selinux: Augment BUG_ON assertion for secclass_map.
[deliverable/linux.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/lsm_hooks.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h> /* for local_port_range[] */
54 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
55 #include <net/inet_connection_sock.h>
56 #include <net/net_namespace.h>
57 #include <net/netlabel.h>
58 #include <linux/uaccess.h>
59 #include <asm/ioctls.h>
60 #include <linux/atomic.h>
61 #include <linux/bitops.h>
62 #include <linux/interrupt.h>
63 #include <linux/netdevice.h> /* for network interface checks */
64 #include <net/netlink.h>
65 #include <linux/tcp.h>
66 #include <linux/udp.h>
67 #include <linux/dccp.h>
68 #include <linux/quota.h>
69 #include <linux/un.h> /* for Unix socket types */
70 #include <net/af_unix.h> /* for Unix socket types */
71 #include <linux/parser.h>
72 #include <linux/nfs_mount.h>
73 #include <net/ipv6.h>
74 #include <linux/hugetlb.h>
75 #include <linux/personality.h>
76 #include <linux/audit.h>
77 #include <linux/string.h>
78 #include <linux/selinux.h>
79 #include <linux/mutex.h>
80 #include <linux/posix-timers.h>
81 #include <linux/syslog.h>
82 #include <linux/user_namespace.h>
83 #include <linux/export.h>
84 #include <linux/msg.h>
85 #include <linux/shm.h>
86
87 #include "avc.h"
88 #include "objsec.h"
89 #include "netif.h"
90 #include "netnode.h"
91 #include "netport.h"
92 #include "xfrm.h"
93 #include "netlabel.h"
94 #include "audit.h"
95 #include "avc_ss.h"
96
97 /* SECMARK reference count */
98 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
99
100 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
101 int selinux_enforcing;
102
103 static int __init enforcing_setup(char *str)
104 {
105 unsigned long enforcing;
106 if (!kstrtoul(str, 0, &enforcing))
107 selinux_enforcing = enforcing ? 1 : 0;
108 return 1;
109 }
110 __setup("enforcing=", enforcing_setup);
111 #endif
112
113 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
114 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
115
116 static int __init selinux_enabled_setup(char *str)
117 {
118 unsigned long enabled;
119 if (!kstrtoul(str, 0, &enabled))
120 selinux_enabled = enabled ? 1 : 0;
121 return 1;
122 }
123 __setup("selinux=", selinux_enabled_setup);
124 #else
125 int selinux_enabled = 1;
126 #endif
127
128 static struct kmem_cache *sel_inode_cache;
129
130 /**
131 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
132 *
133 * Description:
134 * This function checks the SECMARK reference counter to see if any SECMARK
135 * targets are currently configured, if the reference counter is greater than
136 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
137 * enabled, false (0) if SECMARK is disabled. If the always_check_network
138 * policy capability is enabled, SECMARK is always considered enabled.
139 *
140 */
141 static int selinux_secmark_enabled(void)
142 {
143 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
144 }
145
146 /**
147 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
148 *
149 * Description:
150 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
151 * (1) if any are enabled or false (0) if neither are enabled. If the
152 * always_check_network policy capability is enabled, peer labeling
153 * is always considered enabled.
154 *
155 */
156 static int selinux_peerlbl_enabled(void)
157 {
158 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
159 }
160
161 static int selinux_netcache_avc_callback(u32 event)
162 {
163 if (event == AVC_CALLBACK_RESET) {
164 sel_netif_flush();
165 sel_netnode_flush();
166 sel_netport_flush();
167 synchronize_net();
168 }
169 return 0;
170 }
171
172 /*
173 * initialise the security for the init task
174 */
175 static void cred_init_security(void)
176 {
177 struct cred *cred = (struct cred *) current->real_cred;
178 struct task_security_struct *tsec;
179
180 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
181 if (!tsec)
182 panic("SELinux: Failed to initialize initial task.\n");
183
184 tsec->osid = tsec->sid = SECINITSID_KERNEL;
185 cred->security = tsec;
186 }
187
188 /*
189 * get the security ID of a set of credentials
190 */
191 static inline u32 cred_sid(const struct cred *cred)
192 {
193 const struct task_security_struct *tsec;
194
195 tsec = cred->security;
196 return tsec->sid;
197 }
198
199 /*
200 * get the objective security ID of a task
201 */
202 static inline u32 task_sid(const struct task_struct *task)
203 {
204 u32 sid;
205
206 rcu_read_lock();
207 sid = cred_sid(__task_cred(task));
208 rcu_read_unlock();
209 return sid;
210 }
211
212 /*
213 * get the subjective security ID of the current task
214 */
215 static inline u32 current_sid(void)
216 {
217 const struct task_security_struct *tsec = current_security();
218
219 return tsec->sid;
220 }
221
222 /* Allocate and free functions for each kind of security blob. */
223
224 static int inode_alloc_security(struct inode *inode)
225 {
226 struct inode_security_struct *isec;
227 u32 sid = current_sid();
228
229 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
230 if (!isec)
231 return -ENOMEM;
232
233 mutex_init(&isec->lock);
234 INIT_LIST_HEAD(&isec->list);
235 isec->inode = inode;
236 isec->sid = SECINITSID_UNLABELED;
237 isec->sclass = SECCLASS_FILE;
238 isec->task_sid = sid;
239 inode->i_security = isec;
240
241 return 0;
242 }
243
244 static void inode_free_rcu(struct rcu_head *head)
245 {
246 struct inode_security_struct *isec;
247
248 isec = container_of(head, struct inode_security_struct, rcu);
249 kmem_cache_free(sel_inode_cache, isec);
250 }
251
252 static void inode_free_security(struct inode *inode)
253 {
254 struct inode_security_struct *isec = inode->i_security;
255 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
256
257 /*
258 * As not all inode security structures are in a list, we check for
259 * empty list outside of the lock to make sure that we won't waste
260 * time taking a lock doing nothing.
261 *
262 * The list_del_init() function can be safely called more than once.
263 * It should not be possible for this function to be called with
264 * concurrent list_add(), but for better safety against future changes
265 * in the code, we use list_empty_careful() here.
266 */
267 if (!list_empty_careful(&isec->list)) {
268 spin_lock(&sbsec->isec_lock);
269 list_del_init(&isec->list);
270 spin_unlock(&sbsec->isec_lock);
271 }
272
273 /*
274 * The inode may still be referenced in a path walk and
275 * a call to selinux_inode_permission() can be made
276 * after inode_free_security() is called. Ideally, the VFS
277 * wouldn't do this, but fixing that is a much harder
278 * job. For now, simply free the i_security via RCU, and
279 * leave the current inode->i_security pointer intact.
280 * The inode will be freed after the RCU grace period too.
281 */
282 call_rcu(&isec->rcu, inode_free_rcu);
283 }
284
285 static int file_alloc_security(struct file *file)
286 {
287 struct file_security_struct *fsec;
288 u32 sid = current_sid();
289
290 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
291 if (!fsec)
292 return -ENOMEM;
293
294 fsec->sid = sid;
295 fsec->fown_sid = sid;
296 file->f_security = fsec;
297
298 return 0;
299 }
300
301 static void file_free_security(struct file *file)
302 {
303 struct file_security_struct *fsec = file->f_security;
304 file->f_security = NULL;
305 kfree(fsec);
306 }
307
308 static int superblock_alloc_security(struct super_block *sb)
309 {
310 struct superblock_security_struct *sbsec;
311
312 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
313 if (!sbsec)
314 return -ENOMEM;
315
316 mutex_init(&sbsec->lock);
317 INIT_LIST_HEAD(&sbsec->isec_head);
318 spin_lock_init(&sbsec->isec_lock);
319 sbsec->sb = sb;
320 sbsec->sid = SECINITSID_UNLABELED;
321 sbsec->def_sid = SECINITSID_FILE;
322 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
323 sb->s_security = sbsec;
324
325 return 0;
326 }
327
328 static void superblock_free_security(struct super_block *sb)
329 {
330 struct superblock_security_struct *sbsec = sb->s_security;
331 sb->s_security = NULL;
332 kfree(sbsec);
333 }
334
335 /* The file system's label must be initialized prior to use. */
336
337 static const char *labeling_behaviors[7] = {
338 "uses xattr",
339 "uses transition SIDs",
340 "uses task SIDs",
341 "uses genfs_contexts",
342 "not configured for labeling",
343 "uses mountpoint labeling",
344 "uses native labeling",
345 };
346
347 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
348
349 static inline int inode_doinit(struct inode *inode)
350 {
351 return inode_doinit_with_dentry(inode, NULL);
352 }
353
354 enum {
355 Opt_error = -1,
356 Opt_context = 1,
357 Opt_fscontext = 2,
358 Opt_defcontext = 3,
359 Opt_rootcontext = 4,
360 Opt_labelsupport = 5,
361 Opt_nextmntopt = 6,
362 };
363
364 #define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
365
366 static const match_table_t tokens = {
367 {Opt_context, CONTEXT_STR "%s"},
368 {Opt_fscontext, FSCONTEXT_STR "%s"},
369 {Opt_defcontext, DEFCONTEXT_STR "%s"},
370 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
371 {Opt_labelsupport, LABELSUPP_STR},
372 {Opt_error, NULL},
373 };
374
375 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
376
377 static int may_context_mount_sb_relabel(u32 sid,
378 struct superblock_security_struct *sbsec,
379 const struct cred *cred)
380 {
381 const struct task_security_struct *tsec = cred->security;
382 int rc;
383
384 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
385 FILESYSTEM__RELABELFROM, NULL);
386 if (rc)
387 return rc;
388
389 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
390 FILESYSTEM__RELABELTO, NULL);
391 return rc;
392 }
393
394 static int may_context_mount_inode_relabel(u32 sid,
395 struct superblock_security_struct *sbsec,
396 const struct cred *cred)
397 {
398 const struct task_security_struct *tsec = cred->security;
399 int rc;
400 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
401 FILESYSTEM__RELABELFROM, NULL);
402 if (rc)
403 return rc;
404
405 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
406 FILESYSTEM__ASSOCIATE, NULL);
407 return rc;
408 }
409
410 static int selinux_is_sblabel_mnt(struct super_block *sb)
411 {
412 struct superblock_security_struct *sbsec = sb->s_security;
413
414 return sbsec->behavior == SECURITY_FS_USE_XATTR ||
415 sbsec->behavior == SECURITY_FS_USE_TRANS ||
416 sbsec->behavior == SECURITY_FS_USE_TASK ||
417 sbsec->behavior == SECURITY_FS_USE_NATIVE ||
418 /* Special handling. Genfs but also in-core setxattr handler */
419 !strcmp(sb->s_type->name, "sysfs") ||
420 !strcmp(sb->s_type->name, "pstore") ||
421 !strcmp(sb->s_type->name, "debugfs") ||
422 !strcmp(sb->s_type->name, "rootfs");
423 }
424
425 static int sb_finish_set_opts(struct super_block *sb)
426 {
427 struct superblock_security_struct *sbsec = sb->s_security;
428 struct dentry *root = sb->s_root;
429 struct inode *root_inode = d_backing_inode(root);
430 int rc = 0;
431
432 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
433 /* Make sure that the xattr handler exists and that no
434 error other than -ENODATA is returned by getxattr on
435 the root directory. -ENODATA is ok, as this may be
436 the first boot of the SELinux kernel before we have
437 assigned xattr values to the filesystem. */
438 if (!root_inode->i_op->getxattr) {
439 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
440 "xattr support\n", sb->s_id, sb->s_type->name);
441 rc = -EOPNOTSUPP;
442 goto out;
443 }
444 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
445 if (rc < 0 && rc != -ENODATA) {
446 if (rc == -EOPNOTSUPP)
447 printk(KERN_WARNING "SELinux: (dev %s, type "
448 "%s) has no security xattr handler\n",
449 sb->s_id, sb->s_type->name);
450 else
451 printk(KERN_WARNING "SELinux: (dev %s, type "
452 "%s) getxattr errno %d\n", sb->s_id,
453 sb->s_type->name, -rc);
454 goto out;
455 }
456 }
457
458 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
459 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
460 sb->s_id, sb->s_type->name);
461
462 sbsec->flags |= SE_SBINITIALIZED;
463 if (selinux_is_sblabel_mnt(sb))
464 sbsec->flags |= SBLABEL_MNT;
465
466 /* Initialize the root inode. */
467 rc = inode_doinit_with_dentry(root_inode, root);
468
469 /* Initialize any other inodes associated with the superblock, e.g.
470 inodes created prior to initial policy load or inodes created
471 during get_sb by a pseudo filesystem that directly
472 populates itself. */
473 spin_lock(&sbsec->isec_lock);
474 next_inode:
475 if (!list_empty(&sbsec->isec_head)) {
476 struct inode_security_struct *isec =
477 list_entry(sbsec->isec_head.next,
478 struct inode_security_struct, list);
479 struct inode *inode = isec->inode;
480 list_del_init(&isec->list);
481 spin_unlock(&sbsec->isec_lock);
482 inode = igrab(inode);
483 if (inode) {
484 if (!IS_PRIVATE(inode))
485 inode_doinit(inode);
486 iput(inode);
487 }
488 spin_lock(&sbsec->isec_lock);
489 goto next_inode;
490 }
491 spin_unlock(&sbsec->isec_lock);
492 out:
493 return rc;
494 }
495
496 /*
497 * This function should allow an FS to ask what it's mount security
498 * options were so it can use those later for submounts, displaying
499 * mount options, or whatever.
500 */
501 static int selinux_get_mnt_opts(const struct super_block *sb,
502 struct security_mnt_opts *opts)
503 {
504 int rc = 0, i;
505 struct superblock_security_struct *sbsec = sb->s_security;
506 char *context = NULL;
507 u32 len;
508 char tmp;
509
510 security_init_mnt_opts(opts);
511
512 if (!(sbsec->flags & SE_SBINITIALIZED))
513 return -EINVAL;
514
515 if (!ss_initialized)
516 return -EINVAL;
517
518 /* make sure we always check enough bits to cover the mask */
519 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
520
521 tmp = sbsec->flags & SE_MNTMASK;
522 /* count the number of mount options for this sb */
523 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
524 if (tmp & 0x01)
525 opts->num_mnt_opts++;
526 tmp >>= 1;
527 }
528 /* Check if the Label support flag is set */
529 if (sbsec->flags & SBLABEL_MNT)
530 opts->num_mnt_opts++;
531
532 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
533 if (!opts->mnt_opts) {
534 rc = -ENOMEM;
535 goto out_free;
536 }
537
538 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
539 if (!opts->mnt_opts_flags) {
540 rc = -ENOMEM;
541 goto out_free;
542 }
543
544 i = 0;
545 if (sbsec->flags & FSCONTEXT_MNT) {
546 rc = security_sid_to_context(sbsec->sid, &context, &len);
547 if (rc)
548 goto out_free;
549 opts->mnt_opts[i] = context;
550 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
551 }
552 if (sbsec->flags & CONTEXT_MNT) {
553 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
554 if (rc)
555 goto out_free;
556 opts->mnt_opts[i] = context;
557 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
558 }
559 if (sbsec->flags & DEFCONTEXT_MNT) {
560 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
561 if (rc)
562 goto out_free;
563 opts->mnt_opts[i] = context;
564 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
565 }
566 if (sbsec->flags & ROOTCONTEXT_MNT) {
567 struct inode *root = d_backing_inode(sbsec->sb->s_root);
568 struct inode_security_struct *isec = root->i_security;
569
570 rc = security_sid_to_context(isec->sid, &context, &len);
571 if (rc)
572 goto out_free;
573 opts->mnt_opts[i] = context;
574 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
575 }
576 if (sbsec->flags & SBLABEL_MNT) {
577 opts->mnt_opts[i] = NULL;
578 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
579 }
580
581 BUG_ON(i != opts->num_mnt_opts);
582
583 return 0;
584
585 out_free:
586 security_free_mnt_opts(opts);
587 return rc;
588 }
589
590 static int bad_option(struct superblock_security_struct *sbsec, char flag,
591 u32 old_sid, u32 new_sid)
592 {
593 char mnt_flags = sbsec->flags & SE_MNTMASK;
594
595 /* check if the old mount command had the same options */
596 if (sbsec->flags & SE_SBINITIALIZED)
597 if (!(sbsec->flags & flag) ||
598 (old_sid != new_sid))
599 return 1;
600
601 /* check if we were passed the same options twice,
602 * aka someone passed context=a,context=b
603 */
604 if (!(sbsec->flags & SE_SBINITIALIZED))
605 if (mnt_flags & flag)
606 return 1;
607 return 0;
608 }
609
610 /*
611 * Allow filesystems with binary mount data to explicitly set mount point
612 * labeling information.
613 */
614 static int selinux_set_mnt_opts(struct super_block *sb,
615 struct security_mnt_opts *opts,
616 unsigned long kern_flags,
617 unsigned long *set_kern_flags)
618 {
619 const struct cred *cred = current_cred();
620 int rc = 0, i;
621 struct superblock_security_struct *sbsec = sb->s_security;
622 const char *name = sb->s_type->name;
623 struct inode *inode = d_backing_inode(sbsec->sb->s_root);
624 struct inode_security_struct *root_isec = inode->i_security;
625 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
626 u32 defcontext_sid = 0;
627 char **mount_options = opts->mnt_opts;
628 int *flags = opts->mnt_opts_flags;
629 int num_opts = opts->num_mnt_opts;
630
631 mutex_lock(&sbsec->lock);
632
633 if (!ss_initialized) {
634 if (!num_opts) {
635 /* Defer initialization until selinux_complete_init,
636 after the initial policy is loaded and the security
637 server is ready to handle calls. */
638 goto out;
639 }
640 rc = -EINVAL;
641 printk(KERN_WARNING "SELinux: Unable to set superblock options "
642 "before the security server is initialized\n");
643 goto out;
644 }
645 if (kern_flags && !set_kern_flags) {
646 /* Specifying internal flags without providing a place to
647 * place the results is not allowed */
648 rc = -EINVAL;
649 goto out;
650 }
651
652 /*
653 * Binary mount data FS will come through this function twice. Once
654 * from an explicit call and once from the generic calls from the vfs.
655 * Since the generic VFS calls will not contain any security mount data
656 * we need to skip the double mount verification.
657 *
658 * This does open a hole in which we will not notice if the first
659 * mount using this sb set explict options and a second mount using
660 * this sb does not set any security options. (The first options
661 * will be used for both mounts)
662 */
663 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
664 && (num_opts == 0))
665 goto out;
666
667 /*
668 * parse the mount options, check if they are valid sids.
669 * also check if someone is trying to mount the same sb more
670 * than once with different security options.
671 */
672 for (i = 0; i < num_opts; i++) {
673 u32 sid;
674
675 if (flags[i] == SBLABEL_MNT)
676 continue;
677 rc = security_context_to_sid(mount_options[i],
678 strlen(mount_options[i]), &sid, GFP_KERNEL);
679 if (rc) {
680 printk(KERN_WARNING "SELinux: security_context_to_sid"
681 "(%s) failed for (dev %s, type %s) errno=%d\n",
682 mount_options[i], sb->s_id, name, rc);
683 goto out;
684 }
685 switch (flags[i]) {
686 case FSCONTEXT_MNT:
687 fscontext_sid = sid;
688
689 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
690 fscontext_sid))
691 goto out_double_mount;
692
693 sbsec->flags |= FSCONTEXT_MNT;
694 break;
695 case CONTEXT_MNT:
696 context_sid = sid;
697
698 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
699 context_sid))
700 goto out_double_mount;
701
702 sbsec->flags |= CONTEXT_MNT;
703 break;
704 case ROOTCONTEXT_MNT:
705 rootcontext_sid = sid;
706
707 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
708 rootcontext_sid))
709 goto out_double_mount;
710
711 sbsec->flags |= ROOTCONTEXT_MNT;
712
713 break;
714 case DEFCONTEXT_MNT:
715 defcontext_sid = sid;
716
717 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
718 defcontext_sid))
719 goto out_double_mount;
720
721 sbsec->flags |= DEFCONTEXT_MNT;
722
723 break;
724 default:
725 rc = -EINVAL;
726 goto out;
727 }
728 }
729
730 if (sbsec->flags & SE_SBINITIALIZED) {
731 /* previously mounted with options, but not on this attempt? */
732 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
733 goto out_double_mount;
734 rc = 0;
735 goto out;
736 }
737
738 if (strcmp(sb->s_type->name, "proc") == 0)
739 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
740
741 if (!strcmp(sb->s_type->name, "debugfs") ||
742 !strcmp(sb->s_type->name, "sysfs") ||
743 !strcmp(sb->s_type->name, "pstore"))
744 sbsec->flags |= SE_SBGENFS;
745
746 if (!sbsec->behavior) {
747 /*
748 * Determine the labeling behavior to use for this
749 * filesystem type.
750 */
751 rc = security_fs_use(sb);
752 if (rc) {
753 printk(KERN_WARNING
754 "%s: security_fs_use(%s) returned %d\n",
755 __func__, sb->s_type->name, rc);
756 goto out;
757 }
758 }
759 /* sets the context of the superblock for the fs being mounted. */
760 if (fscontext_sid) {
761 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
762 if (rc)
763 goto out;
764
765 sbsec->sid = fscontext_sid;
766 }
767
768 /*
769 * Switch to using mount point labeling behavior.
770 * sets the label used on all file below the mountpoint, and will set
771 * the superblock context if not already set.
