELTA) & OP_MASK_DELTA;
141 if (delta & 0x8000)
142 delta |= ~0xffff;
143 (*info->fprintf_func) (info->stream, "%d",
144 delta);
145 break;
146
147 case 'h':
148 (*info->fprintf_func) (info->stream, "0x%x",
149 (unsigned int) ((l >> OP_SH_PREFX)
150 & OP_MASK_PREFX));
151 break;
152
153 case 'k':
154 (*info->fprintf_func) (info->stream, "0x%x",
155 (unsigned int) ((l >> OP_SH_CACHE)
156 & OP_MASK_CACHE));
157 break;
158
159 case 'a':
160 info->target = (((pc + 4) & ~(bfd_vma) 0x0fffffff)
161 | (((l >> OP_SH_TARGET) & OP_MASK_TARGET) << 2));
162 (*info->print_address_func) (info->target, info);
163 break;
164
165 case 'p':
166 /* Sign extend the displacement. */
167 delta = (l >> OP_SH_DELTA) & OP_MASK_DELTA;
168 if (delta & 0x8000)
169 delta |= ~0xffff;
170 info->target = (delta << 2) + pc + INSNLEN;
171 (*info->print_address_func) (info->target, info);
172 break;
173
174 case 'd':
175 (*info->fprintf_func) (info->stream, "%s",
176 reg_names[(l >> OP_SH_RD) & OP_MASK_RD]);
177 break;
178
179 case 'U':
180 {
181 /* First check for both rd and rt being equal. */
182 unsigned int reg = (l >> OP_SH_RD) & OP_MASK_RD;
183 if (reg == ((l >> OP_SH_RT) & OP_MASK_RT))
184 (*info->fprintf_func) (info->stream, "%s",
185 reg_names[reg]);
186 else
187 {
188 /* If one is zero use the other. */
189 if (reg == 0)
190 (*info->fprintf_func) (info->stream, "%s",
191 reg_names[(l >> OP_SH_RT) & OP_MASK_RT]);
192 else if (((l >> OP_SH_RT) & OP_MASK_RT) == 0)
193 (*info->fprintf_func) (info->stream, "%s",
194 reg_names[reg]);
195 else /* Bogus, result depends on processor. */
196 (*info->fprintf_func) (info->stream, "%s or %s",
197 reg_names[reg],
198 reg_names[(l >> OP_SH_RT) & OP_MASK_RT]);
199 }
200 }
201 break;
202
203 case 'z':
204 (*info->fprintf_func) (info->stream, "%s", reg_names[0]);
205 break;
206
207 case '<':
208 (*info->fprintf_func) (info->stream, "0x%x",
209 (l >> OP_SH_SHAMT) & OP_MASK_SHAMT);
210 break;
211
212 case 'c':
213 (*info->fprintf_func) (info->stream, "0x%x",
214 (l >> OP_SH_CODE) & OP_MASK_CODE);
215 break;
216
217 case 'q':
218 (*info->fprintf_func) (info->stream, "0x%x",
219 (l >> OP_SH_CODE2) & OP_MASK_CODE2);
220 break;
221
222 case 'C':
223 (*info->fprintf_func) (info->stream, "0x%x",
224 (l >> OP_SH_COPZ) & OP_MASK_COPZ);
225 break;
226
227 case 'B':
228 (*info->fprintf_func) (info->stream, "0x%x",
229 (l >> OP_SH_CODE20) & OP_MASK_CODE20);
230 break;
231
232 case 'J':
233 (*info->fprintf_func) (info->stream, "0x%x",
234 (l >> OP_SH_CODE19) & OP_MASK_CODE19);
235 break;
236
237 case 'S':
238 case 'V':
239 (*info->fprintf_func) (info->stream, "$f%d",
240 (l >> OP_SH_FS) & OP_MASK_FS);
241 break;
242
243 case 'T':
244 case 'W':
245 (*info->fprintf_func) (info->stream, "$f%d",
246 (l >> OP_SH_FT) & OP_MASK_FT);
247 break;
248
249 case 'D':
250 (*info->fprintf_func) (info->stream, "$f%d",
251 (l >> OP_SH_FD) & OP_MASK_FD);
252 break;
253
254 case 'R':
255 (*info->fprintf_func) (info->stream, "$f%d",
256 (l >> OP_SH_FR) & OP_MASK_FR);
257 break;
258
259 case 'E':
260 (*info->fprintf_func) (info->stream, "$%d",
261 (l >> OP_SH_RT) & OP_MASK_RT);
262 break;
263
264 case 'G':
