CRED: Wrap task credential accesses in the capabilities code
[deliverable/linux.git] / security / security.c
1 /*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19
20 /* Boot-time LSM user choice */
21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22
23 /* things that live in capability.c */
24 extern struct security_operations default_security_ops;
25 extern void security_fixup_ops(struct security_operations *ops);
26
27 struct security_operations *security_ops; /* Initialized to NULL */
28
29 /* amount of vm to protect from userspace access */
30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
31
32 static inline int verify(struct security_operations *ops)
33 {
34 /* verify the security_operations structure exists */
35 if (!ops)
36 return -EINVAL;
37 security_fixup_ops(ops);
38 return 0;
39 }
40
41 static void __init do_security_initcalls(void)
42 {
43 initcall_t *call;
44 call = __security_initcall_start;
45 while (call < __security_initcall_end) {
46 (*call) ();
47 call++;
48 }
49 }
50
51 /**
52 * security_init - initializes the security framework
53 *
54 * This should be called early in the kernel initialization sequence.
55 */
56 int __init security_init(void)
57 {
58 printk(KERN_INFO "Security Framework initialized\n");
59
60 security_fixup_ops(&default_security_ops);
61 security_ops = &default_security_ops;
62 do_security_initcalls();
63
64 return 0;
65 }
66
67 /* Save user chosen LSM */
68 static int __init choose_lsm(char *str)
69 {
70 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
71 return 1;
72 }
73 __setup("security=", choose_lsm);
74
75 /**
76 * security_module_enable - Load given security module on boot ?
77 * @ops: a pointer to the struct security_operations that is to be checked.
78 *
79 * Each LSM must pass this method before registering its own operations
80 * to avoid security registration races. This method may also be used
81 * to check if your LSM is currently loaded during kernel initialization.
82 *
83 * Return true if:
84 * -The passed LSM is the one chosen by user at boot time,
85 * -or user didn't specify a specific LSM and we're the first to ask
86 * for registration permission,
87 * -or the passed LSM is currently loaded.
88 * Otherwise, return false.
89 */
90 int __init security_module_enable(struct security_operations *ops)
91 {
92 if (!*chosen_lsm)
93 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
94 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
95 return 0;
96
97 return 1;
98 }
99
100 /**
101 * register_security - registers a security framework with the kernel
102 * @ops: a pointer to the struct security_options that is to be registered
103 *
104 * This function allows a security module to register itself with the
105 * kernel security subsystem. Some rudimentary checking is done on the @ops
106 * value passed to this function. You'll need to check first if your LSM
107 * is allowed to register its @ops by calling security_module_enable(@ops).
108 *
109 * If there is already a security module registered with the kernel,
110 * an error will be returned. Otherwise %0 is returned on success.
