Merge branch 'bug-fixes' of git://farnsworth.org/dale/linux-2.6-mv643xx_eth into...
[deliverable/linux.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14 * <dgoeddel@trustedcs.com>
15 * Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
16 * Paul Moore, <paul.moore@hp.com>
17 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
18 * Yuichi Nakamura <ynakam@hitachisoft.jp>
19 *
20 * This program is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License version 2,
22 * as published by the Free Software Foundation.
23 */
24
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/sched.h>
30 #include <linux/security.h>
31 #include <linux/xattr.h>
32 #include <linux/capability.h>
33 #include <linux/unistd.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <linux/slab.h>
37 #include <linux/pagemap.h>
38 #include <linux/swap.h>
39 #include <linux/spinlock.h>
40 #include <linux/syscalls.h>
41 #include <linux/file.h>
42 #include <linux/namei.h>
43 #include <linux/mount.h>
44 #include <linux/ext2_fs.h>
45 #include <linux/proc_fs.h>
46 #include <linux/kd.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h> /* for local_port_range[] */
52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
53 #include <asm/uaccess.h>
54 #include <asm/ioctls.h>
55 #include <linux/bitops.h>
56 #include <linux/interrupt.h>
57 #include <linux/netdevice.h> /* for network interface checks */
58 #include <linux/netlink.h>
59 #include <linux/tcp.h>
60 #include <linux/udp.h>
61 #include <linux/dccp.h>
62 #include <linux/quota.h>
63 #include <linux/un.h> /* for Unix socket types */
64 #include <net/af_unix.h> /* for Unix socket types */
65 #include <linux/parser.h>
66 #include <linux/nfs_mount.h>
67 #include <net/ipv6.h>
68 #include <linux/hugetlb.h>
69 #include <linux/personality.h>
70 #include <linux/sysctl.h>
71 #include <linux/audit.h>
72 #include <linux/string.h>
73 #include <linux/selinux.h>
74 #include <linux/mutex.h>
75
76 #include "avc.h"
77 #include "objsec.h"
78 #include "netif.h"
79 #include "xfrm.h"
80 #include "netlabel.h"
81
82 #define XATTR_SELINUX_SUFFIX "selinux"
83 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
84
85 extern unsigned int policydb_loaded_version;
86 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
87 extern int selinux_compat_net;
88 extern struct security_operations *security_ops;
89
90 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
91 int selinux_enforcing = 0;
92
93 static int __init enforcing_setup(char *str)
94 {
95 selinux_enforcing = simple_strtol(str,NULL,0);
96 return 1;
97 }
98 __setup("enforcing=", enforcing_setup);
99 #endif
100
101 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
102 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
103
104 static int __init selinux_enabled_setup(char *str)
105 {
106 selinux_enabled = simple_strtol(str, NULL, 0);
107 return 1;
108 }
109 __setup("selinux=", selinux_enabled_setup);
110 #else
111 int selinux_enabled = 1;
112 #endif
113
114 /* Original (dummy) security module. */
115 static struct security_operations *original_ops = NULL;
116
117 /* Minimal support for a secondary security module,
118 just to allow the use of the dummy or capability modules.