265 (*info->fprintf_func) (info->stream, "$%d",
266 (l >> OP_SH_RD) & OP_MASK_RD);
267 break;
268
269 case 'N':
270 (*info->fprintf_func) (info->stream, "$fcc%d",
271 (l >> OP_SH_BCC) & OP_MASK_BCC);
272 break;
273
274 case 'M':
275 (*info->fprintf_func) (info->stream, "$fcc%d",
276 (l >> OP_SH_CCC) & OP_MASK_CCC);
277 break;
278
279 case 'P':
280 (*info->fprintf_func) (info->stream, "%d",
281 (l >> OP_SH_PERFREG) & OP_MASK_PERFREG);
282 break;
283
284 case 'e':
285 (*info->fprintf_func) (info->stream, "%d",
286 (l >> OP_SH_VECBYTE) & OP_MASK_VECBYTE);
287 break;
288
289 case '%':
290 (*info->fprintf_func) (info->stream, "%d",
291 (l >> OP_SH_VECALIGN) & OP_MASK_VECALIGN);
292 break;
293
294 case 'H':
295 (*info->fprintf_func) (info->stream, "%d",
296 (l >> OP_SH_SEL) & OP_MASK_SEL);
297 break;
298
299 case 'O':
300 (*info->fprintf_func) (info->stream, "%d",
301 (l >> OP_SH_ALN) & OP_MASK_ALN);
302 break;
303
304 case 'Q':
305 {
306 unsigned int vsel = (l >> OP_SH_VSEL) & OP_MASK_VSEL;
307 if ((vsel & 0x10) == 0)
308 {
309 int fmt;
310 vsel &= 0x0f;
311 for (fmt = 0; fmt < 3; fmt++, vsel >>= 1)
312 if ((vsel & 1) == 0)
313 break;
314 (*info->fprintf_func) (info->stream, "$v%d[%d]",
315 (l >> OP_SH_FT) & OP_MASK_FT,
316 vsel >> 1);
317 }
318 else if ((vsel & 0x08) == 0)
319 {
320 (*info->fprintf_func) (info->stream, "$v%d",
321 (l >> OP_SH_FT) & OP_MASK_FT);
322 }
323 else
324 {
325 (*info->fprintf_func) (info->stream, "0x%x",
326 (l >> OP_SH_FT) & OP_MASK_FT);
327 }
328 }
329 break;
330
331 case 'X':
332 (*info->fprintf_func) (info->stream, "$v%d",
333 (l >> OP_SH_FD) & OP_MASK_FD);
334 break;
335
336 case 'Y':
337 (*info->fprintf_func) (info->stream, "$v%d",
338 (l >> OP_SH_FS) & OP_MASK_FS);
339 break;
340
341 case 'Z':
342 (*info->fprintf_func) (info->stream, "$v%d",
343 (l >> OP_SH_FT) & OP_MASK_FT);
344 break;
345
346 default:
347 /* xgettext:c-format */
348 (*info->fprintf_func) (info->stream,
349 _("# internal error, undefined modifier(%c)"),
350 *d);
351 break;
352 }
353 }
354 \f
355 /* Figure out the MIPS ISA and CPU based on the machine number. */
356
357 static void
358 mips_isa_type (mach, isa, cputype)
359 int mach;
360 int *isa;
361 int *cputype;
362 {
363 switch (mach)
364 {
365 case bfd_mach_mips3000:
366 *cputype = CPU_R3000;
367 *isa = ISA_MIPS1;
368 break;
369 case bfd_mach_mips3900:
370 *cputype = CPU_R3900;
371 *isa = ISA_MIPS1;
372 break;
373 case bfd_mach_mips4000:
374 *cputype = CPU_R4000;
375 *isa = ISA_MIPS3;
376 break;
377 case bfd_mach_mips4010:
378 *cputype = CPU_R4010;
379 *isa = ISA_MIPS2;
380 break;
381 case bfd_mach_mips4100:
382 *cputype = CPU_VR4100;
383 *isa = ISA_MIPS3;
384 break;
385 case bfd_mach_mips4111:
386 *cputype = CPU_R4111;
387 *isa = ISA_MIPS3;
388 break;
389 case bfd_mach_mips4120:
390 *cputype = CPU_VR4120;
391 *isa = ISA_MIPS3;
392 break;
393 case bfd_mach_mips4300:
394 *cputype = CPU_R4300;
395 *isa = ISA_MIPS3;
396 break;
397 case bfd_mach_mips4400:
398 *cputype = CPU_R4400;
399 *isa = ISA_MIPS3;
400 break;
401 case bfd_mach_mips4600:
402 *cputype = CPU_R4600;
403 *isa = ISA_MIPS3;
404 break;
405 case bfd_mach_mips4650:
406 *cputype = CPU_R4650;