111 */
112 int register_security(struct security_operations *ops)
113 {
114 if (verify(ops)) {
115 printk(KERN_DEBUG "%s could not verify "
116 "security_operations structure.\n", __func__);
117 return -EINVAL;
118 }
119
120 if (security_ops != &default_security_ops)
121 return -EAGAIN;
122
123 security_ops = ops;
124
125 return 0;
126 }
127
128 /* Security operations */
129
130 int security_ptrace_may_access(struct task_struct *child, unsigned int mode)
131 {
132 return security_ops->ptrace_may_access(child, mode);
133 }
134
135 int security_ptrace_traceme(struct task_struct *parent)
136 {
137 return security_ops->ptrace_traceme(parent);
138 }
139
140 int security_capget(struct task_struct *target,
141 kernel_cap_t *effective,
142 kernel_cap_t *inheritable,
143 kernel_cap_t *permitted)
144 {
145 return security_ops->capget(target, effective, inheritable, permitted);
146 }
147
148 int security_capset_check(struct task_struct *target,
149 kernel_cap_t *effective,
150 kernel_cap_t *inheritable,
151 kernel_cap_t *permitted)
152 {
153 return security_ops->capset_check(target, effective, inheritable, permitted);
154 }
155
156 void security_capset_set(struct task_struct *target,
157 kernel_cap_t *effective,
158 kernel_cap_t *inheritable,
159 kernel_cap_t *permitted)
160 {
161 security_ops->capset_set(target, effective, inheritable, permitted);
162 }
163
164 int security_capable(struct task_struct *tsk, int cap)
165 {
166 return security_ops->capable(tsk, cap, SECURITY_CAP_AUDIT);
167 }
168
169 int security_capable_noaudit(struct task_struct *tsk, int cap)
170 {
171 return security_ops->capable(tsk, cap, SECURITY_CAP_NOAUDIT);
172 }
173
174 int security_acct(struct file *file)
175 {
176 return security_ops->acct(file);
177 }
178
179 int security_sysctl(struct ctl_table *table, int op)
180 {
181 return security_ops->sysctl(table, op);
182 }
183
184 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
185 {
186 return security_ops->quotactl(cmds, type, id, sb);
187 }
188
189 int security_quota_on(struct dentry *dentry)
190 {
191 return security_ops->quota_on(dentry);
192 }
193
194 int security_syslog(int type)
195 {
196 return security_ops->syslog(type);
197 }
198
199 int security_settime(struct timespec *ts, struct timezone *tz)
200 {
201 return security_ops->settime(ts, tz);
202 }
203
204 int security_vm_enough_memory(long pages)
205 {
206 WARN_ON(current->mm == NULL);
207 return security_ops->vm_enough_memory(current->mm, pages);
208 }
209
210 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
211 {
212 WARN_ON(mm == NULL);
213 return security_ops->vm_enough_memory(mm, pages);
214 }
215
216 int security_vm_enough_memory_kern(long pages)
217 {
218 /* If current->mm is a kernel thread then we will pass NULL,
219 for this specific case that is fine */
220 return security_ops->vm_enough_memory(current->mm, pages);
221 }
222
223 int security_bprm_alloc(struct linux_binprm *bprm)
224 {
225 return security_ops->bprm_alloc_security(bprm);
226 }
227
228 void security_bprm_free(struct linux_binprm *bprm)
229 {
230 security_ops->bprm_free_security(bprm);
231 }
232
233 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
234 {
235 security_ops->bprm_apply_creds(bprm, unsafe);
236 }
237
238 void security_bprm_post_apply_creds(struct linux_binprm *bprm)
239 {
240 security_ops->bprm_post_apply_creds(bprm);
241 }
242
243 int security_bprm_set(struct linux_binprm *bprm)
244 {
245 return security_ops->bprm_set_security(bprm);
246 }
247
248 int security_bprm_check(struct linux_binprm *bprm)
249 {
250 return security_ops->bprm_check_security(bprm);
251 }
252
253 int security_bprm_secureexec(struct linux_binprm *bprm)
254 {
255 return security_ops->bprm_secureexec(bprm);
256 }
257
258 int security_sb_alloc(struct super_block *sb)
259 {
260 return security_ops->sb_alloc_security(sb);
261 }
262
263 void security_sb_free(struct super_block *sb)
264 {
265 security_ops->sb_free_security(sb);
266 }
267
268 int security_sb_copy_data(char *orig, char *copy)
269 {
270 return security_ops->sb_copy_data(orig, copy);
271 }