119 The owlsm module can alternatively be used as a secondary
120 module as long as CONFIG_OWLSM_FD is not enabled. */
121 static struct security_operations *secondary_ops = NULL;
122
123 /* Lists of inode and superblock security structures initialized
124 before the policy was loaded. */
125 static LIST_HEAD(superblock_security_head);
126 static DEFINE_SPINLOCK(sb_security_lock);
127
128 static struct kmem_cache *sel_inode_cache;
129
130 /* Return security context for a given sid or just the context
131 length if the buffer is null or length is 0 */
132 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
133 {
134 char *context;
135 unsigned len;
136 int rc;
137
138 rc = security_sid_to_context(sid, &context, &len);
139 if (rc)
140 return rc;
141
142 if (!buffer || !size)
143 goto getsecurity_exit;
144
145 if (size < len) {
146 len = -ERANGE;
147 goto getsecurity_exit;
148 }
149 memcpy(buffer, context, len);
150
151 getsecurity_exit:
152 kfree(context);
153 return len;
154 }
155
156 /* Allocate and free functions for each kind of security blob. */
157
158 static int task_alloc_security(struct task_struct *task)
159 {
160 struct task_security_struct *tsec;
161
162 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
163 if (!tsec)
164 return -ENOMEM;
165
166 tsec->task = task;
167 tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
168 task->security = tsec;
169
170 return 0;
171 }
172
173 static void task_free_security(struct task_struct *task)
174 {
175 struct task_security_struct *tsec = task->security;
176 task->security = NULL;
177 kfree(tsec);
178 }
179
180 static int inode_alloc_security(struct inode *inode)
181 {
182 struct task_security_struct *tsec = current->security;
183 struct inode_security_struct *isec;
184
185 isec = kmem_cache_zalloc(sel_inode_cache, GFP_KERNEL);
186 if (!isec)
187 return -ENOMEM;
188
189 mutex_init(&isec->lock);
190 INIT_LIST_HEAD(&isec->list);
191 isec->inode = inode;
192 isec->sid = SECINITSID_UNLABELED;
193 isec->sclass = SECCLASS_FILE;
194 isec->task_sid = tsec->sid;
195 inode->i_security = isec;
196
197 return 0;
198 }
199
200 static void inode_free_security(struct inode *inode)
201 {
202 struct inode_security_struct *isec = inode->i_security;
203 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
204
205 spin_lock(&sbsec->isec_lock);
206 if (!list_empty(&isec->list))
207 list_del_init(&isec->list);
208 spin_unlock(&sbsec->isec_lock);
209
210 inode->i_security = NULL;
211 kmem_cache_free(sel_inode_cache, isec);
212 }
213
214 static int file_alloc_security(struct file *file)
215 {
216 struct task_security_struct *tsec = current->security;
217 struct file_security_struct *fsec;
218
219 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
220 if (!fsec)
221 return -ENOMEM;
222
223 fsec->file = file;
224 fsec->sid = tsec->sid;
225 fsec->fown_sid = tsec->sid;
226 file->f_security = fsec;
227
228 return 0;
229 }
230
231 static void file_free_security(struct file *file)
232 {
233 struct file_security_struct *fsec = file->f_security;
234 file->f_security = NULL;
235 kfree(fsec);
236 }
237
238 static int superblock_alloc_security(struct super_block *sb)
239 {
240 struct superblock_security_struct *sbsec;
241
242 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
243 if (!sbsec)
244 return -ENOMEM;
245
246 mutex_init(&sbsec->lock);
247 INIT_LIST_HEAD(&sbsec->list);
248 INIT_LIST_HEAD(&sbsec->isec_head);
249 spin_lock_init(&sbsec->isec_lock);
250 sbsec->sb = sb;
251 sbsec->sid = SECINITSID_UNLABELED;
252 sbsec->def_sid = SECINITSID_FILE;
253 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
254 sb->s_security = sbsec;
255
256 return 0;
257 }
258
259 static void superblock_free_security(struct super_block *sb)
260 {
261 struct superblock_security_struct *sbsec = sb->s_security;
262
263 spin_lock(&sb_security_lock);
264 if (!list_empty(&sbsec->list))
265 list_del_init(&sbsec->list);
266 spin_unlock(&sb_security_lock);
267
268 sb->s_security = NULL;
269 kfree(sbsec);
270 }
271
272 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
273 {
274 struct sk_security_struct *ssec;
275
276 ssec = kzalloc(sizeof(*ssec), priority);
277 if (!ssec)
278 return -ENOMEM;
279
280 ssec->sk = sk;
281 ssec->peer_sid = SECINITSID_UNLABELED;
282 ssec->sid = SECINITSID_UNLABELED;
283 sk->sk_security = ssec;
284
285 selinux_netlbl_sk_security_init(ssec, family);
286
287 return 0;
288 }
289
290 static void sk_free_security(struct sock *sk)
291 {
292 struct sk_security_struct *ssec = sk->sk_security;
293
294 sk->sk_security = NULL;
295 kfree(ssec);
296 }
297
298 /* The security server must be initialized before
299 any labeling or access decisions can be provided. */
300 extern int ss_initialized;
301
302 /* The file system's label must be initialized prior to use. */
303
304 static char *labeling_behaviors[6] = {
305 "uses xattr",
306 "uses transition SIDs",