407 *isa = ISA_MIPS3;
408 break;
409 case bfd_mach_mips5000:
410 *cputype = CPU_R5000;
411 *isa = ISA_MIPS4;
412 break;
413 case bfd_mach_mips5400:
414 *cputype = CPU_VR5400;
415 *isa = ISA_MIPS4;
416 break;
417 case bfd_mach_mips5500:
418 *cputype = CPU_VR5500;
419 *isa = ISA_MIPS4;
420 break;
421 case bfd_mach_mips6000:
422 *cputype = CPU_R6000;
423 *isa = ISA_MIPS2;
424 break;
425 case bfd_mach_mips8000:
426 *cputype = CPU_R8000;
427 *isa = ISA_MIPS4;
428 break;
429 case bfd_mach_mips10000:
430 *cputype = CPU_R10000;
431 *isa = ISA_MIPS4;
432 break;
433 case bfd_mach_mips12000:
434 *cputype = CPU_R12000;
435 *isa = ISA_MIPS4;
436 break;
437 case bfd_mach_mips16:
438 *cputype = CPU_MIPS16;
439 *isa = ISA_MIPS3 | INSN_MIPS16;
440 break;
441 case bfd_mach_mips5:
442 *cputype = CPU_MIPS5;
443 *isa = ISA_MIPS5;
444 break;
445 case bfd_mach_mips_sb1:
446 *cputype = CPU_SB1;
447 *isa = ISA_MIPS64 | INSN_MIPS3D | INSN_SB1;
448 break;
449 case bfd_mach_mipsisa32:
450 *cputype = CPU_MIPS32;
451 /* For stock MIPS32, disassemble all applicable MIPS-specified ASEs.
452 Note that MIPS-3D and MDMX are not applicable to MIPS32. (See
453 _MIPS32 Architecture For Programmers Volume I: Introduction to the
454 MIPS32 Architecture_ (MIPS Document Number MD00082, Revision 0.95),
455 page 1. */
456 *isa = ISA_MIPS32 | INSN_MIPS16;
457 break;
458 case bfd_mach_mipsisa64:
459 *cputype = CPU_MIPS64;
460 /* For stock MIPS64, disassemble all applicable MIPS-specified ASEs. */
461 *isa = ISA_MIPS64 | INSN_MIPS16 | INSN_MIPS3D | INSN_MDMX;
462 break;
463
464 default:
465 *cputype = CPU_R3000;
466 *isa = ISA_MIPS3;
467 break;
468 }
469 }
470
471 /* Check if the object uses NewABI conventions. */
472
473 static int
474 is_newabi (header)
475 Elf_Internal_Ehdr *header;
476 {
477 /* There are no old-style ABIs which use 64-bit ELF. */
478 if (header->e_ident[EI_CLASS] == ELFCLASS64)
479 return 1;
480
481 /* If a 32-bit ELF file, n32 is a new-style ABI. */
482 if ((header->e_flags & EF_MIPS_ABI2) != 0)
483 return 1;
484
485 return 0;
486 }
487 \f
488 /* Print the mips instruction at address MEMADDR in debugged memory,
489 on using INFO. Returns length of the instruction, in bytes, which is
490 always INSNLEN. BIGENDIAN must be 1 if this is big-endian code, 0 if
491 this is little-endian code. */
492
493 static int
494 print_insn_mips (memaddr, word, info)
495 bfd_vma memaddr;
496 unsigned long int word;
497 struct disassemble_info *info;
498 {
499 register const struct mips_opcode *op;
500 int target_processor, mips_isa;
501 static boolean init = 0;
502 static const struct mips_opcode *mips_hash[OP_MASK_OP + 1];
503
504 /* Build a hash table to shorten the search time. */
505 if (! init)
506 {
507 unsigned int i;
508
509 for (i = 0; i <= OP_MASK_OP; i++)
510 {
511 for (op = mips_opcodes; op < &mips_opcodes[NUMOPCODES]; op++)
512 {
513 if (op->pinfo == INSN_MACRO)
514 continue;
515 if (i == ((op->match >> OP_SH_OP) & OP_MASK_OP))
516 {
517 mips_hash[i] = op;
518 break;
519 }
520 }
521 }
522
523 init = 1;
524 }
525
526 #if ! SYMTAB_AVAILABLE
527 /* This is running out on a target machine, not in a host tool.