272 EXPORT_SYMBOL(security_sb_copy_data);
273
274 int security_sb_kern_mount(struct super_block *sb, void *data)
275 {
276 return security_ops->sb_kern_mount(sb, data);
277 }
278
279 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
280 {
281 return security_ops->sb_show_options(m, sb);
282 }
283
284 int security_sb_statfs(struct dentry *dentry)
285 {
286 return security_ops->sb_statfs(dentry);
287 }
288
289 int security_sb_mount(char *dev_name, struct path *path,
290 char *type, unsigned long flags, void *data)
291 {
292 return security_ops->sb_mount(dev_name, path, type, flags, data);
293 }
294
295 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
296 {
297 return security_ops->sb_check_sb(mnt, path);
298 }
299
300 int security_sb_umount(struct vfsmount *mnt, int flags)
301 {
302 return security_ops->sb_umount(mnt, flags);
303 }
304
305 void security_sb_umount_close(struct vfsmount *mnt)
306 {
307 security_ops->sb_umount_close(mnt);
308 }
309
310 void security_sb_umount_busy(struct vfsmount *mnt)
311 {
312 security_ops->sb_umount_busy(mnt);
313 }
314
315 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
316 {
317 security_ops->sb_post_remount(mnt, flags, data);
318 }
319
320 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
321 {
322 security_ops->sb_post_addmount(mnt, mountpoint);
323 }
324
325 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
326 {
327 return security_ops->sb_pivotroot(old_path, new_path);
328 }
329
330 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
331 {
332 security_ops->sb_post_pivotroot(old_path, new_path);
333 }
334
335 int security_sb_set_mnt_opts(struct super_block *sb,
336 struct security_mnt_opts *opts)
337 {
338 return security_ops->sb_set_mnt_opts(sb, opts);
339 }
340 EXPORT_SYMBOL(security_sb_set_mnt_opts);
341
342 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
343 struct super_block *newsb)
344 {
345 security_ops->sb_clone_mnt_opts(oldsb, newsb);
346 }
347 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
348
349 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
350 {
351 return security_ops->sb_parse_opts_str(options, opts);
352 }
353 EXPORT_SYMBOL(security_sb_parse_opts_str);
354
355 int security_inode_alloc(struct inode *inode)
356 {
357 inode->i_security = NULL;
358 return security_ops->inode_alloc_security(inode);
359 }
360
361 void security_inode_free(struct inode *inode)
362 {
363 security_ops->inode_free_security(inode);
364 }
365
366 int security_inode_init_security(struct inode *inode, struct inode *dir,
367 char **name, void **value, size_t *len)
368 {
369 if (unlikely(IS_PRIVATE(inode)))
370 return -EOPNOTSUPP;
371 return security_ops->inode_init_security(inode, dir, name, value, len);
372 }
373 EXPORT_SYMBOL(security_inode_init_security);
374
375 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
376 {
377 if (unlikely(IS_PRIVATE(dir)))
378 return 0;
379 return security_ops->inode_create(dir, dentry, mode);
380 }
381
382 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
383 struct dentry *new_dentry)
384 {
385 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
386 return 0;
387 return security_ops->inode_link(old_dentry, dir, new_dentry);
388 }
389
390 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
391 {
392 if (unlikely(IS_PRIVATE(dentry->d_inode)))
393 return 0;
394 return security_ops->inode_unlink(dir, dentry);
395 }
396
397 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
398 const char *old_name)
399 {
400 if (unlikely(IS_PRIVATE(dir)))
401 return 0;
402 return security_ops->inode_symlink(dir, dentry, old_name);
403 }
404
405 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
406 {
407 if (unlikely(IS_PRIVATE(dir)))
408 return 0;
409 return security_ops->inode_mkdir(dir, dentry, mode);
410 }
411
412 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
413 {
414 if (unlikely(IS_PRIVATE(dentry->d_inode)))
415 return 0;
416 return security_ops->inode_rmdir(dir, dentry);
417 }
418
419 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
420 {
421 if (unlikely(IS_PRIVATE(dir)))
422 return 0;