772 */
773 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
774 sbsec->behavior = SECURITY_FS_USE_NATIVE;
775 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
776 }
777
778 if (context_sid) {
779 if (!fscontext_sid) {
780 rc = may_context_mount_sb_relabel(context_sid, sbsec,
781 cred);
782 if (rc)
783 goto out;
784 sbsec->sid = context_sid;
785 } else {
786 rc = may_context_mount_inode_relabel(context_sid, sbsec,
787 cred);
788 if (rc)
789 goto out;
790 }
791 if (!rootcontext_sid)
792 rootcontext_sid = context_sid;
793
794 sbsec->mntpoint_sid = context_sid;
795 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
796 }
797
798 if (rootcontext_sid) {
799 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
800 cred);
801 if (rc)
802 goto out;
803
804 root_isec->sid = rootcontext_sid;
805 root_isec->initialized = 1;
806 }
807
808 if (defcontext_sid) {
809 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
810 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
811 rc = -EINVAL;
812 printk(KERN_WARNING "SELinux: defcontext option is "
813 "invalid for this filesystem type\n");
814 goto out;
815 }
816
817 if (defcontext_sid != sbsec->def_sid) {
818 rc = may_context_mount_inode_relabel(defcontext_sid,
819 sbsec, cred);
820 if (rc)
821 goto out;
822 }
823
824 sbsec->def_sid = defcontext_sid;
825 }
826
827 rc = sb_finish_set_opts(sb);
828 out:
829 mutex_unlock(&sbsec->lock);
830 return rc;
831 out_double_mount:
832 rc = -EINVAL;
833 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
834 "security settings for (dev %s, type %s)\n", sb->s_id, name);
835 goto out;
836 }
837
838 static int selinux_cmp_sb_context(const struct super_block *oldsb,
839 const struct super_block *newsb)
840 {
841 struct superblock_security_struct *old = oldsb->s_security;
842 struct superblock_security_struct *new = newsb->s_security;
843 char oldflags = old->flags & SE_MNTMASK;
844 char newflags = new->flags & SE_MNTMASK;
845
846 if (oldflags != newflags)
847 goto mismatch;
848 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
849 goto mismatch;
850 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
851 goto mismatch;
852 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
853 goto mismatch;
854 if (oldflags & ROOTCONTEXT_MNT) {
855 struct inode_security_struct *oldroot = d_backing_inode(oldsb->s_root)->i_security;
856 struct inode_security_struct *newroot = d_backing_inode(newsb->s_root)->i_security;
857 if (oldroot->sid != newroot->sid)
858 goto mismatch;
859 }
860 return 0;
861 mismatch:
862 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
863 "different security settings for (dev %s, "
864 "type %s)\n", newsb->s_id, newsb->s_type->name);
865 return -EBUSY;
866 }
867
868 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
869 struct super_block *newsb)
870 {
871 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
872 struct superblock_security_struct *newsbsec = newsb->s_security;
873
874 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
875 int set_context = (oldsbsec->flags & CONTEXT_MNT);
876 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
877
878 /*
879 * if the parent was able to be mounted it clearly had no special lsm
880 * mount options. thus we can safely deal with this superblock later
881 */
882 if (!ss_initialized)
883 return 0;
884
885 /* how can we clone if the old one wasn't set up?? */
886 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
887
888 /* if fs is reusing a sb, make sure that the contexts match */
889 if (newsbsec->flags & SE_SBINITIALIZED)
890 return selinux_cmp_sb_context(oldsb, newsb);
891
892 mutex_lock(&newsbsec->lock);
893
894 newsbsec->flags = oldsbsec->flags;
895
896 newsbsec->sid = oldsbsec->sid;
897 newsbsec->def_sid = oldsbsec->def_sid;
898 newsbsec->behavior = oldsbsec->behavior;
899
900 if (set_context) {
901 u32 sid = oldsbsec->mntpoint_sid;
902
903 if (!set_fscontext)
904 newsbsec->sid = sid;
905 if (!set_rootcontext) {
906 struct inode *newinode = d_backing_inode(newsb->s_root);
907 struct inode_security_struct *newisec = newinode->i_security;
908 newisec->sid = sid;
909 }
910 newsbsec->mntpoint_sid = sid;
911 }
912 if (set_rootcontext) {
913 const struct inode *oldinode = d_backing_inode(oldsb->s_root);
914 const struct inode_security_struct *oldisec = oldinode->i_security;
915 struct inode *newinode = d_backing_inode(newsb->s_root);
916 struct inode_security_struct *newisec = newinode->i_security;
917
918 newisec->sid = oldisec->sid;
919 }
920
921 sb_finish_set_opts(newsb);
922 mutex_unlock(&newsbsec->lock);
923 return 0;
924 }
925
926 static int selinux_parse_opts_str(char *options,
927 struct security_mnt_opts *opts)
928 {
929 char *p;
930 char *context = NULL, *defcontext = NULL;
931 char *fscontext = NULL, *rootcontext = NULL;
932 int rc, num_mnt_opts = 0;
933
934 opts->num_mnt_opts = 0;
935
936 /* Standard string-based options. */
937 while ((p = strsep(&options, "|")) != NULL) {
938 int token;
939 substring_t args[MAX_OPT_ARGS];
940
941 if (!*p)
942 continue;
943
944 token = match_token(p, tokens, args);
945
946 switch (token) {
947 case Opt_context:
948 if (context || defcontext) {
949 rc = -EINVAL;
950 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
951 goto out_err;
952 }
953 context = match_strdup(&args[0]);
954 if (!context) {
955 rc = -ENOMEM;
956 goto out_err;
957 }
958 break;
959
960 case Opt_fscontext:
961 if (fscontext) {
962 rc = -EINVAL;
963 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
964 goto out_err;
965 }
966 fscontext = match_strdup(&args[0]);
967 if (!fscontext) {
968 rc = -ENOMEM;
969 goto out_err;
970 }
971 break;
972
973 case Opt_rootcontext:
974 if (rootcontext) {
975 rc = -EINVAL;
976 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
977 goto out_err;
978 }
979 rootcontext = match_strdup(&args[0]);
980 if (!rootcontext) {
981 rc = -ENOMEM;
982 goto out_err;
983 }
984 break;
985
986 case Opt_defcontext:
987 if (context || defcontext) {
988 rc = -EINVAL;
989 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
990 goto out_err;
991 }
992 defcontext = match_strdup(&args[0]);
993 if (!defcontext) {
994 rc = -ENOMEM;
995 goto out_err;
996 }
997 break;
998 case Opt_labelsupport:
999 break;
1000 default:
1001 rc = -EINVAL;
1002 printk(KERN_WARNING "SELinux: unknown mount option\n");
1003 goto out_err;
1004
1005 }
1006 }
1007
1008 rc = -ENOMEM;
1009 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
1010 if (!opts->mnt_opts)
1011 goto out_err;
1012
1013 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1014 if (!opts->mnt_opts_flags) {
1015 kfree(opts->mnt_opts);
1016 goto out_err;
1017 }
1018
1019 if (fscontext) {
1020 opts->mnt_opts[num_mnt_opts] = fscontext;
1021 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1022 }
1023 if (context) {
1024 opts->mnt_opts[num_mnt_opts] = context;
1025 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1026 }
1027 if (rootcontext) {
1028 opts->mnt_opts[num_mnt_opts] = rootcontext;
1029 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1030 }
1031 if (defcontext) {
1032 opts->mnt_opts[num_mnt_opts] = defcontext;
1033 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1034 }
1035
1036 opts->num_mnt_opts = num_mnt_opts;
1037 return 0;
1038
1039 out_err:
1040 kfree(context);
1041 kfree(defcontext);
1042 kfree(fscontext);
1043 kfree(rootcontext);
1044 return rc;
1045 }
1046 /*
1047 * string mount options parsing and call set the sbsec
1048 */
1049 static int superblock_doinit(struct super_block *sb, void *data)
1050 {
1051 int rc = 0;
1052 char *options = data;
1053 struct security_mnt_opts opts;
1054
1055 security_init_mnt_opts(&opts);
1056
1057 if (!data)
1058 goto out;
1059
1060 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1061
1062 rc = selinux_parse_opts_str(options, &opts);
1063 if (rc)
1064 goto out_err;
1065
1066 out:
1067 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1068
1069 out_err:
1070 security_free_mnt_opts(&opts);
1071 return rc;
1072 }
1073
1074 static void selinux_write_opts(struct seq_file *m,
1075 struct security_mnt_opts *opts)
1076 {
1077 int i;
1078 char *prefix;
1079
1080 for (i = 0; i < opts->num_mnt_opts; i++) {
1081 char *has_comma;
1082
1083 if (opts->mnt_opts[i])
1084 has_comma = strchr(opts->mnt_opts[i], ',');
1085 else
1086 has_comma = NULL;
1087
1088 switch (opts->mnt_opts_flags[i]) {
1089 case CONTEXT_MNT:
1090 prefix = CONTEXT_STR;
1091 break;
1092 case FSCONTEXT_MNT:
1093 prefix = FSCONTEXT_STR;
1094 break;
1095 case ROOTCONTEXT_MNT:
1096 prefix = ROOTCONTEXT_STR;
1097 break;
1098 case DEFCONTEXT_MNT:
1099 prefix = DEFCONTEXT_STR;
1100 break;
1101 case SBLABEL_MNT:
1102 seq_putc(m, ',');
1103 seq_puts(m, LABELSUPP_STR);
1104 continue;
1105 default:
1106 BUG();
1107 return;
1108 };
1109 /* we need a comma before each option */
1110 seq_putc(m, ',');
1111 seq_puts(m, prefix);
1112 if (has_comma)
1113 seq_putc(m, '\"');
1114 seq_puts(m, opts->mnt_opts[i]);
1115 if (has_comma)
1116 seq_putc(m, '\"');
1117 }
1118 }
1119
1120 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1121 {
1122 struct security_mnt_opts opts;
1123 int rc;
1124
1125 rc = selinux_get_mnt_opts(sb, &opts);
1126 if (rc) {
1127 /* before policy load we may get EINVAL, don't show anything */
1128 if (rc == -EINVAL)
1129 rc = 0;
1130 return rc;
1131 }
1132
1133 selinux_write_opts(m, &opts);
1134
1135 security_free_mnt_opts(&opts);
1136
1137 return rc;
1138 }
1139
1140 static inline u16 inode_mode_to_security_class(umode_t mode)
1141 {
1142 switch (mode & S_IFMT) {
1143 case S_IFSOCK:
1144 return SECCLASS_SOCK_FILE;
1145 case S_IFLNK:
1146 return SECCLASS_LNK_FILE;
1147 case S_IFREG:
1148 return SECCLASS_FILE;
1149 case S_IFBLK:
1150 return SECCLASS_BLK_FILE;
1151 case S_IFDIR:
1152 return SECCLASS_DIR;
1153 case S_IFCHR:
1154 return SECCLASS_CHR_FILE;
1155 case S_IFIFO:
1156 return SECCLASS_FIFO_FILE;
1157
1158 }
1159
1160 return SECCLASS_FILE;
1161 }
1162
1163 static inline int default_protocol_stream(int protocol)
1164 {
1165 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1166 }
1167
1168 static inline int default_protocol_dgram(int protocol)
1169 {
1170 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1171 }
1172
1173 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1174 {
1175 switch (family) {
1176 case PF_UNIX:
1177 switch (type) {
1178 case SOCK_STREAM:
1179 case SOCK_SEQPACKET:
1180 return SECCLASS_UNIX_STREAM_SOCKET;
1181 case SOCK_DGRAM:
1182 return SECCLASS_UNIX_DGRAM_SOCKET;
1183 }
1184 break;
1185 case PF_INET:
1186 case PF_INET6:
1187 switch (type) {
1188 case SOCK_STREAM:
1189 if (default_protocol_stream(protocol))
1190 return SECCLASS_TCP_SOCKET;
1191 else
1192 return SECCLASS_RAWIP_SOCKET;
1193 case SOCK_DGRAM:
1194 if (default_protocol_dgram(protocol))
1195 return SECCLASS_UDP_SOCKET;
1196 else
1197 return SECCLASS_RAWIP_SOCKET;
1198 case SOCK_DCCP:
1199 return SECCLASS_DCCP_SOCKET;
1200 default:
1201 return SECCLASS_RAWIP_SOCKET;
1202 }
1203 break;
1204 case PF_NETLINK:
1205 switch (protocol) {
1206 case NETLINK_ROUTE:
1207 return SECCLASS_NETLINK_ROUTE_SOCKET;
1208 case NETLINK_SOCK_DIAG:
1209 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1210 case NETLINK_NFLOG:
1211 return SECCLASS_NETLINK_NFLOG_SOCKET;
1212 case NETLINK_XFRM:
1213 return SECCLASS_NETLINK_XFRM_SOCKET;
1214 case NETLINK_SELINUX:
1215 return SECCLASS_NETLINK_SELINUX_SOCKET;
1216 case NETLINK_ISCSI:
1217 return SECCLASS_NETLINK_ISCSI_SOCKET;
1218 case NETLINK_AUDIT:
1219 return SECCLASS_NETLINK_AUDIT_SOCKET;
1220 case NETLINK_FIB_LOOKUP:
1221 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1222 case NETLINK_CONNECTOR:
1223 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1224 case NETLINK_NETFILTER:
1225 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1226 case NETLINK_DNRTMSG:
1227 return SECCLASS_NETLINK_DNRT_SOCKET;
1228 case NETLINK_KOBJECT_UEVENT:
1229 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1230 case NETLINK_GENERIC:
1231 return SECCLASS_NETLINK_GENERIC_SOCKET;
1232 case NETLINK_SCSITRANSPORT:
1233 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1234 case NETLINK_RDMA:
1235 return SECCLASS_NETLINK_RDMA_SOCKET;
1236 case NETLINK_CRYPTO:
1237 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1238 default:
1239 return SECCLASS_NETLINK_SOCKET;
1240 }
1241 case PF_PACKET:
1242 return SECCLASS_PACKET_SOCKET;
1243 case PF_KEY:
1244 return SECCLASS_KEY_SOCKET;
1245 case PF_APPLETALK:
1246 return SECCLASS_APPLETALK_SOCKET;
1247 }
1248
1249 return SECCLASS_SOCKET;
1250 }
1251
1252 static int selinux_genfs_get_sid(struct dentry *dentry,
1253 u16 tclass,
1254 u16 flags,
1255 u32 *sid)
1256 {
1257 int rc;
1258 struct super_block *sb = dentry->d_inode->i_sb;
1259 char *buffer, *path;
1260
1261 buffer = (char *)__get_free_page(GFP_KERNEL);
1262 if (!buffer)
1263 return -ENOMEM;
1264
1265 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1266 if (IS_ERR(path))
1267 rc = PTR_ERR(path);
1268 else {
1269 if (flags & SE_SBPROC) {
1270 /* each process gets a /proc/PID/ entry. Strip off the
1271 * PID part to get a valid selinux labeling.
1272 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1273 while (path[1] >= '0' && path[1] <= '9') {
1274 path[1] = '/';
1275 path++;
1276 }
1277 }
1278 rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
1279 }
1280 free_page((unsigned long)buffer);
1281 return rc;
1282 }
1283
1284 /* The inode's security attributes must be initialized before first use. */
1285 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1286 {
1287 struct superblock_security_struct *sbsec = NULL;
1288 struct inode_security_struct *isec = inode->i_security;
1289 u32 sid;
1290 struct dentry *dentry;
1291 #define INITCONTEXTLEN 255
1292 char *context = NULL;
1293 unsigned len = 0;
1294 int rc = 0;
1295
1296 if (isec->initialized)
1297 goto out;
1298
1299 mutex_lock(&isec->lock);
1300 if (isec->initialized)
1301 goto out_unlock;
1302
1303 sbsec = inode->i_sb->s_security;
1304 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1305 /* Defer initialization until selinux_complete_init,
1306 after the initial policy is loaded and the security
1307 server is ready to handle calls. */
1308 spin_lock(&sbsec->isec_lock);
1309 if (list_empty(&isec->list))
1310 list_add(&isec->list, &sbsec->isec_head);
1311 spin_unlock(&sbsec->isec_lock);
1312 goto out_unlock;
1313 }
1314
1315 switch (sbsec->behavior) {
1316 case SECURITY_FS_USE_NATIVE:
1317 break;
1318 case SECURITY_FS_USE_XATTR:
1319 if (!inode->i_op->getxattr) {
1320 isec->sid = sbsec->def_sid;
1321 break;
1322 }
1323
1324 /* Need a dentry, since the xattr API requires one.
1325 Life would be simpler if we could just pass the inode. */
1326 if (opt_dentry) {
1327 /* Called from d_instantiate or d_splice_alias. */
1328 dentry = dget(opt_dentry);
1329 } else {
1330 /* Called from selinux_complete_init, try to find a dentry. */
1331 dentry = d_find_alias(inode);
1332 }
1333 if (!dentry) {
1334 /*
1335 * this is can be hit on boot when a file is accessed
1336 * before the policy is loaded. When we load policy we
1337 * may find inodes that have no dentry on the
1338 * sbsec->isec_head list. No reason to complain as these
1339 * will get fixed up the next time we go through
1340 * inode_doinit with a dentry, before these inodes could
1341 * be used again by userspace.
1342 */
1343 goto out_unlock;
1344 }
1345
1346 len = INITCONTEXTLEN;
1347 context = kmalloc(len+1, GFP_NOFS);
1348 if (!context) {
1349 rc = -ENOMEM;
1350 dput(dentry);
1351 goto out_unlock;
1352 }
1353 context[len] = '\0';
1354 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1355 context, len);
1356 if (rc == -ERANGE) {
1357 kfree(context);
1358
1359 /* Need a larger buffer. Query for the right size. */
1360 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1361 NULL, 0);
1362 if (rc < 0) {
1363 dput(dentry);
1364 goto out_unlock;
1365 }
1366 len = rc;
1367 context = kmalloc(len+1, GFP_NOFS);
1368 if (!context) {
1369 rc = -ENOMEM;
1370 dput(dentry);
1371 goto out_unlock;
1372 }
1373 context[len] = '\0';
1374 rc = inode->i_op->getxattr(dentry,
1375 XATTR_NAME_SELINUX,
1376 context, len);
1377 }
1378 dput(dentry);
1379 if (rc < 0) {
1380 if (rc != -ENODATA) {
1381 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1382 "%d for dev=%s ino=%ld\n", __func__,
1383 -rc, inode->i_sb->s_id, inode->i_ino);
1384 kfree(context);
1385 goto out_unlock;
1386 }
1387 /* Map ENODATA to the default file SID */
1388 sid = sbsec->def_sid;
1389 rc = 0;
1390 } else {
1391 rc = security_context_to_sid_default(context, rc, &sid,
1392 sbsec->def_sid,
1393 GFP_NOFS);
1394 if (rc) {
1395 char *dev = inode->i_sb->s_id;
1396 unsigned long ino = inode->i_ino;
1397
1398 if (rc == -EINVAL) {
1399 if (printk_ratelimit())
1400 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1401 "context=%s. This indicates you may need to relabel the inode or the "
1402 "filesystem in question.\n", ino, dev, context);
1403 } else {
1404 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1405 "returned %d for dev=%s ino=%ld\n",
1406 __func__, context, -rc, dev, ino);
1407 }
1408 kfree(context);
1409 /* Leave with the unlabeled SID */
1410 rc = 0;
1411 break;
1412 }
1413 }
1414 kfree(context);
1415 isec->sid = sid;
1416 break;
1417 case SECURITY_FS_USE_TASK:
1418 isec->sid = isec->task_sid;
1419 break;
1420 case SECURITY_FS_USE_TRANS:
1421 /* Default to the fs SID. */
1422 isec->sid = sbsec->sid;
1423
1424 /* Try to obtain a transition SID. */
1425 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1426 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1427 isec->sclass, NULL, &sid);
1428 if (rc)
1429 goto out_unlock;
1430 isec->sid = sid;
1431 break;
1432 case SECURITY_FS_USE_MNTPOINT:
1433 isec->sid = sbsec->mntpoint_sid;
1434 break;
1435 default:
1436 /* Default to the fs superblock SID. */
1437 isec->sid = sbsec->sid;
1438
1439 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1440 /* We must have a dentry to determine the label on
1441 * procfs inodes */
1442 if (opt_dentry)
1443 /* Called from d_instantiate or
1444 * d_splice_alias. */
1445 dentry = dget(opt_dentry);
1446 else
1447 /* Called from selinux_complete_init, try to
1448 * find a dentry. */
1449 dentry = d_find_alias(inode);
1450 /*
1451 * This can be hit on boot when a file is accessed
1452 * before the policy is loaded. When we load policy we
1453 * may find inodes that have no dentry on the
1454 * sbsec->isec_head list. No reason to complain as
1455 * these will get fixed up the next time we go through
1456 * inode_doinit() with a dentry, before these inodes
1457 * could be used again by userspace.
1458 */
1459 if (!dentry)
1460 goto out_unlock;
1461 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1462 rc = selinux_genfs_get_sid(dentry, isec->sclass,
1463 sbsec->flags, &sid);
1464 dput(dentry);
1465 if (rc)
1466 goto out_unlock;
1467 isec->sid = sid;
1468 }
1469 break;
1470 }
1471
1472 isec->initialized = 1;
1473
1474 out_unlock:
1475 mutex_unlock(&isec->lock);
1476 out:
1477 if (isec->sclass == SECCLASS_FILE)
1478 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1479 return rc;
1480 }
1481
1482 /* Convert a Linux signal to an access vector. */
1483 static inline u32 signal_to_av(int sig)
1484 {
1485 u32 perm = 0;
1486
1487 switch (sig) {
1488 case SIGCHLD:
1489 /* Commonly granted from child to parent. */
1490 perm = PROCESS__SIGCHLD;
1491 break;
1492 case SIGKILL:
1493 /* Cannot be caught or ignored */
1494 perm = PROCESS__SIGKILL;
1495 break;
1496 case SIGSTOP:
1497 /* Cannot be caught or ignored */
1498 perm = PROCESS__SIGSTOP;
1499 break;
1500 default:
1501 /* All other signals. */
1502 perm = PROCESS__SIGNAL;
1503 break;
1504 }
1505
1506 return perm;
1507 }
1508
1509 /*
1510 * Check permission between a pair of credentials
1511 * fork check, ptrace check, etc.
1512 */
1513 static int cred_has_perm(const struct cred *actor,
1514 const struct cred *target,
1515 u32 perms)
1516 {
1517 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1518
1519 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1520 }
1521
1522 /*
1523 * Check permission between a pair of tasks, e.g. signal checks,
1524 * fork check, ptrace check, etc.