528 FIXME: Where does mips_target_info come from? */
529 target_processor = mips_target_info.processor;
530 mips_isa = mips_target_info.isa;
531 #else
532 mips_isa_type (info->mach, &mips_isa, &target_processor);
533 #endif
534
535 info->bytes_per_chunk = INSNLEN;
536 info->display_endian = info->endian;
537 info->insn_info_valid = 1;
538 info->branch_delay_insns = 0;
539 info->data_size = 0;
540 info->insn_type = dis_nonbranch;
541 info->target = 0;
542 info->target2 = 0;
543
544 op = mips_hash[(word >> OP_SH_OP) & OP_MASK_OP];
545 if (op != NULL)
546 {
547 for (; op < &mips_opcodes[NUMOPCODES]; op++)
548 {
549 if (op->pinfo != INSN_MACRO && (word & op->mask) == op->match)
550 {
551 register const char *d;
552
553 /* We always allow to disassemble the jalx instruction. */
554 if (! OPCODE_IS_MEMBER (op, mips_isa, target_processor)
555 && strcmp (op->name, "jalx"))
556 continue;
557
558 /* Figure out instruction type and branch delay information. */
559 if ((op->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
560 {
561 if ((info->insn_type & INSN_WRITE_GPR_31) != 0)
562 info->insn_type = dis_jsr;
563 else
564 info->insn_type = dis_branch;
565 info->branch_delay_insns = 1;
566 }
567 else if ((op->pinfo & (INSN_COND_BRANCH_DELAY
568 | INSN_COND_BRANCH_LIKELY)) != 0)
569 {
570 if ((info->insn_type & INSN_WRITE_GPR_31) != 0)
571 info->insn_type = dis_condjsr;
572 else
573 info->insn_type = dis_condbranch;
574 info->branch_delay_insns = 1;
575 }
576 else if ((op->pinfo & (INSN_STORE_MEMORY
577 | INSN_LOAD_MEMORY_DELAY)) != 0)
578 info->insn_type = dis_dref;
579
580 (*info->fprintf_func) (info->stream, "%s", op->name);
581
582 d = op->args;
583 if (d != NULL && *d != '\0')
584 {
585 (*info->fprintf_func) (info->stream, "\t");
586 for (; *d != '\0'; d++)
587 print_insn_arg (d, word, memaddr, info);
588 }
589
590 return INSNLEN;
591 }
592 }
593 }
594
595 /* Handle undefined instructions. */
596 info->insn_type = dis_noninsn;
597 (*info->fprintf_func) (info->stream, "0x%x", word);
598 return INSNLEN;
599 }
600 \f
601 /* In an environment where we do not know the symbol type of the
602 instruction we are forced to assume that the low order bit of the
603 instructions' address may mark it as a mips16 instruction. If we
604 are single stepping, or the pc is within the disassembled function,
605 this works. Otherwise, we need a clue. Sometimes. */
606
607 static int
608 _print_insn_mips (memaddr, info, endianness)
609 bfd_vma memaddr;
610 struct disassemble_info *info;
611 enum bfd_endian endianness;
612 {
613 bfd_byte buffer[INSNLEN];
614 int status;
615
616 #if 1
617 /* FIXME: If odd address, this is CLEARLY a mips 16 instruction. */
618 /* Only a few tools will work this way. */
619 if (memaddr & 0x01)
620 return print_insn_mips16 (memaddr, info);
621 #endif
622
623 #if SYMTAB_AVAILABLE
624 if (info->mach == bfd_mach_mips16
625 || (info->flavour == bfd_target_elf_flavour
626 && info->symbols != NULL
627 && ((*(elf_symbol_type **) info->symbols)->internal_elf_sym.st_other
628 == STO_MIPS16)))
629 return print_insn_mips16 (memaddr, info);
630 #endif
631
632 /* Use mips64_reg_names for new ABI. */
633 reg_names = mips32_reg_names;
634
635 if (info->flavour == bfd_target_elf_flavour && info->symbols != NULL)
636 {
637 Elf_Internal_Ehdr *header;
638
639 header = elf_elfheader (bfd_asymbol_bfd (*(info->symbols)));
640 if (is_newabi (header))
641 reg_names = mips64_reg_names;
642 }
643
644 status = (*info->read_memory_func) (memaddr, buffer, INSNLEN, info);
645 if (status == 0)