423 return security_ops->inode_mknod(dir, dentry, mode, dev);
424 }
425
426 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
427 struct inode *new_dir, struct dentry *new_dentry)
428 {
429 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
430 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
431 return 0;
432 return security_ops->inode_rename(old_dir, old_dentry,
433 new_dir, new_dentry);
434 }
435
436 int security_inode_readlink(struct dentry *dentry)
437 {
438 if (unlikely(IS_PRIVATE(dentry->d_inode)))
439 return 0;
440 return security_ops->inode_readlink(dentry);
441 }
442
443 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
444 {
445 if (unlikely(IS_PRIVATE(dentry->d_inode)))
446 return 0;
447 return security_ops->inode_follow_link(dentry, nd);
448 }
449
450 int security_inode_permission(struct inode *inode, int mask)
451 {
452 if (unlikely(IS_PRIVATE(inode)))
453 return 0;
454 return security_ops->inode_permission(inode, mask);
455 }
456
457 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
458 {
459 if (unlikely(IS_PRIVATE(dentry->d_inode)))
460 return 0;
461 return security_ops->inode_setattr(dentry, attr);
462 }
463 EXPORT_SYMBOL_GPL(security_inode_setattr);
464
465 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
466 {
467 if (unlikely(IS_PRIVATE(dentry->d_inode)))
468 return 0;
469 return security_ops->inode_getattr(mnt, dentry);
470 }
471
472 void security_inode_delete(struct inode *inode)
473 {
474 if (unlikely(IS_PRIVATE(inode)))
475 return;
476 security_ops->inode_delete(inode);
477 }
478
479 int security_inode_setxattr(struct dentry *dentry, const char *name,
480 const void *value, size_t size, int flags)
481 {
482 if (unlikely(IS_PRIVATE(dentry->d_inode)))
483 return 0;
484 return security_ops->inode_setxattr(dentry, name, value, size, flags);
485 }
486
487 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
488 const void *value, size_t size, int flags)
489 {
490 if (unlikely(IS_PRIVATE(dentry->d_inode)))
491 return;
492 security_ops->inode_post_setxattr(dentry, name, value, size, flags);
493 }
494
495 int security_inode_getxattr(struct dentry *dentry, const char *name)
496 {
497 if (unlikely(IS_PRIVATE(dentry->d_inode)))
498 return 0;
499 return security_ops->inode_getxattr(dentry, name);
500 }
501
502 int security_inode_listxattr(struct dentry *dentry)
503 {
504 if (unlikely(IS_PRIVATE(dentry->d_inode)))
505 return 0;
506 return security_ops->inode_listxattr(dentry);
507 }
508
509 int security_inode_removexattr(struct dentry *dentry, const char *name)
510 {
511 if (unlikely(IS_PRIVATE(dentry->d_inode)))
512 return 0;
513 return security_ops->inode_removexattr(dentry, name);
514 }
515
516 int security_inode_need_killpriv(struct dentry *dentry)
517 {
518 return security_ops->inode_need_killpriv(dentry);
519 }
520
521 int security_inode_killpriv(struct dentry *dentry)
522 {
523 return security_ops->inode_killpriv(dentry);
524 }
525
526 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
527 {
528 if (unlikely(IS_PRIVATE(inode)))
529 return 0;
530 return security_ops->inode_getsecurity(inode, name, buffer, alloc);
531 }
532
533 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
534 {
535 if (unlikely(IS_PRIVATE(inode)))
536 return 0;
537 return security_ops->inode_setsecurity(inode, name, value, size, flags);
538 }
539
540 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
541 {
542 if (unlikely(IS_PRIVATE(inode)))
543 return 0;
544 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
545 }
546
547 void security_inode_getsecid(const struct inode *inode, u32 *secid)
548 {
549 security_ops->inode_getsecid(inode, secid);
550 }
551
552 int security_file_permission(struct file *file, int mask)
553 {
554 return security_ops->file_permission(file, mask);
555 }
556
557 int security_file_alloc(struct file *file)
558 {
559 return security_ops->file_alloc_security(file);
560 }
561
562 void security_file_free(struct file *file)
563 {
564 security_ops->file_free_security(file);
565 }
566
567 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
568 {
569 return security_ops->file_ioctl(file, cmd, arg);
