Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[deliverable/linux.git] / security / selinux / avc.c
1 /*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.
9 *
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
14 * as published by the Free Software Foundation.
15 */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
34 #include "classmap.h"
35
36 #define AVC_CACHE_SLOTS 512
37 #define AVC_DEF_CACHE_THRESHOLD 512
38 #define AVC_CACHE_RECLAIM 16
39
40 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
41 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field)
42 #else
43 #define avc_cache_stats_incr(field) do {} while (0)
44 #endif
45
46 struct avc_entry {
47 u32 ssid;
48 u32 tsid;
49 u16 tclass;
50 struct av_decision avd;
51 };
52
53 struct avc_node {
54 struct avc_entry ae;
55 struct hlist_node list; /* anchored in avc_cache->slots[i] */
56 struct rcu_head rhead;
57 };
58
59 struct avc_cache {
60 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
61 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
62 atomic_t lru_hint; /* LRU hint for reclaim scan */
63 atomic_t active_nodes;
64 u32 latest_notif; /* latest revocation notification */
65 };
66
67 struct avc_callback_node {
68 int (*callback) (u32 event);
69 u32 events;
70 struct avc_callback_node *next;
71 };
72
73 /* Exported via selinufs */
74 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
75
76 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
77 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
78 #endif
79
80 static struct avc_cache avc_cache;
81 static struct avc_callback_node *avc_callbacks;
82 static struct kmem_cache *avc_node_cachep;
83
84 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
85 {
86 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
87 }
88
89 /**
90 * avc_dump_av - Display an access vector in human-readable form.
91 * @tclass: target security class
92 * @av: access vector
93 */
94 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
95 {
96 const char **perms;
97 int i, perm;
98
99 if (av == 0) {
100 audit_log_format(ab, " null");
101 return;
102 }
103
104 perms = secclass_map[tclass-1].perms;
105
106 audit_log_format(ab, " {");
107 i = 0;
108 perm = 1;
109 while (i < (sizeof(av) * 8)) {
110 if ((perm & av) && perms[i]) {
111 audit_log_format(ab, " %s", perms[i]);
112 av &= ~perm;
113 }
114 i++;
115 perm <<= 1;
116 }
117
118 if (av)
119 audit_log_format(ab, " 0x%x", av);
120
121 audit_log_format(ab, " }");
122 }
123
124 /**
125 * avc_dump_query - Display a SID pair and a class in human-readable form.
126 * @ssid: source security identifier
127 * @tsid: target security identifier
128 * @tclass: target security class
129 */
130 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
131 {
132 int rc;
133 char *scontext;
134 u32 scontext_len;
135
136 rc = security_sid_to_context(ssid, &scontext, &scontext_len);
137 if (rc)
138 audit_log_format(ab, "ssid=%d", ssid);
139 else {
140 audit_log_format(ab, "scontext=%s", scontext);
141 kfree(scontext);
142 }
143
144 rc = security_sid_to_context(tsid, &scontext, &scontext_len);
145 if (rc)
146 audit_log_format(ab, " tsid=%d", tsid);
147 else {
148 audit_log_format(ab, " tcontext=%s", scontext);
149 kfree(scontext);
150 }
151
152 BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
153 audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
154 }
155
156 /**
157 * avc_init - Initialize the AVC.
158 *
159 * Initialize the access vector cache.
