mm: Remove slab destructors from kmem_cache_create().
[deliverable/linux.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14 * <dgoeddel@trustedcs.com>
15 * Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
16 * Paul Moore, <paul.moore@hp.com>
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License version 2,
20 * as published by the Free Software Foundation.
21 */
22
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/errno.h>
28 #include <linux/sched.h>
29 #include <linux/security.h>
30 #include <linux/xattr.h>
31 #include <linux/capability.h>
32 #include <linux/unistd.h>
33 #include <linux/mm.h>
34 #include <linux/mman.h>
35 #include <linux/slab.h>
36 #include <linux/pagemap.h>
37 #include <linux/swap.h>
38 #include <linux/spinlock.h>
39 #include <linux/syscalls.h>
40 #include <linux/file.h>
41 #include <linux/namei.h>
42 #include <linux/mount.h>
43 #include <linux/ext2_fs.h>
44 #include <linux/proc_fs.h>
45 #include <linux/kd.h>
46 #include <linux/netfilter_ipv4.h>
47 #include <linux/netfilter_ipv6.h>
48 #include <linux/tty.h>
49 #include <net/icmp.h>
50 #include <net/ip.h> /* for sysctl_local_port_range[] */
51 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
52 #include <asm/uaccess.h>
53 #include <asm/ioctls.h>
54 #include <linux/bitops.h>
55 #include <linux/interrupt.h>
56 #include <linux/netdevice.h> /* for network interface checks */
57 #include <linux/netlink.h>
58 #include <linux/tcp.h>
59 #include <linux/udp.h>
60 #include <linux/dccp.h>
61 #include <linux/quota.h>
62 #include <linux/un.h> /* for Unix socket types */
63 #include <net/af_unix.h> /* for Unix socket types */
64 #include <linux/parser.h>
65 #include <linux/nfs_mount.h>
66 #include <net/ipv6.h>
67 #include <linux/hugetlb.h>
68 #include <linux/personality.h>
69 #include <linux/sysctl.h>
70 #include <linux/audit.h>
71 #include <linux/string.h>
72 #include <linux/selinux.h>
73 #include <linux/mutex.h>
74
75 #include "avc.h"
76 #include "objsec.h"
77 #include "netif.h"
78 #include "xfrm.h"
79 #include "netlabel.h"
80
81 #define XATTR_SELINUX_SUFFIX "selinux"
82 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
83
84 extern unsigned int policydb_loaded_version;
85 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
86 extern int selinux_compat_net;
87
88 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
89 int selinux_enforcing = 0;
90
91 static int __init enforcing_setup(char *str)
92 {
93 selinux_enforcing = simple_strtol(str,NULL,0);
94 return 1;
95 }
96 __setup("enforcing=", enforcing_setup);
97 #endif
98
99 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
100 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
101
102 static int __init selinux_enabled_setup(char *str)
103 {
104 selinux_enabled = simple_strtol(str, NULL, 0);
105 return 1;
106 }
107 __setup("selinux=", selinux_enabled_setup);
108 #else
109 int selinux_enabled = 1;
110 #endif
111
112 /* Original (dummy) security module. */
113 static struct security_operations *original_ops = NULL;
114
115 /* Minimal support for a secondary security module,
116 just to allow the use of the dummy or capability modules.
117 The owlsm module can alternatively be used as a secondary
118 module as long as CONFIG_OWLSM_FD is not enabled. */
119 static struct security_operations *secondary_ops = NULL;
120
121 /* Lists of inode and superblock security structures initialized
122 before the policy was loaded. */
123 static LIST_HEAD(superblock_security_head);
124 static DEFINE_SPINLOCK(sb_security_lock);
125
126 static struct kmem_cache *sel_inode_cache;
127
128 /* Return security context for a given sid or just the context
129 length if the buffer is null or length is 0 */
130 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
131 {
132 char *context;
133 unsigned len;
134 int rc;
135
136 rc = security_sid_to_context(sid, &context, &len);
137 if (rc)
138 return rc;
139
140 if (!buffer || !size)
141 goto getsecurity_exit;
142
143 if (size < len) {
144 len = -ERANGE;
145 goto getsecurity_exit;
146 }
147 memcpy(buffer, context, len);
148
149 getsecurity_exit:
150 kfree(context);
151 return len;
152 }
153
154 /* Allocate and free functions for each kind of security blob. */
155
156 static int task_alloc_security(struct task_struct *task)
157 {
158 struct task_security_struct *tsec;
159
160 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
161 if (!tsec)
162 return -ENOMEM;
163
164 tsec->task = task;
165 tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
166 task->security = tsec;
167
168 return 0;
169 }
170
171 static void task_free_security(struct task_struct *task)
172 {
173 struct task_security_struct *tsec = task->security;
174 task->security = NULL;
175 kfree(tsec);
176 }
177
178 static int inode_alloc_security(struct inode *inode)
179 {
180 struct task_security_struct *tsec = current->security;
181 struct inode_security_struct *isec;
182
183 isec = kmem_cache_zalloc(sel_inode_cache, GFP_KERNEL);
184 if (!isec)
185 return -ENOMEM;
186
187 mutex_init(&isec->lock);
188 INIT_LIST_HEAD(&isec->list);
189 isec->inode = inode;
190 isec->sid = SECINITSID_UNLABELED;
191 isec->sclass = SECCLASS_FILE;
192 isec->task_sid = tsec->sid;
193 inode->i_security = isec;
194
195 return 0;
196 }
197
198 static void inode_free_security(struct inode *inode)
199 {
200 struct inode_security_struct *isec = inode->i_security;
201 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
202
203 spin_lock(&sbsec->isec_lock);
204 if (!list_empty(&isec->list))
205 list_del_init(&isec->list);
206 spin_unlock(&sbsec->isec_lock);
207
208 inode->i_security = NULL;
209 kmem_cache_free(sel_inode_cache, isec);
210 }
211
212 static int file_alloc_security(struct file *file)
213 {
214 struct task_security_struct *tsec = current->security;
215 struct file_security_struct *fsec;
216
217 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
218 if (!fsec)
219 return -ENOMEM;
220
221 fsec->file = file;
222 fsec->sid = tsec->sid;
223 fsec->fown_sid = tsec->sid;
224 file->f_security = fsec;
225
226 return 0;
227 }
228
229 static void file_free_security(struct file *file)
230 {
231 struct file_security_struct *fsec = file->f_security;
232 file->f_security = NULL;
233 kfree(fsec);
234 }
235
236 static int superblock_alloc_security(struct super_block *sb)
237 {
238 struct superblock_security_struct *sbsec;
239
240 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
241 if (!sbsec)
242 return -ENOMEM;
243
244 mutex_init(&sbsec->lock);
245 INIT_LIST_HEAD(&sbsec->list);
246 INIT_LIST_HEAD(&sbsec->isec_head);
247 spin_lock_init(&sbsec->isec_lock);
248 sbsec->sb = sb;
249 sbsec->sid = SECINITSID_UNLABELED;
250 sbsec->def_sid = SECINITSID_FILE;
251 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
252 sb->s_security = sbsec;
253
254 return 0;
255 }
256
257 static void superblock_free_security(struct super_block *sb)
258 {
259 struct superblock_security_struct *sbsec = sb->s_security;
260
261 spin_lock(&sb_security_lock);
262 if (!list_empty(&sbsec->list))
263 list_del_init(&sbsec->list);
264 spin_unlock(&sb_security_lock);
265
266 sb->s_security = NULL;
267 kfree(sbsec);
268 }
269
270 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
271 {
272 struct sk_security_struct *ssec;
273
274 ssec = kzalloc(sizeof(*ssec), priority);
275 if (!ssec)
276 return -ENOMEM;
277
278 ssec->sk = sk;
279 ssec->peer_sid = SECINITSID_UNLABELED;
280 ssec->sid = SECINITSID_UNLABELED;
281 sk->sk_security = ssec;
282
283 selinux_netlbl_sk_security_init(ssec, family);
284
285 return 0;
286 }
287
288 static void sk_free_security(struct sock *sk)
289 {
290 struct sk_security_struct *ssec = sk->sk_security;
291
292 sk->sk_security = NULL;
293 kfree(ssec);
294 }
295
296 /* The security server must be initialized before
297 any labeling or access decisions can be provided. */
298 extern int ss_initialized;
299
300 /* The file system's label must be initialized prior to use. */
301
302 static char *labeling_behaviors[6] = {
303 "uses xattr",
304 "uses transition SIDs",
305 "uses task SIDs",
306 "uses genfs_contexts",
307 "not configured for labeling",
308 "uses mountpoint labeling",
309 };
310
311 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
312
313 static inline int inode_doinit(struct inode *inode)
314 {
315 return inode_doinit_with_dentry(inode, NULL);
316 }
317
318 enum {
319 Opt_context = 1,
320 Opt_fscontext = 2,
321 Opt_defcontext = 4,
322 Opt_rootcontext = 8,
323 };
324
325 static match_table_t tokens = {
326 {Opt_context, "context=%s"},
327 {Opt_fscontext, "fscontext=%s"},
328 {Opt_defcontext, "defcontext=%s"},
329 {Opt_rootcontext, "rootcontext=%s"},
330 };
331
332 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
333
334 static int may_context_mount_sb_relabel(u32 sid,
335 struct superblock_security_struct *sbsec,
336 struct task_security_struct *tsec)
337 {
338 int rc;
339
340 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
341 FILESYSTEM__RELABELFROM, NULL);
342 if (rc)
343 return rc;
344
345 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
346 FILESYSTEM__RELABELTO, NULL);
347 return rc;
348 }
349
350 static int may_context_mount_inode_relabel(u32 sid,
351 struct superblock_security_struct *sbsec,
352 struct task_security_struct *tsec)
353 {
354 int rc;
355 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
356 FILESYSTEM__RELABELFROM, NULL);
357 if (rc)
358 return rc;
359
360 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
361 FILESYSTEM__ASSOCIATE, NULL);
362 return rc;
363 }
364
365 static int try_context_mount(struct super_block *sb, void *data)
366 {
367 char *context = NULL, *defcontext = NULL;
368 char *fscontext = NULL, *rootcontext = NULL;
369 const char *name;
370 u32 sid;
371 int alloc = 0, rc = 0, seen = 0;
372 struct task_security_struct *tsec = current->security;
373 struct superblock_security_struct *sbsec = sb->s_security;
374
375 if (!data)
376 goto out;
377
378 name = sb->s_type->name;
379
380 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
381
382 /* NFS we understand. */
383 if (!strcmp(name, "nfs")) {
384 struct nfs_mount_data *d = data;
385
386 if (d->version < NFS_MOUNT_VERSION)
387 goto out;
388
389 if (d->context[0]) {
390 context = d->context;
391 seen |= Opt_context;
392 }
393 } else
394 goto out;
395
396 } else {
397 /* Standard string-based options. */
398 char *p, *options = data;
399
400 while ((p = strsep(&options, "|")) != NULL) {
401 int token;
402 substring_t args[MAX_OPT_ARGS];
403
404 if (!*p)
405 continue;
406
407 token = match_token(p, tokens, args);
408
409 switch (token) {
410 case Opt_context:
411 if (seen & (Opt_context|Opt_defcontext)) {
412 rc = -EINVAL;
413 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
414 goto out_free;
415 }
416 context = match_strdup(&args[0]);
417 if (!context) {
418 rc = -ENOMEM;
419 goto out_free;
420 }
421 if (!alloc)
422 alloc = 1;
423 seen |= Opt_context;
424 break;
425
426 case Opt_fscontext:
427 if (seen & Opt_fscontext) {
428 rc = -EINVAL;
429 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
430 goto out_free;
431 }
432 fscontext = match_strdup(&args[0]);
433 if (!fscontext) {
434 rc = -ENOMEM;
435 goto out_free;
436 }
437 if (!alloc)
438 alloc = 1;
439 seen |= Opt_fscontext;
440 break;
441
442 case Opt_rootcontext:
443 if (seen & Opt_rootcontext) {
444 rc = -EINVAL;
445 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
446 goto out_free;
447 }
448 rootcontext = match_strdup(&args[0]);
449 if (!rootcontext) {
450 rc = -ENOMEM;
451 goto out_free;
452 }
453 if (!alloc)
454 alloc = 1;
455 seen |= Opt_rootcontext;
456 break;
457
458 case Opt_defcontext:
459 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
460 rc = -EINVAL;
461 printk(KERN_WARNING "SELinux: "
462 "defcontext option is invalid "
463 "for this filesystem type\n");
464 goto out_free;
465 }
466 if (seen & (Opt_context|Opt_defcontext)) {
467 rc = -EINVAL;
468 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
469 goto out_free;
470 }
471 defcontext = match_strdup(&args[0]);
472 if (!defcontext) {
473 rc = -ENOMEM;
474 goto out_free;
475 }
476 if (!alloc)
477 alloc = 1;
478 seen |= Opt_defcontext;
479 break;
480
481 default:
482 rc = -EINVAL;
483 printk(KERN_WARNING "SELinux: unknown mount "
484 "option\n");
485 goto out_free;
486
487 }
488 }
489 }
490
491 if (!seen)
492 goto out;
493
494 /* sets the context of the superblock for the fs being mounted. */
495 if (fscontext) {
496 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
497 if (rc) {
498 printk(KERN_WARNING "SELinux: security_context_to_sid"
499 "(%s) failed for (dev %s, type %s) errno=%d\n",
500 fscontext, sb->s_id, name, rc);
501 goto out_free;
502 }
503
504 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
505 if (rc)
506 goto out_free;
507
508 sbsec->sid = sid;
509 }
510
511 /*
512 * Switch to using mount point labeling behavior.
513 * sets the label used on all file below the mountpoint, and will set
514 * the superblock context if not already set.
515 */
516 if (context) {
517 rc = security_context_to_sid(context, strlen(context), &sid);
518 if (rc) {
519 printk(KERN_WARNING "SELinux: security_context_to_sid"
520 "(%s) failed for (dev %s, type %s) errno=%d\n",
521 context, sb->s_id, name, rc);
522 goto out_free;
523 }
524
525 if (!fscontext) {
526 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
527 if (rc)
528 goto out_free;
529 sbsec->sid = sid;
530 } else {
531 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
532 if (rc)
533 goto out_free;
534 }
535 sbsec->mntpoint_sid = sid;
536
537 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
538 }
539
540 if (rootcontext) {
541 struct inode *inode = sb->s_root->d_inode;
542 struct inode_security_struct *isec = inode->i_security;
543 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
544 if (rc) {
545 printk(KERN_WARNING "SELinux: security_context_to_sid"
546 "(%s) failed for (dev %s, type %s) errno=%d\n",
547 rootcontext, sb->s_id, name, rc);
548 goto out_free;
549 }
550
551 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
552 if (rc)
553 goto out_free;
554
555 isec->sid = sid;
556 isec->initialized = 1;
557 }
558
559 if (defcontext) {
560 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
561 if (rc) {
562 printk(KERN_WARNING "SELinux: security_context_to_sid"
563 "(%s) failed for (dev %s, type %s) errno=%d\n",
564 defcontext, sb->s_id, name, rc);
565 goto out_free;
566 }
567
568 if (sid == sbsec->def_sid)
569 goto out_free;
570
571 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
572 if (rc)
573 goto out_free;
574
575 sbsec->def_sid = sid;
576 }
577
578 out_free:
579 if (alloc) {
580 kfree(context);
581 kfree(defcontext);
582 kfree(fscontext);
583 kfree(rootcontext);
584 }
585 out:
586 return rc;
587 }
588
589 static int superblock_doinit(struct super_block *sb, void *data)
590 {
591 struct superblock_security_struct *sbsec = sb->s_security;
592 struct dentry *root = sb->s_root;
593 struct inode *inode = root->d_inode;
594 int rc = 0;
595
596 mutex_lock(&sbsec->lock);
597 if (sbsec->initialized)
598 goto out;
599
600 if (!ss_initialized) {
601 /* Defer initialization until selinux_complete_init,
602 after the initial policy is loaded and the security
603 server is ready to handle calls. */
604 spin_lock(&sb_security_lock);
605 if (list_empty(&sbsec->list))
606 list_add(&sbsec->list, &superblock_security_head);
607 spin_unlock(&sb_security_lock);
608 goto out;
609 }
610
611 /* Determine the labeling behavior to use for this filesystem type. */
612 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
613 if (rc) {
614 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
615 __FUNCTION__, sb->s_type->name, rc);
616 goto out;
617 }
618
619 rc = try_context_mount(sb, data);
620 if (rc)
621 goto out;
622
623 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
624 /* Make sure that the xattr handler exists and that no
625 error other than -ENODATA is returned by getxattr on
626 the root directory. -ENODATA is ok, as this may be
627 the first boot of the SELinux kernel before we have
628 assigned xattr values to the filesystem. */
629 if (!inode->i_op->getxattr) {
630 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
631 "xattr support\n", sb->s_id, sb->s_type->name);
632 rc = -EOPNOTSUPP;
633 goto out;
634 }
635 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
636 if (rc < 0 && rc != -ENODATA) {
637 if (rc == -EOPNOTSUPP)
638 printk(KERN_WARNING "SELinux: (dev %s, type "
639 "%s) has no security xattr handler\n",
640 sb->s_id, sb->s_type->name);
641 else
642 printk(KERN_WARNING "SELinux: (dev %s, type "
643 "%s) getxattr errno %d\n", sb->s_id,
644 sb->s_type->name, -rc);
645 goto out;
646 }
647 }
648
649 if (strcmp(sb->s_type->name, "proc") == 0)
650 sbsec->proc = 1;
651
652 sbsec->initialized = 1;
653
654 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
655 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
656 sb->s_id, sb->s_type->name);
657 }
658 else {
659 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
660 sb->s_id, sb->s_type->name,
661 labeling_behaviors[sbsec->behavior-1]);
662 }
663
664 /* Initialize the root inode. */
665 rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
666
667 /* Initialize any other inodes associated with the superblock, e.g.