570 }
571
572 int security_file_mmap(struct file *file, unsigned long reqprot,
573 unsigned long prot, unsigned long flags,
574 unsigned long addr, unsigned long addr_only)
575 {
576 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
577 }
578
579 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
580 unsigned long prot)
581 {
582 return security_ops->file_mprotect(vma, reqprot, prot);
583 }
584
585 int security_file_lock(struct file *file, unsigned int cmd)
586 {
587 return security_ops->file_lock(file, cmd);
588 }
589
590 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
591 {
592 return security_ops->file_fcntl(file, cmd, arg);
593 }
594
595 int security_file_set_fowner(struct file *file)
596 {
597 return security_ops->file_set_fowner(file);
598 }
599
600 int security_file_send_sigiotask(struct task_struct *tsk,
601 struct fown_struct *fown, int sig)
602 {
603 return security_ops->file_send_sigiotask(tsk, fown, sig);
604 }
605
606 int security_file_receive(struct file *file)
607 {
608 return security_ops->file_receive(file);
609 }
610
611 int security_dentry_open(struct file *file)
612 {
613 return security_ops->dentry_open(file);
614 }
615
616 int security_task_create(unsigned long clone_flags)
617 {
618 return security_ops->task_create(clone_flags);
619 }
620
621 int security_task_alloc(struct task_struct *p)
622 {
623 return security_ops->task_alloc_security(p);
624 }
625
626 void security_task_free(struct task_struct *p)
627 {
628 security_ops->task_free_security(p);
629 }
630
631 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
632 {
633 return security_ops->task_setuid(id0, id1, id2, flags);
634 }
635
636 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
637 uid_t old_suid, int flags)
638 {
639 return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
640 }
641
642 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
643 {
644 return security_ops->task_setgid(id0, id1, id2, flags);
645 }
646
647 int security_task_setpgid(struct task_struct *p, pid_t pgid)
648 {
649 return security_ops->task_setpgid(p, pgid);
650 }
651
652 int security_task_getpgid(struct task_struct *p)
653 {
654 return security_ops->task_getpgid(p);
655 }
656
657 int security_task_getsid(struct task_struct *p)
658 {
659 return security_ops->task_getsid(p);
660 }
661
662 void security_task_getsecid(struct task_struct *p, u32 *secid)
663 {
664 security_ops->task_getsecid(p, secid);
665 }
666 EXPORT_SYMBOL(security_task_getsecid);
667
668 int security_task_setgroups(struct group_info *group_info)
669 {
670 return security_ops->task_setgroups(group_info);
671 }
672
673 int security_task_setnice(struct task_struct *p, int nice)
674 {
675 return security_ops->task_setnice(p, nice);
676 }
677
678 int security_task_setioprio(struct task_struct *p, int ioprio)
679 {
680 return security_ops->task_setioprio(p, ioprio);
681 }
682
683 int security_task_getioprio(struct task_struct *p)
684 {
685 return security_ops->task_getioprio(p);
686 }
687
688 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
689 {
690 return security_ops->task_setrlimit(resource, new_rlim);
691 }
692
693 int security_task_setscheduler(struct task_struct *p,
694 int policy, struct sched_param *lp)
695 {
696 return security_ops->task_setscheduler(p, policy, lp);
697 }
698
699 int security_task_getscheduler(struct task_struct *p)
700 {
701 return security_ops->task_getscheduler(p);
702 }
703
704 int security_task_movememory(struct task_struct *p)
705 {
706 return security_ops->task_movememory(p);
707 }
708
709 int security_task_kill(struct task_struct *p, struct siginfo *info,
710 int sig, u32 secid)
711 {
712 return security_ops->task_kill(p, info, sig, secid);
713 }
714
715 int security_task_wait(struct task_struct *p)
716 {
717 return security_ops->task_wait(p);
718 }
719
720 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
721 unsigned long arg4, unsigned long arg5, long *rc_p)
722 {
723 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
724 }
725
726 void security_task_reparent_to_init(struct task_struct *p)