646 {
647 unsigned long insn;
648
649 if (endianness == BFD_ENDIAN_BIG)
650 insn = (unsigned long) bfd_getb32 (buffer);
651 else
652 insn = (unsigned long) bfd_getl32 (buffer);
653
654 return print_insn_mips (memaddr, insn, info);
655 }
656 else
657 {
658 (*info->memory_error_func) (status, memaddr, info);
659 return -1;
660 }
661 }
662
663 int
664 print_insn_big_mips (memaddr, info)
665 bfd_vma memaddr;
666 struct disassemble_info *info;
667 {
668 return _print_insn_mips (memaddr, info, BFD_ENDIAN_BIG);
669 }
670
671 int
672 print_insn_little_mips (memaddr, info)
673 bfd_vma memaddr;
674 struct disassemble_info *info;
675 {
676 return _print_insn_mips (memaddr, info, BFD_ENDIAN_LITTLE);
677 }
678 \f
679 /* Disassemble mips16 instructions. */
680
681 static int
682 print_insn_mips16 (memaddr, info)
683 bfd_vma memaddr;
684 struct disassemble_info *info;
685 {
686 int status;
687 bfd_byte buffer[2];
688 int length;
689 int insn;
690 boolean use_extend;
691 int extend = 0;
692 const struct mips_opcode *op, *opend;
693
694 info->bytes_per_chunk = 2;
695 info->display_endian = info->endian;
696 info->insn_info_valid = 1;
697 info->branch_delay_insns = 0;
698 info->data_size = 0;
699 info->insn_type = dis_nonbranch;
700 info->target = 0;
701 info->target2 = 0;
702
703 status = (*info->read_memory_func) (memaddr, buffer, 2, info);
704 if (status != 0)
705 {
706 (*info->memory_error_func) (status, memaddr, info);
707 return -1;
708 }
709
710 length = 2;
711
712 if (info->endian == BFD_ENDIAN_BIG)
713 insn = bfd_getb16 (buffer);
714 else
715 insn = bfd_getl16 (buffer);
716
717 /* Handle the extend opcode specially. */
718 use_extend = false;
719 if ((insn & 0xf800) == 0xf000)
720 {
721 use_extend = true;
722 extend = insn & 0x7ff;
723
724 memaddr += 2;
725
726 status = (*info->read_memory_func) (memaddr, buffer, 2, info);
727 if (status != 0)
728 {
729 (*info->fprintf_func) (info->stream, "extend 0x%x",
730 (unsigned int) extend);
731 (*info->memory_error_func) (status, memaddr, info);
732 return -1;
733 }
734
735 if (info->endian == BFD_ENDIAN_BIG)
736 insn = bfd_getb16 (buffer);
737 else
738 insn = bfd_getl16 (buffer);
739
740 /* Check for an extend opcode followed by an extend opcode. */
741 if ((insn & 0xf800) == 0xf000)
742 {
743 (*info->fprintf_func) (info->stream, "extend 0x%x",
744 (unsigned int) extend);
745 info->insn_type = dis_noninsn;
746 return length;
747 }
748
749 length += 2;
750 }
751
752 /* FIXME: Should probably use a hash table on the major opcode here. */
753
754 opend = mips16_opcodes + bfd_mips16_num_opcodes;
755 for (op = mips16_opcodes; op < opend; op++)
756 {
757 if (op->pinfo != INSN_MACRO && (insn & op->mask) == op->match)
758 {
759 const char *s;
760
761 if (strchr (op->args, 'a') != NULL)
762 {
763 if (use_extend)
764 {
765 (*info->fprintf_func) (info->stream, "extend 0x%x",
766 (unsigned int) extend);
767 info->insn_type = dis_noninsn;
768 return length - 2;
769 }
770
771 use_extend = false;
772
773 memaddr += 2;
774
775 status = (*info->read_memory_func) (memaddr, buffer, 2,
776 info);
777 if (status == 0)
778 {
779 use_extend = true;
780 if (info->endian == BFD_ENDIAN_BIG)
781 extend = bfd_getb16 (buffer);
782 else
783 extend = bfd_getl16 (buffer);
784 length += 2;
785 }
786 }
787
788 (*info->fprintf_func) (info->stream, "%s", op->name);
789 if (op->args[0] != '\0')
790 (*info->fprintf_func) (info->stream, "\t");
791
792 for (s = op->args; *s != '\0'; s++)
793 {
794 if (*s == ','
795 && s[1] == 'w'