668 inodes created prior to initial policy load or inodes created
669 during get_sb by a pseudo filesystem that directly
670 populates itself. */
671 spin_lock(&sbsec->isec_lock);
672 next_inode:
673 if (!list_empty(&sbsec->isec_head)) {
674 struct inode_security_struct *isec =
675 list_entry(sbsec->isec_head.next,
676 struct inode_security_struct, list);
677 struct inode *inode = isec->inode;
678 spin_unlock(&sbsec->isec_lock);
679 inode = igrab(inode);
680 if (inode) {
681 if (!IS_PRIVATE (inode))
682 inode_doinit(inode);
683 iput(inode);
684 }
685 spin_lock(&sbsec->isec_lock);
686 list_del_init(&isec->list);
687 goto next_inode;
688 }
689 spin_unlock(&sbsec->isec_lock);
690 out:
691 mutex_unlock(&sbsec->lock);
692 return rc;
693 }
694
695 static inline u16 inode_mode_to_security_class(umode_t mode)
696 {
697 switch (mode & S_IFMT) {
698 case S_IFSOCK:
699 return SECCLASS_SOCK_FILE;
700 case S_IFLNK:
701 return SECCLASS_LNK_FILE;
702 case S_IFREG:
703 return SECCLASS_FILE;
704 case S_IFBLK:
705 return SECCLASS_BLK_FILE;
706 case S_IFDIR:
707 return SECCLASS_DIR;
708 case S_IFCHR:
709 return SECCLASS_CHR_FILE;
710 case S_IFIFO:
711 return SECCLASS_FIFO_FILE;
712
713 }
714
715 return SECCLASS_FILE;
716 }
717
718 static inline int default_protocol_stream(int protocol)
719 {
720 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
721 }
722
723 static inline int default_protocol_dgram(int protocol)
724 {
725 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
726 }
727
728 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
729 {
730 switch (family) {
731 case PF_UNIX:
732 switch (type) {
733 case SOCK_STREAM:
734 case SOCK_SEQPACKET:
735 return SECCLASS_UNIX_STREAM_SOCKET;
736 case SOCK_DGRAM:
737 return SECCLASS_UNIX_DGRAM_SOCKET;
738 }
739 break;
740 case PF_INET:
741 case PF_INET6:
742 switch (type) {
743 case SOCK_STREAM:
744 if (default_protocol_stream(protocol))
745 return SECCLASS_TCP_SOCKET;
746 else
747 return SECCLASS_RAWIP_SOCKET;
748 case SOCK_DGRAM:
749 if (default_protocol_dgram(protocol))
750 return SECCLASS_UDP_SOCKET;
751 else
752 return SECCLASS_RAWIP_SOCKET;
753 case SOCK_DCCP:
754 return SECCLASS_DCCP_SOCKET;
755 default:
756 return SECCLASS_RAWIP_SOCKET;
757 }
758 break;
759 case PF_NETLINK:
760 switch (protocol) {
761 case NETLINK_ROUTE:
762 return SECCLASS_NETLINK_ROUTE_SOCKET;
763 case NETLINK_FIREWALL:
764 return SECCLASS_NETLINK_FIREWALL_SOCKET;
765 case NETLINK_INET_DIAG:
766 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
767 case NETLINK_NFLOG:
768 return SECCLASS_NETLINK_NFLOG_SOCKET;
769 case NETLINK_XFRM:
770 return SECCLASS_NETLINK_XFRM_SOCKET;
771 case NETLINK_SELINUX:
772 return SECCLASS_NETLINK_SELINUX_SOCKET;
773 case NETLINK_AUDIT:
774 return SECCLASS_NETLINK_AUDIT_SOCKET;
775 case NETLINK_IP6_FW:
776 return SECCLASS_NETLINK_IP6FW_SOCKET;
777 case NETLINK_DNRTMSG:
778 return SECCLASS_NETLINK_DNRT_SOCKET;
779 case NETLINK_KOBJECT_UEVENT:
780 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
781 default:
782 return SECCLASS_NETLINK_SOCKET;
783 }
784 case PF_PACKET:
785 return SECCLASS_PACKET_SOCKET;
786 case PF_KEY:
787 return SECCLASS_KEY_SOCKET;
788 case PF_APPLETALK:
789 return SECCLASS_APPLETALK_SOCKET;
790 }
791
792 return SECCLASS_SOCKET;
793 }
794
795 #ifdef CONFIG_PROC_FS
796 static int selinux_proc_get_sid(struct proc_dir_entry *de,
797 u16 tclass,
798 u32 *sid)
799 {
800 int buflen, rc;
801 char *buffer, *path, *end;
802
803 buffer = (char*)__get_free_page(GFP_KERNEL);
804 if (!buffer)
805 return -ENOMEM;
806
807 buflen = PAGE_SIZE;
808 end = buffer+buflen;
809 *--end = '\0';
810 buflen--;
811 path = end-1;
812 *path = '/';
813 while (de && de != de->parent) {
814 buflen -= de->namelen + 1;
815 if (buflen < 0)
816 break;
817 end -= de->namelen;
818 memcpy(end, de->name, de->namelen);
819 *--end = '/';
820 path = end;
821 de = de->parent;
822 }
823 rc = security_genfs_sid("proc", path, tclass, sid);
824 free_page((unsigned long)buffer);
825 return rc;
826 }
827 #else
828 static int selinux_proc_get_sid(struct proc_dir_entry *de,
829 u16 tclass,
830 u32 *sid)
831 {
832 return -EINVAL;
833 }
834 #endif
835
836 /* The inode's security attributes must be initialized before first use. */
837 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
838 {
839 struct superblock_security_struct *sbsec = NULL;
840 struct inode_security_struct *isec = inode->i_security;
841 u32 sid;
842 struct dentry *dentry;
843 #define INITCONTEXTLEN 255
844 char *context = NULL;
845 unsigned len = 0;
846 int rc = 0;
847
848 if (isec->initialized)
849 goto out;
850
851 mutex_lock(&isec->lock);
852 if (isec->initialized)
853 goto out_unlock;
854
855 sbsec = inode->i_sb->s_security;
856 if (!sbsec->initialized) {
857 /* Defer initialization until selinux_complete_init,
858 after the initial policy is loaded and the security
859 server is ready to handle calls. */
860 spin_lock(&sbsec->isec_lock);
861 if (list_empty(&isec->list))
862 list_add(&isec->list, &sbsec->isec_head);
863 spin_unlock(&sbsec->isec_lock);
864 goto out_unlock;
865 }
866
867 switch (sbsec->behavior) {
868 case SECURITY_FS_USE_XATTR:
869 if (!inode->i_op->getxattr) {
870 isec->sid = sbsec->def_sid;
871 break;
872 }
873
874 /* Need a dentry, since the xattr API requires one.
875 Life would be simpler if we could just pass the inode. */
876 if (opt_dentry) {
877 /* Called from d_instantiate or d_splice_alias. */
878 dentry = dget(opt_dentry);
879 } else {
880 /* Called from selinux_complete_init, try to find a dentry. */
881 dentry = d_find_alias(inode);
882 }
883 if (!dentry) {
884 printk(KERN_WARNING "%s: no dentry for dev=%s "
885 "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
886 inode->i_ino);
887 goto out_unlock;
888 }
889
890 len = INITCONTEXTLEN;
891 context = kmalloc(len, GFP_KERNEL);
892 if (!context) {
893 rc = -ENOMEM;
894 dput(dentry);
895 goto out_unlock;
896 }
897 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
898 context, len);
899 if (rc == -ERANGE) {
900 /* Need a larger buffer. Query for the right size. */
901 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
902 NULL, 0);
903 if (rc < 0) {
904 dput(dentry);
905 goto out_unlock;
906 }
907 kfree(context);
908 len = rc;
909 context = kmalloc(len, GFP_KERNEL);
910 if (!context) {
911 rc = -ENOMEM;
912 dput(dentry);
913 goto out_unlock;
914 }
915 rc = inode->i_op->getxattr(dentry,
916 XATTR_NAME_SELINUX,
917 context, len);
918 }
919 dput(dentry);
920 if (rc < 0) {
921 if (rc != -ENODATA) {
922 printk(KERN_WARNING "%s: getxattr returned "
923 "%d for dev=%s ino=%ld\n", __FUNCTION__,
924 -rc, inode->i_sb->s_id, inode->i_ino);
925 kfree(context);
926 goto out_unlock;
927 }
928 /* Map ENODATA to the default file SID */
929 sid = sbsec->def_sid;
930 rc = 0;
931 } else {
932 rc = security_context_to_sid_default(context, rc, &sid,
933 sbsec->def_sid);
934 if (rc) {
935 printk(KERN_WARNING "%s: context_to_sid(%s) "
936 "returned %d for dev=%s ino=%ld\n",
937 __FUNCTION__, context, -rc,
938 inode->i_sb->s_id, inode->i_ino);
939 kfree(context);
940 /* Leave with the unlabeled SID */
941 rc = 0;
942 break;
943 }
944 }
945 kfree(context);
946 isec->sid = sid;
947 break;
948 case SECURITY_FS_USE_TASK:
949 isec->sid = isec->task_sid;
950 break;
951 case SECURITY_FS_USE_TRANS:
952 /* Default to the fs SID. */
953 isec->sid = sbsec->sid;
954
955 /* Try to obtain a transition SID. */
956 isec->sclass = inode_mode_to_security_class(inode->i_mode);
957 rc = security_transition_sid(isec->task_sid,
958 sbsec->sid,
959 isec->sclass,
960 &sid);
961 if (rc)
962 goto out_unlock;
963 isec->sid = sid;
964 break;
965 case SECURITY_FS_USE_MNTPOINT:
966 isec->sid = sbsec->mntpoint_sid;
967 break;
968 default:
969 /* Default to the fs superblock SID. */
970 isec->sid = sbsec->sid;
971
972 if (sbsec->proc) {
973 struct proc_inode *proci = PROC_I(inode);
974 if (proci->pde) {
975 isec->sclass = inode_mode_to_security_class(inode->i_mode);
976 rc = selinux_proc_get_sid(proci->pde,
977 isec->sclass,
978 &sid);
979 if (rc)
980 goto out_unlock;
981 isec->sid = sid;
982 }
983 }
984 break;
985 }
986
987 isec->initialized = 1;
988
989 out_unlock:
990 mutex_unlock(&isec->lock);
991 out:
992 if (isec->sclass == SECCLASS_FILE)
993 isec->sclass = inode_mode_to_security_class(inode->i_mode);
994 return rc;
995 }
996
997 /* Convert a Linux signal to an access vector. */
998 static inline u32 signal_to_av(int sig)
999 {
1000 u32 perm = 0;
1001
1002 switch (sig) {
1003 case SIGCHLD:
1004 /* Commonly granted from child to parent. */
1005 perm = PROCESS__SIGCHLD;
1006 break;
1007 case SIGKILL:
1008 /* Cannot be caught or ignored */
1009 perm = PROCESS__SIGKILL;
1010 break;
1011 case SIGSTOP:
1012 /* Cannot be caught or ignored */
1013 perm = PROCESS__SIGSTOP;
1014 break;
1015 default:
1016 /* All other signals. */
1017 perm = PROCESS__SIGNAL;
1018 break;
1019 }
1020
1021 return perm;
1022 }
1023
1024 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1025 fork check, ptrace check, etc. */
1026 static int task_has_perm(struct task_struct *tsk1,
1027 struct task_struct *tsk2,
1028 u32 perms)
1029 {
1030 struct task_security_struct *tsec1, *tsec2;
1031
1032 tsec1 = tsk1->security;
1033 tsec2 = tsk2->security;
1034 return avc_has_perm(tsec1->sid, tsec2->sid,
1035 SECCLASS_PROCESS, perms, NULL);
1036 }
1037
1038 /* Check whether a task is allowed to use a capability. */
1039 static int task_has_capability(struct task_struct *tsk,
1040 int cap)
1041 {
1042 struct task_security_struct *tsec;
1043 struct avc_audit_data ad;
1044
1045 tsec = tsk->security;
1046
1047 AVC_AUDIT_DATA_INIT(&ad,CAP);
1048 ad.tsk = tsk;
1049 ad.u.cap = cap;
1050
1051 return avc_has_perm(tsec->sid, tsec->sid,
1052 SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1053 }
1054
1055 /* Check whether a task is allowed to use a system operation. */
1056 static int task_has_system(struct task_struct *tsk,
1057 u32 perms)
1058 {
1059 struct task_security_struct *tsec;
1060
1061 tsec = tsk->security;
1062
1063 return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1064 SECCLASS_SYSTEM, perms, NULL);
1065 }
1066
1067 /* Check whether a task has a particular permission to an inode.
1068 The 'adp' parameter is optional and allows other audit
1069 data to be passed (e.g. the dentry). */
1070 static int inode_has_perm(struct task_struct *tsk,
1071 struct inode *inode,
1072 u32 perms,
1073 struct avc_audit_data *adp)
1074 {
1075 struct task_security_struct *tsec;
1076 struct inode_security_struct *isec;
1077 struct avc_audit_data ad;
1078
1079 if (unlikely (IS_PRIVATE (inode)))
1080 return 0;
1081
1082 tsec = tsk->security;
1083 isec = inode->i_security;
1084
1085 if (!adp) {
1086 adp = &ad;
1087 AVC_AUDIT_DATA_INIT(&ad, FS);
1088 ad.u.fs.inode = inode;
1089 }
1090
1091 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1092 }
1093
1094 /* Same as inode_has_perm, but pass explicit audit data containing
1095 the dentry to help the auditing code to more easily generate the
1096 pathname if needed. */
1097 static inline int dentry_has_perm(struct task_struct *tsk,
1098 struct vfsmount *mnt,
1099 struct dentry *dentry,
1100 u32 av)
1101 {
1102 struct inode *inode = dentry->d_inode;
1103 struct avc_audit_data ad;
1104 AVC_AUDIT_DATA_INIT(&ad,FS);
1105 ad.u.fs.mnt = mnt;
1106 ad.u.fs.dentry = dentry;
1107 return inode_has_perm(tsk, inode, av, &ad);
1108 }
1109
1110 /* Check whether a task can use an open file descriptor to
1111 access an inode in a given way. Check access to the
1112 descriptor itself, and then use dentry_has_perm to
1113 check a particular permission to the file.