727 {
728 security_ops->task_reparent_to_init(p);
729 }
730
731 void security_task_to_inode(struct task_struct *p, struct inode *inode)
732 {
733 security_ops->task_to_inode(p, inode);
734 }
735
736 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
737 {
738 return security_ops->ipc_permission(ipcp, flag);
739 }
740
741 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
742 {
743 security_ops->ipc_getsecid(ipcp, secid);
744 }
745
746 int security_msg_msg_alloc(struct msg_msg *msg)
747 {
748 return security_ops->msg_msg_alloc_security(msg);
749 }
750
751 void security_msg_msg_free(struct msg_msg *msg)
752 {
753 security_ops->msg_msg_free_security(msg);
754 }
755
756 int security_msg_queue_alloc(struct msg_queue *msq)
757 {
758 return security_ops->msg_queue_alloc_security(msq);
759 }
760
761 void security_msg_queue_free(struct msg_queue *msq)
762 {
763 security_ops->msg_queue_free_security(msq);
764 }
765
766 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
767 {
768 return security_ops->msg_queue_associate(msq, msqflg);
769 }
770
771 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
772 {
773 return security_ops->msg_queue_msgctl(msq, cmd);
774 }
775
776 int security_msg_queue_msgsnd(struct msg_queue *msq,
777 struct msg_msg *msg, int msqflg)
778 {
779 return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
780 }
781
782 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
783 struct task_struct *target, long type, int mode)
784 {
785 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
786 }
787
788 int security_shm_alloc(struct shmid_kernel *shp)
789 {
790 return security_ops->shm_alloc_security(shp);
791 }
792
793 void security_shm_free(struct shmid_kernel *shp)
794 {
795 security_ops->shm_free_security(shp);
796 }
797
798 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
799 {
800 return security_ops->shm_associate(shp, shmflg);
801 }
802
803 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
804 {
805 return security_ops->shm_shmctl(shp, cmd);
806 }
807
808 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
809 {
810 return security_ops->shm_shmat(shp, shmaddr, shmflg);
811 }
812
813 int security_sem_alloc(struct sem_array *sma)
814 {
815 return security_ops->sem_alloc_security(sma);
816 }
817
818 void security_sem_free(struct sem_array *sma)
819 {
820 security_ops->sem_free_security(sma);
821 }
822
823 int security_sem_associate(struct sem_array *sma, int semflg)
824 {
825 return security_ops->sem_associate(sma, semflg);
826 }
827
828 int security_sem_semctl(struct sem_array *sma, int cmd)
829 {
830 return security_ops->sem_semctl(sma, cmd);
831 }
832
833 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
834 unsigned nsops, int alter)
835 {
836 return security_ops->sem_semop(sma, sops, nsops, alter);
837 }
838
839 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
840 {
841 if (unlikely(inode && IS_PRIVATE(inode)))
842 return;
843 security_ops->d_instantiate(dentry, inode);
844 }
845 EXPORT_SYMBOL(security_d_instantiate);
846
847 int security_getprocattr(struct task_struct *p, char *name, char **value)
848 {
849 return security_ops->getprocattr(p, name, value);
850 }
851
852 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
853 {
854 return security_ops->setprocattr(p, name, value, size);
855 }
856
857 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
858 {
859 return security_ops->netlink_send(sk, skb);
860 }
861
862 int security_netlink_recv(struct sk_buff *skb, int cap)
863 {
864 return security_ops->netlink_recv(skb, cap);
865 }
866 EXPORT_SYMBOL(security_netlink_recv);
867
868 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
869 {
870 return security_ops->secid_to_secctx(secid, secdata, seclen);
871 }
872 EXPORT_SYMBOL(security_secid_to_secctx);
873
874 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
875 {
876 return security_ops->secctx_to_secid(secdata, seclen, secid);
877 }
878 EXPORT_SYMBOL(security_secctx_to_secid);
879
880 void security_release_secctx(char *secdata, u32 seclen)
881 {
882 security_ops->release_secctx(secdata, seclen);