796 && (((insn >> MIPS16OP_SH_RX) & MIPS16OP_MASK_RX)
797 == ((insn >> MIPS16OP_SH_RY) & MIPS16OP_MASK_RY)))
798 {
799 /* Skip the register and the comma. */
800 ++s;
801 continue;
802 }
803 if (*s == ','
804 && s[1] == 'v'
805 && (((insn >> MIPS16OP_SH_RZ) & MIPS16OP_MASK_RZ)
806 == ((insn >> MIPS16OP_SH_RX) & MIPS16OP_MASK_RX)))
807 {
808 /* Skip the register and the comma. */
809 ++s;
810 continue;
811 }
812 print_mips16_insn_arg (*s, op, insn, use_extend, extend, memaddr,
813 info);
814 }
815
816 if ((op->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
817 {
818 info->branch_delay_insns = 1;
819 if (info->insn_type != dis_jsr)
820 info->insn_type = dis_branch;
821 }
822
823 return length;
824 }
825 }
826
827 if (use_extend)
828 (*info->fprintf_func) (info->stream, "0x%x", extend | 0xf000);
829 (*info->fprintf_func) (info->stream, "0x%x", insn);
830 info->insn_type = dis_noninsn;
831
832 return length;
833 }
834
835 /* Disassemble an operand for a mips16 instruction. */
836
837 static void
838 print_mips16_insn_arg (type, op, l, use_extend, extend, memaddr, info)
839 char type;
840 const struct mips_opcode *op;
841 int l;
842 boolean use_extend;
843 int extend;
844 bfd_vma memaddr;
845 struct disassemble_info *info;
846 {
847 switch (type)
848 {
849 case ',':
850 case '(':
851 case ')':
852 (*info->fprintf_func) (info->stream, "%c", type);
853 break;
854
855 case 'y':
856 case 'w':
857 (*info->fprintf_func) (info->stream, "%s",
858 mips16_reg_names[((l >> MIPS16OP_SH_RY)
859 & MIPS16OP_MASK_RY)]);
860 break;
861
862 case 'x':
863 case 'v':
864 (*info->fprintf_func) (info->stream, "%s",
865 mips16_reg_names[((l >> MIPS16OP_SH_RX)
866 & MIPS16OP_MASK_RX)]);
867 break;
868
869 case 'z':
870 (*info->fprintf_func) (info->stream, "%s",
871 mips16_reg_names[((l >> MIPS16OP_SH_RZ)
872 & MIPS16OP_MASK_RZ)]);
873 break;
874
875 case 'Z':
876 (*info->fprintf_func) (info->stream, "%s",
877 mips16_reg_names[((l >> MIPS16OP_SH_MOVE32Z)
878 & MIPS16OP_MASK_MOVE32Z)]);
879 break;
880
881 case '0':
882 (*info->fprintf_func) (info->stream, "%s", mips32_reg_names[0]);
883 break;
884
885 case 'S':
886 (*info->fprintf_func) (info->stream, "%s", mips32_reg_names[29]);
887 break;
888
889 case 'P':
890 (*info->fprintf_func) (info->stream, "$pc");
891 break;
892
893 case 'R':
894 (*info->fprintf_func) (info->stream, "%s", mips32_reg_names[31]);
895 break;
896
897 case 'X':
898 (*info->fprintf_func) (info->stream, "%s",
899 mips32_reg_names[((l >> MIPS16OP_SH_REGR32)
900 & MIPS16OP_MASK_REGR32)]);
901 break;
902
903 case 'Y':
904 (*info->fprintf_func) (info->stream, "%s",
905 mips32_reg_names[MIPS16OP_EXTRACT_REG32R (l)]);
906 break;
907
908 case '<':
909 case '>':
910 case '[':
911 case ']':
912 case '4':
913 case '5':
914 case 'H':
915 case 'W':
916 case 'D':
917 case 'j':
918 case '6':
919 case '8':
920 case 'V':
921 case 'C':
922 case 'U':
923 case 'k':
924 case 'K':
925 case 'p':
926 case 'q':
927 case 'A':
928 case 'B':
929 case 'E':
930 {
931 int immed, nbits, shift, signedp, extbits, pcrel, extu, branch;
932
933 shift = 0;
934 signedp = 0;
935 extbits = 16;
936 pcrel = 0;
937 extu = 0;
938 branch = 0;
939 switch (type)
940 {
941 case '<':
942 nbits = 3;
943 immed = (l >> MIPS16OP_SH_RZ) & MIPS16OP_MASK_RZ;
944 extbits = 5;
945 extu = 1;
946 break;
947 case '>':
948 nbits = 3;
949 immed = (l >> MIPS16OP_SH_RX) & MIPS16OP_MASK_RX;
950 extbits = 5;
951 extu = 1;
952 break;
953 case '[':
954 nbits = 3;
955 immed = (l >> MIPS16OP_SH_RZ) & MIPS16OP_MASK_RZ;
956 extbits = 6;
957 extu = 1;
958 break;