1525 * tsk1 is the actor and tsk2 is the target
1526 * - this uses the default subjective creds of tsk1
1527 */
1528 static int task_has_perm(const struct task_struct *tsk1,
1529 const struct task_struct *tsk2,
1530 u32 perms)
1531 {
1532 const struct task_security_struct *__tsec1, *__tsec2;
1533 u32 sid1, sid2;
1534
1535 rcu_read_lock();
1536 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1537 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1538 rcu_read_unlock();
1539 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1540 }
1541
1542 /*
1543 * Check permission between current and another task, e.g. signal checks,
1544 * fork check, ptrace check, etc.
1545 * current is the actor and tsk2 is the target
1546 * - this uses current's subjective creds
1547 */
1548 static int current_has_perm(const struct task_struct *tsk,
1549 u32 perms)
1550 {
1551 u32 sid, tsid;
1552
1553 sid = current_sid();
1554 tsid = task_sid(tsk);
1555 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1556 }
1557
1558 #if CAP_LAST_CAP > 63
1559 #error Fix SELinux to handle capabilities > 63.
1560 #endif
1561
1562 /* Check whether a task is allowed to use a capability. */
1563 static int cred_has_capability(const struct cred *cred,
1564 int cap, int audit)
1565 {
1566 struct common_audit_data ad;
1567 struct av_decision avd;
1568 u16 sclass;
1569 u32 sid = cred_sid(cred);
1570 u32 av = CAP_TO_MASK(cap);
1571 int rc;
1572
1573 ad.type = LSM_AUDIT_DATA_CAP;
1574 ad.u.cap = cap;
1575
1576 switch (CAP_TO_INDEX(cap)) {
1577 case 0:
1578 sclass = SECCLASS_CAPABILITY;
1579 break;
1580 case 1:
1581 sclass = SECCLASS_CAPABILITY2;
1582 break;
1583 default:
1584 printk(KERN_ERR
1585 "SELinux: out of range capability %d\n", cap);
1586 BUG();
1587 return -EINVAL;
1588 }
1589
1590 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1591 if (audit == SECURITY_CAP_AUDIT) {
1592 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1593 if (rc2)
1594 return rc2;
1595 }
1596 return rc;
1597 }
1598
1599 /* Check whether a task is allowed to use a system operation. */
1600 static int task_has_system(struct task_struct *tsk,
1601 u32 perms)
1602 {
1603 u32 sid = task_sid(tsk);
1604
1605 return avc_has_perm(sid, SECINITSID_KERNEL,
1606 SECCLASS_SYSTEM, perms, NULL);
1607 }
1608
1609 /* Check whether a task has a particular permission to an inode.
1610 The 'adp' parameter is optional and allows other audit
1611 data to be passed (e.g. the dentry). */
1612 static int inode_has_perm(const struct cred *cred,
1613 struct inode *inode,
1614 u32 perms,
1615 struct common_audit_data *adp)
1616 {
1617 struct inode_security_struct *isec;
1618 u32 sid;
1619
1620 validate_creds(cred);
1621
1622 if (unlikely(IS_PRIVATE(inode)))
1623 return 0;
1624
1625 sid = cred_sid(cred);
1626 isec = inode->i_security;
1627
1628 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1629 }
1630
1631 /* Same as inode_has_perm, but pass explicit audit data containing
1632 the dentry to help the auditing code to more easily generate the
1633 pathname if needed. */
1634 static inline int dentry_has_perm(const struct cred *cred,
1635 struct dentry *dentry,
1636 u32 av)
1637 {
1638 struct inode *inode = d_backing_inode(dentry);
1639 struct common_audit_data ad;
1640
1641 ad.type = LSM_AUDIT_DATA_DENTRY;
1642 ad.u.dentry = dentry;
1643 return inode_has_perm(cred, inode, av, &ad);
1644 }
1645
1646 /* Same as inode_has_perm, but pass explicit audit data containing
1647 the path to help the auditing code to more easily generate the
1648 pathname if needed. */
1649 static inline int path_has_perm(const struct cred *cred,
1650 const struct path *path,
1651 u32 av)
1652 {
1653 struct inode *inode = d_backing_inode(path->dentry);
1654 struct common_audit_data ad;
1655
1656 ad.type = LSM_AUDIT_DATA_PATH;
1657 ad.u.path = *path;
1658 return inode_has_perm(cred, inode, av, &ad);
1659 }
1660
1661 /* Same as path_has_perm, but uses the inode from the file struct. */
1662 static inline int file_path_has_perm(const struct cred *cred,
1663 struct file *file,
1664 u32 av)
1665 {
1666 struct common_audit_data ad;
1667
1668 ad.type = LSM_AUDIT_DATA_PATH;
1669 ad.u.path = file->f_path;
1670 return inode_has_perm(cred, file_inode(file), av, &ad);
1671 }
1672
1673 /* Check whether a task can use an open file descriptor to
1674 access an inode in a given way. Check access to the
1675 descriptor itself, and then use dentry_has_perm to
1676 check a particular permission to the file.
1677 Access to the descriptor is implicitly granted if it
1678 has the same SID as the process. If av is zero, then
1679 access to the file is not checked, e.g. for cases
1680 where only the descriptor is affected like seek. */
1681 static int file_has_perm(const struct cred *cred,
1682 struct file *file,
1683 u32 av)
1684 {
1685 struct file_security_struct *fsec = file->f_security;
1686 struct inode *inode = file_inode(file);
1687 struct common_audit_data ad;
1688 u32 sid = cred_sid(cred);
1689 int rc;
1690
1691 ad.type = LSM_AUDIT_DATA_PATH;
1692 ad.u.path = file->f_path;
1693
1694 if (sid != fsec->sid) {
1695 rc = avc_has_perm(sid, fsec->sid,
1696 SECCLASS_FD,
1697 FD__USE,
1698 &ad);
1699 if (rc)
1700 goto out;
1701 }
1702
1703 /* av is zero if only checking access to the descriptor. */
1704 rc = 0;
1705 if (av)
1706 rc = inode_has_perm(cred, inode, av, &ad);
1707
1708 out:
1709 return rc;
1710 }
1711
1712 /* Check whether a task can create a file. */
1713 static int may_create(struct inode *dir,
1714 struct dentry *dentry,
1715 u16 tclass)
1716 {
1717 const struct task_security_struct *tsec = current_security();
1718 struct inode_security_struct *dsec;
1719 struct superblock_security_struct *sbsec;
1720 u32 sid, newsid;
1721 struct common_audit_data ad;
1722 int rc;
1723
1724 dsec = dir->i_security;
1725 sbsec = dir->i_sb->s_security;
1726
1727 sid = tsec->sid;
1728 newsid = tsec->create_sid;
1729
1730 ad.type = LSM_AUDIT_DATA_DENTRY;
1731 ad.u.dentry = dentry;
1732
1733 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1734 DIR__ADD_NAME | DIR__SEARCH,
1735 &ad);
1736 if (rc)
1737 return rc;
1738
1739 if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
1740 rc = security_transition_sid(sid, dsec->sid, tclass,
1741 &dentry->d_name, &newsid);
1742 if (rc)
1743 return rc;
1744 }
1745
1746 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1747 if (rc)
1748 return rc;
1749
1750 return avc_has_perm(newsid, sbsec->sid,
1751 SECCLASS_FILESYSTEM,
1752 FILESYSTEM__ASSOCIATE, &ad);
1753 }
1754
1755 /* Check whether a task can create a key. */
1756 static int may_create_key(u32 ksid,
1757 struct task_struct *ctx)
1758 {
1759 u32 sid = task_sid(ctx);
1760
1761 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1762 }
1763
1764 #define MAY_LINK 0
1765 #define MAY_UNLINK 1
1766 #define MAY_RMDIR 2
1767
1768 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1769 static int may_link(struct inode *dir,
1770 struct dentry *dentry,
1771 int kind)
1772
1773 {
1774 struct inode_security_struct *dsec, *isec;
1775 struct common_audit_data ad;
1776 u32 sid = current_sid();
1777 u32 av;
1778 int rc;
1779
1780 dsec = dir->i_security;
1781 isec = d_backing_inode(dentry)->i_security;
1782
1783 ad.type = LSM_AUDIT_DATA_DENTRY;
1784 ad.u.dentry = dentry;
1785
1786 av = DIR__SEARCH;
1787 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1788 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1789 if (rc)
1790 return rc;
1791
1792 switch (kind) {
1793 case MAY_LINK:
1794 av = FILE__LINK;
1795 break;
1796 case MAY_UNLINK:
1797 av = FILE__UNLINK;
1798 break;
1799 case MAY_RMDIR:
1800 av = DIR__RMDIR;
1801 break;
1802 default:
1803 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1804 __func__, kind);
1805 return 0;
1806 }
1807
1808 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1809 return rc;
1810 }
1811
1812 static inline int may_rename(struct inode *old_dir,
1813 struct dentry *old_dentry,
1814 struct inode *new_dir,
1815 struct dentry *new_dentry)
1816 {
1817 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1818 struct common_audit_data ad;
1819 u32 sid = current_sid();
1820 u32 av;
1821 int old_is_dir, new_is_dir;
1822 int rc;
1823
1824 old_dsec = old_dir->i_security;
1825 old_isec = d_backing_inode(old_dentry)->i_security;
1826 old_is_dir = d_is_dir(old_dentry);
1827 new_dsec = new_dir->i_security;
1828
1829 ad.type = LSM_AUDIT_DATA_DENTRY;
1830
1831 ad.u.dentry = old_dentry;
1832 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1833 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1834 if (rc)
1835 return rc;
1836 rc = avc_has_perm(sid, old_isec->sid,
1837 old_isec->sclass, FILE__RENAME, &ad);
1838 if (rc)
1839 return rc;
1840 if (old_is_dir && new_dir != old_dir) {
1841 rc = avc_has_perm(sid, old_isec->sid,
1842 old_isec->sclass, DIR__REPARENT, &ad);
1843 if (rc)
1844 return rc;
1845 }
1846
1847 ad.u.dentry = new_dentry;
1848 av = DIR__ADD_NAME | DIR__SEARCH;
1849 if (d_is_positive(new_dentry))
1850 av |= DIR__REMOVE_NAME;
1851 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1852 if (rc)
1853 return rc;
1854 if (d_is_positive(new_dentry)) {
1855 new_isec = d_backing_inode(new_dentry)->i_security;
1856 new_is_dir = d_is_dir(new_dentry);
1857 rc = avc_has_perm(sid, new_isec->sid,
1858 new_isec->sclass,
1859 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1860 if (rc)
1861 return rc;
1862 }
1863
1864 return 0;
1865 }
1866
1867 /* Check whether a task can perform a filesystem operation. */
1868 static int superblock_has_perm(const struct cred *cred,
1869 struct super_block *sb,
1870 u32 perms,
1871 struct common_audit_data *ad)
1872 {
1873 struct superblock_security_struct *sbsec;
1874 u32 sid = cred_sid(cred);
1875
1876 sbsec = sb->s_security;
1877 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1878 }
1879
1880 /* Convert a Linux mode and permission mask to an access vector. */
1881 static inline u32 file_mask_to_av(int mode, int mask)
1882 {
1883 u32 av = 0;
1884
1885 if (!S_ISDIR(mode)) {
1886 if (mask & MAY_EXEC)
1887 av |= FILE__EXECUTE;
1888 if (mask & MAY_READ)
1889 av |= FILE__READ;
1890
1891 if (mask & MAY_APPEND)
1892 av |= FILE__APPEND;
1893 else if (mask & MAY_WRITE)
1894 av |= FILE__WRITE;
1895
1896 } else {
1897 if (mask & MAY_EXEC)
1898 av |= DIR__SEARCH;
1899 if (mask & MAY_WRITE)
1900 av |= DIR__WRITE;
1901 if (mask & MAY_READ)
1902 av |= DIR__READ;
1903 }
1904
1905 return av;
1906 }
1907
1908 /* Convert a Linux file to an access vector. */
1909 static inline u32 file_to_av(struct file *file)
1910 {
1911 u32 av = 0;
1912
1913 if (file->f_mode & FMODE_READ)
1914 av |= FILE__READ;
1915 if (file->f_mode & FMODE_WRITE) {
1916 if (file->f_flags & O_APPEND)
1917 av |= FILE__APPEND;
1918 else
1919 av |= FILE__WRITE;
1920 }
1921 if (!av) {
1922 /*
1923 * Special file opened with flags 3 for ioctl-only use.
1924 */
1925 av = FILE__IOCTL;
1926 }
1927
1928 return av;
1929 }
1930
1931 /*
1932 * Convert a file to an access vector and include the correct open
1933 * open permission.
1934 */
1935 static inline u32 open_file_to_av(struct file *file)
1936 {
1937 u32 av = file_to_av(file);
1938
1939 if (selinux_policycap_openperm)
1940 av |= FILE__OPEN;
1941
1942 return av;
1943 }
1944
1945 /* Hook functions begin here. */
1946
1947 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
1948 {
1949 u32 mysid = current_sid();
1950 u32 mgrsid = task_sid(mgr);
1951
1952 return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
1953 BINDER__SET_CONTEXT_MGR, NULL);
1954 }
1955
1956 static int selinux_binder_transaction(struct task_struct *from,
1957 struct task_struct *to)
1958 {
1959 u32 mysid = current_sid();
1960 u32 fromsid = task_sid(from);
1961 u32 tosid = task_sid(to);
1962 int rc;
1963
1964 if (mysid != fromsid) {
1965 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
1966 BINDER__IMPERSONATE, NULL);
1967 if (rc)
1968 return rc;
1969 }
1970
1971 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
1972 NULL);
1973 }
1974
1975 static int selinux_binder_transfer_binder(struct task_struct *from,
1976 struct task_struct *to)
1977 {
1978 u32 fromsid = task_sid(from);
1979 u32 tosid = task_sid(to);
1980
1981 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
1982 NULL);
1983 }
1984
1985 static int selinux_binder_transfer_file(struct task_struct *from,
1986 struct task_struct *to,
1987 struct file *file)
1988 {
1989 u32 sid = task_sid(to);
1990 struct file_security_struct *fsec = file->f_security;
1991 struct inode *inode = d_backing_inode(file->f_path.dentry);
1992 struct inode_security_struct *isec = inode->i_security;
1993 struct common_audit_data ad;
1994 int rc;
1995
1996 ad.type = LSM_AUDIT_DATA_PATH;
1997 ad.u.path = file->f_path;
1998
1999 if (sid != fsec->sid) {
2000 rc = avc_has_perm(sid, fsec->sid,
2001 SECCLASS_FD,
2002 FD__USE,
2003 &ad);
2004 if (rc)
2005 return rc;
2006 }
2007
2008 if (unlikely(IS_PRIVATE(inode)))
2009 return 0;
2010
2011 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2012 &ad);
2013 }
2014
2015 static int selinux_ptrace_access_check(struct task_struct *child,
2016 unsigned int mode)
2017 {
2018 if (mode & PTRACE_MODE_READ) {
2019 u32 sid = current_sid();
2020 u32 csid = task_sid(child);
2021 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2022 }
2023
2024 return current_has_perm(child, PROCESS__PTRACE);
2025 }
2026
2027 static int selinux_ptrace_traceme(struct task_struct *parent)
2028 {
2029 return task_has_perm(parent, current, PROCESS__PTRACE);
2030 }
2031
2032 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2033 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2034 {
2035 return current_has_perm(target, PROCESS__GETCAP);
2036 }
2037
2038 static int selinux_capset(struct cred *new, const struct cred *old,
2039 const kernel_cap_t *effective,
2040 const kernel_cap_t *inheritable,
2041 const kernel_cap_t *permitted)
2042 {
2043 return cred_has_perm(old, new, PROCESS__SETCAP);
2044 }
2045
2046 /*
2047 * (This comment used to live with the selinux_task_setuid hook,
2048 * which was removed).
2049 *
2050 * Since setuid only affects the current process, and since the SELinux
2051 * controls are not based on the Linux identity attributes, SELinux does not
2052 * need to control this operation. However, SELinux does control the use of
2053 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2054 */
2055
2056 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2057 int cap, int audit)
2058 {
2059 return cred_has_capability(cred, cap, audit);
2060 }
2061
2062 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2063 {
2064 const struct cred *cred = current_cred();
2065 int rc = 0;
2066
2067 if (!sb)
2068 return 0;
2069
2070 switch (cmds) {
2071 case Q_SYNC:
2072 case Q_QUOTAON:
2073 case Q_QUOTAOFF:
2074 case Q_SETINFO:
2075 case Q_SETQUOTA:
2076 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2077 break;
2078 case Q_GETFMT:
2079 case Q_GETINFO:
2080 case Q_GETQUOTA:
2081 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2082 break;
2083 default:
2084 rc = 0; /* let the kernel handle invalid cmds */
2085 break;
2086 }
2087 return rc;
2088 }
2089
2090 static int selinux_quota_on(struct dentry *dentry)
2091 {
2092 const struct cred *cred = current_cred();
2093
2094 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2095 }
2096
2097 static int selinux_syslog(int type)
2098 {
2099 int rc;
2100
2101 switch (type) {
2102 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2103 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2104 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2105 break;
2106 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2107 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2108 /* Set level of messages printed to console */
2109 case SYSLOG_ACTION_CONSOLE_LEVEL:
2110 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2111 break;
2112 case SYSLOG_ACTION_CLOSE: /* Close log */
2113 case SYSLOG_ACTION_OPEN: /* Open log */
2114 case SYSLOG_ACTION_READ: /* Read from log */
2115 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
2116 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
2117 default:
2118 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2119 break;
2120 }
2121 return rc;
2122 }
2123
2124 /*
2125 * Check that a process has enough memory to allocate a new virtual
2126 * mapping. 0 means there is enough memory for the allocation to
2127 * succeed and -ENOMEM implies there is not.
2128 *
2129 * Do not audit the selinux permission check, as this is applied to all
2130 * processes that allocate mappings.
2131 */
2132 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2133 {
2134 int rc, cap_sys_admin = 0;
2135
2136 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2137 SECURITY_CAP_NOAUDIT);
2138 if (rc == 0)
2139 cap_sys_admin = 1;
2140
2141 return cap_sys_admin;
2142 }
2143
2144 /* binprm security operations */
2145
2146 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2147 const struct task_security_struct *old_tsec,
2148 const struct task_security_struct *new_tsec)
2149 {
2150 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2151 int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID);
2152 int rc;
2153
2154 if (!nnp && !nosuid)
2155 return 0; /* neither NNP nor nosuid */
2156
2157 if (new_tsec->sid == old_tsec->sid)
2158 return 0; /* No change in credentials */
2159
2160 /*
2161 * The only transitions we permit under NNP or nosuid
2162 * are transitions to bounded SIDs, i.e. SIDs that are
2163 * guaranteed to only be allowed a subset of the permissions
2164 * of the current SID.
2165 */
2166 rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2167 if (rc) {
2168 /*
2169 * On failure, preserve the errno values for NNP vs nosuid.
2170 * NNP: Operation not permitted for caller.
2171 * nosuid: Permission denied to file.
2172 */
2173 if (nnp)
2174 return -EPERM;
2175 else
2176 return -EACCES;
2177 }
2178 return 0;
2179 }
2180
2181 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2182 {
2183 const struct task_security_struct *old_tsec;
2184 struct task_security_struct *new_tsec;
2185 struct inode_security_struct *isec;
2186 struct common_audit_data ad;
2187 struct inode *inode = file_inode(bprm->file);
2188 int rc;
2189
2190 /* SELinux context only depends on initial program or script and not
2191 * the script interpreter */
2192 if (bprm->cred_prepared)
2193 return 0;
2194
2195 old_tsec = current_security();
2196 new_tsec = bprm->cred->security;
2197 isec = inode->i_security;
2198
2199 /* Default to the current task SID. */
2200 new_tsec->sid = old_tsec->sid;
2201 new_tsec->osid = old_tsec->sid;
2202
2203 /* Reset fs, key, and sock SIDs on execve. */
2204 new_tsec->create_sid = 0;
2205 new_tsec->keycreate_sid = 0;
2206 new_tsec->sockcreate_sid = 0;
2207
2208 if (old_tsec->exec_sid) {
2209 new_tsec->sid = old_tsec->exec_sid;
2210 /* Reset exec SID on execve. */
2211 new_tsec->exec_sid = 0;
2212
2213 /* Fail on NNP or nosuid if not an allowed transition. */
2214 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2215 if (rc)
2216 return rc;
2217 } else {
2218 /* Check for a default transition on this program. */
2219 rc = security_transition_sid(old_tsec->sid, isec->sid,
2220 SECCLASS_PROCESS, NULL,
2221 &new_tsec->sid);
2222 if (rc)
2223 return rc;
2224
2225 /*
2226 * Fallback to old SID on NNP or nosuid if not an allowed
2227 * transition.