1114 Access to the descriptor is implicitly granted if it
1115 has the same SID as the process. If av is zero, then
1116 access to the file is not checked, e.g. for cases
1117 where only the descriptor is affected like seek. */
1118 static int file_has_perm(struct task_struct *tsk,
1119 struct file *file,
1120 u32 av)
1121 {
1122 struct task_security_struct *tsec = tsk->security;
1123 struct file_security_struct *fsec = file->f_security;
1124 struct vfsmount *mnt = file->f_path.mnt;
1125 struct dentry *dentry = file->f_path.dentry;
1126 struct inode *inode = dentry->d_inode;
1127 struct avc_audit_data ad;
1128 int rc;
1129
1130 AVC_AUDIT_DATA_INIT(&ad, FS);
1131 ad.u.fs.mnt = mnt;
1132 ad.u.fs.dentry = dentry;
1133
1134 if (tsec->sid != fsec->sid) {
1135 rc = avc_has_perm(tsec->sid, fsec->sid,
1136 SECCLASS_FD,
1137 FD__USE,
1138 &ad);
1139 if (rc)
1140 return rc;
1141 }
1142
1143 /* av is zero if only checking access to the descriptor. */
1144 if (av)
1145 return inode_has_perm(tsk, inode, av, &ad);
1146
1147 return 0;
1148 }
1149
1150 /* Check whether a task can create a file. */
1151 static int may_create(struct inode *dir,
1152 struct dentry *dentry,
1153 u16 tclass)
1154 {
1155 struct task_security_struct *tsec;
1156 struct inode_security_struct *dsec;
1157 struct superblock_security_struct *sbsec;
1158 u32 newsid;
1159 struct avc_audit_data ad;
1160 int rc;
1161
1162 tsec = current->security;
1163 dsec = dir->i_security;
1164 sbsec = dir->i_sb->s_security;
1165
1166 AVC_AUDIT_DATA_INIT(&ad, FS);
1167 ad.u.fs.dentry = dentry;
1168
1169 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1170 DIR__ADD_NAME | DIR__SEARCH,
1171 &ad);
1172 if (rc)
1173 return rc;
1174
1175 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1176 newsid = tsec->create_sid;
1177 } else {
1178 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1179 &newsid);
1180 if (rc)
1181 return rc;
1182 }
1183
1184 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1185 if (rc)
1186 return rc;
1187
1188 return avc_has_perm(newsid, sbsec->sid,
1189 SECCLASS_FILESYSTEM,
1190 FILESYSTEM__ASSOCIATE, &ad);
1191 }
1192
1193 /* Check whether a task can create a key. */
1194 static int may_create_key(u32 ksid,
1195 struct task_struct *ctx)
1196 {
1197 struct task_security_struct *tsec;
1198
1199 tsec = ctx->security;
1200
1201 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1202 }
1203
1204 #define MAY_LINK 0
1205 #define MAY_UNLINK 1
1206 #define MAY_RMDIR 2
1207
1208 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1209 static int may_link(struct inode *dir,
1210 struct dentry *dentry,
1211 int kind)
1212
1213 {
1214 struct task_security_struct *tsec;
1215 struct inode_security_struct *dsec, *isec;
1216 struct avc_audit_data ad;
1217 u32 av;
1218 int rc;
1219
1220 tsec = current->security;
1221 dsec = dir->i_security;
1222 isec = dentry->d_inode->i_security;
1223
1224 AVC_AUDIT_DATA_INIT(&ad, FS);
1225 ad.u.fs.dentry = dentry;
1226
1227 av = DIR__SEARCH;
1228 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1229 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1230 if (rc)
1231 return rc;
1232
1233 switch (kind) {
1234 case MAY_LINK:
1235 av = FILE__LINK;
1236 break;
1237 case MAY_UNLINK:
1238 av = FILE__UNLINK;
1239 break;
1240 case MAY_RMDIR:
1241 av = DIR__RMDIR;
1242 break;
1243 default:
1244 printk(KERN_WARNING "may_link: unrecognized kind %d\n", kind);
1245 return 0;
1246 }
1247
1248 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1249 return rc;
1250 }
1251
1252 static inline int may_rename(struct inode *old_dir,
1253 struct dentry *old_dentry,
1254 struct inode *new_dir,
1255 struct dentry *new_dentry)
1256 {
1257 struct task_security_struct *tsec;
1258 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1259 struct avc_audit_data ad;
1260 u32 av;
1261 int old_is_dir, new_is_dir;
1262 int rc;
1263
1264 tsec = current->security;
1265 old_dsec = old_dir->i_security;
1266 old_isec = old_dentry->d_inode->i_security;
1267 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1268 new_dsec = new_dir->i_security;
1269
1270 AVC_AUDIT_DATA_INIT(&ad, FS);
1271
1272 ad.u.fs.dentry = old_dentry;
1273 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1274 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1275 if (rc)
1276 return rc;
1277 rc = avc_has_perm(tsec->sid, old_isec->sid,
1278 old_isec->sclass, FILE__RENAME, &ad);
1279 if (rc)
1280 return rc;
1281 if (old_is_dir && new_dir != old_dir) {
1282 rc = avc_has_perm(tsec->sid, old_isec->sid,
1283 old_isec->sclass, DIR__REPARENT, &ad);
1284 if (rc)
1285 return rc;
1286 }
1287
1288 ad.u.fs.dentry = new_dentry;
1289 av = DIR__ADD_NAME | DIR__SEARCH;
1290 if (new_dentry->d_inode)
1291 av |= DIR__REMOVE_NAME;
1292 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1293 if (rc)
1294 return rc;
1295 if (new_dentry->d_inode) {
1296 new_isec = new_dentry->d_inode->i_security;
1297 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1298 rc = avc_has_perm(tsec->sid, new_isec->sid,
1299 new_isec->sclass,
1300 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1301 if (rc)
1302 return rc;
1303 }
1304
1305 return 0;
1306 }
1307
1308 /* Check whether a task can perform a filesystem operation. */
1309 static int superblock_has_perm(struct task_struct *tsk,
1310 struct super_block *sb,
1311 u32 perms,
1312 struct avc_audit_data *ad)
1313 {
1314 struct task_security_struct *tsec;
1315 struct superblock_security_struct *sbsec;
1316
1317 tsec = tsk->security;
1318 sbsec = sb->s_security;
1319 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1320 perms, ad);
1321 }
1322
1323 /* Convert a Linux mode and permission mask to an access vector. */
1324 static inline u32 file_mask_to_av(int mode, int mask)
1325 {
1326 u32 av = 0;
1327
1328 if ((mode & S_IFMT) != S_IFDIR) {
1329 if (mask & MAY_EXEC)
1330 av |= FILE__EXECUTE;
1331 if (mask & MAY_READ)
1332 av |= FILE__READ;
1333
1334 if (mask & MAY_APPEND)
1335 av |= FILE__APPEND;
1336 else if (mask & MAY_WRITE)
1337 av |= FILE__WRITE;
1338
1339 } else {
1340 if (mask & MAY_EXEC)
1341 av |= DIR__SEARCH;
1342 if (mask & MAY_WRITE)
1343 av |= DIR__WRITE;
1344 if (mask & MAY_READ)
1345 av |= DIR__READ;
1346 }
1347
1348 return av;
1349 }
1350
1351 /* Convert a Linux file to an access vector. */
1352 static inline u32 file_to_av(struct file *file)
1353 {
1354 u32 av = 0;
1355
1356 if (file->f_mode & FMODE_READ)
1357 av |= FILE__READ;
1358 if (file->f_mode & FMODE_WRITE) {
1359 if (file->f_flags & O_APPEND)
1360 av |= FILE__APPEND;
1361 else
1362 av |= FILE__WRITE;
1363 }
1364
1365 return av;
1366 }
1367
1368 /* Hook functions begin here. */
1369
1370 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1371 {
1372 struct task_security_struct *psec = parent->security;
1373 struct task_security_struct *csec = child->security;
1374 int rc;
1375
1376 rc = secondary_ops->ptrace(parent,child);
1377 if (rc)
1378 return rc;
1379
1380 rc = task_has_perm(parent, child, PROCESS__PTRACE);
1381 /* Save the SID of the tracing process for later use in apply_creds. */
1382 if (!(child->ptrace & PT_PTRACED) && !rc)
1383 csec->ptrace_sid = psec->sid;
1384 return rc;
1385 }
1386
1387 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1388 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1389 {
1390 int error;
1391
1392 error = task_has_perm(current, target, PROCESS__GETCAP);
1393 if (error)
1394 return error;
1395
1396 return secondary_ops->capget(target, effective, inheritable, permitted);
1397 }
1398
1399 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1400 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1401 {
1402 int error;
1403
1404 error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1405 if (error)
1406 return error;
1407
1408 return task_has_perm(current, target, PROCESS__SETCAP);
1409 }
1410
1411 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1412 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1413 {
1414 secondary_ops->capset_set(target, effective, inheritable, permitted);
1415 }
1416
1417 static int selinux_capable(struct task_struct *tsk, int cap)
1418 {
1419 int rc;
1420
1421 rc = secondary_ops->capable(tsk, cap);
1422 if (rc)
1423 return rc;
1424
1425 return task_has_capability(tsk,cap);
1426 }
1427
1428 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1429 {
1430 int buflen, rc;
1431 char *buffer, *path, *end;
1432
1433 rc = -ENOMEM;
1434 buffer = (char*)__get_free_page(GFP_KERNEL);
1435 if (!buffer)
1436 goto out;
1437
1438 buflen = PAGE_SIZE;
1439 end = buffer+buflen;
1440 *--end = '\0';
1441 buflen--;
1442 path = end-1;
1443 *path = '/';
1444 while (table) {
1445 const char *name = table->procname;
1446 size_t namelen = strlen(name);
1447 buflen -= namelen + 1;
1448 if (buflen < 0)
1449 goto out_free;
1450 end -= namelen;
1451 memcpy(end, name, namelen);
1452 *--end = '/';
1453 path = end;
1454 table = table->parent;
1455 }
1456 buflen -= 4;
1457 if (buflen < 0)
1458 goto out_free;
1459 end -= 4;
1460 memcpy(end, "/sys", 4);
1461 path = end;
1462 rc = security_genfs_sid("proc", path, tclass, sid);
1463 out_free:
1464 free_page((unsigned long)buffer);
1465 out:
1466 return rc;
1467 }
1468
1469 static int selinux_sysctl(ctl_table *table, int op)
1470 {
1471 int error = 0;
1472 u32 av;
1473 struct task_security_struct *tsec;
1474 u32 tsid;
1475 int rc;
1476
1477 rc = secondary_ops->sysctl(table, op);
1478 if (rc)
1479 return rc;
1480
1481 tsec = current->security;
1482
1483 rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1484 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1485 if (rc) {
1486 /* Default to the well-defined sysctl SID. */
1487 tsid = SECINITSID_SYSCTL;
1488 }
1489
1490 /* The op values are "defined" in sysctl.c, thereby creating
1491 * a bad coupling between this module and sysctl.c */
1492 if(op == 001) {
1493 error = avc_has_perm(tsec->sid, tsid,
1494 SECCLASS_DIR, DIR__SEARCH, NULL);
1495 } else {
1496 av = 0;
1497 if (op & 004)
1498 av |= FILE__READ;
1499 if (op & 002)
1500 av |= FILE__WRITE;
1501 if (av)
1502 error = avc_has_perm(tsec->sid, tsid,
1503 SECCLASS_FILE, av, NULL);
1504 }
1505
1506 return error;
1507 }
1508
1509 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1510 {
1511 int rc = 0;
1512
1513 if (!sb)
1514 return 0;
1515
1516 switch (cmds) {
1517 case Q_SYNC:
1518 case Q_QUOTAON:
1519 case Q_QUOTAOFF:
1520 case Q_SETINFO:
1521 case Q_SETQUOTA:
1522 rc = superblock_has_perm(current,
1523 sb,
1524 FILESYSTEM__QUOTAMOD, NULL);
1525 break;
1526 case Q_GETFMT:
1527 case Q_GETINFO:
1528 case Q_GETQUOTA:
1529 rc = superblock_has_perm(current,
1530 sb,
1531 FILESYSTEM__QUOTAGET, NULL);
1532 break;
1533 default:
1534 rc = 0; /* let the kernel handle invalid cmds */
1535 break;
1536 }
1537 return rc;
1538 }
1539
1540 static int selinux_quota_on(struct dentry *dentry)
1541 {
1542 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1543 }
1544
1545 static int selinux_syslog(int type)
1546 {
1547 int rc;
1548
1549 rc = secondary_ops->syslog(type);
1550 if (rc)
1551 return rc;
1552
1553 switch (type) {
1554 case 3: /* Read last kernel messages */
1555 case 10: /* Return size of the log buffer */
1556 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1557 break;
1558 case 6: /* Disable logging to console */
1559 case 7: /* Enable logging to console */
1560 case 8: /* Set level of messages printed to console */
1561 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1562 break;
1563 case 0: /* Close log */
1564 case 1: /* Open log */
1565 case 2: /* Read from log */
1566 case 4: /* Read/clear last kernel messages */
1567 case 5: /* Clear ring buffer */
1568 default:
1569 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1570 break;
1571 }
1572 return rc;
1573 }
1574
1575 /*
1576 * Check that a process has enough memory to allocate a new virtual
1577 * mapping. 0 means there is enough memory for the allocation to
1578 * succeed and -ENOMEM implies there is not.
1579 *
1580 * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1581 * if the capability is granted, but __vm_enough_memory requires 1 if
1582 * the capability is granted.
1583 *
1584 * Do not audit the selinux permission check, as this is applied to all
1585 * processes that allocate mappings.
1586 */
1587 static int selinux_vm_enough_memory(long pages)
1588 {
1589 int rc, cap_sys_admin = 0;
1590 struct task_security_struct *tsec = current->security;
1591
1592 rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1593 if (rc == 0)
1594 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1595 SECCLASS_CAPABILITY,
1596 CAP_TO_MASK(CAP_SYS_ADMIN),
1597 0,
1598 NULL);
1599
1600 if (rc == 0)
1601 cap_sys_admin = 1;
1602
1603 return __vm_enough_memory(pages, cap_sys_admin);
1604 }
1605
1606 /* binprm security operations */
1607
1608 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1609 {
1610 struct bprm_security_struct *bsec;
1611
1612 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1613 if (!bsec)
1614 return -ENOMEM;
1615
1616 bsec->bprm = bprm;
1617 bsec->sid = SECINITSID_UNLABELED;
1618 bsec->set = 0;
1619
1620 bprm->security = bsec;
1621 return 0;
1622 }
1623
1624 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1625 {
1626 struct task_security_struct *tsec;
1627 struct inode *inode = bprm->file->f_path.dentry->d_inode;
1628 struct inode_security_struct *isec;
1629 struct bprm_security_struct *bsec;
1630 u32 newsid;
1631 struct avc_audit_data ad;
1632 int rc;
1633
1634 rc = secondary_ops->bprm_set_security(bprm);
1635 if (rc)
1636 return rc;
1637
1638 bsec = bprm->security;
1639
1640 if (bsec->set)
1641 return 0;
1642
1643 tsec = current->security;
1644 isec = inode->i_security;
1645
1646 /* Default to the current task SID. */
1647 bsec->sid = tsec->sid;
1648
1649 /* Reset fs, key, and sock SIDs on execve. */
1650 tsec->create_sid = 0;
1651 tsec->keycreate_sid = 0;
1652 tsec->sockcreate_sid = 0;
1653
1654 if (tsec->exec_sid) {
1655 newsid = tsec->exec_sid;
1656 /* Reset exec SID on execve. */
1657 tsec->exec_sid = 0;
1658 } else {
1659 /* Check for a default transition on this program. */
1660 rc = security_transition_sid(tsec->sid, isec->sid,
1661 SECCLASS_PROCESS, &newsid);
1662 if (rc)
1663 return rc;
1664 }
1665
1666 AVC_AUDIT_DATA_INIT(&ad, FS);
1667 ad.u.fs.mnt = bprm->file->f_path.mnt;
1668 ad.u.fs.dentry = bprm->file->f_path.dentry;
1669
1670 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1671 newsid = tsec->sid;
1672
1673 if (tsec->sid == newsid) {
1674 rc = avc_has_perm(tsec->sid, isec->sid,
1675 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1676 if (rc)
1677 return rc;
1678 } else {
1679 /* Check permissions for the transition. */
1680 rc = avc_has_perm(tsec->sid, newsid,
1681 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1682 if (rc)
1683 return rc;
1684
1685 rc = avc_has_perm(newsid, isec->sid,
1686 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1687 if (rc)
1688 return rc;
1689
1690 /* Clear any possibly unsafe personality bits on exec: */
1691 current->personality &= ~PER_CLEAR_ON_SETID;
1692
1693 /* Set the security field to the new SID. */
1694 bsec->sid = newsid;
1695 }
1696
1697 bsec->set = 1;
1698 return 0;
1699 }
1700
1701 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1702 {
1703 return secondary_ops->bprm_check_security(bprm);
1704 }
1705
1706
1707 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1708 {
1709 struct task_security_struct *tsec = current->security;
1710 int atsecure = 0;
1711
1712 if (tsec->osid != tsec->sid) {
1713 /* Enable secure mode for SIDs transitions unless
1714 the noatsecure permission is granted between
1715 the two SIDs, i.e. ahp returns 0. */
1716 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1717 SECCLASS_PROCESS,
1718 PROCESS__NOATSECURE, NULL);
1719 }
1720
1721 return (atsecure || secondary_ops->bprm_secureexec(bprm));
1722 }
1723
1724 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1725 {
1726 kfree(bprm->security);
1727 bprm->security = NULL;
1728 }
1729
1730 extern struct vfsmount *selinuxfs_mount;
1731 extern struct dentry *selinux_null;
1732
1733 /* Derived from fs/exec.c:flush_old_files. */
1734 static inline void flush_unauthorized_files(struct files_struct * files)
1735 {
1736 struct avc_audit_data ad;
1737 struct file *file, *devnull = NULL;
1738 struct tty_struct *tty;
1739 struct fdtable *fdt;
1740 long j = -1;
1741 int drop_tty = 0;
1742
1743 mutex_lock(&tty_mutex);
1744 tty = get_current_tty();
1745 if (tty) {
1746 file_list_lock();
1747 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1748 if (file) {
1749 /* Revalidate access to controlling tty.
1750 Use inode_has_perm on the tty inode directly rather
1751 than using file_has_perm, as this particular open
1752 file may belong to another process and we are only
1753 interested in the inode-based check here. */
1754 struct inode *inode = file->f_path.dentry->d_inode;
1755 if (inode_has_perm(current, inode,
1756 FILE__READ | FILE__WRITE, NULL)) {
1757 drop_tty = 1;
1758 }
1759 }
1760 file_list_unlock();
1761 }
1762 mutex_unlock(&tty_mutex);
1763 /* Reset controlling tty. */
1764 if (drop_tty)
1765 no_tty();
1766
1767 /* Revalidate access to inherited open files. */
1768
1769 AVC_AUDIT_DATA_INIT(&ad,FS);
1770
1771 spin_lock(&files->file_lock);
1772 for (;;) {
1773 unsigned long set, i;
1774 int fd;
1775
1776 j++;
1777 i = j * __NFDBITS;
1778 fdt = files_fdtable(files);
1779 if (i >= fdt->max_fds)
1780 break;
1781 set = fdt->open_fds->fds_bits[j];
1782 if (!set)
1783 continue;
1784 spin_unlock(&files->file_lock);
1785 for ( ; set ; i++,set >>= 1) {
1786 if (set & 1) {
1787 file = fget(i);
1788 if (!file)
1789 continue;
1790 if (file_has_perm(current,
1791 file,
1792 file_to_av(file))) {
1793 sys_close(i);
1794 fd = get_unused_fd();
1795 if (fd != i) {
1796 if (fd >= 0)
1797 put_unused_fd(fd);
1798 fput(file);
1799 continue;
1800 }
1801 if (devnull) {
1802 get_file(devnull);
1803 } else {
1804 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1805 if (IS_ERR(devnull)) {
1806 devnull = NULL;
1807 put_unused_fd(fd);
1808 fput(file);
1809 continue;
1810 }
1811 }
1812 fd_install(fd, devnull);
1813 }
1814 fput(file);
1815 }
1816 }
1817 spin_lock(&files->file_lock);
1818
1819 }
1820 spin_unlock(&files->file_lock);
1821 }
1822
1823 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1824 {
1825 struct task_security_struct *tsec;
1826 struct bprm_security_struct *bsec;
1827 u32 sid;
1828 int rc;
1829
1830 secondary_ops->bprm_apply_creds(bprm, unsafe);
1831
1832 tsec = current->security;
1833
1834 bsec = bprm->security;
1835 sid = bsec->sid;
1836
1837 tsec->osid = tsec->sid;
1838 bsec->unsafe = 0;
1839 if (tsec->sid != sid) {
1840 /* Check for shared state. If not ok, leave SID
1841 unchanged and kill. */
1842 if (unsafe & LSM_UNSAFE_SHARE) {
1843 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1844 PROCESS__SHARE, NULL);
1845 if (rc) {
1846 bsec->unsafe = 1;
1847 return;
1848 }
1849 }
1850
1851 /* Check for ptracing, and update the task SID if ok.
1852 Otherwise, leave SID unchanged and kill. */
1853 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1854 rc = avc_has_perm(tsec->ptrace_sid, sid,
1855 SECCLASS_PROCESS, PROCESS__PTRACE,
1856 NULL);
1857 if (rc) {
1858 bsec->unsafe = 1;
1859 return;
1860 }
1861 }
1862 tsec->sid = sid;
1863 }
1864 }
1865
1866 /*
1867 * called after apply_creds without the task lock held
1868 */
1869 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1870 {
1871 struct task_security_struct *tsec;
1872 struct rlimit *rlim, *initrlim;
1873 struct itimerval itimer;
1874 struct bprm_security_struct *bsec;
1875 int rc, i;
1876
1877 tsec = current->security;
1878 bsec = bprm->security;
1879
1880 if (bsec->unsafe) {
1881 force_sig_specific(SIGKILL, current);
1882 return;
1883 }
1884 if (tsec->osid == tsec->sid)
1885 return;
1886
1887 /* Close files for which the new task SID is not authorized. */
1888 flush_unauthorized_files(current->files);
1889
1890 /* Check whether the new SID can inherit signal state
1891 from the old SID. If not, clear itimers to avoid
1892 subsequent signal generation and flush and unblock
1893 signals. This must occur _after_ the task SID has
1894 been updated so that any kill done after the flush
1895 will be checked against the new SID. */
1896 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1897 PROCESS__SIGINH, NULL);
1898 if (rc) {
1899 memset(&itimer, 0, sizeof itimer);
1900 for (i = 0; i < 3; i++)
1901 do_setitimer(i, &itimer, NULL);
1902 flush_signals(current);
1903 spin_lock_irq(&current->sighand->siglock);
1904 flush_signal_handlers(current, 1);
1905 sigemptyset(&current->blocked);
1906 recalc_sigpending();
1907 spin_unlock_irq(&current->sighand->siglock);
1908 }
1909
1910 /* Check whether the new SID can inherit resource limits
1911 from the old SID. If not, reset all soft limits to
1912 the lower of the current task's hard limit and the init
1913 task's soft limit. Note that the setting of hard limits
1914 (even to lower them) can be controlled by the setrlimit
1915 check. The inclusion of the init task's soft limit into
1916 the computation is to avoid resetting soft limits higher
1917 than the default soft limit for cases where the default
1918 is lower than the hard limit, e.g. RLIMIT_CORE or
1919 RLIMIT_STACK.*/
1920 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1921 PROCESS__RLIMITINH, NULL);
1922 if (rc) {
1923 for (i = 0; i < RLIM_NLIMITS; i++) {
1924 rlim = current->signal->rlim + i;
1925 initrlim = init_task.signal->rlim+i;
1926 rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1927 }
1928 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1929 /*
1930 * This will cause RLIMIT_CPU calculations
1931 * to be refigured.