883 }
884 EXPORT_SYMBOL(security_release_secctx);
885
886 #ifdef CONFIG_SECURITY_NETWORK
887
888 int security_unix_stream_connect(struct socket *sock, struct socket *other,
889 struct sock *newsk)
890 {
891 return security_ops->unix_stream_connect(sock, other, newsk);
892 }
893 EXPORT_SYMBOL(security_unix_stream_connect);
894
895 int security_unix_may_send(struct socket *sock, struct socket *other)
896 {
897 return security_ops->unix_may_send(sock, other);
898 }
899 EXPORT_SYMBOL(security_unix_may_send);
900
901 int security_socket_create(int family, int type, int protocol, int kern)
902 {
903 return security_ops->socket_create(family, type, protocol, kern);
904 }
905
906 int security_socket_post_create(struct socket *sock, int family,
907 int type, int protocol, int kern)
908 {
909 return security_ops->socket_post_create(sock, family, type,
910 protocol, kern);
911 }
912
913 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
914 {
915 return security_ops->socket_bind(sock, address, addrlen);
916 }
917
918 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
919 {
920 return security_ops->socket_connect(sock, address, addrlen);
921 }
922
923 int security_socket_listen(struct socket *sock, int backlog)
924 {
925 return security_ops->socket_listen(sock, backlog);
926 }
927
928 int security_socket_accept(struct socket *sock, struct socket *newsock)
929 {
930 return security_ops->socket_accept(sock, newsock);
931 }
932
933 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
934 {
935 security_ops->socket_post_accept(sock, newsock);
936 }
937
938 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
939 {
940 return security_ops->socket_sendmsg(sock, msg, size);
941 }
942
943 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
944 int size, int flags)
945 {
946 return security_ops->socket_recvmsg(sock, msg, size, flags);
947 }
948
949 int security_socket_getsockname(struct socket *sock)
950 {
951 return security_ops->socket_getsockname(sock);
952 }
953
954 int security_socket_getpeername(struct socket *sock)
955 {
956 return security_ops->socket_getpeername(sock);
957 }
958
959 int security_socket_getsockopt(struct socket *sock, int level, int optname)
960 {
961 return security_ops->socket_getsockopt(sock, level, optname);
962 }
963
964 int security_socket_setsockopt(struct socket *sock, int level, int optname)
965 {
966 return security_ops->socket_setsockopt(sock, level, optname);
967 }
968
969 int security_socket_shutdown(struct socket *sock, int how)
970 {
971 return security_ops->socket_shutdown(sock, how);
972 }
973
974 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
975 {
976 return security_ops->socket_sock_rcv_skb(sk, skb);
977 }
978 EXPORT_SYMBOL(security_sock_rcv_skb);
979
980 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
981 int __user *optlen, unsigned len)
982 {
983 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
984 }
985
986 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
987 {
988 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
989 }
990 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
991
992 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
993 {
994 return security_ops->sk_alloc_security(sk, family, priority);
995 }
996
997 void security_sk_free(struct sock *sk)
998 {
999 security_ops->sk_free_security(sk);
1000 }
1001
1002 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1003 {
1004 security_ops->sk_clone_security(sk, newsk);
1005 }
1006
1007 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1008 {
1009 security_ops->sk_getsecid(sk, &fl->secid);
1010 }
1011 EXPORT_SYMBOL(security_sk_classify_flow);
1012
1013 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1014 {
1015 security_ops->req_classify_flow(req, fl);
1016 }
1017 EXPORT_SYMBOL(security_req_classify_flow);
1018
1019 void security_sock_graft(struct sock *sk, struct socket *parent)
1020 {
1021 security_ops->sock_graft(sk, parent);
1022 }
1023 EXPORT_SYMBOL(security_sock_graft);
1024
1025 int security_inet_conn_request(struct sock *sk,
1026 struct sk_buff *skb, struct request_sock *req)