307 "uses task SIDs",
308 "uses genfs_contexts",
309 "not configured for labeling",
310 "uses mountpoint labeling",
311 };
312
313 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
314
315 static inline int inode_doinit(struct inode *inode)
316 {
317 return inode_doinit_with_dentry(inode, NULL);
318 }
319
320 enum {
321 Opt_error = -1,
322 Opt_context = 1,
323 Opt_fscontext = 2,
324 Opt_defcontext = 4,
325 Opt_rootcontext = 8,
326 };
327
328 static match_table_t tokens = {
329 {Opt_context, "context=%s"},
330 {Opt_fscontext, "fscontext=%s"},
331 {Opt_defcontext, "defcontext=%s"},
332 {Opt_rootcontext, "rootcontext=%s"},
333 {Opt_error, NULL},
334 };
335
336 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
337
338 static int may_context_mount_sb_relabel(u32 sid,
339 struct superblock_security_struct *sbsec,
340 struct task_security_struct *tsec)
341 {
342 int rc;
343
344 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
345 FILESYSTEM__RELABELFROM, NULL);
346 if (rc)
347 return rc;
348
349 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
350 FILESYSTEM__RELABELTO, NULL);
351 return rc;
352 }
353
354 static int may_context_mount_inode_relabel(u32 sid,
355 struct superblock_security_struct *sbsec,
356 struct task_security_struct *tsec)
357 {
358 int rc;
359 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
360 FILESYSTEM__RELABELFROM, NULL);
361 if (rc)
362 return rc;
363
364 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
365 FILESYSTEM__ASSOCIATE, NULL);
366 return rc;
367 }
368
369 static int try_context_mount(struct super_block *sb, void *data)
370 {
371 char *context = NULL, *defcontext = NULL;
372 char *fscontext = NULL, *rootcontext = NULL;
373 const char *name;
374 u32 sid;
375 int alloc = 0, rc = 0, seen = 0;
376 struct task_security_struct *tsec = current->security;
377 struct superblock_security_struct *sbsec = sb->s_security;
378
379 if (!data)
380 goto out;
381
382 name = sb->s_type->name;
383
384 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
385
386 /* NFS we understand. */
387 if (!strcmp(name, "nfs")) {
388 struct nfs_mount_data *d = data;
389
390 if (d->version < NFS_MOUNT_VERSION)
391 goto out;
392
393 if (d->context[0]) {
394 context = d->context;
395 seen |= Opt_context;
396 }
397 } else
398 goto out;
399
400 } else {
401 /* Standard string-based options. */
402 char *p, *options = data;
403
404 while ((p = strsep(&options, "|")) != NULL) {
405 int token;
406 substring_t args[MAX_OPT_ARGS];
407
408 if (!*p)
409 continue;
410
411 token = match_token(p, tokens, args);
412
413 switch (token) {
414 case Opt_context:
415 if (seen & (Opt_context|Opt_defcontext)) {
416 rc = -EINVAL;
417 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
418 goto out_free;
419 }
420 context = match_strdup(&args[0]);
421 if (!context) {
422 rc = -ENOMEM;
423 goto out_free;
424 }
425 if (!alloc)
426 alloc = 1;
427 seen |= Opt_context;
428 break;
429
430 case Opt_fscontext:
431 if (seen & Opt_fscontext) {
432 rc = -EINVAL;
433 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
434 goto out_free;
435 }
436 fscontext = match_strdup(&args[0]);
437 if (!fscontext) {
438 rc = -ENOMEM;
439 goto out_free;
440 }
441 if (!alloc)
442 alloc = 1;
443 seen |= Opt_fscontext;
444 break;
445
446 case Opt_rootcontext:
447 if (seen & Opt_rootcontext) {
448 rc = -EINVAL;
449 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
450 goto out_free;
451 }
452 rootcontext = match_strdup(&args[0]);
453 if (!rootcontext) {
454 rc = -ENOMEM;
455 goto out_free;
456 }
457 if (!alloc)
458 alloc = 1;
459 seen |= Opt_rootcontext;
460 break;
461
462 case Opt_defcontext:
463 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
464 rc = -EINVAL;
465 printk(KERN_WARNING "SELinux: "
466 "defcontext option is invalid "
467 "for this filesystem type\n");
468 goto out_free;
469 }
470 if (seen & (Opt_context|Opt_defcontext)) {
471 rc = -EINVAL;
472 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
473 goto out_free;
474 }
475 defcontext = match_strdup(&args[0]);
476 if (!defcontext) {
477 rc = -ENOMEM;
478 goto out_free;
479 }
480 if (!alloc)
481 alloc = 1;
482 seen |= Opt_defcontext;
483 break;
484
485 default:
486 rc = -EINVAL;
487 printk(KERN_WARNING "SELinux: unknown mount "
488 "option\n");
489 goto out_free;
490
491 }
492 }
493 }
494
495 if (!seen)
496 goto out;
497
498 /* sets the context of the superblock for the fs being mounted. */
499 if (fscontext) {
500 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
501 if (rc) {
502 printk(KERN_WARNING "SELinux: security_context_to_sid"
503 "(%s) failed for (dev %s, type %s) errno=%d\n",
504 fscontext, sb->s_id, name, rc);
505 goto out_free;
506 }
507
508 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
509 if (rc)
510 goto out_free;
511
512 sbsec->sid = sid;
513 }
514
515 /*
516 * Switch to using mount point labeling behavior.