2228 */
2229 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2230 if (rc)
2231 new_tsec->sid = old_tsec->sid;
2232 }
2233
2234 ad.type = LSM_AUDIT_DATA_PATH;
2235 ad.u.path = bprm->file->f_path;
2236
2237 if (new_tsec->sid == old_tsec->sid) {
2238 rc = avc_has_perm(old_tsec->sid, isec->sid,
2239 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2240 if (rc)
2241 return rc;
2242 } else {
2243 /* Check permissions for the transition. */
2244 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2245 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2246 if (rc)
2247 return rc;
2248
2249 rc = avc_has_perm(new_tsec->sid, isec->sid,
2250 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2251 if (rc)
2252 return rc;
2253
2254 /* Check for shared state */
2255 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2256 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2257 SECCLASS_PROCESS, PROCESS__SHARE,
2258 NULL);
2259 if (rc)
2260 return -EPERM;
2261 }
2262
2263 /* Make sure that anyone attempting to ptrace over a task that
2264 * changes its SID has the appropriate permit */
2265 if (bprm->unsafe &
2266 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2267 struct task_struct *tracer;
2268 struct task_security_struct *sec;
2269 u32 ptsid = 0;
2270
2271 rcu_read_lock();
2272 tracer = ptrace_parent(current);
2273 if (likely(tracer != NULL)) {
2274 sec = __task_cred(tracer)->security;
2275 ptsid = sec->sid;
2276 }
2277 rcu_read_unlock();
2278
2279 if (ptsid != 0) {
2280 rc = avc_has_perm(ptsid, new_tsec->sid,
2281 SECCLASS_PROCESS,
2282 PROCESS__PTRACE, NULL);
2283 if (rc)
2284 return -EPERM;
2285 }
2286 }
2287
2288 /* Clear any possibly unsafe personality bits on exec: */
2289 bprm->per_clear |= PER_CLEAR_ON_SETID;
2290 }
2291
2292 return 0;
2293 }
2294
2295 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2296 {
2297 const struct task_security_struct *tsec = current_security();
2298 u32 sid, osid;
2299 int atsecure = 0;
2300
2301 sid = tsec->sid;
2302 osid = tsec->osid;
2303
2304 if (osid != sid) {
2305 /* Enable secure mode for SIDs transitions unless
2306 the noatsecure permission is granted between
2307 the two SIDs, i.e. ahp returns 0. */
2308 atsecure = avc_has_perm(osid, sid,
2309 SECCLASS_PROCESS,
2310 PROCESS__NOATSECURE, NULL);
2311 }
2312
2313 return !!atsecure;
2314 }
2315
2316 static int match_file(const void *p, struct file *file, unsigned fd)
2317 {
2318 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2319 }
2320
2321 /* Derived from fs/exec.c:flush_old_files. */
2322 static inline void flush_unauthorized_files(const struct cred *cred,
2323 struct files_struct *files)
2324 {
2325 struct file *file, *devnull = NULL;
2326 struct tty_struct *tty;
2327 int drop_tty = 0;
2328 unsigned n;
2329
2330 tty = get_current_tty();
2331 if (tty) {
2332 spin_lock(&tty_files_lock);
2333 if (!list_empty(&tty->tty_files)) {
2334 struct tty_file_private *file_priv;
2335
2336 /* Revalidate access to controlling tty.
2337 Use file_path_has_perm on the tty path directly
2338 rather than using file_has_perm, as this particular
2339 open file may belong to another process and we are
2340 only interested in the inode-based check here. */
2341 file_priv = list_first_entry(&tty->tty_files,
2342 struct tty_file_private, list);
2343 file = file_priv->file;
2344 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2345 drop_tty = 1;
2346 }
2347 spin_unlock(&tty_files_lock);
2348 tty_kref_put(tty);
2349 }
2350 /* Reset controlling tty. */
2351 if (drop_tty)
2352 no_tty();
2353
2354 /* Revalidate access to inherited open files. */
2355 n = iterate_fd(files, 0, match_file, cred);
2356 if (!n) /* none found? */
2357 return;
2358
2359 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2360 if (IS_ERR(devnull))
2361 devnull = NULL;
2362 /* replace all the matching ones with this */
2363 do {
2364 replace_fd(n - 1, devnull, 0);
2365 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2366 if (devnull)
2367 fput(devnull);
2368 }
2369
2370 /*
2371 * Prepare a process for imminent new credential changes due to exec
2372 */
2373 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2374 {
2375 struct task_security_struct *new_tsec;
2376 struct rlimit *rlim, *initrlim;
2377 int rc, i;
2378
2379 new_tsec = bprm->cred->security;
2380 if (new_tsec->sid == new_tsec->osid)
2381 return;
2382
2383 /* Close files for which the new task SID is not authorized. */
2384 flush_unauthorized_files(bprm->cred, current->files);
2385
2386 /* Always clear parent death signal on SID transitions. */
2387 current->pdeath_signal = 0;
2388
2389 /* Check whether the new SID can inherit resource limits from the old
2390 * SID. If not, reset all soft limits to the lower of the current
2391 * task's hard limit and the init task's soft limit.
2392 *
2393 * Note that the setting of hard limits (even to lower them) can be
2394 * controlled by the setrlimit check. The inclusion of the init task's
2395 * soft limit into the computation is to avoid resetting soft limits
2396 * higher than the default soft limit for cases where the default is
2397 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2398 */
2399 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2400 PROCESS__RLIMITINH, NULL);
2401 if (rc) {
2402 /* protect against do_prlimit() */
2403 task_lock(current);
2404 for (i = 0; i < RLIM_NLIMITS; i++) {
2405 rlim = current->signal->rlim + i;
2406 initrlim = init_task.signal->rlim + i;
2407 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2408 }
2409 task_unlock(current);
2410 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2411 }
2412 }
2413
2414 /*
2415 * Clean up the process immediately after the installation of new credentials
2416 * due to exec
2417 */
2418 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2419 {
2420 const struct task_security_struct *tsec = current_security();
2421 struct itimerval itimer;
2422 u32 osid, sid;
2423 int rc, i;
2424
2425 osid = tsec->osid;
2426 sid = tsec->sid;
2427
2428 if (sid == osid)
2429 return;
2430
2431 /* Check whether the new SID can inherit signal state from the old SID.
2432 * If not, clear itimers to avoid subsequent signal generation and
2433 * flush and unblock signals.
2434 *
2435 * This must occur _after_ the task SID has been updated so that any
2436 * kill done after the flush will be checked against the new SID.
2437 */
2438 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2439 if (rc) {
2440 memset(&itimer, 0, sizeof itimer);
2441 for (i = 0; i < 3; i++)
2442 do_setitimer(i, &itimer, NULL);
2443 spin_lock_irq(&current->sighand->siglock);
2444 if (!fatal_signal_pending(current)) {
2445 flush_sigqueue(&current->pending);
2446 flush_sigqueue(&current->signal->shared_pending);
2447 flush_signal_handlers(current, 1);
2448 sigemptyset(&current->blocked);
2449 recalc_sigpending();
2450 }
2451 spin_unlock_irq(&current->sighand->siglock);
2452 }
2453
2454 /* Wake up the parent if it is waiting so that it can recheck
2455 * wait permission to the new task SID. */
2456 read_lock(&tasklist_lock);
2457 __wake_up_parent(current, current->real_parent);
2458 read_unlock(&tasklist_lock);
2459 }
2460
2461 /* superblock security operations */
2462
2463 static int selinux_sb_alloc_security(struct super_block *sb)
2464 {
2465 return superblock_alloc_security(sb);
2466 }
2467
2468 static void selinux_sb_free_security(struct super_block *sb)
2469 {
2470 superblock_free_security(sb);
2471 }
2472
2473 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2474 {
2475 if (plen > olen)
2476 return 0;
2477
2478 return !memcmp(prefix, option, plen);
2479 }
2480
2481 static inline int selinux_option(char *option, int len)
2482 {
2483 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2484 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2485 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2486 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2487 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2488 }
2489
2490 static inline void take_option(char **to, char *from, int *first, int len)
2491 {
2492 if (!*first) {
2493 **to = ',';
2494 *to += 1;
2495 } else
2496 *first = 0;
2497 memcpy(*to, from, len);
2498 *to += len;
2499 }
2500
2501 static inline void take_selinux_option(char **to, char *from, int *first,
2502 int len)
2503 {
2504 int current_size = 0;
2505
2506 if (!*first) {
2507 **to = '|';
2508 *to += 1;
2509 } else
2510 *first = 0;
2511
2512 while (current_size < len) {
2513 if (*from != '"') {
2514 **to = *from;
2515 *to += 1;
2516 }
2517 from += 1;
2518 current_size += 1;
2519 }
2520 }
2521
2522 static int selinux_sb_copy_data(char *orig, char *copy)
2523 {
2524 int fnosec, fsec, rc = 0;
2525 char *in_save, *in_curr, *in_end;
2526 char *sec_curr, *nosec_save, *nosec;
2527 int open_quote = 0;
2528
2529 in_curr = orig;
2530 sec_curr = copy;
2531
2532 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2533 if (!nosec) {
2534 rc = -ENOMEM;
2535 goto out;
2536 }
2537
2538 nosec_save = nosec;
2539 fnosec = fsec = 1;
2540 in_save = in_end = orig;
2541
2542 do {
2543 if (*in_end == '"')
2544 open_quote = !open_quote;
2545 if ((*in_end == ',' && open_quote == 0) ||
2546 *in_end == '\0') {
2547 int len = in_end - in_curr;
2548
2549 if (selinux_option(in_curr, len))
2550 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2551 else
2552 take_option(&nosec, in_curr, &fnosec, len);
2553
2554 in_curr = in_end + 1;
2555 }
2556 } while (*in_end++);
2557
2558 strcpy(in_save, nosec_save);
2559 free_page((unsigned long)nosec_save);
2560 out:
2561 return rc;
2562 }
2563
2564 static int selinux_sb_remount(struct super_block *sb, void *data)
2565 {
2566 int rc, i, *flags;
2567 struct security_mnt_opts opts;
2568 char *secdata, **mount_options;
2569 struct superblock_security_struct *sbsec = sb->s_security;
2570
2571 if (!(sbsec->flags & SE_SBINITIALIZED))
2572 return 0;
2573
2574 if (!data)
2575 return 0;
2576
2577 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2578 return 0;
2579
2580 security_init_mnt_opts(&opts);
2581 secdata = alloc_secdata();
2582 if (!secdata)
2583 return -ENOMEM;
2584 rc = selinux_sb_copy_data(data, secdata);
2585 if (rc)
2586 goto out_free_secdata;
2587
2588 rc = selinux_parse_opts_str(secdata, &opts);
2589 if (rc)
2590 goto out_free_secdata;
2591
2592 mount_options = opts.mnt_opts;
2593 flags = opts.mnt_opts_flags;
2594
2595 for (i = 0; i < opts.num_mnt_opts; i++) {
2596 u32 sid;
2597 size_t len;
2598
2599 if (flags[i] == SBLABEL_MNT)
2600 continue;
2601 len = strlen(mount_options[i]);
2602 rc = security_context_to_sid(mount_options[i], len, &sid,
2603 GFP_KERNEL);
2604 if (rc) {
2605 printk(KERN_WARNING "SELinux: security_context_to_sid"
2606 "(%s) failed for (dev %s, type %s) errno=%d\n",
2607 mount_options[i], sb->s_id, sb->s_type->name, rc);
2608 goto out_free_opts;
2609 }
2610 rc = -EINVAL;
2611 switch (flags[i]) {
2612 case FSCONTEXT_MNT:
2613 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2614 goto out_bad_option;
2615 break;
2616 case CONTEXT_MNT:
2617 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2618 goto out_bad_option;
2619 break;
2620 case ROOTCONTEXT_MNT: {
2621 struct inode_security_struct *root_isec;
2622 root_isec = d_backing_inode(sb->s_root)->i_security;
2623
2624 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2625 goto out_bad_option;
2626 break;
2627 }
2628 case DEFCONTEXT_MNT:
2629 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2630 goto out_bad_option;
2631 break;
2632 default:
2633 goto out_free_opts;
2634 }
2635 }
2636
2637 rc = 0;
2638 out_free_opts:
2639 security_free_mnt_opts(&opts);
2640 out_free_secdata:
2641 free_secdata(secdata);
2642 return rc;
2643 out_bad_option:
2644 printk(KERN_WARNING "SELinux: unable to change security options "
2645 "during remount (dev %s, type=%s)\n", sb->s_id,
2646 sb->s_type->name);
2647 goto out_free_opts;
2648 }
2649
2650 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2651 {
2652 const struct cred *cred = current_cred();
2653 struct common_audit_data ad;
2654 int rc;
2655
2656 rc = superblock_doinit(sb, data);
2657 if (rc)
2658 return rc;
2659
2660 /* Allow all mounts performed by the kernel */
2661 if (flags & MS_KERNMOUNT)
2662 return 0;
2663
2664 ad.type = LSM_AUDIT_DATA_DENTRY;
2665 ad.u.dentry = sb->s_root;
2666 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2667 }
2668
2669 static int selinux_sb_statfs(struct dentry *dentry)
2670 {
2671 const struct cred *cred = current_cred();
2672 struct common_audit_data ad;
2673
2674 ad.type = LSM_AUDIT_DATA_DENTRY;
2675 ad.u.dentry = dentry->d_sb->s_root;
2676 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2677 }
2678
2679 static int selinux_mount(const char *dev_name,
2680 struct path *path,
2681 const char *type,
2682 unsigned long flags,
2683 void *data)
2684 {
2685 const struct cred *cred = current_cred();
2686
2687 if (flags & MS_REMOUNT)
2688 return superblock_has_perm(cred, path->dentry->d_sb,
2689 FILESYSTEM__REMOUNT, NULL);
2690 else
2691 return path_has_perm(cred, path, FILE__MOUNTON);
2692 }
2693
2694 static int selinux_umount(struct vfsmount *mnt, int flags)
2695 {
2696 const struct cred *cred = current_cred();
2697
2698 return superblock_has_perm(cred, mnt->mnt_sb,
2699 FILESYSTEM__UNMOUNT, NULL);
2700 }
2701
2702 /* inode security operations */
2703
2704 static int selinux_inode_alloc_security(struct inode *inode)
2705 {
2706 return inode_alloc_security(inode);
2707 }
2708
2709 static void selinux_inode_free_security(struct inode *inode)
2710 {
2711 inode_free_security(inode);
2712 }
2713
2714 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2715 struct qstr *name, void **ctx,
2716 u32 *ctxlen)
2717 {
2718 const struct cred *cred = current_cred();
2719 struct task_security_struct *tsec;
2720 struct inode_security_struct *dsec;
2721 struct superblock_security_struct *sbsec;
2722 struct inode *dir = d_backing_inode(dentry->d_parent);
2723 u32 newsid;
2724 int rc;
2725
2726 tsec = cred->security;
2727 dsec = dir->i_security;
2728 sbsec = dir->i_sb->s_security;
2729
2730 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2731 newsid = tsec->create_sid;
2732 } else {
2733 rc = security_transition_sid(tsec->sid, dsec->sid,
2734 inode_mode_to_security_class(mode),
2735 name,
2736 &newsid);
2737 if (rc) {
2738 printk(KERN_WARNING
2739 "%s: security_transition_sid failed, rc=%d\n",
2740 __func__, -rc);
2741 return rc;
2742 }
2743 }
2744
2745 return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2746 }
2747
2748 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2749 const struct qstr *qstr,
2750 const char **name,
2751 void **value, size_t *len)
2752 {
2753 const struct task_security_struct *tsec = current_security();
2754 struct inode_security_struct *dsec;
2755 struct superblock_security_struct *sbsec;
2756 u32 sid, newsid, clen;
2757 int rc;
2758 char *context;
2759
2760 dsec = dir->i_security;
2761 sbsec = dir->i_sb->s_security;
2762
2763 sid = tsec->sid;
2764 newsid = tsec->create_sid;
2765
2766 if ((sbsec->flags & SE_SBINITIALIZED) &&
2767 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2768 newsid = sbsec->mntpoint_sid;
2769 else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
2770 rc = security_transition_sid(sid, dsec->sid,
2771 inode_mode_to_security_class(inode->i_mode),
2772 qstr, &newsid);
2773 if (rc) {
2774 printk(KERN_WARNING "%s: "
2775 "security_transition_sid failed, rc=%d (dev=%s "
2776 "ino=%ld)\n",
2777 __func__,
2778 -rc, inode->i_sb->s_id, inode->i_ino);
2779 return rc;
2780 }
2781 }
2782
2783 /* Possibly defer initialization to selinux_complete_init. */
2784 if (sbsec->flags & SE_SBINITIALIZED) {
2785 struct inode_security_struct *isec = inode->i_security;
2786 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2787 isec->sid = newsid;
2788 isec->initialized = 1;
2789 }
2790
2791 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2792 return -EOPNOTSUPP;
2793
2794 if (name)
2795 *name = XATTR_SELINUX_SUFFIX;
2796
2797 if (value && len) {
2798 rc = security_sid_to_context_force(newsid, &context, &clen);
2799 if (rc)
2800 return rc;
2801 *value = context;
2802 *len = clen;
2803 }
2804
2805 return 0;
2806 }
2807
2808 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2809 {
2810 return may_create(dir, dentry, SECCLASS_FILE);
2811 }
2812
2813 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2814 {
2815 return may_link(dir, old_dentry, MAY_LINK);
2816 }
2817
2818 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2819 {
2820 return may_link(dir, dentry, MAY_UNLINK);
2821 }
2822
2823 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2824 {
2825 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2826 }
2827
2828 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2829 {
2830 return may_create(dir, dentry, SECCLASS_DIR);
2831 }
2832
2833 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2834 {
2835 return may_link(dir, dentry, MAY_RMDIR);
2836 }
2837
2838 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2839 {
2840 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2841 }
2842
2843 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2844 struct inode *new_inode, struct dentry *new_dentry)
2845 {
2846 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2847 }
2848
2849 static int selinux_inode_readlink(struct dentry *dentry)
2850 {
2851 const struct cred *cred = current_cred();
2852
2853 return dentry_has_perm(cred, dentry, FILE__READ);
2854 }
2855
2856 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2857 {
2858 const struct cred *cred = current_cred();
2859
2860 return dentry_has_perm(cred, dentry, FILE__READ);
2861 }
2862
2863 static noinline int audit_inode_permission(struct inode *inode,
2864 u32 perms, u32 audited, u32 denied,
2865 int result,
2866 unsigned flags)
2867 {
2868 struct common_audit_data ad;
2869 struct inode_security_struct *isec = inode->i_security;
2870 int rc;
2871
2872 ad.type = LSM_AUDIT_DATA_INODE;
2873 ad.u.inode = inode;
2874
2875 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2876 audited, denied, result, &ad, flags);
2877 if (rc)
2878 return rc;
2879 return 0;
2880 }
2881
2882 static int selinux_inode_permission(struct inode *inode, int mask)
2883 {
2884 const struct cred *cred = current_cred();
2885 u32 perms;
2886 bool from_access;
2887 unsigned flags = mask & MAY_NOT_BLOCK;
2888 struct inode_security_struct *isec;
2889 u32 sid;
2890 struct av_decision avd;
2891 int rc, rc2;
2892 u32 audited, denied;
2893
2894 from_access = mask & MAY_ACCESS;
2895 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2896
2897 /* No permission to check. Existence test. */
2898 if (!mask)
2899 return 0;
2900
2901 validate_creds(cred);
2902
2903 if (unlikely(IS_PRIVATE(inode)))
2904 return 0;
2905
2906 perms = file_mask_to_av(inode->i_mode, mask);
2907
2908 sid = cred_sid(cred);
2909 isec = inode->i_security;
2910
2911 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2912 audited = avc_audit_required(perms, &avd, rc,
2913 from_access ? FILE__AUDIT_ACCESS : 0,
2914 &denied);
2915 if (likely(!audited))
2916 return rc;
2917
2918 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
2919 if (rc2)
2920 return rc2;
2921 return rc;
2922 }
2923
2924 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2925 {
2926 const struct cred *cred = current_cred();
2927 unsigned int ia_valid = iattr->ia_valid;
2928 __u32 av = FILE__WRITE;
2929
2930 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2931 if (ia_valid & ATTR_FORCE) {
2932 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2933 ATTR_FORCE);
2934 if (!ia_valid)
2935 return 0;
2936 }
2937
2938 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2939 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2940 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2941
2942 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2943 av |= FILE__OPEN;
2944
2945 return dentry_has_perm(cred, dentry, av);
2946 }
2947
2948 static int selinux_inode_getattr(const struct path *path)
2949 {
2950 return path_has_perm(current_cred(), path, FILE__GETATTR);
2951 }
2952
2953 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2954 {
2955 const struct cred *cred = current_cred();
2956
2957 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2958 sizeof XATTR_SECURITY_PREFIX - 1)) {
2959 if (!strcmp(name, XATTR_NAME_CAPS)) {
2960 if (!capable(CAP_SETFCAP))
2961 return -EPERM;
2962 } else if (!capable(CAP_SYS_ADMIN)) {
2963 /* A different attribute in the security namespace.
2964 Restrict to administrator. */
2965 return -EPERM;
2966 }
2967 }
2968
2969 /* Not an attribute we recognize, so just check the
2970 ordinary setattr permission. */
2971 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2972 }
2973
2974 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2975 const void *value, size_t size, int flags)
2976 {
2977 struct inode *inode = d_backing_inode(dentry);
2978 struct inode_security_struct *isec = inode->i_security;
2979 struct superblock_security_struct *sbsec;
2980 struct common_audit_data ad;
2981 u32 newsid, sid = current_sid();
2982 int rc = 0;
2983
2984 if (strcmp(name, XATTR_NAME_SELINUX))
2985 return selinux_inode_setotherxattr(dentry, name);
2986
2987 sbsec = inode->i_sb->s_security;
2988 if (!(sbsec->flags & SBLABEL_MNT))
2989 return -EOPNOTSUPP;
2990
2991 if (!inode_owner_or_capable(inode))
2992 return -EPERM;
2993
2994 ad.type = LSM_AUDIT_DATA_DENTRY;
2995 ad.u.dentry = dentry;
2996
2997 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2998 FILE__RELABELFROM, &ad);
2999 if (rc)
3000 return rc;
3001
3002 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3003 if (rc == -EINVAL) {
3004 if (!capable(CAP_MAC_ADMIN)) {
3005 struct audit_buffer *ab;
3006 size_t audit_size;
3007 const char *str;
3008
3009 /* We strip a nul only if it is at the end, otherwise the
3010 * context contains a nul and we should audit that */
3011 if (value) {
3012 str = value;
3013 if (str[size - 1] == '\0')
3014 audit_size = size - 1;
3015 else
3016 audit_size = size;
3017 } else {
3018 str = "";
3019 audit_size = 0;
3020 }
3021 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3022 audit_log_format(ab, "op=setxattr invalid_context=");
3023 audit_log_n_untrustedstring(ab, value, audit_size);
3024 audit_log_end(ab);
3025
3026 return rc;
3027 }
3028 rc = security_context_to_sid_force(value, size, &newsid);
3029 }
3030 if (rc)
3031 return rc;
3032
3033 rc = avc_has_perm(sid, newsid, isec->sclass,
3034 FILE__RELABELTO, &ad);
3035 if (rc)
3036 return rc;
3037
3038 rc = security_validate_transition(isec->sid, newsid, sid,
3039 isec->sclass);
3040 if (rc)
3041 return rc;
3042
3043 return avc_has_perm(newsid,
3044 sbsec->sid,
3045 SECCLASS_FILESYSTEM,
3046 FILESYSTEM__ASSOCIATE,
3047 &ad);
3048 }
3049
3050 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3051 const void *value, size_t size,
3052 int flags)
3053 {
3054 struct inode *inode = d_backing_inode(dentry);
3055 struct inode_security_struct *isec = inode->i_security;
3056 u32 newsid;
3057 int rc;
3058
3059 if (strcmp(name, XATTR_NAME_SELINUX)) {
3060 /* Not an attribute we recognize, so nothing to do. */
3061 return;
3062 }
3063
3064 rc = security_context_to_sid_force(value, size, &newsid);
3065 if (rc) {
3066 printk(KERN_ERR "SELinux: unable to map context to SID"
3067 "for (%s, %lu), rc=%d\n",
3068 inode->i_sb->s_id, inode->i_ino, -rc);
3069 return;
3070 }
3071
3072 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3073 isec->sid = newsid;
3074 isec->initialized = 1;
3075
3076 return;
3077 }
3078
3079 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3080 {
3081 const struct cred *cred = current_cred();
3082
3083 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3084 }
3085
3086 static int selinux_inode_listxattr(struct dentry *dentry)
3087 {
3088 const struct cred *cred = current_cred();
3089
3090 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3091 }
3092
3093 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3094 {
3095 if (strcmp(name, XATTR_NAME_SELINUX))
3096 return selinux_inode_setotherxattr(dentry, name);
3097
3098 /* No one is allowed to remove a SELinux security label.