1932 */
1933 current->it_prof_expires = jiffies_to_cputime(1);
1934 }
1935 }
1936
1937 /* Wake up the parent if it is waiting so that it can
1938 recheck wait permission to the new task SID. */
1939 wake_up_interruptible(&current->parent->signal->wait_chldexit);
1940 }
1941
1942 /* superblock security operations */
1943
1944 static int selinux_sb_alloc_security(struct super_block *sb)
1945 {
1946 return superblock_alloc_security(sb);
1947 }
1948
1949 static void selinux_sb_free_security(struct super_block *sb)
1950 {
1951 superblock_free_security(sb);
1952 }
1953
1954 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1955 {
1956 if (plen > olen)
1957 return 0;
1958
1959 return !memcmp(prefix, option, plen);
1960 }
1961
1962 static inline int selinux_option(char *option, int len)
1963 {
1964 return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1965 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1966 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1967 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1968 }
1969
1970 static inline void take_option(char **to, char *from, int *first, int len)
1971 {
1972 if (!*first) {
1973 **to = ',';
1974 *to += 1;
1975 } else
1976 *first = 0;
1977 memcpy(*to, from, len);
1978 *to += len;
1979 }
1980
1981 static inline void take_selinux_option(char **to, char *from, int *first,
1982 int len)
1983 {
1984 int current_size = 0;
1985
1986 if (!*first) {
1987 **to = '|';
1988 *to += 1;
1989 }
1990 else
1991 *first = 0;
1992
1993 while (current_size < len) {
1994 if (*from != '"') {
1995 **to = *from;
1996 *to += 1;
1997 }
1998 from += 1;
1999 current_size += 1;
2000 }
2001 }
2002
2003 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
2004 {
2005 int fnosec, fsec, rc = 0;
2006 char *in_save, *in_curr, *in_end;
2007 char *sec_curr, *nosec_save, *nosec;
2008 int open_quote = 0;
2009
2010 in_curr = orig;
2011 sec_curr = copy;
2012
2013 /* Binary mount data: just copy */
2014 if (type->fs_flags & FS_BINARY_MOUNTDATA) {
2015 copy_page(sec_curr, in_curr);
2016 goto out;
2017 }
2018
2019 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2020 if (!nosec) {
2021 rc = -ENOMEM;
2022 goto out;
2023 }
2024
2025 nosec_save = nosec;
2026 fnosec = fsec = 1;
2027 in_save = in_end = orig;
2028
2029 do {
2030 if (*in_end == '"')
2031 open_quote = !open_quote;
2032 if ((*in_end == ',' && open_quote == 0) ||
2033 *in_end == '\0') {
2034 int len = in_end - in_curr;
2035
2036 if (selinux_option(in_curr, len))
2037 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2038 else
2039 take_option(&nosec, in_curr, &fnosec, len);
2040
2041 in_curr = in_end + 1;
2042 }
2043 } while (*in_end++);
2044
2045 strcpy(in_save, nosec_save);
2046 free_page((unsigned long)nosec_save);
2047 out:
2048 return rc;
2049 }
2050
2051 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2052 {
2053 struct avc_audit_data ad;
2054 int rc;
2055
2056 rc = superblock_doinit(sb, data);
2057 if (rc)
2058 return rc;
2059
2060 AVC_AUDIT_DATA_INIT(&ad,FS);
2061 ad.u.fs.dentry = sb->s_root;
2062 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2063 }
2064
2065 static int selinux_sb_statfs(struct dentry *dentry)
2066 {
2067 struct avc_audit_data ad;
2068
2069 AVC_AUDIT_DATA_INIT(&ad,FS);
2070 ad.u.fs.dentry = dentry->d_sb->s_root;
2071 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2072 }
2073
2074 static int selinux_mount(char * dev_name,
2075 struct nameidata *nd,
2076 char * type,
2077 unsigned long flags,
2078 void * data)
2079 {
2080 int rc;
2081
2082 rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2083 if (rc)
2084 return rc;
2085
2086 if (flags & MS_REMOUNT)
2087 return superblock_has_perm(current, nd->mnt->mnt_sb,
2088 FILESYSTEM__REMOUNT, NULL);
2089 else
2090 return dentry_has_perm(current, nd->mnt, nd->dentry,
2091 FILE__MOUNTON);
2092 }
2093
2094 static int selinux_umount(struct vfsmount *mnt, int flags)
2095 {
2096 int rc;
2097
2098 rc = secondary_ops->sb_umount(mnt, flags);
2099 if (rc)
2100 return rc;
2101
2102 return superblock_has_perm(current,mnt->mnt_sb,
2103 FILESYSTEM__UNMOUNT,NULL);
2104 }
2105
2106 /* inode security operations */
2107
2108 static int selinux_inode_alloc_security(struct inode *inode)
2109 {
2110 return inode_alloc_security(inode);
2111 }
2112
2113 static void selinux_inode_free_security(struct inode *inode)
2114 {
2115 inode_free_security(inode);
2116 }
2117
2118 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2119 char **name, void **value,
2120 size_t *len)
2121 {
2122 struct task_security_struct *tsec;
2123 struct inode_security_struct *dsec;
2124 struct superblock_security_struct *sbsec;
2125 u32 newsid, clen;
2126 int rc;
2127 char *namep = NULL, *context;
2128
2129 tsec = current->security;
2130 dsec = dir->i_security;
2131 sbsec = dir->i_sb->s_security;
2132
2133 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2134 newsid = tsec->create_sid;
2135 } else {
2136 rc = security_transition_sid(tsec->sid, dsec->sid,
2137 inode_mode_to_security_class(inode->i_mode),
2138 &newsid);
2139 if (rc) {
2140 printk(KERN_WARNING "%s: "
2141 "security_transition_sid failed, rc=%d (dev=%s "
2142 "ino=%ld)\n",
2143 __FUNCTION__,
2144 -rc, inode->i_sb->s_id, inode->i_ino);
2145 return rc;
2146 }
2147 }
2148
2149 /* Possibly defer initialization to selinux_complete_init. */
2150 if (sbsec->initialized) {
2151 struct inode_security_struct *isec = inode->i_security;
2152 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2153 isec->sid = newsid;
2154 isec->initialized = 1;
2155 }
2156
2157 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2158 return -EOPNOTSUPP;
2159
2160 if (name) {
2161 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2162 if (!namep)
2163 return -ENOMEM;
2164 *name = namep;
2165 }
2166
2167 if (value && len) {
2168 rc = security_sid_to_context(newsid, &context, &clen);
2169 if (rc) {
2170 kfree(namep);
2171 return rc;
2172 }
2173 *value = context;
2174 *len = clen;
2175 }
2176
2177 return 0;
2178 }
2179
2180 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2181 {
2182 return may_create(dir, dentry, SECCLASS_FILE);
2183 }
2184
2185 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2186 {
2187 int rc;
2188
2189 rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2190 if (rc)
2191 return rc;
2192 return may_link(dir, old_dentry, MAY_LINK);
2193 }
2194
2195 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2196 {
2197 int rc;
2198
2199 rc = secondary_ops->inode_unlink(dir, dentry);
2200 if (rc)
2201 return rc;
2202 return may_link(dir, dentry, MAY_UNLINK);
2203 }
2204
2205 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2206 {
2207 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2208 }
2209
2210 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2211 {
2212 return may_create(dir, dentry, SECCLASS_DIR);
2213 }
2214
2215 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2216 {
2217 return may_link(dir, dentry, MAY_RMDIR);
2218 }
2219
2220 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2221 {
2222 int rc;
2223
2224 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2225 if (rc)
2226 return rc;
2227
2228 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2229 }
2230
2231 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2232 struct inode *new_inode, struct dentry *new_dentry)
2233 {
2234 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2235 }
2236
2237 static int selinux_inode_readlink(struct dentry *dentry)
2238 {
2239 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2240 }
2241
2242 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2243 {
2244 int rc;
2245
2246 rc = secondary_ops->inode_follow_link(dentry,nameidata);
2247 if (rc)
2248 return rc;
2249 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2250 }
2251
2252 static int selinux_inode_permission(struct inode *inode, int mask,
2253 struct nameidata *nd)
2254 {
2255 int rc;
2256
2257 rc = secondary_ops->inode_permission(inode, mask, nd);
2258 if (rc)
2259 return rc;
2260
2261 if (!mask) {
2262 /* No permission to check. Existence test. */
2263 return 0;
2264 }
2265
2266 return inode_has_perm(current, inode,
2267 file_mask_to_av(inode->i_mode, mask), NULL);
2268 }
2269
2270 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2271 {
2272 int rc;
2273
2274 rc = secondary_ops->inode_setattr(dentry, iattr);
2275 if (rc)
2276 return rc;
2277
2278 if (iattr->ia_valid & ATTR_FORCE)
2279 return 0;
2280
2281 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2282 ATTR_ATIME_SET | ATTR_MTIME_SET))
2283 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2284
2285 return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2286 }
2287
2288 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2289 {
2290 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2291 }
2292
2293 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2294 {
2295 struct task_security_struct *tsec = current->security;
2296 struct inode *inode = dentry->d_inode;
2297 struct inode_security_struct *isec = inode->i_security;
2298 struct superblock_security_struct *sbsec;
2299 struct avc_audit_data ad;
2300 u32 newsid;
2301 int rc = 0;
2302
2303 if (strcmp(name, XATTR_NAME_SELINUX)) {
2304 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2305 sizeof XATTR_SECURITY_PREFIX - 1) &&
2306 !capable(CAP_SYS_ADMIN)) {
2307 /* A different attribute in the security namespace.
2308 Restrict to administrator. */
2309 return -EPERM;
2310 }
2311
2312 /* Not an attribute we recognize, so just check the
2313 ordinary setattr permission. */
2314 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2315 }
2316
2317 sbsec = inode->i_sb->s_security;
2318 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2319 return -EOPNOTSUPP;
2320
2321 if (!is_owner_or_cap(inode))
2322 return -EPERM;
2323
2324 AVC_AUDIT_DATA_INIT(&ad,FS);
2325 ad.u.fs.dentry = dentry;
2326
2327 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2328 FILE__RELABELFROM, &ad);
2329 if (rc)
2330 return rc;
2331
2332 rc = security_context_to_sid(value, size, &newsid);
2333 if (rc)
2334 return rc;
2335
2336 rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2337 FILE__RELABELTO, &ad);
2338 if (rc)
2339 return rc;
2340
2341 rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2342 isec->sclass);
2343 if (rc)
2344 return rc;
2345
2346 return avc_has_perm(newsid,
2347 sbsec->sid,
2348 SECCLASS_FILESYSTEM,
2349 FILESYSTEM__ASSOCIATE,
2350 &ad);
2351 }
2352
2353 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2354 void *value, size_t size, int flags)
2355 {
2356 struct inode *inode = dentry->d_inode;
2357 struct inode_security_struct *isec = inode->i_security;
2358 u32 newsid;
2359 int rc;
2360
2361 if (strcmp(name, XATTR_NAME_SELINUX)) {
2362 /* Not an attribute we recognize, so nothing to do. */
2363 return;
2364 }
2365
2366 rc = security_context_to_sid(value, size, &newsid);
2367 if (rc) {
2368 printk(KERN_WARNING "%s: unable to obtain SID for context "
2369 "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2370 return;
2371 }
2372
2373 isec->sid = newsid;
2374 return;
2375 }
2376
2377 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2378 {
2379 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2380 }
2381
2382 static int selinux_inode_listxattr (struct dentry *dentry)
2383 {
2384 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2385 }
2386
2387 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2388 {
2389 if (strcmp(name, XATTR_NAME_SELINUX)) {
2390 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2391 sizeof XATTR_SECURITY_PREFIX - 1) &&
2392 !capable(CAP_SYS_ADMIN)) {
2393 /* A different attribute in the security namespace.
2394 Restrict to administrator. */
2395 return -EPERM;
2396 }
2397
2398 /* Not an attribute we recognize, so just check the
2399 ordinary setattr permission. Might want a separate
2400 permission for removexattr. */
2401 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2402 }
2403
2404 /* No one is allowed to remove a SELinux security label.
2405 You can change the label, but all data must be labeled. */
2406 return -EACCES;
2407 }
2408
2409 static const char *selinux_inode_xattr_getsuffix(void)
2410 {
2411 return XATTR_SELINUX_SUFFIX;
2412 }
2413
2414 /*
2415 * Copy the in-core inode security context value to the user. If the
2416 * getxattr() prior to this succeeded, check to see if we need to
2417 * canonicalize the value to be finally returned to the user.
2418 *
2419 * Permission check is handled by selinux_inode_getxattr hook.
2420 */
2421 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2422 {
2423 struct inode_security_struct *isec = inode->i_security;
2424
2425 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2426 return -EOPNOTSUPP;
2427
2428 return selinux_getsecurity(isec->sid, buffer, size);
2429 }
2430
2431 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2432 const void *value, size_t size, int flags)
2433 {
2434 struct inode_security_struct *isec = inode->i_security;
2435 u32 newsid;
2436 int rc;
2437
2438 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2439 return -EOPNOTSUPP;
2440
2441 if (!value || !size)
2442 return -EACCES;
2443
2444 rc = security_context_to_sid((void*)value, size, &newsid);
2445 if (rc)
2446 return rc;
2447
2448 isec->sid = newsid;
2449 return 0;
2450 }
2451
2452 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2453 {
2454 const int len = sizeof(XATTR_NAME_SELINUX);
2455 if (buffer && len <= buffer_size)
2456 memcpy(buffer, XATTR_NAME_SELINUX, len);
2457 return len;
2458 }
2459
2460 /* file security operations */
2461
2462 static int selinux_file_permission(struct file *file, int mask)
2463 {
2464 int rc;
2465 struct inode *inode = file->f_path.dentry->d_inode;
2466
2467 if (!mask) {
2468 /* No permission to check. Existence test. */
2469 return 0;
2470 }
2471
2472 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2473 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2474 mask |= MAY_APPEND;
2475
2476 rc = file_has_perm(current, file,
2477 file_mask_to_av(inode->i_mode, mask));
2478 if (rc)
2479 return rc;
2480
2481 return selinux_netlbl_inode_permission(inode, mask);
2482 }
2483
2484 static int selinux_file_alloc_security(struct file *file)
2485 {
2486 return file_alloc_security(file);
2487 }
2488
2489 static void selinux_file_free_security(struct file *file)
2490 {
2491 file_free_security(file);
2492 }
2493
2494 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2495 unsigned long arg)
2496 {
2497 int error = 0;
2498
2499 switch (cmd) {
2500 case FIONREAD:
2501 /* fall through */
2502 case FIBMAP:
2503 /* fall through */
2504 case FIGETBSZ:
2505 /* fall through */
2506 case EXT2_IOC_GETFLAGS:
2507 /* fall through */
2508 case EXT2_IOC_GETVERSION:
2509 error = file_has_perm(current, file, FILE__GETATTR);
2510 break;
2511
2512 case EXT2_IOC_SETFLAGS:
2513 /* fall through */
2514 case EXT2_IOC_SETVERSION:
2515 error = file_has_perm(current, file, FILE__SETATTR);
2516 break;
2517
2518 /* sys_ioctl() checks */
2519 case FIONBIO:
2520 /* fall through */
2521 case FIOASYNC:
2522 error = file_has_perm(current, file, 0);
2523 break;
2524
2525 case KDSKBENT:
2526 case KDSKBSENT:
2527 error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2528 break;
2529
2530 /* default case assumes that the command will go
2531 * to the file's ioctl() function.
2532 */
2533 default:
2534 error = file_has_perm(current, file, FILE__IOCTL);
2535
2536 }
2537 return error;
2538 }
2539
2540 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2541 {
2542 #ifndef CONFIG_PPC32
2543 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2544 /*
2545 * We are making executable an anonymous mapping or a
2546 * private file mapping that will also be writable.
2547 * This has an additional check.
2548 */
2549 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2550 if (rc)
2551 return rc;
2552 }
2553 #endif
2554
2555 if (file) {
2556 /* read access is always possible with a mapping */
2557 u32 av = FILE__READ;
2558
2559 /* write access only matters if the mapping is shared */
2560 if (shared && (prot & PROT_WRITE))
2561 av |= FILE__WRITE;
2562
2563 if (prot & PROT_EXEC)
2564 av |= FILE__EXECUTE;
2565
2566 return file_has_perm(current, file, av);
2567 }
2568 return 0;
2569 }
2570
2571 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2572 unsigned long prot, unsigned long flags,
2573 unsigned long addr, unsigned long addr_only)
2574 {
2575 int rc = 0;
2576 u32 sid = ((struct task_security_struct*)(current->security))->sid;
2577
2578 if (addr < mmap_min_addr)
2579 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
2580 MEMPROTECT__MMAP_ZERO, NULL);
2581 if (rc || addr_only)
2582 return rc;
2583
2584 if (selinux_checkreqprot)
2585 prot = reqprot;
2586
2587 return file_map_prot_check(file, prot,
2588 (flags & MAP_TYPE) == MAP_SHARED);
2589 }
2590
2591 static int selinux_file_mprotect(struct vm_area_struct *vma,
2592 unsigned long reqprot,
2593 unsigned long prot)
2594 {
2595 int rc;
2596
2597 rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2598 if (rc)
2599 return rc;
2600
2601 if (selinux_checkreqprot)
2602 prot = reqprot;
2603
2604 #ifndef CONFIG_PPC32
2605 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2606 rc = 0;
2607 if (vma->vm_start >= vma->vm_mm->start_brk &&
2608 vma->vm_end <= vma->vm_mm->brk) {
2609 rc = task_has_perm(current, current,
2610 PROCESS__EXECHEAP);
2611 } else if (!vma->vm_file &&
2612 vma->vm_start <= vma->vm_mm->start_stack &&
2613 vma->vm_end >= vma->vm_mm->start_stack) {
2614 rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2615 } else if (vma->vm_file && vma->anon_vma) {
2616 /*
2617 * We are making executable a file mapping that has
2618 * had some COW done. Since pages might have been
2619 * written, check ability to execute the possibly
2620 * modified content. This typically should only
2621 * occur for text relocations.