1027 {
1028 return security_ops->inet_conn_request(sk, skb, req);
1029 }
1030 EXPORT_SYMBOL(security_inet_conn_request);
1031
1032 void security_inet_csk_clone(struct sock *newsk,
1033 const struct request_sock *req)
1034 {
1035 security_ops->inet_csk_clone(newsk, req);
1036 }
1037
1038 void security_inet_conn_established(struct sock *sk,
1039 struct sk_buff *skb)
1040 {
1041 security_ops->inet_conn_established(sk, skb);
1042 }
1043
1044 #endif /* CONFIG_SECURITY_NETWORK */
1045
1046 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1047
1048 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1049 {
1050 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1051 }
1052 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1053
1054 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1055 struct xfrm_sec_ctx **new_ctxp)
1056 {
1057 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1058 }
1059
1060 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1061 {
1062 security_ops->xfrm_policy_free_security(ctx);
1063 }
1064 EXPORT_SYMBOL(security_xfrm_policy_free);
1065
1066 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1067 {
1068 return security_ops->xfrm_policy_delete_security(ctx);
1069 }
1070
1071 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1072 {
1073 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1074 }
1075 EXPORT_SYMBOL(security_xfrm_state_alloc);
1076
1077 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1078 struct xfrm_sec_ctx *polsec, u32 secid)
1079 {
1080 if (!polsec)
1081 return 0;
1082 /*
1083 * We want the context to be taken from secid which is usually
1084 * from the sock.
1085 */
1086 return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1087 }
1088
1089 int security_xfrm_state_delete(struct xfrm_state *x)
1090 {
1091 return security_ops->xfrm_state_delete_security(x);
1092 }
1093 EXPORT_SYMBOL(security_xfrm_state_delete);
1094
1095 void security_xfrm_state_free(struct xfrm_state *x)
1096 {
1097 security_ops->xfrm_state_free_security(x);
1098 }
1099
1100 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1101 {
1102 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1103 }
1104
1105 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1106 struct xfrm_policy *xp, struct flowi *fl)
1107 {
1108 return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1109 }
1110
1111 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1112 {
1113 return security_ops->xfrm_decode_session(skb, secid, 1);
1114 }
1115
1116 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1117 {
1118 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1119
1120 BUG_ON(rc);
1121 }
1122 EXPORT_SYMBOL(security_skb_classify_flow);
1123
1124 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
1125
1126 #ifdef CONFIG_KEYS
1127
1128 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1129 {
1130 return security_ops->key_alloc(key, tsk, flags);
1131 }
1132
1133 void security_key_free(struct key *key)
1134 {
1135 security_ops->key_free(key);
1136 }
1137
1138 int security_key_permission(key_ref_t key_ref,
1139 struct task_struct *context, key_perm_t perm)
1140 {
1141 return security_ops->key_permission(key_ref, context, perm);
1142 }
1143
1144 int security_key_getsecurity(struct key *key, char **_buffer)
1145 {
1146 return security_ops->key_getsecurity(key, _buffer);
1147 }
1148
1149 #endif /* CONFIG_KEYS */
1150
1151 #ifdef CONFIG_AUDIT
1152
1153 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1154 {
1155 return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1156 }
1157
1158 int security_audit_rule_known(struct audit_krule *krule)
1159 {
1160 return security_ops->audit_rule_known(krule);
1161 }
1162
1163 void security_audit_rule_free(void *lsmrule)
1164 {
1165 security_ops->audit_rule_free(lsmrule);
1166 }
1167
1168 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1169 struct audit_context *actx)
1170 {
1171 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1172 }
1173
1174 #endif /* CONFIG_AUDIT */
This page took 0.075386 seconds and 5 git commands to generate.