3099 You can change the label, but all data must be labeled. */
3100 return -EACCES;
3101 }
3102
3103 /*
3104 * Copy the inode security context value to the user.
3105 *
3106 * Permission check is handled by selinux_inode_getxattr hook.
3107 */
3108 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
3109 {
3110 u32 size;
3111 int error;
3112 char *context = NULL;
3113 struct inode_security_struct *isec = inode->i_security;
3114
3115 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3116 return -EOPNOTSUPP;
3117
3118 /*
3119 * If the caller has CAP_MAC_ADMIN, then get the raw context
3120 * value even if it is not defined by current policy; otherwise,
3121 * use the in-core value under current policy.
3122 * Use the non-auditing forms of the permission checks since
3123 * getxattr may be called by unprivileged processes commonly
3124 * and lack of permission just means that we fall back to the
3125 * in-core context value, not a denial.
3126 */
3127 error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3128 SECURITY_CAP_NOAUDIT);
3129 if (!error)
3130 error = cred_has_capability(current_cred(), CAP_MAC_ADMIN,
3131 SECURITY_CAP_NOAUDIT);
3132 if (!error)
3133 error = security_sid_to_context_force(isec->sid, &context,
3134 &size);
3135 else
3136 error = security_sid_to_context(isec->sid, &context, &size);
3137 if (error)
3138 return error;
3139 error = size;
3140 if (alloc) {
3141 *buffer = context;
3142 goto out_nofree;
3143 }
3144 kfree(context);
3145 out_nofree:
3146 return error;
3147 }
3148
3149 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3150 const void *value, size_t size, int flags)
3151 {
3152 struct inode_security_struct *isec = inode->i_security;
3153 u32 newsid;
3154 int rc;
3155
3156 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3157 return -EOPNOTSUPP;
3158
3159 if (!value || !size)
3160 return -EACCES;
3161
3162 rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL);
3163 if (rc)
3164 return rc;
3165
3166 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3167 isec->sid = newsid;
3168 isec->initialized = 1;
3169 return 0;
3170 }
3171
3172 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3173 {
3174 const int len = sizeof(XATTR_NAME_SELINUX);
3175 if (buffer && len <= buffer_size)
3176 memcpy(buffer, XATTR_NAME_SELINUX, len);
3177 return len;
3178 }
3179
3180 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3181 {
3182 struct inode_security_struct *isec = inode->i_security;
3183 *secid = isec->sid;
3184 }
3185
3186 /* file security operations */
3187
3188 static int selinux_revalidate_file_permission(struct file *file, int mask)
3189 {
3190 const struct cred *cred = current_cred();
3191 struct inode *inode = file_inode(file);
3192
3193 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3194 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3195 mask |= MAY_APPEND;
3196
3197 return file_has_perm(cred, file,
3198 file_mask_to_av(inode->i_mode, mask));
3199 }
3200
3201 static int selinux_file_permission(struct file *file, int mask)
3202 {
3203 struct inode *inode = file_inode(file);
3204 struct file_security_struct *fsec = file->f_security;
3205 struct inode_security_struct *isec = inode->i_security;
3206 u32 sid = current_sid();
3207
3208 if (!mask)
3209 /* No permission to check. Existence test. */
3210 return 0;
3211
3212 if (sid == fsec->sid && fsec->isid == isec->sid &&
3213 fsec->pseqno == avc_policy_seqno())
3214 /* No change since file_open check. */
3215 return 0;
3216
3217 return selinux_revalidate_file_permission(file, mask);
3218 }
3219
3220 static int selinux_file_alloc_security(struct file *file)
3221 {
3222 return file_alloc_security(file);
3223 }
3224
3225 static void selinux_file_free_security(struct file *file)
3226 {
3227 file_free_security(file);
3228 }
3229
3230 /*
3231 * Check whether a task has the ioctl permission and cmd
3232 * operation to an inode.
3233 */
3234 int ioctl_has_perm(const struct cred *cred, struct file *file,
3235 u32 requested, u16 cmd)
3236 {
3237 struct common_audit_data ad;
3238 struct file_security_struct *fsec = file->f_security;
3239 struct inode *inode = file_inode(file);
3240 struct inode_security_struct *isec = inode->i_security;
3241 struct lsm_ioctlop_audit ioctl;
3242 u32 ssid = cred_sid(cred);
3243 int rc;
3244 u8 driver = cmd >> 8;
3245 u8 xperm = cmd & 0xff;
3246
3247 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3248 ad.u.op = &ioctl;
3249 ad.u.op->cmd = cmd;
3250 ad.u.op->path = file->f_path;
3251
3252 if (ssid != fsec->sid) {
3253 rc = avc_has_perm(ssid, fsec->sid,
3254 SECCLASS_FD,
3255 FD__USE,
3256 &ad);
3257 if (rc)
3258 goto out;
3259 }
3260
3261 if (unlikely(IS_PRIVATE(inode)))
3262 return 0;
3263
3264 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3265 requested, driver, xperm, &ad);
3266 out:
3267 return rc;
3268 }
3269
3270 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3271 unsigned long arg)
3272 {
3273 const struct cred *cred = current_cred();
3274 int error = 0;
3275
3276 switch (cmd) {
3277 case FIONREAD:
3278 /* fall through */
3279 case FIBMAP:
3280 /* fall through */
3281 case FIGETBSZ:
3282 /* fall through */
3283 case FS_IOC_GETFLAGS:
3284 /* fall through */
3285 case FS_IOC_GETVERSION:
3286 error = file_has_perm(cred, file, FILE__GETATTR);
3287 break;
3288
3289 case FS_IOC_SETFLAGS:
3290 /* fall through */
3291 case FS_IOC_SETVERSION:
3292 error = file_has_perm(cred, file, FILE__SETATTR);
3293 break;
3294
3295 /* sys_ioctl() checks */
3296 case FIONBIO:
3297 /* fall through */
3298 case FIOASYNC:
3299 error = file_has_perm(cred, file, 0);
3300 break;
3301
3302 case KDSKBENT:
3303 case KDSKBSENT:
3304 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3305 SECURITY_CAP_AUDIT);
3306 break;
3307
3308 /* default case assumes that the command will go
3309 * to the file's ioctl() function.
3310 */
3311 default:
3312 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3313 }
3314 return error;
3315 }
3316
3317 static int default_noexec;
3318
3319 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3320 {
3321 const struct cred *cred = current_cred();
3322 int rc = 0;
3323
3324 if (default_noexec &&
3325 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3326 (!shared && (prot & PROT_WRITE)))) {
3327 /*
3328 * We are making executable an anonymous mapping or a
3329 * private file mapping that will also be writable.
3330 * This has an additional check.
3331 */
3332 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3333 if (rc)
3334 goto error;
3335 }
3336
3337 if (file) {
3338 /* read access is always possible with a mapping */
3339 u32 av = FILE__READ;
3340
3341 /* write access only matters if the mapping is shared */
3342 if (shared && (prot & PROT_WRITE))
3343 av |= FILE__WRITE;
3344
3345 if (prot & PROT_EXEC)
3346 av |= FILE__EXECUTE;
3347
3348 return file_has_perm(cred, file, av);
3349 }
3350
3351 error:
3352 return rc;
3353 }
3354
3355 static int selinux_mmap_addr(unsigned long addr)
3356 {
3357 int rc = 0;
3358
3359 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3360 u32 sid = current_sid();
3361 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3362 MEMPROTECT__MMAP_ZERO, NULL);
3363 }
3364
3365 return rc;
3366 }
3367
3368 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3369 unsigned long prot, unsigned long flags)
3370 {
3371 if (selinux_checkreqprot)
3372 prot = reqprot;
3373
3374 return file_map_prot_check(file, prot,
3375 (flags & MAP_TYPE) == MAP_SHARED);
3376 }
3377
3378 static int selinux_file_mprotect(struct vm_area_struct *vma,
3379 unsigned long reqprot,
3380 unsigned long prot)
3381 {
3382 const struct cred *cred = current_cred();
3383
3384 if (selinux_checkreqprot)
3385 prot = reqprot;
3386
3387 if (default_noexec &&
3388 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3389 int rc = 0;
3390 if (vma->vm_start >= vma->vm_mm->start_brk &&
3391 vma->vm_end <= vma->vm_mm->brk) {
3392 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3393 } else if (!vma->vm_file &&
3394 vma->vm_start <= vma->vm_mm->start_stack &&
3395 vma->vm_end >= vma->vm_mm->start_stack) {
3396 rc = current_has_perm(current, PROCESS__EXECSTACK);
3397 } else if (vma->vm_file && vma->anon_vma) {
3398 /*
3399 * We are making executable a file mapping that has
3400 * had some COW done. Since pages might have been
3401 * written, check ability to execute the possibly
3402 * modified content. This typically should only
3403 * occur for text relocations.
3404 */
3405 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3406 }
3407 if (rc)
3408 return rc;
3409 }
3410
3411 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3412 }
3413
3414 static int selinux_file_lock(struct file *file, unsigned int cmd)
3415 {
3416 const struct cred *cred = current_cred();
3417
3418 return file_has_perm(cred, file, FILE__LOCK);
3419 }
3420
3421 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3422 unsigned long arg)
3423 {
3424 const struct cred *cred = current_cred();
3425 int err = 0;
3426
3427 switch (cmd) {
3428 case F_SETFL:
3429 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3430 err = file_has_perm(cred, file, FILE__WRITE);
3431 break;
3432 }
3433 /* fall through */
3434 case F_SETOWN:
3435 case F_SETSIG:
3436 case F_GETFL:
3437 case F_GETOWN:
3438 case F_GETSIG:
3439 case F_GETOWNER_UIDS:
3440 /* Just check FD__USE permission */
3441 err = file_has_perm(cred, file, 0);
3442 break;
3443 case F_GETLK:
3444 case F_SETLK:
3445 case F_SETLKW:
3446 case F_OFD_GETLK:
3447 case F_OFD_SETLK:
3448 case F_OFD_SETLKW:
3449 #if BITS_PER_LONG == 32
3450 case F_GETLK64:
3451 case F_SETLK64:
3452 case F_SETLKW64:
3453 #endif
3454 err = file_has_perm(cred, file, FILE__LOCK);
3455 break;
3456 }
3457
3458 return err;
3459 }
3460
3461 static void selinux_file_set_fowner(struct file *file)
3462 {
3463 struct file_security_struct *fsec;
3464
3465 fsec = file->f_security;
3466 fsec->fown_sid = current_sid();
3467 }
3468
3469 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3470 struct fown_struct *fown, int signum)
3471 {
3472 struct file *file;
3473 u32 sid = task_sid(tsk);
3474 u32 perm;
3475 struct file_security_struct *fsec;
3476
3477 /* struct fown_struct is never outside the context of a struct file */
3478 file = container_of(fown, struct file, f_owner);
3479
3480 fsec = file->f_security;
3481
3482 if (!signum)
3483 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3484 else
3485 perm = signal_to_av(signum);
3486
3487 return avc_has_perm(fsec->fown_sid, sid,
3488 SECCLASS_PROCESS, perm, NULL);
3489 }
3490
3491 static int selinux_file_receive(struct file *file)
3492 {
3493 const struct cred *cred = current_cred();
3494
3495 return file_has_perm(cred, file, file_to_av(file));
3496 }
3497
3498 static int selinux_file_open(struct file *file, const struct cred *cred)
3499 {
3500 struct file_security_struct *fsec;
3501 struct inode_security_struct *isec;
3502
3503 fsec = file->f_security;
3504 isec = file_inode(file)->i_security;
3505 /*
3506 * Save inode label and policy sequence number
3507 * at open-time so that selinux_file_permission
3508 * can determine whether revalidation is necessary.
3509 * Task label is already saved in the file security
3510 * struct as its SID.
3511 */
3512 fsec->isid = isec->sid;
3513 fsec->pseqno = avc_policy_seqno();
3514 /*
3515 * Since the inode label or policy seqno may have changed
3516 * between the selinux_inode_permission check and the saving
3517 * of state above, recheck that access is still permitted.
3518 * Otherwise, access might never be revalidated against the
3519 * new inode label or new policy.
3520 * This check is not redundant - do not remove.
3521 */
3522 return file_path_has_perm(cred, file, open_file_to_av(file));
3523 }
3524
3525 /* task security operations */
3526
3527 static int selinux_task_create(unsigned long clone_flags)
3528 {
3529 return current_has_perm(current, PROCESS__FORK);
3530 }
3531
3532 /*
3533 * allocate the SELinux part of blank credentials
3534 */
3535 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3536 {
3537 struct task_security_struct *tsec;
3538
3539 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3540 if (!tsec)
3541 return -ENOMEM;
3542
3543 cred->security = tsec;
3544 return 0;
3545 }
3546
3547 /*
3548 * detach and free the LSM part of a set of credentials
3549 */
3550 static void selinux_cred_free(struct cred *cred)
3551 {
3552 struct task_security_struct *tsec = cred->security;
3553
3554 /*
3555 * cred->security == NULL if security_cred_alloc_blank() or
3556 * security_prepare_creds() returned an error.
3557 */
3558 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3559 cred->security = (void *) 0x7UL;
3560 kfree(tsec);
3561 }
3562
3563 /*
3564 * prepare a new set of credentials for modification
3565 */
3566 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3567 gfp_t gfp)
3568 {
3569 const struct task_security_struct *old_tsec;
3570 struct task_security_struct *tsec;
3571
3572 old_tsec = old->security;
3573
3574 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3575 if (!tsec)
3576 return -ENOMEM;
3577
3578 new->security = tsec;
3579 return 0;
3580 }
3581
3582 /*
3583 * transfer the SELinux data to a blank set of creds
3584 */
3585 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3586 {
3587 const struct task_security_struct *old_tsec = old->security;
3588 struct task_security_struct *tsec = new->security;
3589
3590 *tsec = *old_tsec;
3591 }
3592
3593 /*
3594 * set the security data for a kernel service
3595 * - all the creation contexts are set to unlabelled
3596 */
3597 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3598 {
3599 struct task_security_struct *tsec = new->security;
3600 u32 sid = current_sid();
3601 int ret;
3602
3603 ret = avc_has_perm(sid, secid,
3604 SECCLASS_KERNEL_SERVICE,
3605 KERNEL_SERVICE__USE_AS_OVERRIDE,
3606 NULL);
3607 if (ret == 0) {
3608 tsec->sid = secid;
3609 tsec->create_sid = 0;
3610 tsec->keycreate_sid = 0;
3611 tsec->sockcreate_sid = 0;
3612 }
3613 return ret;
3614 }
3615
3616 /*
3617 * set the file creation context in a security record to the same as the
3618 * objective context of the specified inode
3619 */
3620 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3621 {
3622 struct inode_security_struct *isec = inode->i_security;
3623 struct task_security_struct *tsec = new->security;
3624 u32 sid = current_sid();
3625 int ret;
3626
3627 ret = avc_has_perm(sid, isec->sid,
3628 SECCLASS_KERNEL_SERVICE,
3629 KERNEL_SERVICE__CREATE_FILES_AS,
3630 NULL);
3631
3632 if (ret == 0)
3633 tsec->create_sid = isec->sid;
3634 return ret;
3635 }
3636
3637 static int selinux_kernel_module_request(char *kmod_name)
3638 {
3639 u32 sid;
3640 struct common_audit_data ad;
3641
3642 sid = task_sid(current);
3643
3644 ad.type = LSM_AUDIT_DATA_KMOD;
3645 ad.u.kmod_name = kmod_name;
3646
3647 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3648 SYSTEM__MODULE_REQUEST, &ad);
3649 }
3650
3651 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3652 {
3653 return current_has_perm(p, PROCESS__SETPGID);
3654 }
3655
3656 static int selinux_task_getpgid(struct task_struct *p)
3657 {
3658 return current_has_perm(p, PROCESS__GETPGID);
3659 }
3660
3661 static int selinux_task_getsid(struct task_struct *p)
3662 {
3663 return current_has_perm(p, PROCESS__GETSESSION);
3664 }
3665
3666 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3667 {
3668 *secid = task_sid(p);
3669 }
3670
3671 static int selinux_task_setnice(struct task_struct *p, int nice)
3672 {
3673 return current_has_perm(p, PROCESS__SETSCHED);
3674 }
3675
3676 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3677 {
3678 return current_has_perm(p, PROCESS__SETSCHED);
3679 }
3680
3681 static int selinux_task_getioprio(struct task_struct *p)
3682 {
3683 return current_has_perm(p, PROCESS__GETSCHED);
3684 }
3685
3686 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3687 struct rlimit *new_rlim)
3688 {
3689 struct rlimit *old_rlim = p->signal->rlim + resource;
3690
3691 /* Control the ability to change the hard limit (whether
3692 lowering or raising it), so that the hard limit can
3693 later be used as a safe reset point for the soft limit
3694 upon context transitions. See selinux_bprm_committing_creds. */
3695 if (old_rlim->rlim_max != new_rlim->rlim_max)
3696 return current_has_perm(p, PROCESS__SETRLIMIT);
3697
3698 return 0;
3699 }
3700
3701 static int selinux_task_setscheduler(struct task_struct *p)
3702 {
3703 return current_has_perm(p, PROCESS__SETSCHED);
3704 }
3705
3706 static int selinux_task_getscheduler(struct task_struct *p)
3707 {
3708 return current_has_perm(p, PROCESS__GETSCHED);
3709 }
3710
3711 static int selinux_task_movememory(struct task_struct *p)
3712 {
3713 return current_has_perm(p, PROCESS__SETSCHED);
3714 }
3715
3716 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3717 int sig, u32 secid)
3718 {
3719 u32 perm;
3720 int rc;
3721
3722 if (!sig)
3723 perm = PROCESS__SIGNULL; /* null signal; existence test */
3724 else
3725 perm = signal_to_av(sig);
3726 if (secid)
3727 rc = avc_has_perm(secid, task_sid(p),
3728 SECCLASS_PROCESS, perm, NULL);
3729 else
3730 rc = current_has_perm(p, perm);
3731 return rc;
3732 }
3733
3734 static int selinux_task_wait(struct task_struct *p)
3735 {
3736 return task_has_perm(p, current, PROCESS__SIGCHLD);
3737 }
3738
3739 static void selinux_task_to_inode(struct task_struct *p,
3740 struct inode *inode)
3741 {
3742 struct inode_security_struct *isec = inode->i_security;
3743 u32 sid = task_sid(p);
3744
3745 isec->sid = sid;
3746 isec->initialized = 1;
3747 }
3748
3749 /* Returns error only if unable to parse addresses */
3750 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3751 struct common_audit_data *ad, u8 *proto)
3752 {
3753 int offset, ihlen, ret = -EINVAL;
3754 struct iphdr _iph, *ih;
3755
3756 offset = skb_network_offset(skb);
3757 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3758 if (ih == NULL)
3759 goto out;
3760
3761 ihlen = ih->ihl * 4;
3762 if (ihlen < sizeof(_iph))
3763 goto out;
3764
3765 ad->u.net->v4info.saddr = ih->saddr;
3766 ad->u.net->v4info.daddr = ih->daddr;
3767 ret = 0;
3768
3769 if (proto)
3770 *proto = ih->protocol;
3771
3772 switch (ih->protocol) {
3773 case IPPROTO_TCP: {
3774 struct tcphdr _tcph, *th;
3775
3776 if (ntohs(ih->frag_off) & IP_OFFSET)
3777 break;
3778
3779 offset += ihlen;
3780 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3781 if (th == NULL)
3782 break;
3783
3784 ad->u.net->sport = th->source;
3785 ad->u.net->dport = th->dest;
3786 break;
3787 }
3788
3789 case IPPROTO_UDP: {
3790 struct udphdr _udph, *uh;
3791
3792 if (ntohs(ih->frag_off) & IP_OFFSET)
3793 break;
3794
3795 offset += ihlen;
3796 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3797 if (uh == NULL)
3798 break;
3799
3800 ad->u.net->sport = uh->source;
3801 ad->u.net->dport = uh->dest;
3802 break;
3803 }
3804
3805 case IPPROTO_DCCP: {
3806 struct dccp_hdr _dccph, *dh;
3807
3808 if (ntohs(ih->frag_off) & IP_OFFSET)
3809 break;
3810
3811 offset += ihlen;
3812 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3813 if (dh == NULL)
3814 break;
3815
3816 ad->u.net->sport = dh->dccph_sport;
3817 ad->u.net->dport = dh->dccph_dport;
3818 break;
3819 }
3820
3821 default:
3822 break;
3823 }
3824 out:
3825 return ret;
3826 }
3827
3828 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3829
3830 /* Returns error only if unable to parse addresses */
3831 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3832 struct common_audit_data *ad, u8 *proto)
3833 {
3834 u8 nexthdr;
3835 int ret = -EINVAL, offset;
3836 struct ipv6hdr _ipv6h, *ip6;
3837 __be16 frag_off;
3838
3839 offset = skb_network_offset(skb);
3840 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3841 if (ip6 == NULL)
3842 goto out;
3843
3844 ad->u.net->v6info.saddr = ip6->saddr;
3845 ad->u.net->v6info.daddr = ip6->daddr;
3846 ret = 0;
3847
3848 nexthdr = ip6->nexthdr;
3849 offset += sizeof(_ipv6h);
3850 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3851 if (offset < 0)
3852 goto out;
3853
3854 if (proto)
3855 *proto = nexthdr;
3856
3857 switch (nexthdr) {
3858 case IPPROTO_TCP: {
3859 struct tcphdr _tcph, *th;
3860
3861 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3862 if (th == NULL)
3863 break;
3864
3865 ad->u.net->sport = th->source;
3866 ad->u.net->dport = th->dest;
3867 break;
3868 }
3869
3870 case IPPROTO_UDP: {
3871 struct udphdr _udph, *uh;
3872
3873 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3874 if (uh == NULL)
3875 break;
3876
3877 ad->u.net->sport = uh->source;
3878 ad->u.net->dport = uh->dest;
3879 break;
3880 }
3881
3882 case IPPROTO_DCCP: {
3883 struct dccp_hdr _dccph, *dh;
3884
3885 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3886 if (dh == NULL)
3887 break;
3888
3889 ad->u.net->sport = dh->dccph_sport;
3890 ad->u.net->dport = dh->dccph_dport;
3891 break;
3892 }
3893
3894 /* includes fragments */
3895 default:
3896 break;
3897 }
3898 out:
3899 return ret;
3900 }
3901
3902 #endif /* IPV6 */
3903
3904 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3905 char **_addrp, int src, u8 *proto)
3906 {
3907 char *addrp;
3908 int ret;
3909
3910 switch (ad->u.net->family) {
3911 case PF_INET:
3912 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3913 if (ret)
3914 goto parse_error;
3915 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3916 &ad->u.net->v4info.daddr);
3917 goto okay;
3918
3919 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3920 case PF_INET6:
3921 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3922 if (ret)
3923 goto parse_error;
3924 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3925 &ad->u.net->v6info.daddr);
3926 goto okay;
3927 #endif /* IPV6 */
3928 default:
3929 addrp = NULL;
3930 goto okay;
3931 }
3932
3933 parse_error:
3934 printk(KERN_WARNING
3935 "SELinux: failure in selinux_parse_skb(),"
3936 " unable to parse packet\n");
3937 return ret;
3938
3939 okay:
3940 if (_addrp)
3941 *_addrp = addrp;
3942 return 0;
3943 }
3944
3945 /**
3946 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3947 * @skb: the packet
3948 * @family: protocol family
3949 * @sid: the packet's peer label SID
3950 *
3951 * Description:
3952 * Check the various different forms of network peer labeling and determine
3953 * the peer label/SID for the packet; most of the magic actually occurs in
3954 * the security server function security_net_peersid_cmp(). The function
3955 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3956 * or -EACCES if @sid is invalid due to inconsistencies with the different
3957 * peer labels.