160 */
161 void __init avc_init(void)
162 {
163 int i;
164
165 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
166 INIT_HLIST_HEAD(&avc_cache.slots[i]);
167 spin_lock_init(&avc_cache.slots_lock[i]);
168 }
169 atomic_set(&avc_cache.active_nodes, 0);
170 atomic_set(&avc_cache.lru_hint, 0);
171
172 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
173 0, SLAB_PANIC, NULL);
174
175 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
176 }
177
178 int avc_get_hash_stats(char *page)
179 {
180 int i, chain_len, max_chain_len, slots_used;
181 struct avc_node *node;
182 struct hlist_head *head;
183
184 rcu_read_lock();
185
186 slots_used = 0;
187 max_chain_len = 0;
188 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
189 head = &avc_cache.slots[i];
190 if (!hlist_empty(head)) {
191 slots_used++;
192 chain_len = 0;
193 hlist_for_each_entry_rcu(node, head, list)
194 chain_len++;
195 if (chain_len > max_chain_len)
196 max_chain_len = chain_len;
197 }
198 }
199
200 rcu_read_unlock();
201
202 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
203 "longest chain: %d\n",
204 atomic_read(&avc_cache.active_nodes),
205 slots_used, AVC_CACHE_SLOTS, max_chain_len);
206 }
207
208 static void avc_node_free(struct rcu_head *rhead)
209 {
210 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
211 kmem_cache_free(avc_node_cachep, node);
212 avc_cache_stats_incr(frees);
213 }
214
215 static void avc_node_delete(struct avc_node *node)
216 {
217 hlist_del_rcu(&node->list);
218 call_rcu(&node->rhead, avc_node_free);
219 atomic_dec(&avc_cache.active_nodes);
220 }
221
222 static void avc_node_kill(struct avc_node *node)
223 {
224 kmem_cache_free(avc_node_cachep, node);
225 avc_cache_stats_incr(frees);
226 atomic_dec(&avc_cache.active_nodes);
227 }
228
229 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
230 {
231 hlist_replace_rcu(&old->list, &new->list);
232 call_rcu(&old->rhead, avc_node_free);
233 atomic_dec(&avc_cache.active_nodes);
234 }
235
236 static inline int avc_reclaim_node(void)
237 {
238 struct avc_node *node;
239 int hvalue, try, ecx;
240 unsigned long flags;
241 struct hlist_head *head;
242 spinlock_t *lock;
243
244 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
245 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
246 head = &avc_cache.slots[hvalue];
247 lock = &avc_cache.slots_lock[hvalue];
248
249 if (!spin_trylock_irqsave(lock, flags))
250 continue;
251
252 rcu_read_lock();
253 hlist_for_each_entry(node, head, list) {
254 avc_node_delete(node);
255 avc_cache_stats_incr(reclaims);
256 ecx++;
257 if (ecx >= AVC_CACHE_RECLAIM) {
258 rcu_read_unlock();
259 spin_unlock_irqrestore(lock, flags);
260 goto out;
261 }
262 }
263 rcu_read_unlock();
264 spin_unlock_irqrestore(lock, flags);
265 }
266 out:
267 return ecx;
268 }
269
270 static struct avc_node *avc_alloc_node(void)
271 {
272 struct avc_node *node;
273
274 node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC|__GFP_NOMEMALLOC);
275 if (!node)
276 goto out;
277
278 INIT_HLIST_NODE(&node->list);
279 avc_cache_stats_incr(allocations);
280
281 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
282 avc_reclaim_node();
283
284 out:
285 return node;
286 }
287
288 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
289 {
290 node->ae.ssid = ssid;
291 node->ae.tsid = tsid;
292 node->ae.tclass = tclass;
293 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
294 }
295
296 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
297 {
298 struct avc_node *node, *ret = NULL;
299 int hvalue;
300 struct hlist_head *head;
301
302 hvalue = avc_hash(ssid, tsid, tclass);
303 head = &avc_cache.slots[hvalue];
304 hlist_for_each_entry_rcu(node, head, list) {
305 if (ssid == node->ae.ssid &&
306 tclass == node->ae.tclass &&
307 tsid == node->ae.tsid) {
308 ret = node;
309 break;
310 }
311 }
312
313 return ret;
314 }
315
316 /**
317 * avc_lookup - Look up an AVC entry.
318 * @ssid: source security identifier
319 * @tsid: target security identifier
320 * @tclass: target security class
321 *
322 * Look up an AVC entry that is valid for the
323 * (@ssid, @tsid), interpreting the permissions
324 * based on @tclass. If a valid AVC entry exists,
325 * then this function returns the avc_node.
326 * Otherwise, this function returns NULL.
327 */
328 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
329 {
330 struct avc_node *node;
331
332 avc_cache_stats_incr(lookups);
333 node = avc_search_node(ssid, tsid, tclass);
334
335 if (node)
336 return node;
337
338 avc_cache_stats_incr(misses);
339 return NULL;
340 }
341
342 static int avc_latest_notif_update(int seqno, int is_insert)
343 {
344 int ret = 0;
345 static DEFINE_SPINLOCK(notif_lock);
346 unsigned long flag;
347
348 spin_lock_irqsave(&notif_lock, flag);
349 if (is_insert) {
350 if (seqno < avc_cache.latest_notif) {
351 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
352 seqno, avc_cache.latest_notif);
353 ret = -EAGAIN;
354 }
355 } else {
356 if (seqno > avc_cache.latest_notif)
357 avc_cache.latest_notif = seqno;
358 }
359 spin_unlock_irqrestore(&notif_lock, flag);
360
361 return ret;
362 }
363
364 /**
365 * avc_insert - Insert an AVC entry.