517 * sets the label used on all file below the mountpoint, and will set
518 * the superblock context if not already set.
519 */
520 if (context) {
521 rc = security_context_to_sid(context, strlen(context), &sid);
522 if (rc) {
523 printk(KERN_WARNING "SELinux: security_context_to_sid"
524 "(%s) failed for (dev %s, type %s) errno=%d\n",
525 context, sb->s_id, name, rc);
526 goto out_free;
527 }
528
529 if (!fscontext) {
530 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
531 if (rc)
532 goto out_free;
533 sbsec->sid = sid;
534 } else {
535 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
536 if (rc)
537 goto out_free;
538 }
539 sbsec->mntpoint_sid = sid;
540
541 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
542 }
543
544 if (rootcontext) {
545 struct inode *inode = sb->s_root->d_inode;
546 struct inode_security_struct *isec = inode->i_security;
547 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
548 if (rc) {
549 printk(KERN_WARNING "SELinux: security_context_to_sid"
550 "(%s) failed for (dev %s, type %s) errno=%d\n",
551 rootcontext, sb->s_id, name, rc);
552 goto out_free;
553 }
554
555 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
556 if (rc)
557 goto out_free;
558
559 isec->sid = sid;
560 isec->initialized = 1;
561 }
562
563 if (defcontext) {
564 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
565 if (rc) {
566 printk(KERN_WARNING "SELinux: security_context_to_sid"
567 "(%s) failed for (dev %s, type %s) errno=%d\n",
568 defcontext, sb->s_id, name, rc);
569 goto out_free;
570 }
571
572 if (sid == sbsec->def_sid)
573 goto out_free;
574
575 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
576 if (rc)
577 goto out_free;
578
579 sbsec->def_sid = sid;
580 }
581
582 out_free:
583 if (alloc) {
584 kfree(context);
585 kfree(defcontext);
586 kfree(fscontext);
587 kfree(rootcontext);
588 }
589 out:
590 return rc;
591 }
592
593 static int superblock_doinit(struct super_block *sb, void *data)
594 {
595 struct superblock_security_struct *sbsec = sb->s_security;
596 struct dentry *root = sb->s_root;
597 struct inode *inode = root->d_inode;
598 int rc = 0;
599
600 mutex_lock(&sbsec->lock);
601 if (sbsec->initialized)
602 goto out;
603
604 if (!ss_initialized) {
605 /* Defer initialization until selinux_complete_init,
606 after the initial policy is loaded and the security
607 server is ready to handle calls. */
608 spin_lock(&sb_security_lock);
609 if (list_empty(&sbsec->list))
610 list_add(&sbsec->list, &superblock_security_head);
611 spin_unlock(&sb_security_lock);
612 goto out;
613 }
614
615 /* Determine the labeling behavior to use for this filesystem type. */
616 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
617 if (rc) {
618 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
619 __FUNCTION__, sb->s_type->name, rc);
620 goto out;
621 }
622
623 rc = try_context_mount(sb, data);
624 if (rc)
625 goto out;
626
627 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
628 /* Make sure that the xattr handler exists and that no
629 error other than -ENODATA is returned by getxattr on
630 the root directory. -ENODATA is ok, as this may be
631 the first boot of the SELinux kernel before we have
632 assigned xattr values to the filesystem. */
633 if (!inode->i_op->getxattr) {
634 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
635 "xattr support\n", sb->s_id, sb->s_type->name);
636 rc = -EOPNOTSUPP;
637 goto out;
638 }
639 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
640 if (rc < 0 && rc != -ENODATA) {
641 if (rc == -EOPNOTSUPP)
642 printk(KERN_WARNING "SELinux: (dev %s, type "
643 "%s) has no security xattr handler\n",
644 sb->s_id, sb->s_type->name);
645 else
646 printk(KERN_WARNING "SELinux: (dev %s, type "
647 "%s) getxattr errno %d\n", sb->s_id,
648 sb->s_type->name, -rc);
649 goto out;
650 }
651 }
652
653 if (strcmp(sb->s_type->name, "proc") == 0)
654 sbsec->proc = 1;
655
656 sbsec->initialized = 1;
657
658 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
659 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
660 sb->s_id, sb->s_type->name);
661 }
662 else {
663 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
664 sb->s_id, sb->s_type->name,
665 labeling_behaviors[sbsec->behavior-1]);
666 }
667
668 /* Initialize the root inode. */
669 rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
670
671 /* Initialize any other inodes associated with the superblock, e.g.