3958 *
3959 */
3960 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3961 {
3962 int err;
3963 u32 xfrm_sid;
3964 u32 nlbl_sid;
3965 u32 nlbl_type;
3966
3967 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
3968 if (unlikely(err))
3969 return -EACCES;
3970 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3971 if (unlikely(err))
3972 return -EACCES;
3973
3974 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3975 if (unlikely(err)) {
3976 printk(KERN_WARNING
3977 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3978 " unable to determine packet's peer label\n");
3979 return -EACCES;
3980 }
3981
3982 return 0;
3983 }
3984
3985 /**
3986 * selinux_conn_sid - Determine the child socket label for a connection
3987 * @sk_sid: the parent socket's SID
3988 * @skb_sid: the packet's SID
3989 * @conn_sid: the resulting connection SID
3990 *
3991 * If @skb_sid is valid then the user:role:type information from @sk_sid is
3992 * combined with the MLS information from @skb_sid in order to create
3993 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
3994 * of @sk_sid. Returns zero on success, negative values on failure.
3995 *
3996 */
3997 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
3998 {
3999 int err = 0;
4000
4001 if (skb_sid != SECSID_NULL)
4002 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
4003 else
4004 *conn_sid = sk_sid;
4005
4006 return err;
4007 }
4008
4009 /* socket security operations */
4010
4011 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4012 u16 secclass, u32 *socksid)
4013 {
4014 if (tsec->sockcreate_sid > SECSID_NULL) {
4015 *socksid = tsec->sockcreate_sid;
4016 return 0;
4017 }
4018
4019 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4020 socksid);
4021 }
4022
4023 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4024 {
4025 struct sk_security_struct *sksec = sk->sk_security;
4026 struct common_audit_data ad;
4027 struct lsm_network_audit net = {0,};
4028 u32 tsid = task_sid(task);
4029
4030 if (sksec->sid == SECINITSID_KERNEL)
4031 return 0;
4032
4033 ad.type = LSM_AUDIT_DATA_NET;
4034 ad.u.net = &net;
4035 ad.u.net->sk = sk;
4036
4037 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
4038 }
4039
4040 static int selinux_socket_create(int family, int type,
4041 int protocol, int kern)
4042 {
4043 const struct task_security_struct *tsec = current_security();
4044 u32 newsid;
4045 u16 secclass;
4046 int rc;
4047
4048 if (kern)
4049 return 0;
4050
4051 secclass = socket_type_to_security_class(family, type, protocol);
4052 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4053 if (rc)
4054 return rc;
4055
4056 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4057 }
4058
4059 static int selinux_socket_post_create(struct socket *sock, int family,
4060 int type, int protocol, int kern)
4061 {
4062 const struct task_security_struct *tsec = current_security();
4063 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4064 struct sk_security_struct *sksec;
4065 int err = 0;
4066
4067 isec->sclass = socket_type_to_security_class(family, type, protocol);
4068
4069 if (kern)
4070 isec->sid = SECINITSID_KERNEL;
4071 else {
4072 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
4073 if (err)
4074 return err;
4075 }
4076
4077 isec->initialized = 1;
4078
4079 if (sock->sk) {
4080 sksec = sock->sk->sk_security;
4081 sksec->sid = isec->sid;
4082 sksec->sclass = isec->sclass;
4083 err = selinux_netlbl_socket_post_create(sock->sk, family);
4084 }
4085
4086 return err;
4087 }
4088
4089 /* Range of port numbers used to automatically bind.
4090 Need to determine whether we should perform a name_bind
4091 permission check between the socket and the port number. */
4092
4093 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4094 {
4095 struct sock *sk = sock->sk;
4096 u16 family;
4097 int err;
4098
4099 err = sock_has_perm(current, sk, SOCKET__BIND);
4100 if (err)
4101 goto out;
4102
4103 /*
4104 * If PF_INET or PF_INET6, check name_bind permission for the port.
4105 * Multiple address binding for SCTP is not supported yet: we just
4106 * check the first address now.
4107 */
4108 family = sk->sk_family;
4109 if (family == PF_INET || family == PF_INET6) {
4110 char *addrp;
4111 struct sk_security_struct *sksec = sk->sk_security;
4112 struct common_audit_data ad;
4113 struct lsm_network_audit net = {0,};
4114 struct sockaddr_in *addr4 = NULL;
4115 struct sockaddr_in6 *addr6 = NULL;
4116 unsigned short snum;
4117 u32 sid, node_perm;
4118
4119 if (family == PF_INET) {
4120 addr4 = (struct sockaddr_in *)address;
4121 snum = ntohs(addr4->sin_port);
4122 addrp = (char *)&addr4->sin_addr.s_addr;
4123 } else {
4124 addr6 = (struct sockaddr_in6 *)address;
4125 snum = ntohs(addr6->sin6_port);
4126 addrp = (char *)&addr6->sin6_addr.s6_addr;
4127 }
4128
4129 if (snum) {
4130 int low, high;
4131
4132 inet_get_local_port_range(sock_net(sk), &low, &high);
4133
4134 if (snum < max(PROT_SOCK, low) || snum > high) {
4135 err = sel_netport_sid(sk->sk_protocol,
4136 snum, &sid);
4137 if (err)
4138 goto out;
4139 ad.type = LSM_AUDIT_DATA_NET;
4140 ad.u.net = &net;
4141 ad.u.net->sport = htons(snum);
4142 ad.u.net->family = family;
4143 err = avc_has_perm(sksec->sid, sid,
4144 sksec->sclass,
4145 SOCKET__NAME_BIND, &ad);
4146 if (err)
4147 goto out;
4148 }
4149 }
4150
4151 switch (sksec->sclass) {
4152 case SECCLASS_TCP_SOCKET:
4153 node_perm = TCP_SOCKET__NODE_BIND;
4154 break;
4155
4156 case SECCLASS_UDP_SOCKET:
4157 node_perm = UDP_SOCKET__NODE_BIND;
4158 break;
4159
4160 case SECCLASS_DCCP_SOCKET:
4161 node_perm = DCCP_SOCKET__NODE_BIND;
4162 break;
4163
4164 default:
4165 node_perm = RAWIP_SOCKET__NODE_BIND;
4166 break;
4167 }
4168
4169 err = sel_netnode_sid(addrp, family, &sid);
4170 if (err)
4171 goto out;
4172
4173 ad.type = LSM_AUDIT_DATA_NET;
4174 ad.u.net = &net;
4175 ad.u.net->sport = htons(snum);
4176 ad.u.net->family = family;
4177
4178 if (family == PF_INET)
4179 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4180 else
4181 ad.u.net->v6info.saddr = addr6->sin6_addr;
4182
4183 err = avc_has_perm(sksec->sid, sid,
4184 sksec->sclass, node_perm, &ad);
4185 if (err)
4186 goto out;
4187 }
4188 out:
4189 return err;
4190 }
4191
4192 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4193 {
4194 struct sock *sk = sock->sk;
4195 struct sk_security_struct *sksec = sk->sk_security;
4196 int err;
4197
4198 err = sock_has_perm(current, sk, SOCKET__CONNECT);
4199 if (err)
4200 return err;
4201
4202 /*
4203 * If a TCP or DCCP socket, check name_connect permission for the port.
4204 */
4205 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4206 sksec->sclass == SECCLASS_DCCP_SOCKET) {
4207 struct common_audit_data ad;
4208 struct lsm_network_audit net = {0,};
4209 struct sockaddr_in *addr4 = NULL;
4210 struct sockaddr_in6 *addr6 = NULL;
4211 unsigned short snum;
4212 u32 sid, perm;
4213
4214 if (sk->sk_family == PF_INET) {
4215 addr4 = (struct sockaddr_in *)address;
4216 if (addrlen < sizeof(struct sockaddr_in))
4217 return -EINVAL;
4218 snum = ntohs(addr4->sin_port);
4219 } else {
4220 addr6 = (struct sockaddr_in6 *)address;
4221 if (addrlen < SIN6_LEN_RFC2133)
4222 return -EINVAL;
4223 snum = ntohs(addr6->sin6_port);
4224 }
4225
4226 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4227 if (err)
4228 goto out;
4229
4230 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4231 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4232
4233 ad.type = LSM_AUDIT_DATA_NET;
4234 ad.u.net = &net;
4235 ad.u.net->dport = htons(snum);
4236 ad.u.net->family = sk->sk_family;
4237 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4238 if (err)
4239 goto out;
4240 }
4241
4242 err = selinux_netlbl_socket_connect(sk, address);
4243
4244 out:
4245 return err;
4246 }
4247
4248 static int selinux_socket_listen(struct socket *sock, int backlog)
4249 {
4250 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4251 }
4252
4253 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4254 {
4255 int err;
4256 struct inode_security_struct *isec;
4257 struct inode_security_struct *newisec;
4258
4259 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4260 if (err)
4261 return err;
4262
4263 newisec = SOCK_INODE(newsock)->i_security;
4264
4265 isec = SOCK_INODE(sock)->i_security;
4266 newisec->sclass = isec->sclass;
4267 newisec->sid = isec->sid;
4268 newisec->initialized = 1;
4269
4270 return 0;
4271 }
4272
4273 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4274 int size)
4275 {
4276 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4277 }
4278
4279 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4280 int size, int flags)
4281 {
4282 return sock_has_perm(current, sock->sk, SOCKET__READ);
4283 }
4284
4285 static int selinux_socket_getsockname(struct socket *sock)
4286 {
4287 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4288 }
4289
4290 static int selinux_socket_getpeername(struct socket *sock)
4291 {
4292 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4293 }
4294
4295 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4296 {
4297 int err;
4298
4299 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4300 if (err)
4301 return err;
4302
4303 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4304 }
4305
4306 static int selinux_socket_getsockopt(struct socket *sock, int level,
4307 int optname)
4308 {
4309 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4310 }
4311
4312 static int selinux_socket_shutdown(struct socket *sock, int how)
4313 {
4314 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4315 }
4316
4317 static int selinux_socket_unix_stream_connect(struct sock *sock,
4318 struct sock *other,
4319 struct sock *newsk)
4320 {
4321 struct sk_security_struct *sksec_sock = sock->sk_security;
4322 struct sk_security_struct *sksec_other = other->sk_security;
4323 struct sk_security_struct *sksec_new = newsk->sk_security;
4324 struct common_audit_data ad;
4325 struct lsm_network_audit net = {0,};
4326 int err;
4327
4328 ad.type = LSM_AUDIT_DATA_NET;
4329 ad.u.net = &net;
4330 ad.u.net->sk = other;
4331
4332 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4333 sksec_other->sclass,
4334 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4335 if (err)
4336 return err;
4337
4338 /* server child socket */
4339 sksec_new->peer_sid = sksec_sock->sid;
4340 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4341 &sksec_new->sid);
4342 if (err)
4343 return err;
4344
4345 /* connecting socket */
4346 sksec_sock->peer_sid = sksec_new->sid;
4347
4348 return 0;
4349 }
4350
4351 static int selinux_socket_unix_may_send(struct socket *sock,
4352 struct socket *other)
4353 {
4354 struct sk_security_struct *ssec = sock->sk->sk_security;
4355 struct sk_security_struct *osec = other->sk->sk_security;
4356 struct common_audit_data ad;
4357 struct lsm_network_audit net = {0,};
4358
4359 ad.type = LSM_AUDIT_DATA_NET;
4360 ad.u.net = &net;
4361 ad.u.net->sk = other->sk;
4362
4363 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4364 &ad);
4365 }
4366
4367 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4368 char *addrp, u16 family, u32 peer_sid,
4369 struct common_audit_data *ad)
4370 {
4371 int err;
4372 u32 if_sid;
4373 u32 node_sid;
4374
4375 err = sel_netif_sid(ns, ifindex, &if_sid);
4376 if (err)
4377 return err;
4378 err = avc_has_perm(peer_sid, if_sid,
4379 SECCLASS_NETIF, NETIF__INGRESS, ad);
4380 if (err)
4381 return err;
4382
4383 err = sel_netnode_sid(addrp, family, &node_sid);
4384 if (err)
4385 return err;
4386 return avc_has_perm(peer_sid, node_sid,
4387 SECCLASS_NODE, NODE__RECVFROM, ad);
4388 }
4389
4390 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4391 u16 family)
4392 {
4393 int err = 0;
4394 struct sk_security_struct *sksec = sk->sk_security;
4395 u32 sk_sid = sksec->sid;
4396 struct common_audit_data ad;
4397 struct lsm_network_audit net = {0,};
4398 char *addrp;
4399
4400 ad.type = LSM_AUDIT_DATA_NET;
4401 ad.u.net = &net;
4402 ad.u.net->netif = skb->skb_iif;
4403 ad.u.net->family = family;
4404 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4405 if (err)
4406 return err;
4407
4408 if (selinux_secmark_enabled()) {
4409 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4410 PACKET__RECV, &ad);
4411 if (err)
4412 return err;
4413 }
4414
4415 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4416 if (err)
4417 return err;
4418 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4419
4420 return err;
4421 }
4422
4423 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4424 {
4425 int err;
4426 struct sk_security_struct *sksec = sk->sk_security;
4427 u16 family = sk->sk_family;
4428 u32 sk_sid = sksec->sid;
4429 struct common_audit_data ad;
4430 struct lsm_network_audit net = {0,};
4431 char *addrp;
4432 u8 secmark_active;
4433 u8 peerlbl_active;
4434
4435 if (family != PF_INET && family != PF_INET6)
4436 return 0;
4437
4438 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4439 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4440 family = PF_INET;
4441
4442 /* If any sort of compatibility mode is enabled then handoff processing
4443 * to the selinux_sock_rcv_skb_compat() function to deal with the
4444 * special handling. We do this in an attempt to keep this function
4445 * as fast and as clean as possible. */
4446 if (!selinux_policycap_netpeer)
4447 return selinux_sock_rcv_skb_compat(sk, skb, family);
4448
4449 secmark_active = selinux_secmark_enabled();
4450 peerlbl_active = selinux_peerlbl_enabled();
4451 if (!secmark_active && !peerlbl_active)
4452 return 0;
4453
4454 ad.type = LSM_AUDIT_DATA_NET;
4455 ad.u.net = &net;
4456 ad.u.net->netif = skb->skb_iif;
4457 ad.u.net->family = family;
4458 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4459 if (err)
4460 return err;
4461
4462 if (peerlbl_active) {
4463 u32 peer_sid;
4464
4465 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4466 if (err)
4467 return err;
4468 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4469 addrp, family, peer_sid, &ad);
4470 if (err) {
4471 selinux_netlbl_err(skb, err, 0);
4472 return err;
4473 }
4474 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4475 PEER__RECV, &ad);
4476 if (err) {
4477 selinux_netlbl_err(skb, err, 0);
4478 return err;
4479 }
4480 }
4481
4482 if (secmark_active) {
4483 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4484 PACKET__RECV, &ad);
4485 if (err)
4486 return err;
4487 }
4488
4489 return err;
4490 }
4491
4492 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4493 int __user *optlen, unsigned len)
4494 {
4495 int err = 0;
4496 char *scontext;
4497 u32 scontext_len;
4498 struct sk_security_struct *sksec = sock->sk->sk_security;
4499 u32 peer_sid = SECSID_NULL;
4500
4501 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4502 sksec->sclass == SECCLASS_TCP_SOCKET)
4503 peer_sid = sksec->peer_sid;
4504 if (peer_sid == SECSID_NULL)
4505 return -ENOPROTOOPT;
4506
4507 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4508 if (err)
4509 return err;
4510
4511 if (scontext_len > len) {
4512 err = -ERANGE;
4513 goto out_len;
4514 }
4515
4516 if (copy_to_user(optval, scontext, scontext_len))
4517 err = -EFAULT;
4518
4519 out_len:
4520 if (put_user(scontext_len, optlen))
4521 err = -EFAULT;
4522 kfree(scontext);
4523 return err;
4524 }
4525
4526 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4527 {
4528 u32 peer_secid = SECSID_NULL;
4529 u16 family;
4530
4531 if (skb && skb->protocol == htons(ETH_P_IP))
4532 family = PF_INET;
4533 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4534 family = PF_INET6;
4535 else if (sock)
4536 family = sock->sk->sk_family;
4537 else
4538 goto out;
4539
4540 if (sock && family == PF_UNIX)
4541 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4542 else if (skb)
4543 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4544
4545 out:
4546 *secid = peer_secid;
4547 if (peer_secid == SECSID_NULL)
4548 return -EINVAL;
4549 return 0;
4550 }
4551
4552 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4553 {
4554 struct sk_security_struct *sksec;
4555
4556 sksec = kzalloc(sizeof(*sksec), priority);
4557 if (!sksec)
4558 return -ENOMEM;
4559
4560 sksec->peer_sid = SECINITSID_UNLABELED;
4561 sksec->sid = SECINITSID_UNLABELED;
4562 sksec->sclass = SECCLASS_SOCKET;
4563 selinux_netlbl_sk_security_reset(sksec);
4564 sk->sk_security = sksec;
4565
4566 return 0;
4567 }
4568
4569 static void selinux_sk_free_security(struct sock *sk)
4570 {
4571 struct sk_security_struct *sksec = sk->sk_security;
4572
4573 sk->sk_security = NULL;
4574 selinux_netlbl_sk_security_free(sksec);
4575 kfree(sksec);
4576 }
4577
4578 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4579 {
4580 struct sk_security_struct *sksec = sk->sk_security;
4581 struct sk_security_struct *newsksec = newsk->sk_security;
4582
4583 newsksec->sid = sksec->sid;
4584 newsksec->peer_sid = sksec->peer_sid;
4585 newsksec->sclass = sksec->sclass;
4586
4587 selinux_netlbl_sk_security_reset(newsksec);
4588 }
4589
4590 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4591 {
4592 if (!sk)
4593 *secid = SECINITSID_ANY_SOCKET;
4594 else {
4595 struct sk_security_struct *sksec = sk->sk_security;
4596
4597 *secid = sksec->sid;
4598 }
4599 }
4600
4601 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4602 {
4603 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4604 struct sk_security_struct *sksec = sk->sk_security;
4605
4606 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4607 sk->sk_family == PF_UNIX)
4608 isec->sid = sksec->sid;
4609 sksec->sclass = isec->sclass;
4610 }
4611
4612 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4613 struct request_sock *req)
4614 {
4615 struct sk_security_struct *sksec = sk->sk_security;
4616 int err;
4617 u16 family = req->rsk_ops->family;
4618 u32 connsid;
4619 u32 peersid;
4620
4621 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4622 if (err)
4623 return err;
4624 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4625 if (err)
4626 return err;
4627 req->secid = connsid;
4628 req->peer_secid = peersid;
4629
4630 return selinux_netlbl_inet_conn_request(req, family);
4631 }
4632
4633 static void selinux_inet_csk_clone(struct sock *newsk,
4634 const struct request_sock *req)
4635 {
4636 struct sk_security_struct *newsksec = newsk->sk_security;
4637
4638 newsksec->sid = req->secid;
4639 newsksec->peer_sid = req->peer_secid;
4640 /* NOTE: Ideally, we should also get the isec->sid for the
4641 new socket in sync, but we don't have the isec available yet.