959 case ']':
960 nbits = 3;
961 immed = (l >> MIPS16OP_SH_RX) & MIPS16OP_MASK_RX;
962 extbits = 6;
963 extu = 1;
964 break;
965 case '4':
966 nbits = 4;
967 immed = (l >> MIPS16OP_SH_IMM4) & MIPS16OP_MASK_IMM4;
968 signedp = 1;
969 extbits = 15;
970 break;
971 case '5':
972 nbits = 5;
973 immed = (l >> MIPS16OP_SH_IMM5) & MIPS16OP_MASK_IMM5;
974 info->insn_type = dis_dref;
975 info->data_size = 1;
976 break;
977 case 'H':
978 nbits = 5;
979 shift = 1;
980 immed = (l >> MIPS16OP_SH_IMM5) & MIPS16OP_MASK_IMM5;
981 info->insn_type = dis_dref;
982 info->data_size = 2;
983 break;
984 case 'W':
985 nbits = 5;
986 shift = 2;
987 immed = (l >> MIPS16OP_SH_IMM5) & MIPS16OP_MASK_IMM5;
988 if ((op->pinfo & MIPS16_INSN_READ_PC) == 0
989 && (op->pinfo & MIPS16_INSN_READ_SP) == 0)
990 {
991 info->insn_type = dis_dref;
992 info->data_size = 4;
993 }
994 break;
995 case 'D':
996 nbits = 5;
997 shift = 3;
998 immed = (l >> MIPS16OP_SH_IMM5) & MIPS16OP_MASK_IMM5;
999 info->insn_type = dis_dref;
1000 info->data_size = 8;
1001 break;
1002 case 'j':
1003 nbits = 5;
1004 immed = (l >> MIPS16OP_SH_IMM5) & MIPS16OP_MASK_IMM5;
1005 signedp = 1;
1006 break;
1007 case '6':
1008 nbits = 6;
1009 immed = (l >> MIPS16OP_SH_IMM6) & MIPS16OP_MASK_IMM6;
1010 break;
1011 case '8':
1012 nbits = 8;
1013 immed = (l >> MIPS16OP_SH_IMM8) & MIPS16OP_MASK_IMM8;
1014 break;
1015 case 'V':
1016 nbits = 8;
1017 shift = 2;
1018 immed = (l >> MIPS16OP_SH_IMM8) & MIPS16OP_MASK_IMM8;
1019 /* FIXME: This might be lw, or it might be addiu to $sp or
1020 $pc. We assume it's load. */
1021 info->insn_type = dis_dref;
1022 info->data_size = 4;
1023 break;
1024 case 'C':
1025 nbits = 8;
1026 shift = 3;
1027 immed = (l >> MIPS16OP_SH_IMM8) & MIPS16OP_MASK_IMM8;
1028 info->insn_type = dis_dref;
1029 info->data_size = 8;
1030 break;
1031 case 'U':
1032 nbits = 8;
1033 immed = (l >> MIPS16OP_SH_IMM8) & MIPS16OP_MASK_IMM8;
1034 extu = 1;
1035 break;
1036 case 'k':
1037 nbits = 8;
1038 immed = (l >> MIPS16OP_SH_IMM8) & MIPS16OP_MASK_IMM8;
1039 signedp = 1;
1040 break;
1041 case 'K':
1042 nbits = 8;
1043 shift = 3;
1044 immed = (l >> MIPS16OP_SH_IMM8) & MIPS16OP_MASK_IMM8;
1045 signedp = 1;
1046 break;
1047 case 'p':
1048 nbits = 8;
1049 immed = (l >> MIPS16OP_SH_IMM8) & MIPS16OP_MASK_IMM8;
1050 signedp = 1;
1051 pcrel = 1;
1052 branch = 1;
1053 info->insn_type = dis_condbranch;
1054 break;
1055 case 'q':
1056 nbits = 11;
1057 immed = (l >> MIPS16OP_SH_IMM11) & MIPS16OP_MASK_IMM11;
1058 signedp = 1;
1059 pcrel = 1;
1060 branch = 1;
1061 info->insn_type = dis_branch;
1062 break;
1063 case 'A':
1064 nbits = 8;
1065 shift = 2;
1066 immed = (l >> MIPS16OP_SH_IMM8) & MIPS16OP_MASK_IMM8;
1067 pcrel = 1;
1068 /* FIXME: This can be lw or la. We assume it is lw. */
1069 info->insn_type = dis_dref;
1070 info->data_size = 4;
1071 break;
1072 case 'B':
1073 nbits = 5;
1074 shift = 3;
1075 immed = (l >> MIPS16OP_SH_IMM5) & MIPS16OP_MASK_IMM5;
1076 pcrel = 1;
1077 info->insn_type = dis_dref;
1078 info->data_size = 8;
1079 break;
1080 case 'E':
1081 nbits = 5;
1082 shift = 2;
1083 immed = (l >> MIPS16OP_SH_IMM5) & MIPS16OP_MASK_IMM5;
1084 pcrel = 1;
1085 break;
1086 default:
1087 abort ();
1088 }
1089
1090 if (! use_extend)
1091 {
1092 if (signedp && immed >= (1 << (nbits - 1)))
1093 immed -= 1 << nbits;
1094 immed <<= shift;
1095 if ((type == '<' || type == '>' || type == '[' || type == ']')
1096 && immed == 0)
1097 immed = 8;
1098 }
1099 else
1100 {
1101 if (extbits == 16)
1102 immed |= ((extend & 0x1f) << 11) | (extend & 0x7e0);