2622 */
2623 rc = file_has_perm(current, vma->vm_file,
2624 FILE__EXECMOD);
2625 }
2626 if (rc)
2627 return rc;
2628 }
2629 #endif
2630
2631 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2632 }
2633
2634 static int selinux_file_lock(struct file *file, unsigned int cmd)
2635 {
2636 return file_has_perm(current, file, FILE__LOCK);
2637 }
2638
2639 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2640 unsigned long arg)
2641 {
2642 int err = 0;
2643
2644 switch (cmd) {
2645 case F_SETFL:
2646 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2647 err = -EINVAL;
2648 break;
2649 }
2650
2651 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2652 err = file_has_perm(current, file,FILE__WRITE);
2653 break;
2654 }
2655 /* fall through */
2656 case F_SETOWN:
2657 case F_SETSIG:
2658 case F_GETFL:
2659 case F_GETOWN:
2660 case F_GETSIG:
2661 /* Just check FD__USE permission */
2662 err = file_has_perm(current, file, 0);
2663 break;
2664 case F_GETLK:
2665 case F_SETLK:
2666 case F_SETLKW:
2667 #if BITS_PER_LONG == 32
2668 case F_GETLK64:
2669 case F_SETLK64:
2670 case F_SETLKW64:
2671 #endif
2672 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2673 err = -EINVAL;
2674 break;
2675 }
2676 err = file_has_perm(current, file, FILE__LOCK);
2677 break;
2678 }
2679
2680 return err;
2681 }
2682
2683 static int selinux_file_set_fowner(struct file *file)
2684 {
2685 struct task_security_struct *tsec;
2686 struct file_security_struct *fsec;
2687
2688 tsec = current->security;
2689 fsec = file->f_security;
2690 fsec->fown_sid = tsec->sid;
2691
2692 return 0;
2693 }
2694
2695 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2696 struct fown_struct *fown, int signum)
2697 {
2698 struct file *file;
2699 u32 perm;
2700 struct task_security_struct *tsec;
2701 struct file_security_struct *fsec;
2702
2703 /* struct fown_struct is never outside the context of a struct file */
2704 file = container_of(fown, struct file, f_owner);
2705
2706 tsec = tsk->security;
2707 fsec = file->f_security;
2708
2709 if (!signum)
2710 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2711 else
2712 perm = signal_to_av(signum);
2713
2714 return avc_has_perm(fsec->fown_sid, tsec->sid,
2715 SECCLASS_PROCESS, perm, NULL);
2716 }
2717
2718 static int selinux_file_receive(struct file *file)
2719 {
2720 return file_has_perm(current, file, file_to_av(file));
2721 }
2722
2723 /* task security operations */
2724
2725 static int selinux_task_create(unsigned long clone_flags)
2726 {
2727 int rc;
2728
2729 rc = secondary_ops->task_create(clone_flags);
2730 if (rc)
2731 return rc;
2732
2733 return task_has_perm(current, current, PROCESS__FORK);
2734 }
2735
2736 static int selinux_task_alloc_security(struct task_struct *tsk)
2737 {
2738 struct task_security_struct *tsec1, *tsec2;
2739 int rc;
2740
2741 tsec1 = current->security;
2742
2743 rc = task_alloc_security(tsk);
2744 if (rc)
2745 return rc;
2746 tsec2 = tsk->security;
2747
2748 tsec2->osid = tsec1->osid;
2749 tsec2->sid = tsec1->sid;
2750
2751 /* Retain the exec, fs, key, and sock SIDs across fork */
2752 tsec2->exec_sid = tsec1->exec_sid;
2753 tsec2->create_sid = tsec1->create_sid;
2754 tsec2->keycreate_sid = tsec1->keycreate_sid;
2755 tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2756
2757 /* Retain ptracer SID across fork, if any.
2758 This will be reset by the ptrace hook upon any
2759 subsequent ptrace_attach operations. */
2760 tsec2->ptrace_sid = tsec1->ptrace_sid;
2761
2762 return 0;
2763 }
2764
2765 static void selinux_task_free_security(struct task_struct *tsk)
2766 {
2767 task_free_security(tsk);
2768 }
2769
2770 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2771 {
2772 /* Since setuid only affects the current process, and
2773 since the SELinux controls are not based on the Linux
2774 identity attributes, SELinux does not need to control
2775 this operation. However, SELinux does control the use
2776 of the CAP_SETUID and CAP_SETGID capabilities using the
2777 capable hook. */
2778 return 0;
2779 }
2780
2781 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2782 {
2783 return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2784 }
2785
2786 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2787 {
2788 /* See the comment for setuid above. */
2789 return 0;
2790 }
2791
2792 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2793 {
2794 return task_has_perm(current, p, PROCESS__SETPGID);
2795 }
2796
2797 static int selinux_task_getpgid(struct task_struct *p)
2798 {
2799 return task_has_perm(current, p, PROCESS__GETPGID);
2800 }
2801
2802 static int selinux_task_getsid(struct task_struct *p)
2803 {
2804 return task_has_perm(current, p, PROCESS__GETSESSION);
2805 }
2806
2807 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2808 {
2809 selinux_get_task_sid(p, secid);
2810 }
2811
2812 static int selinux_task_setgroups(struct group_info *group_info)
2813 {
2814 /* See the comment for setuid above. */
2815 return 0;
2816 }
2817
2818 static int selinux_task_setnice(struct task_struct *p, int nice)
2819 {
2820 int rc;
2821
2822 rc = secondary_ops->task_setnice(p, nice);
2823 if (rc)
2824 return rc;
2825
2826 return task_has_perm(current,p, PROCESS__SETSCHED);
2827 }
2828
2829 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2830 {
2831 return task_has_perm(current, p, PROCESS__SETSCHED);
2832 }
2833
2834 static int selinux_task_getioprio(struct task_struct *p)
2835 {
2836 return task_has_perm(current, p, PROCESS__GETSCHED);
2837 }
2838
2839 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2840 {
2841 struct rlimit *old_rlim = current->signal->rlim + resource;
2842 int rc;
2843
2844 rc = secondary_ops->task_setrlimit(resource, new_rlim);
2845 if (rc)
2846 return rc;
2847
2848 /* Control the ability to change the hard limit (whether
2849 lowering or raising it), so that the hard limit can
2850 later be used as a safe reset point for the soft limit
2851 upon context transitions. See selinux_bprm_apply_creds. */
2852 if (old_rlim->rlim_max != new_rlim->rlim_max)
2853 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2854
2855 return 0;
2856 }
2857
2858 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2859 {
2860 return task_has_perm(current, p, PROCESS__SETSCHED);
2861 }
2862
2863 static int selinux_task_getscheduler(struct task_struct *p)
2864 {
2865 return task_has_perm(current, p, PROCESS__GETSCHED);
2866 }
2867
2868 static int selinux_task_movememory(struct task_struct *p)
2869 {
2870 return task_has_perm(current, p, PROCESS__SETSCHED);
2871 }
2872
2873 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2874 int sig, u32 secid)
2875 {
2876 u32 perm;
2877 int rc;
2878 struct task_security_struct *tsec;
2879
2880 rc = secondary_ops->task_kill(p, info, sig, secid);
2881 if (rc)
2882 return rc;
2883
2884 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2885 return 0;
2886
2887 if (!sig)
2888 perm = PROCESS__SIGNULL; /* null signal; existence test */
2889 else
2890 perm = signal_to_av(sig);
2891 tsec = p->security;
2892 if (secid)
2893 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2894 else
2895 rc = task_has_perm(current, p, perm);
2896 return rc;
2897 }
2898
2899 static int selinux_task_prctl(int option,
2900 unsigned long arg2,
2901 unsigned long arg3,
2902 unsigned long arg4,
2903 unsigned long arg5)
2904 {
2905 /* The current prctl operations do not appear to require
2906 any SELinux controls since they merely observe or modify
2907 the state of the current process. */
2908 return 0;
2909 }
2910
2911 static int selinux_task_wait(struct task_struct *p)
2912 {
2913 u32 perm;
2914
2915 perm = signal_to_av(p->exit_signal);
2916
2917 return task_has_perm(p, current, perm);
2918 }
2919
2920 static void selinux_task_reparent_to_init(struct task_struct *p)
2921 {
2922 struct task_security_struct *tsec;
2923
2924 secondary_ops->task_reparent_to_init(p);
2925
2926 tsec = p->security;
2927 tsec->osid = tsec->sid;
2928 tsec->sid = SECINITSID_KERNEL;
2929 return;
2930 }
2931
2932 static void selinux_task_to_inode(struct task_struct *p,
2933 struct inode *inode)
2934 {
2935 struct task_security_struct *tsec = p->security;
2936 struct inode_security_struct *isec = inode->i_security;
2937
2938 isec->sid = tsec->sid;
2939 isec->initialized = 1;
2940 return;
2941 }
2942
2943 /* Returns error only if unable to parse addresses */
2944 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
2945 struct avc_audit_data *ad, u8 *proto)
2946 {
2947 int offset, ihlen, ret = -EINVAL;
2948 struct iphdr _iph, *ih;
2949
2950 offset = skb_network_offset(skb);
2951 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2952 if (ih == NULL)
2953 goto out;
2954
2955 ihlen = ih->ihl * 4;
2956 if (ihlen < sizeof(_iph))
2957 goto out;
2958
2959 ad->u.net.v4info.saddr = ih->saddr;
2960 ad->u.net.v4info.daddr = ih->daddr;
2961 ret = 0;
2962
2963 if (proto)
2964 *proto = ih->protocol;
2965
2966 switch (ih->protocol) {
2967 case IPPROTO_TCP: {
2968 struct tcphdr _tcph, *th;
2969
2970 if (ntohs(ih->frag_off) & IP_OFFSET)
2971 break;
2972
2973 offset += ihlen;
2974 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2975 if (th == NULL)
2976 break;
2977
2978 ad->u.net.sport = th->source;
2979 ad->u.net.dport = th->dest;
2980 break;
2981 }
2982
2983 case IPPROTO_UDP: {
2984 struct udphdr _udph, *uh;
2985
2986 if (ntohs(ih->frag_off) & IP_OFFSET)
2987 break;
2988
2989 offset += ihlen;
2990 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2991 if (uh == NULL)
2992 break;
2993
2994 ad->u.net.sport = uh->source;
2995 ad->u.net.dport = uh->dest;
2996 break;
2997 }
2998
2999 case IPPROTO_DCCP: {
3000 struct dccp_hdr _dccph, *dh;
3001
3002 if (ntohs(ih->frag_off) & IP_OFFSET)
3003 break;
3004
3005 offset += ihlen;
3006 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3007 if (dh == NULL)
3008 break;
3009
3010 ad->u.net.sport = dh->dccph_sport;
3011 ad->u.net.dport = dh->dccph_dport;
3012 break;
3013 }
3014
3015 default:
3016 break;
3017 }
3018 out:
3019 return ret;
3020 }
3021
3022 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3023
3024 /* Returns error only if unable to parse addresses */
3025 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3026 struct avc_audit_data *ad, u8 *proto)
3027 {
3028 u8 nexthdr;
3029 int ret = -EINVAL, offset;
3030 struct ipv6hdr _ipv6h, *ip6;
3031
3032 offset = skb_network_offset(skb);
3033 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3034 if (ip6 == NULL)
3035 goto out;
3036
3037 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3038 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3039 ret = 0;
3040
3041 nexthdr = ip6->nexthdr;
3042 offset += sizeof(_ipv6h);
3043 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3044 if (offset < 0)
3045 goto out;
3046
3047 if (proto)
3048 *proto = nexthdr;
3049
3050 switch (nexthdr) {
3051 case IPPROTO_TCP: {
3052 struct tcphdr _tcph, *th;
3053
3054 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3055 if (th == NULL)
3056 break;
3057
3058 ad->u.net.sport = th->source;
3059 ad->u.net.dport = th->dest;
3060 break;
3061 }
3062
3063 case IPPROTO_UDP: {
3064 struct udphdr _udph, *uh;
3065
3066 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3067 if (uh == NULL)
3068 break;
3069
3070 ad->u.net.sport = uh->source;
3071 ad->u.net.dport = uh->dest;
3072 break;
3073 }
3074
3075 case IPPROTO_DCCP: {
3076 struct dccp_hdr _dccph, *dh;
3077
3078 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3079 if (dh == NULL)
3080 break;
3081
3082 ad->u.net.sport = dh->dccph_sport;
3083 ad->u.net.dport = dh->dccph_dport;
3084 break;
3085 }
3086
3087 /* includes fragments */
3088 default:
3089 break;
3090 }
3091 out:
3092 return ret;
3093 }
3094
3095 #endif /* IPV6 */
3096
3097 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3098 char **addrp, int *len, int src, u8 *proto)
3099 {
3100 int ret = 0;
3101
3102 switch (ad->u.net.family) {
3103 case PF_INET:
3104 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3105 if (ret || !addrp)
3106 break;
3107 *len = 4;
3108 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3109 &ad->u.net.v4info.daddr);
3110 break;
3111
3112 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3113 case PF_INET6:
3114 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3115 if (ret || !addrp)
3116 break;
3117 *len = 16;
3118 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3119 &ad->u.net.v6info.daddr);
3120 break;
3121 #endif /* IPV6 */
3122 default:
3123 break;
3124 }
3125
3126 return ret;
3127 }
3128
3129 /**
3130 * selinux_skb_extlbl_sid - Determine the external label of a packet
3131 * @skb: the packet
3132 * @sid: the packet's SID
3133 *
3134 * Description:
3135 * Check the various different forms of external packet labeling and determine
3136 * the external SID for the packet. If only one form of external labeling is
3137 * present then it is used, if both labeled IPsec and NetLabel labels are
3138 * present then the SELinux type information is taken from the labeled IPsec
3139 * SA and the MLS sensitivity label information is taken from the NetLabel
3140 * security attributes. This bit of "magic" is done in the call to
3141 * selinux_netlbl_skbuff_getsid().
3142 *
3143 */
3144 static void selinux_skb_extlbl_sid(struct sk_buff *skb, u32 *sid)
3145 {
3146 u32 xfrm_sid;
3147 u32 nlbl_sid;
3148
3149 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3150 if (selinux_netlbl_skbuff_getsid(skb,
3151 (xfrm_sid == SECSID_NULL ?
3152 SECINITSID_NETMSG : xfrm_sid),
3153 &nlbl_sid) != 0)
3154 nlbl_sid = SECSID_NULL;
3155 *sid = (nlbl_sid == SECSID_NULL ? xfrm_sid : nlbl_sid);
3156 }
3157
3158 /* socket security operations */
3159 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3160 u32 perms)
3161 {
3162 struct inode_security_struct *isec;
3163 struct task_security_struct *tsec;
3164 struct avc_audit_data ad;
3165 int err = 0;
3166
3167 tsec = task->security;
3168 isec = SOCK_INODE(sock)->i_security;
3169
3170 if (isec->sid == SECINITSID_KERNEL)
3171 goto out;
3172
3173 AVC_AUDIT_DATA_INIT(&ad,NET);
3174 ad.u.net.sk = sock->sk;
3175 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3176
3177 out:
3178 return err;
3179 }
3180
3181 static int selinux_socket_create(int family, int type,
3182 int protocol, int kern)
3183 {
3184 int err = 0;
3185 struct task_security_struct *tsec;
3186 u32 newsid;
3187
3188 if (kern)
3189 goto out;
3190
3191 tsec = current->security;
3192 newsid = tsec->sockcreate_sid ? : tsec->sid;
3193 err = avc_has_perm(tsec->sid, newsid,
3194 socket_type_to_security_class(family, type,
3195 protocol), SOCKET__CREATE, NULL);
3196
3197 out:
3198 return err;
3199 }
3200
3201 static int selinux_socket_post_create(struct socket *sock, int family,
3202 int type, int protocol, int kern)
3203 {
3204 int err = 0;
3205 struct inode_security_struct *isec;
3206 struct task_security_struct *tsec;
3207 struct sk_security_struct *sksec;
3208 u32 newsid;
3209
3210 isec = SOCK_INODE(sock)->i_security;
3211
3212 tsec = current->security;
3213 newsid = tsec->sockcreate_sid ? : tsec->sid;
3214 isec->sclass = socket_type_to_security_class(family, type, protocol);
3215 isec->sid = kern ? SECINITSID_KERNEL : newsid;
3216 isec->initialized = 1;
3217
3218 if (sock->sk) {
3219 sksec = sock->sk->sk_security;
3220 sksec->sid = isec->sid;
3221 err = selinux_netlbl_socket_post_create(sock);
3222 }
3223
3224 return err;
3225 }
3226
3227 /* Range of port numbers used to automatically bind.
3228 Need to determine whether we should perform a name_bind
3229 permission check between the socket and the port number. */
3230 #define ip_local_port_range_0 sysctl_local_port_range[0]
3231 #define ip_local_port_range_1 sysctl_local_port_range[1]
3232
3233 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3234 {
3235 u16 family;
3236 int err;
3237
3238 err = socket_has_perm(current, sock, SOCKET__BIND);
3239 if (err)
3240 goto out;
3241
3242 /*
3243 * If PF_INET or PF_INET6, check name_bind permission for the port.
3244 * Multiple address binding for SCTP is not supported yet: we just
3245 * check the first address now.