4642 So we will wait until sock_graft to do it, by which
4643 time it will have been created and available. */
4644
4645 /* We don't need to take any sort of lock here as we are the only
4646 * thread with access to newsksec */
4647 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4648 }
4649
4650 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4651 {
4652 u16 family = sk->sk_family;
4653 struct sk_security_struct *sksec = sk->sk_security;
4654
4655 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4656 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4657 family = PF_INET;
4658
4659 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4660 }
4661
4662 static int selinux_secmark_relabel_packet(u32 sid)
4663 {
4664 const struct task_security_struct *__tsec;
4665 u32 tsid;
4666
4667 __tsec = current_security();
4668 tsid = __tsec->sid;
4669
4670 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4671 }
4672
4673 static void selinux_secmark_refcount_inc(void)
4674 {
4675 atomic_inc(&selinux_secmark_refcount);
4676 }
4677
4678 static void selinux_secmark_refcount_dec(void)
4679 {
4680 atomic_dec(&selinux_secmark_refcount);
4681 }
4682
4683 static void selinux_req_classify_flow(const struct request_sock *req,
4684 struct flowi *fl)
4685 {
4686 fl->flowi_secid = req->secid;
4687 }
4688
4689 static int selinux_tun_dev_alloc_security(void **security)
4690 {
4691 struct tun_security_struct *tunsec;
4692
4693 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4694 if (!tunsec)
4695 return -ENOMEM;
4696 tunsec->sid = current_sid();
4697
4698 *security = tunsec;
4699 return 0;
4700 }
4701
4702 static void selinux_tun_dev_free_security(void *security)
4703 {
4704 kfree(security);
4705 }
4706
4707 static int selinux_tun_dev_create(void)
4708 {
4709 u32 sid = current_sid();
4710
4711 /* we aren't taking into account the "sockcreate" SID since the socket
4712 * that is being created here is not a socket in the traditional sense,
4713 * instead it is a private sock, accessible only to the kernel, and
4714 * representing a wide range of network traffic spanning multiple
4715 * connections unlike traditional sockets - check the TUN driver to
4716 * get a better understanding of why this socket is special */
4717
4718 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4719 NULL);
4720 }
4721
4722 static int selinux_tun_dev_attach_queue(void *security)
4723 {
4724 struct tun_security_struct *tunsec = security;
4725
4726 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4727 TUN_SOCKET__ATTACH_QUEUE, NULL);
4728 }
4729
4730 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4731 {
4732 struct tun_security_struct *tunsec = security;
4733 struct sk_security_struct *sksec = sk->sk_security;
4734
4735 /* we don't currently perform any NetLabel based labeling here and it
4736 * isn't clear that we would want to do so anyway; while we could apply
4737 * labeling without the support of the TUN user the resulting labeled
4738 * traffic from the other end of the connection would almost certainly
4739 * cause confusion to the TUN user that had no idea network labeling
4740 * protocols were being used */
4741
4742 sksec->sid = tunsec->sid;
4743 sksec->sclass = SECCLASS_TUN_SOCKET;
4744
4745 return 0;
4746 }
4747
4748 static int selinux_tun_dev_open(void *security)
4749 {
4750 struct tun_security_struct *tunsec = security;
4751 u32 sid = current_sid();
4752 int err;
4753
4754 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4755 TUN_SOCKET__RELABELFROM, NULL);
4756 if (err)
4757 return err;
4758 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4759 TUN_SOCKET__RELABELTO, NULL);
4760 if (err)
4761 return err;
4762 tunsec->sid = sid;
4763
4764 return 0;
4765 }
4766
4767 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4768 {
4769 int err = 0;
4770 u32 perm;
4771 struct nlmsghdr *nlh;
4772 struct sk_security_struct *sksec = sk->sk_security;
4773
4774 if (skb->len < NLMSG_HDRLEN) {
4775 err = -EINVAL;
4776 goto out;
4777 }
4778 nlh = nlmsg_hdr(skb);
4779
4780 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4781 if (err) {
4782 if (err == -EINVAL) {
4783 printk(KERN_WARNING
4784 "SELinux: unrecognized netlink message:"
4785 " protocol=%hu nlmsg_type=%hu sclass=%s\n",
4786 sk->sk_protocol, nlh->nlmsg_type,
4787 secclass_map[sksec->sclass - 1].name);
4788 if (!selinux_enforcing || security_get_allow_unknown())
4789 err = 0;
4790 }
4791
4792 /* Ignore */
4793 if (err == -ENOENT)
4794 err = 0;
4795 goto out;
4796 }
4797
4798 err = sock_has_perm(current, sk, perm);
4799 out:
4800 return err;
4801 }
4802
4803 #ifdef CONFIG_NETFILTER
4804
4805 static unsigned int selinux_ip_forward(struct sk_buff *skb,
4806 const struct net_device *indev,
4807 u16 family)
4808 {
4809 int err;
4810 char *addrp;
4811 u32 peer_sid;
4812 struct common_audit_data ad;
4813 struct lsm_network_audit net = {0,};
4814 u8 secmark_active;
4815 u8 netlbl_active;
4816 u8 peerlbl_active;
4817
4818 if (!selinux_policycap_netpeer)
4819 return NF_ACCEPT;
4820
4821 secmark_active = selinux_secmark_enabled();
4822 netlbl_active = netlbl_enabled();
4823 peerlbl_active = selinux_peerlbl_enabled();
4824 if (!secmark_active && !peerlbl_active)
4825 return NF_ACCEPT;
4826
4827 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4828 return NF_DROP;
4829
4830 ad.type = LSM_AUDIT_DATA_NET;
4831 ad.u.net = &net;
4832 ad.u.net->netif = indev->ifindex;
4833 ad.u.net->family = family;
4834 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4835 return NF_DROP;
4836
4837 if (peerlbl_active) {
4838 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
4839 addrp, family, peer_sid, &ad);
4840 if (err) {
4841 selinux_netlbl_err(skb, err, 1);
4842 return NF_DROP;
4843 }
4844 }
4845
4846 if (secmark_active)
4847 if (avc_has_perm(peer_sid, skb->secmark,
4848 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4849 return NF_DROP;
4850
4851 if (netlbl_active)
4852 /* we do this in the FORWARD path and not the POST_ROUTING
4853 * path because we want to make sure we apply the necessary
4854 * labeling before IPsec is applied so we can leverage AH
4855 * protection */
4856 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4857 return NF_DROP;
4858
4859 return NF_ACCEPT;
4860 }
4861
4862 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops,
4863 struct sk_buff *skb,
4864 const struct nf_hook_state *state)
4865 {
4866 return selinux_ip_forward(skb, state->in, PF_INET);
4867 }
4868
4869 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4870 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops,
4871 struct sk_buff *skb,
4872 const struct nf_hook_state *state)
4873 {
4874 return selinux_ip_forward(skb, state->in, PF_INET6);
4875 }
4876 #endif /* IPV6 */
4877
4878 static unsigned int selinux_ip_output(struct sk_buff *skb,
4879 u16 family)
4880 {
4881 struct sock *sk;
4882 u32 sid;
4883
4884 if (!netlbl_enabled())
4885 return NF_ACCEPT;
4886
4887 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4888 * because we want to make sure we apply the necessary labeling
4889 * before IPsec is applied so we can leverage AH protection */
4890 sk = skb->sk;
4891 if (sk) {
4892 struct sk_security_struct *sksec;
4893
4894 if (sk->sk_state == TCP_LISTEN)
4895 /* if the socket is the listening state then this
4896 * packet is a SYN-ACK packet which means it needs to
4897 * be labeled based on the connection/request_sock and
4898 * not the parent socket. unfortunately, we can't
4899 * lookup the request_sock yet as it isn't queued on
4900 * the parent socket until after the SYN-ACK is sent.
4901 * the "solution" is to simply pass the packet as-is
4902 * as any IP option based labeling should be copied
4903 * from the initial connection request (in the IP
4904 * layer). it is far from ideal, but until we get a
4905 * security label in the packet itself this is the
4906 * best we can do. */
4907 return NF_ACCEPT;
4908
4909 /* standard practice, label using the parent socket */
4910 sksec = sk->sk_security;
4911 sid = sksec->sid;
4912 } else
4913 sid = SECINITSID_KERNEL;
4914 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4915 return NF_DROP;
4916
4917 return NF_ACCEPT;
4918 }
4919
4920 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops,
4921 struct sk_buff *skb,
4922 const struct nf_hook_state *state)
4923 {
4924 return selinux_ip_output(skb, PF_INET);
4925 }
4926
4927 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4928 int ifindex,
4929 u16 family)
4930 {
4931 struct sock *sk = skb->sk;
4932 struct sk_security_struct *sksec;
4933 struct common_audit_data ad;
4934 struct lsm_network_audit net = {0,};
4935 char *addrp;
4936 u8 proto;
4937
4938 if (sk == NULL)
4939 return NF_ACCEPT;
4940 sksec = sk->sk_security;
4941
4942 ad.type = LSM_AUDIT_DATA_NET;
4943 ad.u.net = &net;
4944 ad.u.net->netif = ifindex;
4945 ad.u.net->family = family;
4946 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4947 return NF_DROP;
4948
4949 if (selinux_secmark_enabled())
4950 if (avc_has_perm(sksec->sid, skb->secmark,
4951 SECCLASS_PACKET, PACKET__SEND, &ad))
4952 return NF_DROP_ERR(-ECONNREFUSED);
4953
4954 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4955 return NF_DROP_ERR(-ECONNREFUSED);
4956
4957 return NF_ACCEPT;
4958 }
4959
4960 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
4961 const struct net_device *outdev,
4962 u16 family)
4963 {
4964 u32 secmark_perm;
4965 u32 peer_sid;
4966 int ifindex = outdev->ifindex;
4967 struct sock *sk;
4968 struct common_audit_data ad;
4969 struct lsm_network_audit net = {0,};
4970 char *addrp;
4971 u8 secmark_active;
4972 u8 peerlbl_active;
4973
4974 /* If any sort of compatibility mode is enabled then handoff processing
4975 * to the selinux_ip_postroute_compat() function to deal with the
4976 * special handling. We do this in an attempt to keep this function
4977 * as fast and as clean as possible. */
4978 if (!selinux_policycap_netpeer)
4979 return selinux_ip_postroute_compat(skb, ifindex, family);
4980
4981 secmark_active = selinux_secmark_enabled();
4982 peerlbl_active = selinux_peerlbl_enabled();
4983 if (!secmark_active && !peerlbl_active)
4984 return NF_ACCEPT;
4985
4986 sk = skb->sk;
4987
4988 #ifdef CONFIG_XFRM
4989 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4990 * packet transformation so allow the packet to pass without any checks
4991 * since we'll have another chance to perform access control checks
4992 * when the packet is on it's final way out.
4993 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4994 * is NULL, in this case go ahead and apply access control.
4995 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
4996 * TCP listening state we cannot wait until the XFRM processing
4997 * is done as we will miss out on the SA label if we do;
4998 * unfortunately, this means more work, but it is only once per
4999 * connection. */
5000 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5001 !(sk != NULL && sk->sk_state == TCP_LISTEN))
5002 return NF_ACCEPT;
5003 #endif
5004
5005 if (sk == NULL) {
5006 /* Without an associated socket the packet is either coming
5007 * from the kernel or it is being forwarded; check the packet
5008 * to determine which and if the packet is being forwarded
5009 * query the packet directly to determine the security label. */
5010 if (skb->skb_iif) {
5011 secmark_perm = PACKET__FORWARD_OUT;
5012 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5013 return NF_DROP;
5014 } else {
5015 secmark_perm = PACKET__SEND;
5016 peer_sid = SECINITSID_KERNEL;
5017 }
5018 } else if (sk->sk_state == TCP_LISTEN) {
5019 /* Locally generated packet but the associated socket is in the
5020 * listening state which means this is a SYN-ACK packet. In
5021 * this particular case the correct security label is assigned
5022 * to the connection/request_sock but unfortunately we can't
5023 * query the request_sock as it isn't queued on the parent
5024 * socket until after the SYN-ACK packet is sent; the only
5025 * viable choice is to regenerate the label like we do in
5026 * selinux_inet_conn_request(). See also selinux_ip_output()
5027 * for similar problems. */
5028 u32 skb_sid;
5029 struct sk_security_struct *sksec = sk->sk_security;
5030 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5031 return NF_DROP;
5032 /* At this point, if the returned skb peerlbl is SECSID_NULL
5033 * and the packet has been through at least one XFRM
5034 * transformation then we must be dealing with the "final"
5035 * form of labeled IPsec packet; since we've already applied
5036 * all of our access controls on this packet we can safely
5037 * pass the packet. */
5038 if (skb_sid == SECSID_NULL) {
5039 switch (family) {
5040 case PF_INET:
5041 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5042 return NF_ACCEPT;
5043 break;
5044 case PF_INET6:
5045 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5046 return NF_ACCEPT;
5047 break;
5048 default:
5049 return NF_DROP_ERR(-ECONNREFUSED);
5050 }
5051 }
5052 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5053 return NF_DROP;
5054 secmark_perm = PACKET__SEND;
5055 } else {
5056 /* Locally generated packet, fetch the security label from the
5057 * associated socket. */
5058 struct sk_security_struct *sksec = sk->sk_security;
5059 peer_sid = sksec->sid;
5060 secmark_perm = PACKET__SEND;
5061 }
5062
5063 ad.type = LSM_AUDIT_DATA_NET;
5064 ad.u.net = &net;
5065 ad.u.net->netif = ifindex;
5066 ad.u.net->family = family;
5067 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5068 return NF_DROP;
5069
5070 if (secmark_active)
5071 if (avc_has_perm(peer_sid, skb->secmark,
5072 SECCLASS_PACKET, secmark_perm, &ad))
5073 return NF_DROP_ERR(-ECONNREFUSED);
5074
5075 if (peerlbl_active) {
5076 u32 if_sid;
5077 u32 node_sid;
5078
5079 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5080 return NF_DROP;
5081 if (avc_has_perm(peer_sid, if_sid,
5082 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5083 return NF_DROP_ERR(-ECONNREFUSED);
5084
5085 if (sel_netnode_sid(addrp, family, &node_sid))
5086 return NF_DROP;
5087 if (avc_has_perm(peer_sid, node_sid,
5088 SECCLASS_NODE, NODE__SENDTO, &ad))
5089 return NF_DROP_ERR(-ECONNREFUSED);
5090 }
5091
5092 return NF_ACCEPT;
5093 }
5094
5095 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops,
5096 struct sk_buff *skb,
5097 const struct nf_hook_state *state)
5098 {
5099 return selinux_ip_postroute(skb, state->out, PF_INET);
5100 }
5101
5102 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5103 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops,
5104 struct sk_buff *skb,
5105 const struct nf_hook_state *state)
5106 {
5107 return selinux_ip_postroute(skb, state->out, PF_INET6);
5108 }
5109 #endif /* IPV6 */
5110
5111 #endif /* CONFIG_NETFILTER */
5112
5113 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5114 {
5115 return selinux_nlmsg_perm(sk, skb);
5116 }
5117
5118 static int ipc_alloc_security(struct task_struct *task,
5119 struct kern_ipc_perm *perm,
5120 u16 sclass)
5121 {
5122 struct ipc_security_struct *isec;
5123 u32 sid;
5124
5125 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5126 if (!isec)
5127 return -ENOMEM;
5128
5129 sid = task_sid(task);
5130 isec->sclass = sclass;
5131 isec->sid = sid;
5132 perm->security = isec;
5133
5134 return 0;
5135 }
5136
5137 static void ipc_free_security(struct kern_ipc_perm *perm)
5138 {
5139 struct ipc_security_struct *isec = perm->security;
5140 perm->security = NULL;
5141 kfree(isec);
5142 }
5143
5144 static int msg_msg_alloc_security(struct msg_msg *msg)
5145 {
5146 struct msg_security_struct *msec;
5147
5148 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5149 if (!msec)
5150 return -ENOMEM;
5151
5152 msec->sid = SECINITSID_UNLABELED;
5153 msg->security = msec;
5154
5155 return 0;
5156 }
5157
5158 static void msg_msg_free_security(struct msg_msg *msg)
5159 {
5160 struct msg_security_struct *msec = msg->security;
5161
5162 msg->security = NULL;
5163 kfree(msec);
5164 }
5165
5166 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5167 u32 perms)
5168 {
5169 struct ipc_security_struct *isec;
5170 struct common_audit_data ad;
5171 u32 sid = current_sid();
5172
5173 isec = ipc_perms->security;
5174
5175 ad.type = LSM_AUDIT_DATA_IPC;
5176 ad.u.ipc_id = ipc_perms->key;
5177
5178 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5179 }
5180
5181 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5182 {
5183 return msg_msg_alloc_security(msg);
5184 }
5185
5186 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5187 {
5188 msg_msg_free_security(msg);
5189 }
5190
5191 /* message queue security operations */
5192 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5193 {
5194 struct ipc_security_struct *isec;
5195 struct common_audit_data ad;
5196 u32 sid = current_sid();
5197 int rc;
5198
5199 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5200 if (rc)
5201 return rc;
5202
5203 isec = msq->q_perm.security;
5204
5205 ad.type = LSM_AUDIT_DATA_IPC;
5206 ad.u.ipc_id = msq->q_perm.key;
5207
5208 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5209 MSGQ__CREATE, &ad);
5210 if (rc) {
5211 ipc_free_security(&msq->q_perm);
5212 return rc;
5213 }
5214 return 0;
5215 }
5216
5217 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5218 {
5219 ipc_free_security(&msq->q_perm);
5220 }
5221
5222 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5223 {
5224 struct ipc_security_struct *isec;
5225 struct common_audit_data ad;
5226 u32 sid = current_sid();
5227
5228 isec = msq->q_perm.security;
5229
5230 ad.type = LSM_AUDIT_DATA_IPC;
5231 ad.u.ipc_id = msq->q_perm.key;
5232
5233 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5234 MSGQ__ASSOCIATE, &ad);
5235 }
5236
5237 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5238 {
5239 int err;
5240 int perms;
5241
5242 switch (cmd) {
5243 case IPC_INFO:
5244 case MSG_INFO:
5245 /* No specific object, just general system-wide information. */
5246 return task_has_system(current, SYSTEM__IPC_INFO);
5247 case IPC_STAT:
5248 case MSG_STAT:
5249 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5250 break;
5251 case IPC_SET:
5252 perms = MSGQ__SETATTR;
5253 break;
5254 case IPC_RMID:
5255 perms = MSGQ__DESTROY;
5256 break;
5257 default:
5258 return 0;
5259 }
5260
5261 err = ipc_has_perm(&msq->q_perm, perms);
5262 return err;
5263 }
5264
5265 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5266 {
5267 struct ipc_security_struct *isec;
5268 struct msg_security_struct *msec;
5269 struct common_audit_data ad;
5270 u32 sid = current_sid();
5271 int rc;
5272
5273 isec = msq->q_perm.security;
5274 msec = msg->security;
5275
5276 /*
5277 * First time through, need to assign label to the message
5278 */
5279 if (msec->sid == SECINITSID_UNLABELED) {
5280 /*
5281 * Compute new sid based on current process and
5282 * message queue this message will be stored in
5283 */
5284 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5285 NULL, &msec->sid);
5286 if (rc)
5287 return rc;
5288 }
5289
5290 ad.type = LSM_AUDIT_DATA_IPC;
5291 ad.u.ipc_id = msq->q_perm.key;
5292
5293 /* Can this process write to the queue? */
5294 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5295 MSGQ__WRITE, &ad);
5296 if (!rc)
5297 /* Can this process send the message */
5298 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5299 MSG__SEND, &ad);
5300 if (!rc)
5301 /* Can the message be put in the queue? */
5302 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5303 MSGQ__ENQUEUE, &ad);
5304
5305 return rc;
5306 }
5307
5308 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5309 struct task_struct *target,
5310 long type, int mode)
5311 {
5312 struct ipc_security_struct *isec;
5313 struct msg_security_struct *msec;
5314 struct common_audit_data ad;
5315 u32 sid = task_sid(target);
5316 int rc;
5317
5318 isec = msq->q_perm.security;
5319 msec = msg->security;
5320
5321 ad.type = LSM_AUDIT_DATA_IPC;
5322 ad.u.ipc_id = msq->q_perm.key;
5323
5324 rc = avc_has_perm(sid, isec->sid,
5325 SECCLASS_MSGQ, MSGQ__READ, &ad);
5326 if (!rc)
5327 rc = avc_has_perm(sid, msec->sid,
5328 SECCLASS_MSG, MSG__RECEIVE, &ad);
5329 return rc;
5330 }
5331
5332 /* Shared Memory security operations */
5333 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5334 {
5335 struct ipc_security_struct *isec;
5336 struct common_audit_data ad;
5337 u32 sid = current_sid();
5338 int rc;
5339
5340 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5341 if (rc)
5342 return rc;
5343
5344 isec = shp->shm_perm.security;
5345
5346 ad.type = LSM_AUDIT_DATA_IPC;
5347 ad.u.ipc_id = shp->shm_perm.key;
5348
5349 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5350 SHM__CREATE, &ad);
5351 if (rc) {
5352 ipc_free_security(&shp->shm_perm);
5353 return rc;
5354 }
5355 return 0;
5356 }
5357
5358 static void selinux_shm_free_security(struct shmid_kernel *shp)
5359 {
5360 ipc_free_security(&shp->shm_perm);
5361 }
5362
5363 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5364 {
5365 struct ipc_security_struct *isec;
5366 struct common_audit_data ad;
5367 u32 sid = current_sid();
5368
5369 isec = shp->shm_perm.security;
5370
5371 ad.type = LSM_AUDIT_DATA_IPC;
5372 ad.u.ipc_id = shp->shm_perm.key;
5373
5374 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5375 SHM__ASSOCIATE, &ad);
5376 }
5377
5378 /* Note, at this point, shp is locked down */
5379 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5380 {
5381 int perms;
5382 int err;
5383
5384 switch (cmd) {
5385 case IPC_INFO:
5386 case SHM_INFO:
5387 /* No specific object, just general system-wide information. */
5388 return task_has_system(current, SYSTEM__IPC_INFO);
5389 case IPC_STAT:
5390 case SHM_STAT:
5391 perms = SHM__GETATTR | SHM__ASSOCIATE;
5392 break;
5393 case IPC_SET:
5394 perms = SHM__SETATTR;
5395 break;
5396 case SHM_LOCK:
5397 case SHM_UNLOCK:
5398 perms = SHM__LOCK;
5399 break;
5400 case IPC_RMID:
5401 perms = SHM__DESTROY;
5402 break;
5403 default:
5404 return 0;
5405 }
5406
5407 err = ipc_has_perm(&shp->shm_perm, perms);
5408 return err;
5409 }
5410
5411 static int selinux_shm_shmat(struct shmid_kernel *shp,
5412 char __user *shmaddr, int shmflg)
5413 {
5414 u32 perms;
5415
5416 if (shmflg & SHM_RDONLY)
5417 perms = SHM__READ;
5418 else
5419 perms = SHM__READ | SHM__WRITE;
5420
5421 return ipc_has_perm(&shp->shm_perm, perms);
5422 }
5423
5424 /* Semaphore security operations */
5425 static int selinux_sem_alloc_security(struct sem_array *sma)
5426 {
5427 struct ipc_security_struct *isec;
5428 struct common_audit_data ad;
5429 u32 sid = current_sid();
5430 int rc;
5431
5432 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5433 if (rc)
5434 return rc;
5435
5436 isec = sma->sem_perm.security;
5437
5438 ad.type = LSM_AUDIT_DATA_IPC;
5439 ad.u.ipc_id = sma->sem_perm.key;
5440
5441 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5442 SEM__CREATE, &ad);
5443 if (rc) {
5444 ipc_free_security(&sma->sem_perm);
5445 return rc;
5446 }
5447 return 0;
5448 }
5449
5450 static void selinux_sem_free_security(struct sem_array *sma)
5451 {
5452 ipc_free_security(&sma->sem_perm);
5453 }
5454
5455 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5456 {
5457 struct ipc_security_struct *isec;
5458 struct common_audit_data ad;
5459 u32 sid = current_sid();
5460
5461 isec = sma->sem_perm.security;
5462
5463 ad.type = LSM_AUDIT_DATA_IPC;
5464 ad.u.ipc_id = sma->sem_perm.key;
5465
5466 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5467 SEM__ASSOCIATE, &ad);
5468 }
5469
5470 /* Note, at this point, sma is locked down */
5471 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5472 {
5473 int err;
5474 u32 perms;
5475
5476 switch (cmd) {
5477 case IPC_INFO:
5478 case SEM_INFO:
5479 /* No specific object, just general system-wide information. */
5480 return task_has_system(current, SYSTEM__IPC_INFO);
5481 case GETPID:
5482 case GETNCNT:
5483 case GETZCNT:
5484 perms = SEM__GETATTR;
5485 break;
5486 case GETVAL:
5487 case GETALL:
5488 perms = SEM__READ;
5489 break;
5490 case SETVAL:
5491 case SETALL:
5492 perms = SEM__WRITE;
5493 break;
5494 case IPC_RMID:
5495 perms = SEM__DESTROY;
5496 break;
5497 case IPC_SET:
5498 perms = SEM__SETATTR;
5499 break;
5500 case IPC_STAT:
5501 case SEM_STAT:
5502 perms = SEM__GETATTR | SEM__ASSOCIATE;
5503 break;
5504 default:
5505 return 0;
5506 }
5507
5508 err = ipc_has_perm(&sma->sem_perm, perms);
5509 return err;
5510 }
5511
5512 static int selinux_sem_semop(struct sem_array *sma,
5513 struct sembuf *sops, unsigned nsops, int alter)
5514 {
5515 u32 perms;
5516
5517 if (alter)
5518 perms = SEM__READ | SEM__WRITE;
5519 else
5520 perms = SEM__READ;
5521
5522 return ipc_has_perm(&sma->sem_perm, perms);
5523 }
5524
5525 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5526 {
5527 u32 av = 0;
5528
5529 av = 0;
5530 if (flag & S_IRUGO)
5531 av |= IPC__UNIX_READ;
5532 if (flag & S_IWUGO)
5533 av |= IPC__UNIX_WRITE;
5534
5535 if (av == 0)
5536 return 0;
5537
5538 return ipc_has_perm(ipcp, av);
5539 }
5540
5541 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5542 {
5543 struct ipc_security_struct *isec = ipcp->security;
5544 *secid = isec->sid;
5545 }
5546
5547 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5548 {
5549 if (inode)
5550 inode_doinit_with_dentry(inode, dentry);
5551 }
5552
5553 static int selinux_getprocattr(struct task_struct *p,
5554 char *name, char **value)
5555 {
5556 const struct task_security_struct *__tsec;
5557 u32 sid;
5558 int error;
5559 unsigned len;
5560
5561 if (current != p) {
5562 error = current_has_perm(p, PROCESS__GETATTR);
5563 if (error)
5564 return error;
5565 }
5566
5567 rcu_read_lock();
5568 __tsec = __task_cred(p)->security;
5569
5570 if (!strcmp(name, "current"))
5571 sid = __tsec->sid;
5572 else if (!strcmp(name, "prev"))
5573 sid = __tsec->osid;
5574 else if (!strcmp(name, "exec"))
5575 sid = __tsec->exec_sid;
5576 else if (!strcmp(name, "fscreate"))
5577 sid = __tsec->create_sid;
5578 else if (!strcmp(name, "keycreate"))
5579 sid = __tsec->keycreate_sid;
5580 else if (!strcmp(name, "sockcreate"))
5581 sid = __tsec->sockcreate_sid;
5582 else
5583 goto invalid;
5584 rcu_read_unlock();
5585
5586 if (!sid)
5587 return 0;
5588
5589 error = security_sid_to_context(sid, value, &len);
5590 if (error)
5591 return error;
5592 return len;
5593
5594 invalid:
5595 rcu_read_unlock();
5596 return -EINVAL;
5597 }
5598
5599 static int selinux_setprocattr(struct task_struct *p,
5600 char *name, void *value, size_t size)
5601 {
5602 struct task_security_struct *tsec;
5603 struct task_struct *tracer;
5604 struct cred *new;
5605 u32 sid = 0, ptsid;
5606 int error;
5607 char *str = value;
5608
5609 if (current != p) {
5610 /* SELinux only allows a process to change its own
5611 security attributes. */
5612 return -EACCES;
5613 }
5614
5615 /*
5616 * Basic control over ability to set these attributes at all.
5617 * current == p, but we'll pass them separately in case the
5618 * above restriction is ever removed.
5619 */
5620 if (!strcmp(name, "exec"))
5621 error = current_has_perm(p, PROCESS__SETEXEC);
5622 else if (!strcmp(name, "fscreate"))
5623 error = current_has_perm(p, PROCESS__SETFSCREATE);
5624 else if (!strcmp(name, "keycreate"))
5625 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5626 else if (!strcmp(name, "sockcreate"))
5627 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5628 else if (!strcmp(name, "current"))
5629 error = current_has_perm(p, PROCESS__SETCURRENT);
5630 else
5631 error = -EINVAL;
5632 if (error)
5633 return error;
5634
5635 /* Obtain a SID for the context, if one was specified. */
5636 if (size && str[1] && str[1] != '\n') {
5637 if (str[size-1] == '\n') {
5638 str[size-1] = 0;
5639 size--;
5640 }
5641 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5642 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5643 if (!capable(CAP_MAC_ADMIN)) {
5644 struct audit_buffer *ab;
5645 size_t audit_size;
5646
5647 /* We strip a nul only if it is at the end, otherwise the
5648 * context contains a nul and we should audit that */
5649 if (str[size - 1] == '\0')
5650 audit_size = size - 1;
5651 else
5652 audit_size = size;
5653 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5654 audit_log_format(ab, "op=fscreate invalid_context=");
5655 audit_log_n_untrustedstring(ab, value, audit_size);
5656 audit_log_end(ab);
5657
5658 return error;
5659 }
5660 error = security_context_to_sid_force(value, size,
5661 &sid);
5662 }
5663 if (error)
5664 return error;
5665 }
5666
5667 new = prepare_creds();
5668 if (!new)
5669 return -ENOMEM;
5670
5671 /* Permission checking based on the specified context is
5672 performed during the actual operation (execve,
5673 open/mkdir/...), when we know the full context of the
5674 operation. See selinux_bprm_set_creds for the execve
5675 checks and may_create for the file creation checks. The
5676 operation will then fail if the context is not permitted. */
5677 tsec = new->security;
5678 if (!strcmp(name, "exec")) {
5679 tsec->exec_sid = sid;
5680 } else if (!strcmp(name, "fscreate")) {
5681 tsec->create_sid = sid;
5682 } else if (!strcmp(name, "keycreate")) {
5683 error = may_create_key(sid, p);
5684 if (error)
5685 goto abort_change;
5686 tsec->keycreate_sid = sid;
5687 } else if (!strcmp(name, "sockcreate")) {
5688 tsec->sockcreate_sid = sid;
5689 } else if (!strcmp(name, "current")) {
5690 error = -EINVAL;
5691 if (sid == 0)
5692 goto abort_change;
5693
5694 /* Only allow single threaded processes to change context */
5695 error = -EPERM;
5696 if (!current_is_single_threaded()) {
5697 error = security_bounded_transition(tsec->sid, sid);
5698 if (error)
5699 goto abort_change;
5700 }
5701
5702 /* Check permissions for the transition. */
5703 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5704 PROCESS__DYNTRANSITION, NULL);
5705 if (error)
5706 goto abort_change;
5707
5708 /* Check for ptracing, and update the task SID if ok.
5709 Otherwise, leave SID unchanged and fail. */
5710 ptsid = 0;
5711 rcu_read_lock();
5712 tracer = ptrace_parent(p);
5713 if (tracer)
5714 ptsid = task_sid(tracer);
5715 rcu_read_unlock();
5716
5717 if (tracer) {
5718 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5719 PROCESS__PTRACE, NULL);
5720 if (error)
5721 goto abort_change;
5722 }
5723
5724 tsec->sid = sid;
5725 } else {
5726 error = -EINVAL;
5727 goto abort_change;
5728 }
5729
5730 commit_creds(new);
5731 return size;
5732
5733 abort_change:
5734 abort_creds(new);
5735 return error;
5736 }
5737
5738 static int selinux_ismaclabel(const char *name)
5739 {
5740 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5741 }
5742
5743 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5744 {
5745 return security_sid_to_context(secid, secdata, seclen);
5746 }
5747
5748 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5749 {
5750 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5751 }
5752
5753 static void selinux_release_secctx(char *secdata, u32 seclen)
5754 {
5755 kfree(secdata);
5756 }
5757
5758 /*
5759 * called with inode->i_mutex locked
5760 */
5761 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5762 {
5763 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5764 }
5765
5766 /*
5767 * called with inode->i_mutex locked
5768 */
5769 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5770 {
5771 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5772 }
5773
5774 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5775 {
5776 int len = 0;
5777 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5778 ctx, true);
5779 if (len < 0)
5780 return len;
5781 *ctxlen = len;
5782 return 0;
5783 }
5784 #ifdef CONFIG_KEYS
5785
5786 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5787 unsigned long flags)
5788 {
5789 const struct task_security_struct *tsec;
5790 struct key_security_struct *ksec;
5791
5792 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5793 if (!ksec)
5794 return -ENOMEM;
5795
5796 tsec = cred->security;
5797 if (tsec->keycreate_sid)
5798 ksec->sid = tsec->keycreate_sid;
5799 else
5800 ksec->sid = tsec->sid;
5801
5802 k->security = ksec;
5803 return 0;
5804 }
5805
5806 static void selinux_key_free(struct key *k)
5807 {
5808 struct key_security_struct *ksec = k->security;
5809
5810 k->security = NULL;
5811 kfree(ksec);
5812 }
5813
5814 static int selinux_key_permission(key_ref_t key_ref,
5815 const struct cred *cred,
5816 unsigned perm)
5817 {
5818 struct key *key;
5819 struct key_security_struct *ksec;
5820 u32 sid;
5821
5822 /* if no specific permissions are requested, we skip the
5823 permission check. No serious, additional covert channels
5824 appear to be created. */
5825 if (perm == 0)
5826 return 0;
5827
5828 sid = cred_sid(cred);
5829
5830 key = key_ref_to_ptr(key_ref);
5831 ksec = key->security;
5832
5833 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5834 }
5835
5836 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5837 {
5838 struct key_security_struct *ksec = key->security;
5839 char *context = NULL;
5840 unsigned len;
5841 int rc;
5842
5843 rc = security_sid_to_context(ksec->sid, &context, &len);
5844 if (!rc)
5845 rc = len;
5846 *_buffer = context;
5847 return rc;
5848 }
5849
5850 #endif
5851
5852 static struct security_hook_list selinux_hooks[] = {
5853 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
5854 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
5855 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
5856 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
5857
5858 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
5859 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
5860 LSM_HOOK_INIT(capget, selinux_capget),
5861 LSM_HOOK_INIT(capset, selinux_capset),
5862 LSM_HOOK_INIT(capable, selinux_capable),
5863 LSM_HOOK_INIT(quotactl, selinux_quotactl),
5864 LSM_HOOK_INIT(quota_on, selinux_quota_on),
5865 LSM_HOOK_INIT(syslog, selinux_syslog),
5866 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
5867
5868 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
5869
5870 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
5871 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
5872 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
5873 LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec),
5874
5875 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
5876 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
5877 LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
5878 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
5879 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
5880 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
5881 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
5882 LSM_HOOK_INIT(sb_mount, selinux_mount),
5883 LSM_HOOK_INIT(sb_umount, selinux_umount),
5884 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
5885 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
5886 LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
5887
5888 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
5889
5890 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
5891 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
5892 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
5893 LSM_HOOK_INIT(inode_create, selinux_inode_create),
5894 LSM_HOOK_INIT(inode_link, selinux_inode_link),
5895 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
5896 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
5897 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
5898 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
5899 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
5900 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
5901 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
5902 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
5903 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
5904 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
5905 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
5906 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
5907 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
5908 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
5909 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
5910 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
5911 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
5912 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
5913 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
5914 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
5915
5916 LSM_HOOK_INIT(file_permission, selinux_file_permission),
5917 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
5918 LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
5919 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
5920 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
5921 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
5922 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
5923 LSM_HOOK_INIT(file_lock, selinux_file_lock),
5924 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
5925 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
5926 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
5927 LSM_HOOK_INIT(file_receive, selinux_file_receive),
5928
5929 LSM_HOOK_INIT(file_open, selinux_file_open),
5930
5931 LSM_HOOK_INIT(task_create, selinux_task_create),
5932 LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
5933 LSM_HOOK_INIT(cred_free, selinux_cred_free),
5934 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
5935 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
5936 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
5937 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
5938 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
5939 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
5940 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
5941 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
5942 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
5943 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
5944 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
5945 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
5946 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
5947 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
5948 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
5949 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
5950 LSM_HOOK_INIT(task_kill, selinux_task_kill),
5951 LSM_HOOK_INIT(task_wait, selinux_task_wait),
5952 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
5953
5954 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
5955 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
5956
5957 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
5958 LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
5959
5960 LSM_HOOK_INIT(msg_queue_alloc_security,
5961 selinux_msg_queue_alloc_security),
5962 LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
5963 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
5964 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
5965 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
5966 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
5967
5968 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
5969 LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
5970 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
5971 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
5972 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
5973
5974 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
5975 LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
5976 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
5977 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
5978 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
5979
5980 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
5981
5982 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
5983 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
5984
5985 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
5986 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
5987 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
5988 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
5989 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
5990 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
5991 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
5992
5993 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
5994 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
5995
5996 LSM_HOOK_INIT(socket_create, selinux_socket_create),
5997 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
5998 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
5999 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6000 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6001 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6002 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6003 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6004 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6005 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6006 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6007 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6008 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6009 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6010 LSM_HOOK_INIT(socket_getpeersec_stream,
6011 selinux_socket_getpeersec_stream),
6012 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6013 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6014 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6015 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6016 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6017 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6018 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6019 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6020 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6021 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6022 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6023 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6024 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6025 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6026 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6027 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6028 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6029 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6030 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6031
6032 #ifdef CONFIG_SECURITY_NETWORK_XFRM
6033 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6034 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6035 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6036 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6037 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
6038 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
6039 selinux_xfrm_state_alloc_acquire),
6040 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6041 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6042 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6043 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6044 selinux_xfrm_state_pol_flow_match),
6045 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6046 #endif
6047
6048 #ifdef CONFIG_KEYS
6049 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6050 LSM_HOOK_INIT(key_free, selinux_key_free),
6051 LSM_HOOK_INIT(key_permission, selinux_key_permission),
6052 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
6053 #endif
6054
6055 #ifdef CONFIG_AUDIT
6056 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6057 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6058 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6059 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6060 #endif
6061 };
6062
6063 static __init int selinux_init(void)
6064 {
6065 if (!security_module_enable("selinux")) {
6066 selinux_enabled = 0;
6067 return 0;
6068 }
6069
6070 if (!selinux_enabled) {
6071 printk(KERN_INFO "SELinux: Disabled at boot.\n");
6072 return 0;
6073 }
6074
6075 printk(KERN_INFO "SELinux: Initializing.\n");
6076
6077 /* Set the security state for the initial task. */
6078 cred_init_security();
6079
6080 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6081
6082 sel_inode_cache = kmem_cache_create("selinux_inode_security",
6083 sizeof(struct inode_security_struct),
6084 0, SLAB_PANIC, NULL);
6085 avc_init();
6086
6087 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6088
6089 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6090 panic("SELinux: Unable to register AVC netcache callback\n");
6091
6092 if (selinux_enforcing)
6093 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
6094 else
6095 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
6096
6097 return 0;
6098 }
6099
6100 static void delayed_superblock_init(struct super_block *sb, void *unused)
6101 {
6102 superblock_doinit(sb, NULL);
6103 }
6104
6105 void selinux_complete_init(void)
6106 {
6107 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
6108
6109 /* Set up any superblocks initialized prior to the policy load. */
6110 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
6111 iterate_supers(delayed_superblock_init, NULL);
6112 }
6113
6114 /* SELinux requires early initialization in order to label
6115 all processes and objects when they are created. */
6116 security_initcall(selinux_init);
6117
6118 #if defined(CONFIG_NETFILTER)
6119
6120 static struct nf_hook_ops selinux_nf_ops[] = {
6121 {
6122 .hook = selinux_ipv4_postroute,
6123 .owner = THIS_MODULE,
6124 .pf = NFPROTO_IPV4,
6125 .hooknum = NF_INET_POST_ROUTING,
6126 .priority = NF_IP_PRI_SELINUX_LAST,
6127 },
6128 {
6129 .hook = selinux_ipv4_forward,
6130 .owner = THIS_MODULE,
6131 .pf = NFPROTO_IPV4,
6132 .hooknum = NF_INET_FORWARD,
6133 .priority = NF_IP_PRI_SELINUX_FIRST,
6134 },
6135 {
6136 .hook = selinux_ipv4_output,
6137 .owner = THIS_MODULE,
6138 .pf = NFPROTO_IPV4,
6139 .hooknum = NF_INET_LOCAL_OUT,
6140 .priority = NF_IP_PRI_SELINUX_FIRST,
6141 },
6142 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6143 {
6144 .hook = selinux_ipv6_postroute,
6145 .owner = THIS_MODULE,
6146 .pf = NFPROTO_IPV6,
6147 .hooknum = NF_INET_POST_ROUTING,
6148 .priority = NF_IP6_PRI_SELINUX_LAST,
6149 },
6150 {
6151 .hook = selinux_ipv6_forward,
6152 .owner = THIS_MODULE,
6153 .pf = NFPROTO_IPV6,
6154 .hooknum = NF_INET_FORWARD,
6155 .priority = NF_IP6_PRI_SELINUX_FIRST,
6156 },
6157 #endif /* IPV6 */
6158 };
6159
6160 static int __init selinux_nf_ip_init(void)
6161 {
6162 int err;
6163
6164 if (!selinux_enabled)
6165 return 0;
6166
6167 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
6168
6169 err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6170 if (err)
6171 panic("SELinux: nf_register_hooks: error %d\n", err);
6172
6173 return 0;
6174 }
6175
6176 __initcall(selinux_nf_ip_init);
6177
6178 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6179 static void selinux_nf_ip_exit(void)
6180 {
6181 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
6182
6183 nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6184 }
6185 #endif
6186
6187 #else /* CONFIG_NETFILTER */
6188
6189 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6190 #define selinux_nf_ip_exit()
6191 #endif
6192
6193 #endif /* CONFIG_NETFILTER */
6194
6195 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6196 static int selinux_disabled;
6197
6198 int selinux_disable(void)
6199 {
6200 if (ss_initialized) {
6201 /* Not permitted after initial policy load. */
6202 return -EINVAL;
6203 }
6204
6205 if (selinux_disabled) {
6206 /* Only do this once. */
6207 return -EINVAL;
6208 }
6209
6210 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
6211
6212 selinux_disabled = 1;
6213 selinux_enabled = 0;
6214
6215 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6216
6217 /* Try to destroy the avc node cache */
6218 avc_disable();
6219
6220 /* Unregister netfilter hooks. */
6221 selinux_nf_ip_exit();
6222
6223 /* Unregister selinuxfs. */
6224 exit_sel_fs();
6225
6226 return 0;
6227 }
6228 #endif
This page took 0.175241 seconds and 6 git commands to generate.