366 * @ssid: source security identifier
367 * @tsid: target security identifier
368 * @tclass: target security class
369 * @avd: resulting av decision
370 *
371 * Insert an AVC entry for the SID pair
372 * (@ssid, @tsid) and class @tclass.
373 * The access vectors and the sequence number are
374 * normally provided by the security server in
375 * response to a security_compute_av() call. If the
376 * sequence number @avd->seqno is not less than the latest
377 * revocation notification, then the function copies
378 * the access vectors into a cache entry, returns
379 * avc_node inserted. Otherwise, this function returns NULL.
380 */
381 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
382 {
383 struct avc_node *pos, *node = NULL;
384 int hvalue;
385 unsigned long flag;
386
387 if (avc_latest_notif_update(avd->seqno, 1))
388 goto out;
389
390 node = avc_alloc_node();
391 if (node) {
392 struct hlist_head *head;
393 spinlock_t *lock;
394
395 hvalue = avc_hash(ssid, tsid, tclass);
396 avc_node_populate(node, ssid, tsid, tclass, avd);
397
398 head = &avc_cache.slots[hvalue];
399 lock = &avc_cache.slots_lock[hvalue];
400
401 spin_lock_irqsave(lock, flag);
402 hlist_for_each_entry(pos, head, list) {
403 if (pos->ae.ssid == ssid &&
404 pos->ae.tsid == tsid &&
405 pos->ae.tclass == tclass) {
406 avc_node_replace(node, pos);
407 goto found;
408 }
409 }
410 hlist_add_head_rcu(&node->list, head);
411 found:
412 spin_unlock_irqrestore(lock, flag);
413 }
414 out:
415 return node;
416 }
417
418 /**
419 * avc_audit_pre_callback - SELinux specific information
420 * will be called by generic audit code
421 * @ab: the audit buffer
422 * @a: audit_data
423 */
424 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
425 {
426 struct common_audit_data *ad = a;
427 audit_log_format(ab, "avc: %s ",
428 ad->selinux_audit_data->denied ? "denied" : "granted");
429 avc_dump_av(ab, ad->selinux_audit_data->tclass,
430 ad->selinux_audit_data->audited);
431 audit_log_format(ab, " for ");
432 }
433
434 /**
435 * avc_audit_post_callback - SELinux specific information
436 * will be called by generic audit code
437 * @ab: the audit buffer
438 * @a: audit_data
439 */
440 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
441 {
442 struct common_audit_data *ad = a;
443 audit_log_format(ab, " ");
444 avc_dump_query(ab, ad->selinux_audit_data->ssid,
445 ad->selinux_audit_data->tsid,
446 ad->selinux_audit_data->tclass);
447 if (ad->selinux_audit_data->denied) {
448 audit_log_format(ab, " permissive=%u",
449 ad->selinux_audit_data->result ? 0 : 1);
450 }
451 }
452
453 /* This is the slow part of avc audit with big stack footprint */
454 noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
455 u32 requested, u32 audited, u32 denied, int result,
456 struct common_audit_data *a,
457 unsigned flags)
458 {
459 struct common_audit_data stack_data;
460 struct selinux_audit_data sad;
461
462 if (!a) {
463 a = &stack_data;
464 a->type = LSM_AUDIT_DATA_NONE;
465 }
466
467 /*
468 * When in a RCU walk do the audit on the RCU retry. This is because
469 * the collection of the dname in an inode audit message is not RCU
470 * safe. Note this may drop some audits when the situation changes
471 * during retry. However this is logically just as if the operation
472 * happened a little later.
473 */
474 if ((a->type == LSM_AUDIT_DATA_INODE) &&
475 (flags & MAY_NOT_BLOCK))
476 return -ECHILD;
477
478 sad.tclass = tclass;
479 sad.requested = requested;
480 sad.ssid = ssid;
481 sad.tsid = tsid;
482 sad.audited = audited;
483 sad.denied = denied;
484 sad.result = result;
485
486 a->selinux_audit_data = &sad;
487
488 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
489 return 0;
490 }
491
492 /**
493 * avc_add_callback - Register a callback for security events.
494 * @callback: callback function
495 * @events: security events
496 *
497 * Register a callback function for events in the set @events.
498 * Returns %0 on success or -%ENOMEM if insufficient memory
499 * exists to add the callback.