1103 else if (extbits == 15)
1104 immed |= ((extend & 0xf) << 11) | (extend & 0x7f0);
1105 else
1106 immed = ((extend >> 6) & 0x1f) | (extend & 0x20);
1107 immed &= (1 << extbits) - 1;
1108 if (! extu && immed >= (1 << (extbits - 1)))
1109 immed -= 1 << extbits;
1110 }
1111
1112 if (! pcrel)
1113 (*info->fprintf_func) (info->stream, "%d", immed);
1114 else
1115 {
1116 bfd_vma baseaddr;
1117
1118 if (branch)
1119 {
1120 immed *= 2;
1121 baseaddr = memaddr + 2;
1122 }
1123 else if (use_extend)
1124 baseaddr = memaddr - 2;
1125 else
1126 {
1127 int status;
1128 bfd_byte buffer[2];
1129
1130 baseaddr = memaddr;
1131
1132 /* If this instruction is in the delay slot of a jr
1133 instruction, the base address is the address of the
1134 jr instruction. If it is in the delay slot of jalr
1135 instruction, the base address is the address of the
1136 jalr instruction. This test is unreliable: we have
1137 no way of knowing whether the previous word is
1138 instruction or data. */
1139 status = (*info->read_memory_func) (memaddr - 4, buffer, 2,
1140 info);
1141 if (status == 0
1142 && (((info->endian == BFD_ENDIAN_BIG
1143 ? bfd_getb16 (buffer)
1144 : bfd_getl16 (buffer))
1145 & 0xf800) == 0x1800))
1146 baseaddr = memaddr - 4;
1147 else
1148 {
1149 status = (*info->read_memory_func) (memaddr - 2, buffer,
1150 2, info);
1151 if (status == 0
1152 && (((info->endian == BFD_ENDIAN_BIG
1153 ? bfd_getb16 (buffer)
1154 : bfd_getl16 (buffer))
1155 & 0xf81f) == 0xe800))
1156 baseaddr = memaddr - 2;
1157 }
1158 }
1159 info->target = (baseaddr & ~((1 << shift) - 1)) + immed;
1160 (*info->print_address_func) (info->target, info);
1161 }
1162 }
1163 break;
1164
1165 case 'a':
1166 if (! use_extend)
1167 extend = 0;
1168 l = ((l & 0x1f) << 23) | ((l & 0x3e0) << 13) | (extend << 2);
1169 info->target = ((memaddr + 4) & ~(bfd_vma) 0x0fffffff) | l;
1170 (*info->print_address_func) (info->target, info);
1171 info->insn_type = dis_jsr;
1172 info->branch_delay_insns = 1;
1173 break;
1174
1175 case 'l':
1176 case 'L':
1177 {
1178 int need_comma, amask, smask;
1179
1180 need_comma = 0;
1181
1182 l = (l >> MIPS16OP_SH_IMM6) & MIPS16OP_MASK_IMM6;
1183
1184 amask = (l >> 3) & 7;
1185
1186 if (amask > 0 && amask < 5)
1187 {
1188 (*info->fprintf_func) (info->stream, "%s", mips32_reg_names[4]);
1189 if (amask > 1)
1190 (*info->fprintf_func) (info->stream, "-%s",
1191 mips32_reg_names[amask + 3]);
1192 need_comma = 1;
1193 }
1194
1195 smask = (l >> 1) & 3;
1196 if (smask == 3)
1197 {
1198 (*info->fprintf_func) (info->stream, "%s??",
1199 need_comma ? "," : "");
1200 need_comma = 1;
1201 }
1202 else if (smask > 0)
1203 {
1204 (*info->fprintf_func) (info->stream, "%s%s",
1205 need_comma ? "," : "",
1206 mips32_reg_names[16]);
1207 if (smask > 1)
1208 (*info->fprintf_func) (info->stream, "-%s",
1209 mips32_reg_names[smask + 15]);
1210 need_comma = 1;
1211 }
1212
1213 if (l & 1)
1214 {
1215 (*info->fprintf_func) (info->stream, "%s%s",
1216 need_comma ? "," : "",
1217 mips32_reg_names[31]);
1218 need_comma = 1;
1219 }
1220
1221 if (amask == 5 || amask == 6)
1222 {
1223 (*info->fprintf_func) (info->stream, "%s$f0",
1224 need_comma ? "," : "");
1225 if (amask == 6)
1226 (*info->fprintf_func) (info->stream, "-$f1");
1227 }
1228 }
1229 break;
1230
1231 default:
1232 /* xgettext:c-format */
1233 (*info->fprintf_func)
1234 (info->stream,
1235 _("# internal disassembler error, unrecognised modifier (%c)"),
1236 type);
1237 abort ();
1238 }
1239 }
This page took 0.056532 seconds and 3 git commands to generate.