3246 */
3247 family = sock->sk->sk_family;
3248 if (family == PF_INET || family == PF_INET6) {
3249 char *addrp;
3250 struct inode_security_struct *isec;
3251 struct task_security_struct *tsec;
3252 struct avc_audit_data ad;
3253 struct sockaddr_in *addr4 = NULL;
3254 struct sockaddr_in6 *addr6 = NULL;
3255 unsigned short snum;
3256 struct sock *sk = sock->sk;
3257 u32 sid, node_perm, addrlen;
3258
3259 tsec = current->security;
3260 isec = SOCK_INODE(sock)->i_security;
3261
3262 if (family == PF_INET) {
3263 addr4 = (struct sockaddr_in *)address;
3264 snum = ntohs(addr4->sin_port);
3265 addrlen = sizeof(addr4->sin_addr.s_addr);
3266 addrp = (char *)&addr4->sin_addr.s_addr;
3267 } else {
3268 addr6 = (struct sockaddr_in6 *)address;
3269 snum = ntohs(addr6->sin6_port);
3270 addrlen = sizeof(addr6->sin6_addr.s6_addr);
3271 addrp = (char *)&addr6->sin6_addr.s6_addr;
3272 }
3273
3274 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
3275 snum > ip_local_port_range_1)) {
3276 err = security_port_sid(sk->sk_family, sk->sk_type,
3277 sk->sk_protocol, snum, &sid);
3278 if (err)
3279 goto out;
3280 AVC_AUDIT_DATA_INIT(&ad,NET);
3281 ad.u.net.sport = htons(snum);
3282 ad.u.net.family = family;
3283 err = avc_has_perm(isec->sid, sid,
3284 isec->sclass,
3285 SOCKET__NAME_BIND, &ad);
3286 if (err)
3287 goto out;
3288 }
3289
3290 switch(isec->sclass) {
3291 case SECCLASS_TCP_SOCKET:
3292 node_perm = TCP_SOCKET__NODE_BIND;
3293 break;
3294
3295 case SECCLASS_UDP_SOCKET:
3296 node_perm = UDP_SOCKET__NODE_BIND;
3297 break;
3298
3299 case SECCLASS_DCCP_SOCKET:
3300 node_perm = DCCP_SOCKET__NODE_BIND;
3301 break;
3302
3303 default:
3304 node_perm = RAWIP_SOCKET__NODE_BIND;
3305 break;
3306 }
3307
3308 err = security_node_sid(family, addrp, addrlen, &sid);
3309 if (err)
3310 goto out;
3311
3312 AVC_AUDIT_DATA_INIT(&ad,NET);
3313 ad.u.net.sport = htons(snum);
3314 ad.u.net.family = family;
3315
3316 if (family == PF_INET)
3317 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3318 else
3319 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3320
3321 err = avc_has_perm(isec->sid, sid,
3322 isec->sclass, node_perm, &ad);
3323 if (err)
3324 goto out;
3325 }
3326 out:
3327 return err;
3328 }
3329
3330 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3331 {
3332 struct inode_security_struct *isec;
3333 int err;
3334
3335 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3336 if (err)
3337 return err;
3338
3339 /*
3340 * If a TCP or DCCP socket, check name_connect permission for the port.
3341 */
3342 isec = SOCK_INODE(sock)->i_security;
3343 if (isec->sclass == SECCLASS_TCP_SOCKET ||
3344 isec->sclass == SECCLASS_DCCP_SOCKET) {
3345 struct sock *sk = sock->sk;
3346 struct avc_audit_data ad;
3347 struct sockaddr_in *addr4 = NULL;
3348 struct sockaddr_in6 *addr6 = NULL;
3349 unsigned short snum;
3350 u32 sid, perm;
3351
3352 if (sk->sk_family == PF_INET) {
3353 addr4 = (struct sockaddr_in *)address;
3354 if (addrlen < sizeof(struct sockaddr_in))
3355 return -EINVAL;
3356 snum = ntohs(addr4->sin_port);
3357 } else {
3358 addr6 = (struct sockaddr_in6 *)address;
3359 if (addrlen < SIN6_LEN_RFC2133)
3360 return -EINVAL;
3361 snum = ntohs(addr6->sin6_port);
3362 }
3363
3364 err = security_port_sid(sk->sk_family, sk->sk_type,
3365 sk->sk_protocol, snum, &sid);
3366 if (err)
3367 goto out;
3368
3369 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3370 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3371
3372 AVC_AUDIT_DATA_INIT(&ad,NET);
3373 ad.u.net.dport = htons(snum);
3374 ad.u.net.family = sk->sk_family;
3375 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3376 if (err)
3377 goto out;
3378 }
3379
3380 out:
3381 return err;
3382 }
3383
3384 static int selinux_socket_listen(struct socket *sock, int backlog)
3385 {
3386 return socket_has_perm(current, sock, SOCKET__LISTEN);
3387 }
3388
3389 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3390 {
3391 int err;
3392 struct inode_security_struct *isec;
3393 struct inode_security_struct *newisec;
3394
3395 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3396 if (err)
3397 return err;
3398
3399 newisec = SOCK_INODE(newsock)->i_security;
3400
3401 isec = SOCK_INODE(sock)->i_security;
3402 newisec->sclass = isec->sclass;
3403 newisec->sid = isec->sid;
3404 newisec->initialized = 1;
3405
3406 return 0;
3407 }
3408
3409 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3410 int size)
3411 {
3412 int rc;
3413
3414 rc = socket_has_perm(current, sock, SOCKET__WRITE);
3415 if (rc)
3416 return rc;
3417
3418 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3419 }
3420
3421 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3422 int size, int flags)
3423 {
3424 return socket_has_perm(current, sock, SOCKET__READ);
3425 }
3426
3427 static int selinux_socket_getsockname(struct socket *sock)
3428 {
3429 return socket_has_perm(current, sock, SOCKET__GETATTR);
3430 }
3431
3432 static int selinux_socket_getpeername(struct socket *sock)
3433 {
3434 return socket_has_perm(current, sock, SOCKET__GETATTR);
3435 }
3436
3437 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3438 {
3439 int err;
3440
3441 err = socket_has_perm(current, sock, SOCKET__SETOPT);
3442 if (err)
3443 return err;
3444
3445 return selinux_netlbl_socket_setsockopt(sock, level, optname);
3446 }
3447
3448 static int selinux_socket_getsockopt(struct socket *sock, int level,
3449 int optname)
3450 {
3451 return socket_has_perm(current, sock, SOCKET__GETOPT);
3452 }
3453
3454 static int selinux_socket_shutdown(struct socket *sock, int how)
3455 {
3456 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3457 }
3458
3459 static int selinux_socket_unix_stream_connect(struct socket *sock,
3460 struct socket *other,
3461 struct sock *newsk)
3462 {
3463 struct sk_security_struct *ssec;
3464 struct inode_security_struct *isec;
3465 struct inode_security_struct *other_isec;
3466 struct avc_audit_data ad;
3467 int err;
3468
3469 err = secondary_ops->unix_stream_connect(sock, other, newsk);
3470 if (err)
3471 return err;
3472
3473 isec = SOCK_INODE(sock)->i_security;
3474 other_isec = SOCK_INODE(other)->i_security;
3475
3476 AVC_AUDIT_DATA_INIT(&ad,NET);
3477 ad.u.net.sk = other->sk;
3478
3479 err = avc_has_perm(isec->sid, other_isec->sid,
3480 isec->sclass,
3481 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3482 if (err)
3483 return err;
3484
3485 /* connecting socket */
3486 ssec = sock->sk->sk_security;
3487 ssec->peer_sid = other_isec->sid;
3488
3489 /* server child socket */
3490 ssec = newsk->sk_security;
3491 ssec->peer_sid = isec->sid;
3492 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3493
3494 return err;
3495 }
3496
3497 static int selinux_socket_unix_may_send(struct socket *sock,
3498 struct socket *other)
3499 {
3500 struct inode_security_struct *isec;
3501 struct inode_security_struct *other_isec;
3502 struct avc_audit_data ad;
3503 int err;
3504
3505 isec = SOCK_INODE(sock)->i_security;
3506 other_isec = SOCK_INODE(other)->i_security;
3507
3508 AVC_AUDIT_DATA_INIT(&ad,NET);
3509 ad.u.net.sk = other->sk;
3510
3511 err = avc_has_perm(isec->sid, other_isec->sid,
3512 isec->sclass, SOCKET__SENDTO, &ad);
3513 if (err)
3514 return err;
3515
3516 return 0;
3517 }
3518
3519 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3520 struct avc_audit_data *ad, u16 family, char *addrp, int len)
3521 {
3522 int err = 0;
3523 u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3524 struct socket *sock;
3525 u16 sock_class = 0;
3526 u32 sock_sid = 0;
3527
3528 read_lock_bh(&sk->sk_callback_lock);
3529 sock = sk->sk_socket;
3530 if (sock) {
3531 struct inode *inode;
3532 inode = SOCK_INODE(sock);
3533 if (inode) {
3534 struct inode_security_struct *isec;
3535 isec = inode->i_security;
3536 sock_sid = isec->sid;
3537 sock_class = isec->sclass;
3538 }
3539 }
3540 read_unlock_bh(&sk->sk_callback_lock);
3541 if (!sock_sid)
3542 goto out;
3543
3544 if (!skb->dev)
3545 goto out;
3546
3547 err = sel_netif_sids(skb->dev, &if_sid, NULL);
3548 if (err)
3549 goto out;
3550
3551 switch (sock_class) {
3552 case SECCLASS_UDP_SOCKET:
3553 netif_perm = NETIF__UDP_RECV;
3554 node_perm = NODE__UDP_RECV;
3555 recv_perm = UDP_SOCKET__RECV_MSG;
3556 break;
3557
3558 case SECCLASS_TCP_SOCKET:
3559 netif_perm = NETIF__TCP_RECV;
3560 node_perm = NODE__TCP_RECV;
3561 recv_perm = TCP_SOCKET__RECV_MSG;
3562 break;
3563
3564 case SECCLASS_DCCP_SOCKET:
3565 netif_perm = NETIF__DCCP_RECV;
3566 node_perm = NODE__DCCP_RECV;
3567 recv_perm = DCCP_SOCKET__RECV_MSG;
3568 break;
3569
3570 default:
3571 netif_perm = NETIF__RAWIP_RECV;
3572 node_perm = NODE__RAWIP_RECV;
3573 break;
3574 }
3575
3576 err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3577 if (err)
3578 goto out;
3579
3580 err = security_node_sid(family, addrp, len, &node_sid);
3581 if (err)
3582 goto out;
3583
3584 err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3585 if (err)
3586 goto out;
3587
3588 if (recv_perm) {
3589 u32 port_sid;
3590
3591 err = security_port_sid(sk->sk_family, sk->sk_type,
3592 sk->sk_protocol, ntohs(ad->u.net.sport),
3593 &port_sid);
3594 if (err)
3595 goto out;
3596
3597 err = avc_has_perm(sock_sid, port_sid,
3598 sock_class, recv_perm, ad);
3599 }
3600
3601 out:
3602 return err;
3603 }
3604
3605 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3606 {
3607 u16 family;
3608 char *addrp;
3609 int len, err = 0;
3610 struct avc_audit_data ad;
3611 struct sk_security_struct *sksec = sk->sk_security;
3612
3613 family = sk->sk_family;
3614 if (family != PF_INET && family != PF_INET6)
3615 goto out;
3616
3617 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3618 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
3619 family = PF_INET;
3620
3621 AVC_AUDIT_DATA_INIT(&ad, NET);
3622 ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3623 ad.u.net.family = family;
3624
3625 err = selinux_parse_skb(skb, &ad, &addrp, &len, 1, NULL);
3626 if (err)
3627 goto out;
3628
3629 if (selinux_compat_net)
3630 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family,
3631 addrp, len);
3632 else
3633 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3634 PACKET__RECV, &ad);
3635 if (err)
3636 goto out;
3637
3638 err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad);
3639 if (err)
3640 goto out;
3641
3642 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
3643 out:
3644 return err;
3645 }
3646
3647 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3648 int __user *optlen, unsigned len)
3649 {
3650 int err = 0;
3651 char *scontext;
3652 u32 scontext_len;
3653 struct sk_security_struct *ssec;
3654 struct inode_security_struct *isec;
3655 u32 peer_sid = SECSID_NULL;
3656
3657 isec = SOCK_INODE(sock)->i_security;
3658
3659 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
3660 isec->sclass == SECCLASS_TCP_SOCKET) {
3661 ssec = sock->sk->sk_security;
3662 peer_sid = ssec->peer_sid;
3663 }
3664 if (peer_sid == SECSID_NULL) {
3665 err = -ENOPROTOOPT;
3666 goto out;
3667 }
3668
3669 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3670
3671 if (err)
3672 goto out;
3673
3674 if (scontext_len > len) {
3675 err = -ERANGE;
3676 goto out_len;
3677 }
3678
3679 if (copy_to_user(optval, scontext, scontext_len))
3680 err = -EFAULT;
3681
3682 out_len:
3683 if (put_user(scontext_len, optlen))
3684 err = -EFAULT;
3685
3686 kfree(scontext);
3687 out:
3688 return err;
3689 }
3690
3691 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3692 {
3693 u32 peer_secid = SECSID_NULL;
3694 int err = 0;
3695
3696 if (sock && sock->sk->sk_family == PF_UNIX)
3697 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
3698 else if (skb)
3699 selinux_skb_extlbl_sid(skb, &peer_secid);
3700
3701 if (peer_secid == SECSID_NULL)
3702 err = -EINVAL;
3703 *secid = peer_secid;
3704
3705 return err;
3706 }
3707
3708 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3709 {
3710 return sk_alloc_security(sk, family, priority);
3711 }
3712
3713 static void selinux_sk_free_security(struct sock *sk)
3714 {
3715 sk_free_security(sk);
3716 }
3717
3718 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
3719 {
3720 struct sk_security_struct *ssec = sk->sk_security;
3721 struct sk_security_struct *newssec = newsk->sk_security;
3722
3723 newssec->sid = ssec->sid;
3724 newssec->peer_sid = ssec->peer_sid;
3725
3726 selinux_netlbl_sk_security_clone(ssec, newssec);
3727 }
3728
3729 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
3730 {
3731 if (!sk)
3732 *secid = SECINITSID_ANY_SOCKET;
3733 else {
3734 struct sk_security_struct *sksec = sk->sk_security;
3735
3736 *secid = sksec->sid;
3737 }
3738 }
3739
3740 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
3741 {
3742 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
3743 struct sk_security_struct *sksec = sk->sk_security;
3744
3745 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
3746 sk->sk_family == PF_UNIX)
3747 isec->sid = sksec->sid;
3748
3749 selinux_netlbl_sock_graft(sk, parent);
3750 }
3751
3752 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
3753 struct request_sock *req)
3754 {
3755 struct sk_security_struct *sksec = sk->sk_security;
3756 int err;
3757 u32 newsid;
3758 u32 peersid;
3759
3760 selinux_skb_extlbl_sid(skb, &peersid);
3761 if (peersid == SECSID_NULL) {
3762 req->secid = sksec->sid;
3763 req->peer_secid = SECSID_NULL;
3764 return 0;
3765 }
3766
3767 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
3768 if (err)
3769 return err;
3770
3771 req->secid = newsid;
3772 req->peer_secid = peersid;
3773 return 0;
3774 }
3775
3776 static void selinux_inet_csk_clone(struct sock *newsk,
3777 const struct request_sock *req)
3778 {
3779 struct sk_security_struct *newsksec = newsk->sk_security;
3780
3781 newsksec->sid = req->secid;
3782 newsksec->peer_sid = req->peer_secid;
3783 /* NOTE: Ideally, we should also get the isec->sid for the
3784 new socket in sync, but we don't have the isec available yet.