500 */
501 int __init avc_add_callback(int (*callback)(u32 event), u32 events)
502 {
503 struct avc_callback_node *c;
504 int rc = 0;
505
506 c = kmalloc(sizeof(*c), GFP_KERNEL);
507 if (!c) {
508 rc = -ENOMEM;
509 goto out;
510 }
511
512 c->callback = callback;
513 c->events = events;
514 c->next = avc_callbacks;
515 avc_callbacks = c;
516 out:
517 return rc;
518 }
519
520 static inline int avc_sidcmp(u32 x, u32 y)
521 {
522 return (x == y || x == SECSID_WILD || y == SECSID_WILD);
523 }
524
525 /**
526 * avc_update_node Update an AVC entry
527 * @event : Updating event
528 * @perms : Permission mask bits
529 * @ssid,@tsid,@tclass : identifier of an AVC entry
530 * @seqno : sequence number when decision was made
531 *
532 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
533 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
534 * otherwise, this function updates the AVC entry. The original AVC-entry object
535 * will release later by RCU.
536 */
537 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
538 u32 seqno)
539 {
540 int hvalue, rc = 0;
541 unsigned long flag;
542 struct avc_node *pos, *node, *orig = NULL;
543 struct hlist_head *head;
544 spinlock_t *lock;
545
546 node = avc_alloc_node();
547 if (!node) {
548 rc = -ENOMEM;
549 goto out;
550 }
551
552 /* Lock the target slot */
553 hvalue = avc_hash(ssid, tsid, tclass);
554
555 head = &avc_cache.slots[hvalue];
556 lock = &avc_cache.slots_lock[hvalue];
557
558 spin_lock_irqsave(lock, flag);
559
560 hlist_for_each_entry(pos, head, list) {
561 if (ssid == pos->ae.ssid &&
562 tsid == pos->ae.tsid &&
563 tclass == pos->ae.tclass &&
564 seqno == pos->ae.avd.seqno){
565 orig = pos;
566 break;
567 }
568 }
569
570 if (!orig) {
571 rc = -ENOENT;
572 avc_node_kill(node);
573 goto out_unlock;
574 }
575
576 /*
577 * Copy and replace original node.
578 */
579
580 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
581
582 switch (event) {
583 case AVC_CALLBACK_GRANT:
584 node->ae.avd.allowed |= perms;
585 break;
586 case AVC_CALLBACK_TRY_REVOKE:
587 case AVC_CALLBACK_REVOKE:
588 node->ae.avd.allowed &= ~perms;
589 break;
590 case AVC_CALLBACK_AUDITALLOW_ENABLE:
591 node->ae.avd.auditallow |= perms;
592 break;
593 case AVC_CALLBACK_AUDITALLOW_DISABLE:
594 node->ae.avd.auditallow &= ~perms;
595 break;
596 case AVC_CALLBACK_AUDITDENY_ENABLE:
597 node->ae.avd.auditdeny |= perms;
598 break;
599 case AVC_CALLBACK_AUDITDENY_DISABLE:
600 node->ae.avd.auditdeny &= ~perms;
601 break;
602 }
603 avc_node_replace(node, orig);
604 out_unlock:
605 spin_unlock_irqrestore(lock, flag);
606 out:
607 return rc;
608 }
609
610 /**
611 * avc_flush - Flush the cache
612 */
613 static void avc_flush(void)
614 {
615 struct hlist_head *head;
616 struct avc_node *node;
617 spinlock_t *lock;
618 unsigned long flag;
619 int i;
620
621 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
622 head = &avc_cache.slots[i];
623 lock = &avc_cache.slots_lock[i];
624
625 spin_lock_irqsave(lock, flag);
626 /*
627 * With preemptable RCU, the outer spinlock does not
628 * prevent RCU grace periods from ending.
629 */
630 rcu_read_lock();
631 hlist_for_each_entry(node, head, list)
632 avc_node_delete(node);
633 rcu_read_unlock();
634 spin_unlock_irqrestore(lock, flag);
635 }
636 }
637
638 /**
639 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
640 * @seqno: policy sequence number
641 */
642 int avc_ss_reset(u32 seqno)
643 {
644 struct avc_callback_node *c;
645 int rc = 0, tmprc;
646
647 avc_flush();
648
649 for (c = avc_callbacks; c; c = c->next) {
650 if (c->events & AVC_CALLBACK_RESET) {
651 tmprc = c->callback(AVC_CALLBACK_RESET);
652 /* save the first error encountered for the return
653 value and continue processing the callbacks */
654 if (!rc)
655 rc = tmprc;
656 }
657 }
658
659 avc_latest_notif_update(seqno, 0);
660 return rc;
661 }
662
663 /*
664 * Slow-path helper function for avc_has_perm_noaudit,
665 * when the avc_node lookup fails. We get called with
666 * the RCU read lock held, and need to return with it
667 * still held, but drop if for the security compute.