672 inodes created prior to initial policy load or inodes created
673 during get_sb by a pseudo filesystem that directly
674 populates itself. */
675 spin_lock(&sbsec->isec_lock);
676 next_inode:
677 if (!list_empty(&sbsec->isec_head)) {
678 struct inode_security_struct *isec =
679 list_entry(sbsec->isec_head.next,
680 struct inode_security_struct, list);
681 struct inode *inode = isec->inode;
682 spin_unlock(&sbsec->isec_lock);
683 inode = igrab(inode);
684 if (inode) {
685 if (!IS_PRIVATE (inode))
686 inode_doinit(inode);
687 iput(inode);
688 }
689 spin_lock(&sbsec->isec_lock);
690 list_del_init(&isec->list);
691 goto next_inode;
692 }
693 spin_unlock(&sbsec->isec_lock);
694 out:
695 mutex_unlock(&sbsec->lock);
696 return rc;
697 }
698
699 static inline u16 inode_mode_to_security_class(umode_t mode)
700 {
701 switch (mode & S_IFMT) {
702 case S_IFSOCK:
703 return SECCLASS_SOCK_FILE;
704 case S_IFLNK:
705 return SECCLASS_LNK_FILE;
706 case S_IFREG:
707 return SECCLASS_FILE;
708 case S_IFBLK:
709 return SECCLASS_BLK_FILE;
710 case S_IFDIR:
711 return SECCLASS_DIR;
712 case S_IFCHR:
713 return SECCLASS_CHR_FILE;
714 case S_IFIFO:
715 return SECCLASS_FIFO_FILE;
716
717 }
718
719 return SECCLASS_FILE;
720 }
721
722 static inline int default_protocol_stream(int protocol)
723 {
724 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
725 }
726
727 static inline int default_protocol_dgram(int protocol)
728 {
729 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
730 }
731
732 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
733 {
734 switch (family) {
735 case PF_UNIX:
736 switch (type) {
737 case SOCK_STREAM:
738 case SOCK_SEQPACKET:
739 return SECCLASS_UNIX_STREAM_SOCKET;
740 case SOCK_DGRAM:
741 return SECCLASS_UNIX_DGRAM_SOCKET;
742 }
743 break;
744 case PF_INET:
745 case PF_INET6:
746 switch (type) {
747 case SOCK_STREAM:
748 if (default_protocol_stream(protocol))
749 return SECCLASS_TCP_SOCKET;
750 else
751 return SECCLASS_RAWIP_SOCKET;
752 case SOCK_DGRAM:
753 if (default_protocol_dgram(protocol))
754 return SECCLASS_UDP_SOCKET;
755 else
756 return SECCLASS_RAWIP_SOCKET;
757 case SOCK_DCCP:
758 return SECCLASS_DCCP_SOCKET;
759 default:
760 return SECCLASS_RAWIP_SOCKET;
761 }
762 break;
763 case PF_NETLINK:
764 switch (protocol) {
765 case NETLINK_ROUTE:
766 return SECCLASS_NETLINK_ROUTE_SOCKET;
767 case NETLINK_FIREWALL:
768 return SECCLASS_NETLINK_FIREWALL_SOCKET;
769 case NETLINK_INET_DIAG:
770 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
771 case NETLINK_NFLOG:
772 return SECCLASS_NETLINK_NFLOG_SOCKET;
773 case NETLINK_XFRM:
774 return SECCLASS_NETLINK_XFRM_SOCKET;
775 case NETLINK_SELINUX:
776 return SECCLASS_NETLINK_SELINUX_SOCKET;
777 case NETLINK_AUDIT:
778 return SECCLASS_NETLINK_AUDIT_SOCKET;
779 case NETLINK_IP6_FW:
780 return SECCLASS_NETLINK_IP6FW_SOCKET;
781 case NETLINK_DNRTMSG:
782 return SECCLASS_NETLINK_DNRT_SOCKET;