3785 So we will wait until sock_graft to do it, by which
3786 time it will have been created and available. */
3787
3788 /* We don't need to take any sort of lock here as we are the only
3789 * thread with access to newsksec */
3790 selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
3791 }
3792
3793 static void selinux_inet_conn_established(struct sock *sk,
3794 struct sk_buff *skb)
3795 {
3796 struct sk_security_struct *sksec = sk->sk_security;
3797
3798 selinux_skb_extlbl_sid(skb, &sksec->peer_sid);
3799 }
3800
3801 static void selinux_req_classify_flow(const struct request_sock *req,
3802 struct flowi *fl)
3803 {
3804 fl->secid = req->secid;
3805 }
3806
3807 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3808 {
3809 int err = 0;
3810 u32 perm;
3811 struct nlmsghdr *nlh;
3812 struct socket *sock = sk->sk_socket;
3813 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3814
3815 if (skb->len < NLMSG_SPACE(0)) {
3816 err = -EINVAL;
3817 goto out;
3818 }
3819 nlh = nlmsg_hdr(skb);
3820
3821 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3822 if (err) {
3823 if (err == -EINVAL) {
3824 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3825 "SELinux: unrecognized netlink message"
3826 " type=%hu for sclass=%hu\n",
3827 nlh->nlmsg_type, isec->sclass);
3828 if (!selinux_enforcing)
3829 err = 0;
3830 }
3831
3832 /* Ignore */
3833 if (err == -ENOENT)
3834 err = 0;
3835 goto out;
3836 }
3837
3838 err = socket_has_perm(current, sock, perm);
3839 out:
3840 return err;
3841 }
3842
3843 #ifdef CONFIG_NETFILTER
3844
3845 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3846 struct avc_audit_data *ad,
3847 u16 family, char *addrp, int len)
3848 {
3849 int err = 0;
3850 u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3851 struct socket *sock;
3852 struct inode *inode;
3853 struct inode_security_struct *isec;
3854
3855 sock = sk->sk_socket;
3856 if (!sock)
3857 goto out;
3858
3859 inode = SOCK_INODE(sock);
3860 if (!inode)
3861 goto out;
3862
3863 isec = inode->i_security;
3864
3865 err = sel_netif_sids(dev, &if_sid, NULL);
3866 if (err)
3867 goto out;
3868
3869 switch (isec->sclass) {
3870 case SECCLASS_UDP_SOCKET:
3871 netif_perm = NETIF__UDP_SEND;
3872 node_perm = NODE__UDP_SEND;
3873 send_perm = UDP_SOCKET__SEND_MSG;
3874 break;
3875
3876 case SECCLASS_TCP_SOCKET:
3877 netif_perm = NETIF__TCP_SEND;
3878 node_perm = NODE__TCP_SEND;
3879 send_perm = TCP_SOCKET__SEND_MSG;
3880 break;
3881
3882 case SECCLASS_DCCP_SOCKET:
3883 netif_perm = NETIF__DCCP_SEND;
3884 node_perm = NODE__DCCP_SEND;
3885 send_perm = DCCP_SOCKET__SEND_MSG;
3886 break;
3887
3888 default:
3889 netif_perm = NETIF__RAWIP_SEND;
3890 node_perm = NODE__RAWIP_SEND;
3891 break;
3892 }
3893
3894 err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3895 if (err)
3896 goto out;
3897
3898 err = security_node_sid(family, addrp, len, &node_sid);
3899 if (err)
3900 goto out;
3901
3902 err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3903 if (err)
3904 goto out;
3905
3906 if (send_perm) {
3907 u32 port_sid;
3908
3909 err = security_port_sid(sk->sk_family,
3910 sk->sk_type,
3911 sk->sk_protocol,
3912 ntohs(ad->u.net.dport),
3913 &port_sid);
3914 if (err)
3915 goto out;
3916
3917 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3918 send_perm, ad);
3919 }
3920 out:
3921 return err;
3922 }
3923
3924 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3925 struct sk_buff **pskb,
3926 const struct net_device *in,
3927 const struct net_device *out,
3928 int (*okfn)(struct sk_buff *),
3929 u16 family)
3930 {
3931 char *addrp;
3932 int len, err = 0;
3933 struct sock *sk;
3934 struct sk_buff *skb = *pskb;
3935 struct avc_audit_data ad;
3936 struct net_device *dev = (struct net_device *)out;
3937 struct sk_security_struct *sksec;
3938 u8 proto;
3939
3940 sk = skb->sk;
3941 if (!sk)
3942 goto out;
3943
3944 sksec = sk->sk_security;
3945
3946 AVC_AUDIT_DATA_INIT(&ad, NET);
3947 ad.u.net.netif = dev->name;
3948 ad.u.net.family = family;
3949
3950 err = selinux_parse_skb(skb, &ad, &addrp, &len, 0, &proto);
3951 if (err)
3952 goto out;
3953
3954 if (selinux_compat_net)
3955 err = selinux_ip_postroute_last_compat(sk, dev, &ad,
3956 family, addrp, len);
3957 else
3958 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3959 PACKET__SEND, &ad);
3960
3961 if (err)
3962 goto out;
3963
3964 err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto);
3965 out:
3966 return err ? NF_DROP : NF_ACCEPT;
3967 }
3968
3969 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3970 struct sk_buff **pskb,
3971 const struct net_device *in,
3972 const struct net_device *out,
3973 int (*okfn)(struct sk_buff *))
3974 {
3975 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3976 }
3977
3978 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3979
3980 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3981 struct sk_buff **pskb,
3982 const struct net_device *in,
3983 const struct net_device *out,
3984 int (*okfn)(struct sk_buff *))
3985 {
3986 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3987 }
3988
3989 #endif /* IPV6 */
3990
3991 #endif /* CONFIG_NETFILTER */
3992
3993 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
3994 {
3995 int err;
3996
3997 err = secondary_ops->netlink_send(sk, skb);
3998 if (err)
3999 return err;
4000
4001 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4002 err = selinux_nlmsg_perm(sk, skb);
4003
4004 return err;
4005 }
4006
4007 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4008 {
4009 int err;
4010 struct avc_audit_data ad;
4011
4012 err = secondary_ops->netlink_recv(skb, capability);
4013 if (err)
4014 return err;
4015
4016 AVC_AUDIT_DATA_INIT(&ad, CAP);
4017 ad.u.cap = capability;
4018
4019 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4020 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4021 }
4022
4023 static int ipc_alloc_security(struct task_struct *task,
4024 struct kern_ipc_perm *perm,
4025 u16 sclass)
4026 {
4027 struct task_security_struct *tsec = task->security;
4028 struct ipc_security_struct *isec;
4029
4030 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4031 if (!isec)
4032 return -ENOMEM;
4033
4034 isec->sclass = sclass;
4035 isec->ipc_perm = perm;
4036 isec->sid = tsec->sid;
4037 perm->security = isec;
4038
4039 return 0;
4040 }
4041
4042 static void ipc_free_security(struct kern_ipc_perm *perm)
4043 {
4044 struct ipc_security_struct *isec = perm->security;
4045 perm->security = NULL;
4046 kfree(isec);
4047 }
4048
4049 static int msg_msg_alloc_security(struct msg_msg *msg)
4050 {
4051 struct msg_security_struct *msec;
4052
4053 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4054 if (!msec)
4055 return -ENOMEM;
4056
4057 msec->msg = msg;
4058 msec->sid = SECINITSID_UNLABELED;
4059 msg->security = msec;
4060
4061 return 0;
4062 }
4063
4064 static void msg_msg_free_security(struct msg_msg *msg)
4065 {
4066 struct msg_security_struct *msec = msg->security;
4067
4068 msg->security = NULL;
4069 kfree(msec);
4070 }
4071
4072 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4073 u32 perms)
4074 {
4075 struct task_security_struct *tsec;
4076 struct ipc_security_struct *isec;
4077 struct avc_audit_data ad;
4078
4079 tsec = current->security;
4080 isec = ipc_perms->security;
4081
4082 AVC_AUDIT_DATA_INIT(&ad, IPC);
4083 ad.u.ipc_id = ipc_perms->key;
4084
4085 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4086 }
4087
4088 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4089 {
4090 return msg_msg_alloc_security(msg);
4091 }
4092
4093 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4094 {
4095 msg_msg_free_security(msg);
4096 }
4097
4098 /* message queue security operations */
4099 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4100 {
4101 struct task_security_struct *tsec;
4102 struct ipc_security_struct *isec;
4103 struct avc_audit_data ad;
4104 int rc;
4105
4106 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4107 if (rc)
4108 return rc;
4109
4110 tsec = current->security;
4111 isec = msq->q_perm.security;
4112
4113 AVC_AUDIT_DATA_INIT(&ad, IPC);
4114 ad.u.ipc_id = msq->q_perm.key;
4115
4116 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4117 MSGQ__CREATE, &ad);
4118 if (rc) {
4119 ipc_free_security(&msq->q_perm);
4120 return rc;
4121 }
4122 return 0;
4123 }
4124
4125 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4126 {
4127 ipc_free_security(&msq->q_perm);
4128 }
4129
4130 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4131 {
4132 struct task_security_struct *tsec;
4133 struct ipc_security_struct *isec;
4134 struct avc_audit_data ad;
4135
4136 tsec = current->security;
4137 isec = msq->q_perm.security;
4138
4139 AVC_AUDIT_DATA_INIT(&ad, IPC);
4140 ad.u.ipc_id = msq->q_perm.key;
4141
4142 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4143 MSGQ__ASSOCIATE, &ad);
4144 }
4145
4146 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4147 {
4148 int err;
4149 int perms;
4150
4151 switch(cmd) {
4152 case IPC_INFO:
4153 case MSG_INFO:
4154 /* No specific object, just general system-wide information. */
4155 return task_has_system(current, SYSTEM__IPC_INFO);
4156 case IPC_STAT:
4157 case MSG_STAT:
4158 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4159 break;
4160 case IPC_SET:
4161 perms = MSGQ__SETATTR;
4162 break;
4163 case IPC_RMID:
4164 perms = MSGQ__DESTROY;
4165 break;
4166 default:
4167 return 0;
4168 }
4169
4170 err = ipc_has_perm(&msq->q_perm, perms);
4171 return err;
4172 }
4173
4174 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4175 {
4176 struct task_security_struct *tsec;
4177 struct ipc_security_struct *isec;
4178 struct msg_security_struct *msec;
4179 struct avc_audit_data ad;
4180 int rc;
4181
4182 tsec = current->security;
4183 isec = msq->q_perm.security;
4184 msec = msg->security;
4185
4186 /*
4187 * First time through, need to assign label to the message
4188 */
4189 if (msec->sid == SECINITSID_UNLABELED) {
4190 /*
4191 * Compute new sid based on current process and
4192 * message queue this message will be stored in
4193 */
4194 rc = security_transition_sid(tsec->sid,
4195 isec->sid,
4196 SECCLASS_MSG,
4197 &msec->sid);
4198 if (rc)
4199 return rc;
4200 }
4201
4202 AVC_AUDIT_DATA_INIT(&ad, IPC);
4203 ad.u.ipc_id = msq->q_perm.key;
4204
4205 /* Can this process write to the queue? */
4206 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4207 MSGQ__WRITE, &ad);
4208 if (!rc)
4209 /* Can this process send the message */
4210 rc = avc_has_perm(tsec->sid, msec->sid,
4211 SECCLASS_MSG, MSG__SEND, &ad);
4212 if (!rc)
4213 /* Can the message be put in the queue? */
4214 rc = avc_has_perm(msec->sid, isec->sid,
4215 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4216
4217 return rc;
4218 }
4219
4220 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4221 struct task_struct *target,
4222 long type, int mode)
4223 {
4224 struct task_security_struct *tsec;
4225 struct ipc_security_struct *isec;
4226 struct msg_security_struct *msec;
4227 struct avc_audit_data ad;
4228 int rc;
4229
4230 tsec = target->security;
4231 isec = msq->q_perm.security;
4232 msec = msg->security;
4233
4234 AVC_AUDIT_DATA_INIT(&ad, IPC);
4235 ad.u.ipc_id = msq->q_perm.key;
4236
4237 rc = avc_has_perm(tsec->sid, isec->sid,
4238 SECCLASS_MSGQ, MSGQ__READ, &ad);
4239 if (!rc)
4240 rc = avc_has_perm(tsec->sid, msec->sid,
4241 SECCLASS_MSG, MSG__RECEIVE, &ad);
4242 return rc;
4243 }
4244
4245 /* Shared Memory security operations */
4246 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4247 {
4248 struct task_security_struct *tsec;
4249 struct ipc_security_struct *isec;
4250 struct avc_audit_data ad;
4251 int rc;
4252
4253 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4254 if (rc)
4255 return rc;
4256
4257 tsec = current->security;
4258 isec = shp->shm_perm.security;
4259
4260 AVC_AUDIT_DATA_INIT(&ad, IPC);
4261 ad.u.ipc_id = shp->shm_perm.key;
4262
4263 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4264 SHM__CREATE, &ad);
4265 if (rc) {
4266 ipc_free_security(&shp->shm_perm);
4267 return rc;
4268 }
4269 return 0;
4270 }
4271
4272 static void selinux_shm_free_security(struct shmid_kernel *shp)
4273 {
4274 ipc_free_security(&shp->shm_perm);
4275 }
4276
4277 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4278 {
4279 struct task_security_struct *tsec;
4280 struct ipc_security_struct *isec;
4281 struct avc_audit_data ad;
4282
4283 tsec = current->security;
4284 isec = shp->shm_perm.security;
4285
4286 AVC_AUDIT_DATA_INIT(&ad, IPC);
4287 ad.u.ipc_id = shp->shm_perm.key;
4288
4289 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4290 SHM__ASSOCIATE, &ad);
4291 }
4292
4293 /* Note, at this point, shp is locked down */
4294 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4295 {
4296 int perms;
4297 int err;
4298
4299 switch(cmd) {
4300 case IPC_INFO:
4301 case SHM_INFO:
4302 /* No specific object, just general system-wide information. */
4303 return task_has_system(current, SYSTEM__IPC_INFO);
4304 case IPC_STAT:
4305 case SHM_STAT:
4306 perms = SHM__GETATTR | SHM__ASSOCIATE;
4307 break;
4308 case IPC_SET:
4309 perms = SHM__SETATTR;
4310 break;
4311 case SHM_LOCK:
4312 case SHM_UNLOCK:
4313 perms = SHM__LOCK;
4314 break;
4315 case IPC_RMID:
4316 perms = SHM__DESTROY;
4317 break;
4318 default:
4319 return 0;
4320 }
4321
4322 err = ipc_has_perm(&shp->shm_perm, perms);
4323 return err;
4324 }
4325
4326 static int selinux_shm_shmat(struct shmid_kernel *shp,
4327 char __user *shmaddr, int shmflg)
4328 {
4329 u32 perms;
4330 int rc;
4331
4332 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4333 if (rc)
4334 return rc;
4335
4336 if (shmflg & SHM_RDONLY)
4337 perms = SHM__READ;
4338 else
4339 perms = SHM__READ | SHM__WRITE;
4340
4341 return ipc_has_perm(&shp->shm_perm, perms);
4342 }
4343
4344 /* Semaphore security operations */
4345 static int selinux_sem_alloc_security(struct sem_array *sma)
4346 {
4347 struct task_security_struct *tsec;
4348 struct ipc_security_struct *isec;
4349 struct avc_audit_data ad;
4350 int rc;
4351
4352 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4353 if (rc)
4354 return rc;
4355
4356 tsec = current->security;
4357 isec = sma->sem_perm.security;
4358
4359 AVC_AUDIT_DATA_INIT(&ad, IPC);
4360 ad.u.ipc_id = sma->sem_perm.key;
4361
4362 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4363 SEM__CREATE, &ad);
4364 if (rc) {
4365 ipc_free_security(&sma->sem_perm);
4366 return rc;
4367 }
4368 return 0;
4369 }
4370
4371 static void selinux_sem_free_security(struct sem_array *sma)
4372 {
4373 ipc_free_security(&sma->sem_perm);
4374 }
4375
4376 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4377 {
4378 struct task_security_struct *tsec;
4379 struct ipc_security_struct *isec;
4380 struct avc_audit_data ad;
4381
4382 tsec = current->security;
4383 isec = sma->sem_perm.security;
4384
4385 AVC_AUDIT_DATA_INIT(&ad, IPC);
4386 ad.u.ipc_id = sma->sem_perm.key;
4387
4388 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4389 SEM__ASSOCIATE, &ad);
4390 }
4391
4392 /* Note, at this point, sma is locked down */
4393 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4394 {
4395 int err;
4396 u32 perms;
4397
4398 switch(cmd) {
4399 case IPC_INFO:
4400 case SEM_INFO:
4401 /* No specific object, just general system-wide information. */
4402 return task_has_system(current, SYSTEM__IPC_INFO);
4403 case GETPID:
4404 case GETNCNT:
4405 case GETZCNT:
4406 perms = SEM__GETATTR;
4407 break;
4408 case GETVAL:
4409 case GETALL:
4410 perms = SEM__READ;
4411 break;
4412 case SETVAL:
4413 case SETALL:
4414 perms = SEM__WRITE;
4415 break;
4416 case IPC_RMID:
4417 perms = SEM__DESTROY;
4418 break;
4419 case IPC_SET:
4420 perms = SEM__SETATTR;
4421 break;
4422 case IPC_STAT:
4423 case SEM_STAT:
4424 perms = SEM__GETATTR | SEM__ASSOCIATE;
4425 break;
4426 default:
4427 return 0;
4428 }
4429
4430 err = ipc_has_perm(&sma->sem_perm, perms);
4431 return err;
4432 }
4433
4434 static int selinux_sem_semop(struct sem_array *sma,
4435 struct sembuf *sops, unsigned nsops, int alter)
4436 {
4437 u32 perms;
4438
4439 if (alter)
4440 perms = SEM__READ | SEM__WRITE;
4441 else
4442 perms = SEM__READ;
4443
4444 return ipc_has_perm(&sma->sem_perm, perms);
4445 }
4446
4447 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4448 {
4449 u32 av = 0;
4450
4451 av = 0;
4452 if (flag & S_IRUGO)
4453 av |= IPC__UNIX_READ;
4454 if (flag & S_IWUGO)
4455 av |= IPC__UNIX_WRITE;
4456
4457 if (av == 0)
4458 return 0;
4459
4460 return ipc_has_perm(ipcp, av);
4461 }
4462
4463 /* module stacking operations */
4464 static int selinux_register_security (const char *name, struct security_operations *ops)
4465 {
4466 if (secondary_ops != original_ops) {
4467 printk(KERN_ERR "%s: There is already a secondary security "
4468 "module registered.\n", __FUNCTION__);
4469 return -EINVAL;
4470 }
4471
4472 secondary_ops = ops;
4473
4474 printk(KERN_INFO "%s: Registering secondary module %s\n",
4475 __FUNCTION__,
4476 name);
4477
4478 return 0;
4479 }
4480
4481 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4482 {
4483 if (ops != secondary_ops) {
4484 printk(KERN_ERR "%s: trying to unregister a security module "
4485 "that is not registered.\n", __FUNCTION__);
4486 return -EINVAL;
4487 }
4488
4489 secondary_ops = original_ops;
4490
4491 return 0;
4492 }
4493
4494 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4495 {
4496 if (inode)
4497 inode_doinit_with_dentry(inode, dentry);
4498 }
4499
4500 static int selinux_getprocattr(struct task_struct *p,
4501 char *name, char **value)
4502 {
4503 struct task_security_struct *tsec;
4504 u32 sid;
4505 int error;
4506 unsigned len;
4507
4508 if (current != p) {
4509 error = task_has_perm(current, p, PROCESS__GETATTR);
4510 if (error)
4511 return error;
4512 }
4513
4514 tsec = p->security;
4515
4516 if (!strcmp(name, "current"))
4517 sid = tsec->sid;
4518 else if (!strcmp(name, "prev"))
4519 sid = tsec->osid;
4520 else if (!strcmp(name, "exec"))
4521 sid = tsec->exec_sid;
4522 else if (!strcmp(name, "fscreate"))
4523 sid = tsec->create_sid;
4524 else if (!strcmp(name, "keycreate"))
4525 sid = tsec->keycreate_sid;
4526 else if (!strcmp(name, "sockcreate"))
4527 sid = tsec->sockcreate_sid;
4528 else
4529 return -EINVAL;
4530
4531 if (!sid)
4532 return 0;
4533
4534 error = security_sid_to_context(sid, value, &len);
4535 if (error)
4536 return error;
4537 return len;
4538 }
4539
4540 static int selinux_setprocattr(struct task_struct *p,
4541 char *name, void *value, size_t size)
4542 {
4543 struct task_security_struct *tsec;
4544 u32 sid = 0;
4545 int error;
4546 char *str = value;
4547
4548 if (current != p) {
4549 /* SELinux only allows a process to change its own
4550 security attributes. */
4551 return -EACCES;
4552 }
4553
4554 /*
4555 * Basic control over ability to set these attributes at all.
4556 * current == p, but we'll pass them separately in case the
4557 * above restriction is ever removed.