668 *
669 * Don't inline this, since it's the slow-path and just
670 * results in a bigger stack frame.
671 */
672 static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
673 u16 tclass, struct av_decision *avd)
674 {
675 rcu_read_unlock();
676 security_compute_av(ssid, tsid, tclass, avd);
677 rcu_read_lock();
678 return avc_insert(ssid, tsid, tclass, avd);
679 }
680
681 static noinline int avc_denied(u32 ssid, u32 tsid,
682 u16 tclass, u32 requested,
683 unsigned flags,
684 struct av_decision *avd)
685 {
686 if (flags & AVC_STRICT)
687 return -EACCES;
688
689 if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE))
690 return -EACCES;
691
692 avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
693 tsid, tclass, avd->seqno);
694 return 0;
695 }
696
697
698 /**
699 * avc_has_perm_noaudit - Check permissions but perform no auditing.
700 * @ssid: source security identifier
701 * @tsid: target security identifier
702 * @tclass: target security class
703 * @requested: requested permissions, interpreted based on @tclass
704 * @flags: AVC_STRICT or 0
705 * @avd: access vector decisions
706 *
707 * Check the AVC to determine whether the @requested permissions are granted
708 * for the SID pair (@ssid, @tsid), interpreting the permissions
709 * based on @tclass, and call the security server on a cache miss to obtain
710 * a new decision and add it to the cache. Return a copy of the decisions
711 * in @avd. Return %0 if all @requested permissions are granted,
712 * -%EACCES if any permissions are denied, or another -errno upon
713 * other errors. This function is typically called by avc_has_perm(),
714 * but may also be called directly to separate permission checking from
715 * auditing, e.g. in cases where a lock must be held for the check but
716 * should be released for the auditing.
717 */
718 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
719 u16 tclass, u32 requested,
720 unsigned flags,
721 struct av_decision *avd)
722 {
723 struct avc_node *node;
724 int rc = 0;
725 u32 denied;
726
727 BUG_ON(!requested);
728
729 rcu_read_lock();
730
731 node = avc_lookup(ssid, tsid, tclass);
732 if (unlikely(!node)) {
733 node = avc_compute_av(ssid, tsid, tclass, avd);
734 } else {
735 memcpy(avd, &node->ae.avd, sizeof(*avd));
736 avd = &node->ae.avd;
737 }
738
739 denied = requested & ~(avd->allowed);
740 if (unlikely(denied))
741 rc = avc_denied(ssid, tsid, tclass, requested, flags, avd);
742
743 rcu_read_unlock();
744 return rc;
745 }
746
747 /**
748 * avc_has_perm - Check permissions and perform any appropriate auditing.
749 * @ssid: source security identifier
750 * @tsid: target security identifier
751 * @tclass: target security class
752 * @requested: requested permissions, interpreted based on @tclass
753 * @auditdata: auxiliary audit data
754 *
755 * Check the AVC to determine whether the @requested permissions are granted
756 * for the SID pair (@ssid, @tsid), interpreting the permissions
757 * based on @tclass, and call the security server on a cache miss to obtain
758 * a new decision and add it to the cache. Audit the granting or denial of
759 * permissions in accordance with the policy. Return %0 if all @requested
760 * permissions are granted, -%EACCES if any permissions are denied, or
761 * another -errno upon other errors.
762 */
763 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
764 u32 requested, struct common_audit_data *auditdata)
765 {
766 struct av_decision avd;
767 int rc, rc2;
768
769 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
770
771 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
772 if (rc2)
773 return rc2;
774 return rc;
775 }
776
777 u32 avc_policy_seqno(void)
778 {
779 return avc_cache.latest_notif;
780 }
781
782 void avc_disable(void)
783 {
784 /*
785 * If you are looking at this because you have realized that we are
786 * not destroying the avc_node_cachep it might be easy to fix, but
787 * I don't know the memory barrier semantics well enough to know. It's
788 * possible that some other task dereferenced security_ops when
789 * it still pointed to selinux operations. If that is the case it's
790 * possible that it is about to use the avc and is about to need the
791 * avc_node_cachep. I know I could wrap the security.c security_ops call
792 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush
793 * the cache and get that memory back.
794 */
795 if (avc_node_cachep) {
796 avc_flush();
797 /* kmem_cache_destroy(avc_node_cachep); */
798 }
799 }
This page took 0.049333 seconds and 5 git commands to generate.