4558 */
4559 if (!strcmp(name, "exec"))
4560 error = task_has_perm(current, p, PROCESS__SETEXEC);
4561 else if (!strcmp(name, "fscreate"))
4562 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4563 else if (!strcmp(name, "keycreate"))
4564 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4565 else if (!strcmp(name, "sockcreate"))
4566 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4567 else if (!strcmp(name, "current"))
4568 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4569 else
4570 error = -EINVAL;
4571 if (error)
4572 return error;
4573
4574 /* Obtain a SID for the context, if one was specified. */
4575 if (size && str[1] && str[1] != '\n') {
4576 if (str[size-1] == '\n') {
4577 str[size-1] = 0;
4578 size--;
4579 }
4580 error = security_context_to_sid(value, size, &sid);
4581 if (error)
4582 return error;
4583 }
4584
4585 /* Permission checking based on the specified context is
4586 performed during the actual operation (execve,
4587 open/mkdir/...), when we know the full context of the
4588 operation. See selinux_bprm_set_security for the execve
4589 checks and may_create for the file creation checks. The
4590 operation will then fail if the context is not permitted. */
4591 tsec = p->security;
4592 if (!strcmp(name, "exec"))
4593 tsec->exec_sid = sid;
4594 else if (!strcmp(name, "fscreate"))
4595 tsec->create_sid = sid;
4596 else if (!strcmp(name, "keycreate")) {
4597 error = may_create_key(sid, p);
4598 if (error)
4599 return error;
4600 tsec->keycreate_sid = sid;
4601 } else if (!strcmp(name, "sockcreate"))
4602 tsec->sockcreate_sid = sid;
4603 else if (!strcmp(name, "current")) {
4604 struct av_decision avd;
4605
4606 if (sid == 0)
4607 return -EINVAL;
4608
4609 /* Only allow single threaded processes to change context */
4610 if (atomic_read(&p->mm->mm_users) != 1) {
4611 struct task_struct *g, *t;
4612 struct mm_struct *mm = p->mm;
4613 read_lock(&tasklist_lock);
4614 do_each_thread(g, t)
4615 if (t->mm == mm && t != p) {
4616 read_unlock(&tasklist_lock);
4617 return -EPERM;
4618 }
4619 while_each_thread(g, t);
4620 read_unlock(&tasklist_lock);
4621 }
4622
4623 /* Check permissions for the transition. */
4624 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4625 PROCESS__DYNTRANSITION, NULL);
4626 if (error)
4627 return error;
4628
4629 /* Check for ptracing, and update the task SID if ok.
4630 Otherwise, leave SID unchanged and fail. */
4631 task_lock(p);
4632 if (p->ptrace & PT_PTRACED) {
4633 error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4634 SECCLASS_PROCESS,
4635 PROCESS__PTRACE, 0, &avd);
4636 if (!error)
4637 tsec->sid = sid;
4638 task_unlock(p);
4639 avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4640 PROCESS__PTRACE, &avd, error, NULL);
4641 if (error)
4642 return error;
4643 } else {
4644 tsec->sid = sid;
4645 task_unlock(p);
4646 }
4647 }
4648 else
4649 return -EINVAL;
4650
4651 return size;
4652 }
4653
4654 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4655 {
4656 return security_sid_to_context(secid, secdata, seclen);
4657 }
4658
4659 static void selinux_release_secctx(char *secdata, u32 seclen)
4660 {
4661 if (secdata)
4662 kfree(secdata);
4663 }
4664
4665 #ifdef CONFIG_KEYS
4666
4667 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4668 unsigned long flags)
4669 {
4670 struct task_security_struct *tsec = tsk->security;
4671 struct key_security_struct *ksec;
4672
4673 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4674 if (!ksec)
4675 return -ENOMEM;
4676
4677 ksec->obj = k;
4678 if (tsec->keycreate_sid)
4679 ksec->sid = tsec->keycreate_sid;
4680 else
4681 ksec->sid = tsec->sid;
4682 k->security = ksec;
4683
4684 return 0;
4685 }
4686
4687 static void selinux_key_free(struct key *k)
4688 {
4689 struct key_security_struct *ksec = k->security;
4690
4691 k->security = NULL;
4692 kfree(ksec);
4693 }
4694
4695 static int selinux_key_permission(key_ref_t key_ref,
4696 struct task_struct *ctx,
4697 key_perm_t perm)
4698 {
4699 struct key *key;
4700 struct task_security_struct *tsec;
4701 struct key_security_struct *ksec;
4702
4703 key = key_ref_to_ptr(key_ref);
4704
4705 tsec = ctx->security;
4706 ksec = key->security;
4707
4708 /* if no specific permissions are requested, we skip the
4709 permission check. No serious, additional covert channels
4710 appear to be created. */
4711 if (perm == 0)
4712 return 0;
4713
4714 return avc_has_perm(tsec->sid, ksec->sid,
4715 SECCLASS_KEY, perm, NULL);
4716 }
4717
4718 #endif
4719
4720 static struct security_operations selinux_ops = {
4721 .ptrace = selinux_ptrace,
4722 .capget = selinux_capget,
4723 .capset_check = selinux_capset_check,
4724 .capset_set = selinux_capset_set,
4725 .sysctl = selinux_sysctl,
4726 .capable = selinux_capable,
4727 .quotactl = selinux_quotactl,
4728 .quota_on = selinux_quota_on,
4729 .syslog = selinux_syslog,
4730 .vm_enough_memory = selinux_vm_enough_memory,
4731
4732 .netlink_send = selinux_netlink_send,
4733 .netlink_recv = selinux_netlink_recv,
4734
4735 .bprm_alloc_security = selinux_bprm_alloc_security,
4736 .bprm_free_security = selinux_bprm_free_security,
4737 .bprm_apply_creds = selinux_bprm_apply_creds,
4738 .bprm_post_apply_creds = selinux_bprm_post_apply_creds,
4739 .bprm_set_security = selinux_bprm_set_security,
4740 .bprm_check_security = selinux_bprm_check_security,
4741 .bprm_secureexec = selinux_bprm_secureexec,
4742
4743 .sb_alloc_security = selinux_sb_alloc_security,
4744 .sb_free_security = selinux_sb_free_security,
4745 .sb_copy_data = selinux_sb_copy_data,
4746 .sb_kern_mount = selinux_sb_kern_mount,
4747 .sb_statfs = selinux_sb_statfs,
4748 .sb_mount = selinux_mount,
4749 .sb_umount = selinux_umount,
4750
4751 .inode_alloc_security = selinux_inode_alloc_security,
4752 .inode_free_security = selinux_inode_free_security,
4753 .inode_init_security = selinux_inode_init_security,
4754 .inode_create = selinux_inode_create,
4755 .inode_link = selinux_inode_link,
4756 .inode_unlink = selinux_inode_unlink,
4757 .inode_symlink = selinux_inode_symlink,
4758 .inode_mkdir = selinux_inode_mkdir,
4759 .inode_rmdir = selinux_inode_rmdir,
4760 .inode_mknod = selinux_inode_mknod,
4761 .inode_rename = selinux_inode_rename,
4762 .inode_readlink = selinux_inode_readlink,
4763 .inode_follow_link = selinux_inode_follow_link,
4764 .inode_permission = selinux_inode_permission,
4765 .inode_setattr = selinux_inode_setattr,
4766 .inode_getattr = selinux_inode_getattr,
4767 .inode_setxattr = selinux_inode_setxattr,
4768 .inode_post_setxattr = selinux_inode_post_setxattr,
4769 .inode_getxattr = selinux_inode_getxattr,
4770 .inode_listxattr = selinux_inode_listxattr,
4771 .inode_removexattr = selinux_inode_removexattr,
4772 .inode_xattr_getsuffix = selinux_inode_xattr_getsuffix,
4773 .inode_getsecurity = selinux_inode_getsecurity,
4774 .inode_setsecurity = selinux_inode_setsecurity,
4775 .inode_listsecurity = selinux_inode_listsecurity,
4776
4777 .file_permission = selinux_file_permission,
4778 .file_alloc_security = selinux_file_alloc_security,
4779 .file_free_security = selinux_file_free_security,
4780 .file_ioctl = selinux_file_ioctl,
4781 .file_mmap = selinux_file_mmap,
4782 .file_mprotect = selinux_file_mprotect,
4783 .file_lock = selinux_file_lock,
4784 .file_fcntl = selinux_file_fcntl,
4785 .file_set_fowner = selinux_file_set_fowner,
4786 .file_send_sigiotask = selinux_file_send_sigiotask,
4787 .file_receive = selinux_file_receive,
4788
4789 .task_create = selinux_task_create,
4790 .task_alloc_security = selinux_task_alloc_security,
4791 .task_free_security = selinux_task_free_security,
4792 .task_setuid = selinux_task_setuid,
4793 .task_post_setuid = selinux_task_post_setuid,
4794 .task_setgid = selinux_task_setgid,
4795 .task_setpgid = selinux_task_setpgid,
4796 .task_getpgid = selinux_task_getpgid,
4797 .task_getsid = selinux_task_getsid,
4798 .task_getsecid = selinux_task_getsecid,
4799 .task_setgroups = selinux_task_setgroups,
4800 .task_setnice = selinux_task_setnice,
4801 .task_setioprio = selinux_task_setioprio,
4802 .task_getioprio = selinux_task_getioprio,
4803 .task_setrlimit = selinux_task_setrlimit,
4804 .task_setscheduler = selinux_task_setscheduler,
4805 .task_getscheduler = selinux_task_getscheduler,
4806 .task_movememory = selinux_task_movememory,
4807 .task_kill = selinux_task_kill,
4808 .task_wait = selinux_task_wait,
4809 .task_prctl = selinux_task_prctl,
4810 .task_reparent_to_init = selinux_task_reparent_to_init,
4811 .task_to_inode = selinux_task_to_inode,
4812
4813 .ipc_permission = selinux_ipc_permission,
4814
4815 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
4816 .msg_msg_free_security = selinux_msg_msg_free_security,
4817
4818 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
4819 .msg_queue_free_security = selinux_msg_queue_free_security,
4820 .msg_queue_associate = selinux_msg_queue_associate,
4821 .msg_queue_msgctl = selinux_msg_queue_msgctl,
4822 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
4823 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
4824
4825 .shm_alloc_security = selinux_shm_alloc_security,
4826 .shm_free_security = selinux_shm_free_security,
4827 .shm_associate = selinux_shm_associate,
4828 .shm_shmctl = selinux_shm_shmctl,
4829 .shm_shmat = selinux_shm_shmat,
4830
4831 .sem_alloc_security = selinux_sem_alloc_security,
4832 .sem_free_security = selinux_sem_free_security,
4833 .sem_associate = selinux_sem_associate,
4834 .sem_semctl = selinux_sem_semctl,
4835 .sem_semop = selinux_sem_semop,
4836
4837 .register_security = selinux_register_security,
4838 .unregister_security = selinux_unregister_security,
4839
4840 .d_instantiate = selinux_d_instantiate,
4841
4842 .getprocattr = selinux_getprocattr,
4843 .setprocattr = selinux_setprocattr,
4844
4845 .secid_to_secctx = selinux_secid_to_secctx,
4846 .release_secctx = selinux_release_secctx,
4847
4848 .unix_stream_connect = selinux_socket_unix_stream_connect,
4849 .unix_may_send = selinux_socket_unix_may_send,
4850
4851 .socket_create = selinux_socket_create,
4852 .socket_post_create = selinux_socket_post_create,
4853 .socket_bind = selinux_socket_bind,
4854 .socket_connect = selinux_socket_connect,
4855 .socket_listen = selinux_socket_listen,
4856 .socket_accept = selinux_socket_accept,
4857 .socket_sendmsg = selinux_socket_sendmsg,
4858 .socket_recvmsg = selinux_socket_recvmsg,
4859 .socket_getsockname = selinux_socket_getsockname,
4860 .socket_getpeername = selinux_socket_getpeername,
4861 .socket_getsockopt = selinux_socket_getsockopt,
4862 .socket_setsockopt = selinux_socket_setsockopt,
4863 .socket_shutdown = selinux_socket_shutdown,
4864 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
4865 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
4866 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
4867 .sk_alloc_security = selinux_sk_alloc_security,
4868 .sk_free_security = selinux_sk_free_security,
4869 .sk_clone_security = selinux_sk_clone_security,
4870 .sk_getsecid = selinux_sk_getsecid,
4871 .sock_graft = selinux_sock_graft,
4872 .inet_conn_request = selinux_inet_conn_request,
4873 .inet_csk_clone = selinux_inet_csk_clone,
4874 .inet_conn_established = selinux_inet_conn_established,
4875 .req_classify_flow = selinux_req_classify_flow,
4876
4877 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4878 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
4879 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
4880 .xfrm_policy_free_security = selinux_xfrm_policy_free,
4881 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
4882 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
4883 .xfrm_state_free_security = selinux_xfrm_state_free,
4884 .xfrm_state_delete_security = selinux_xfrm_state_delete,
4885 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
4886 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
4887 .xfrm_decode_session = selinux_xfrm_decode_session,
4888 #endif
4889
4890 #ifdef CONFIG_KEYS
4891 .key_alloc = selinux_key_alloc,
4892 .key_free = selinux_key_free,
4893 .key_permission = selinux_key_permission,
4894 #endif
4895 };
4896
4897 static __init int selinux_init(void)
4898 {
4899 struct task_security_struct *tsec;
4900
4901 if (!selinux_enabled) {
4902 printk(KERN_INFO "SELinux: Disabled at boot.\n");
4903 return 0;
4904 }
4905
4906 printk(KERN_INFO "SELinux: Initializing.\n");
4907
4908 /* Set the security state for the initial task. */
4909 if (task_alloc_security(current))
4910 panic("SELinux: Failed to initialize initial task.\n");
4911 tsec = current->security;
4912 tsec->osid = tsec->sid = SECINITSID_KERNEL;
4913
4914 sel_inode_cache = kmem_cache_create("selinux_inode_security",
4915 sizeof(struct inode_security_struct),
4916 0, SLAB_PANIC, NULL);
4917 avc_init();
4918
4919 original_ops = secondary_ops = security_ops;
4920 if (!secondary_ops)
4921 panic ("SELinux: No initial security operations\n");
4922 if (register_security (&selinux_ops))
4923 panic("SELinux: Unable to register with kernel.\n");
4924
4925 if (selinux_enforcing) {
4926 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
4927 } else {
4928 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
4929 }
4930
4931 #ifdef CONFIG_KEYS
4932 /* Add security information to initial keyrings */
4933 selinux_key_alloc(&root_user_keyring, current,
4934 KEY_ALLOC_NOT_IN_QUOTA);
4935 selinux_key_alloc(&root_session_keyring, current,
4936 KEY_ALLOC_NOT_IN_QUOTA);
4937 #endif
4938
4939 return 0;
4940 }
4941
4942 void selinux_complete_init(void)
4943 {
4944 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
4945
4946 /* Set up any superblocks initialized prior to the policy load. */
4947 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
4948 spin_lock(&sb_lock);
4949 spin_lock(&sb_security_lock);
4950 next_sb:
4951 if (!list_empty(&superblock_security_head)) {
4952 struct superblock_security_struct *sbsec =
4953 list_entry(superblock_security_head.next,
4954 struct superblock_security_struct,
4955 list);
4956 struct super_block *sb = sbsec->sb;
4957 sb->s_count++;
4958 spin_unlock(&sb_security_lock);
4959 spin_unlock(&sb_lock);
4960 down_read(&sb->s_umount);
4961 if (sb->s_root)
4962 superblock_doinit(sb, NULL);
4963 drop_super(sb);
4964 spin_lock(&sb_lock);
4965 spin_lock(&sb_security_lock);
4966 list_del_init(&sbsec->list);
4967 goto next_sb;
4968 }
4969 spin_unlock(&sb_security_lock);
4970 spin_unlock(&sb_lock);
4971 }
4972
4973 /* SELinux requires early initialization in order to label
4974 all processes and objects when they are created. */
4975 security_initcall(selinux_init);
4976
4977 #if defined(CONFIG_NETFILTER)
4978
4979 static struct nf_hook_ops selinux_ipv4_op = {
4980 .hook = selinux_ipv4_postroute_last,
4981 .owner = THIS_MODULE,
4982 .pf = PF_INET,
4983 .hooknum = NF_IP_POST_ROUTING,
4984 .priority = NF_IP_PRI_SELINUX_LAST,
4985 };
4986
4987 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4988
4989 static struct nf_hook_ops selinux_ipv6_op = {
4990 .hook = selinux_ipv6_postroute_last,
4991 .owner = THIS_MODULE,
4992 .pf = PF_INET6,
4993 .hooknum = NF_IP6_POST_ROUTING,
4994 .priority = NF_IP6_PRI_SELINUX_LAST,
4995 };
4996
4997 #endif /* IPV6 */
4998
4999 static int __init selinux_nf_ip_init(void)
5000 {
5001 int err = 0;
5002
5003 if (!selinux_enabled)
5004 goto out;
5005
5006 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5007
5008 err = nf_register_hook(&selinux_ipv4_op);
5009 if (err)
5010 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
5011
5012 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5013
5014 err = nf_register_hook(&selinux_ipv6_op);
5015 if (err)
5016 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
5017
5018 #endif /* IPV6 */
5019
5020 out:
5021 return err;
5022 }
5023
5024 __initcall(selinux_nf_ip_init);
5025
5026 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5027 static void selinux_nf_ip_exit(void)
5028 {
5029 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5030
5031 nf_unregister_hook(&selinux_ipv4_op);
5032 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5033 nf_unregister_hook(&selinux_ipv6_op);
5034 #endif /* IPV6 */
5035 }
5036 #endif
5037
5038 #else /* CONFIG_NETFILTER */
5039
5040 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5041 #define selinux_nf_ip_exit()
5042 #endif
5043
5044 #endif /* CONFIG_NETFILTER */
5045
5046 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5047 int selinux_disable(void)
5048 {
5049 extern void exit_sel_fs(void);
5050 static int selinux_disabled = 0;
5051
5052 if (ss_initialized) {
5053 /* Not permitted after initial policy load. */
5054 return -EINVAL;
5055 }
5056
5057 if (selinux_disabled) {
5058 /* Only do this once. */
5059 return -EINVAL;
5060 }
5061
5062 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5063
5064 selinux_disabled = 1;
5065 selinux_enabled = 0;
5066
5067 /* Reset security_ops to the secondary module, dummy or capability. */
5068 security_ops = secondary_ops;
5069
5070 /* Unregister netfilter hooks. */
5071 selinux_nf_ip_exit();
5072
5073 /* Unregister selinuxfs. */
5074 exit_sel_fs();
5075
5076 return 0;
5077 }
5078 #endif
5079
5080
This page took 0.14766 seconds and 5 git commands to generate.