783 case NETLINK_KOBJECT_UEVENT:
784 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
785 default:
786 return SECCLASS_NETLINK_SOCKET;
787 }
788 case PF_PACKET:
789 return SECCLASS_PACKET_SOCKET;
790 case PF_KEY:
791 return SECCLASS_KEY_SOCKET;
792 case PF_APPLETALK:
793 return SECCLASS_APPLETALK_SOCKET;
794 }
795
796 return SECCLASS_SOCKET;
797 }
798
799 #ifdef CONFIG_PROC_FS
800 static int selinux_proc_get_sid(struct proc_dir_entry *de,
801 u16 tclass,
802 u32 *sid)
803 {
804 int buflen, rc;
805 char *buffer, *path, *end;
806
807 buffer = (char*)__get_free_page(GFP_KERNEL);
808 if (!buffer)
809 return -ENOMEM;
810
811 buflen = PAGE_SIZE;
812 end = buffer+buflen;
813 *--end = '\0';
814 buflen--;
815 path = end-1;
816 *path = '/';
817 while (de && de != de->parent) {
818 buflen -= de->namelen + 1;
819 if (buflen < 0)
820 break;
821 end -= de->namelen;
822 memcpy(end, de->name, de->namelen);
823 *--end = '/';
824 path = end;
825 de = de->parent;
826 }
827 rc = security_genfs_sid("proc", path, tclass, sid);
828 free_page((unsigned long)buffer);
829 return rc;
830 }
831 #else
832 static int selinux_proc_get_sid(struct proc_dir_entry *de,
833 u16 tclass,
834 u32 *sid)
835 {
836 return -EINVAL;
837 }
838 #endif
839
840 /* The inode's security attributes must be initialized before first use. */
841 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
842 {
843 struct superblock_security_struct *sbsec = NULL;
844 struct inode_security_struct *isec = inode->i_security;
845 u32 sid;
846 struct dentry *dentry;
847 #define INITCONTEXTLEN 255
848 char *context = NULL;
849 unsigned len = 0;
850 int rc = 0;
851
852 if (isec->initialized)
853 goto out;
854
855 mutex_lock(&isec->lock);
856 if (isec->initialized)
857 goto out_unlock;
858
859 sbsec = inode->i_sb->s_security;
860 if (!sbsec->initialized) {
861 /* Defer initialization until selinux_complete_init,
862 after the initial policy is loaded and the security
863 server is ready to handle calls. */
864 spin_lock(&sbsec->isec_lock);
865 if (list_empty(&isec->list))
866 list_add(&isec->list, &sbsec->isec_head);
867 spin_unlock(&sbsec->isec_lock);
868 goto out_unlock;
869 }
870
871 switch (sbsec->behavior) {
872 case SECURITY_FS_USE_XATTR:
873 if (!inode->i_op->getxattr) {
874 isec->sid = sbsec->def_sid;
875 break;
876 }
877
878 /* Need a dentry, since the xattr API requires one.
879 Life would be simpler if we could just pass the inode. */
880 if (opt_dentry) {
881 /* Called from d_instantiate or d_splice_alias. */
882 dentry = dget(opt_dentry);
883 } else {
884 /* Called from selinux_complete_init, try to find a dentry. */
885 dentry = d_find_alias(inode);
886 }
887 if (!dentry) {
888 printk(KERN_WARNING "%s: no dentry for dev=%s "
889 "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
890 inode->i_ino);
891 goto out_unlock;
892 }
893
894 len = INITCONTEXTLEN;
895 context = kmalloc(len, GFP_KERNEL);
896 if (!context) {
897 rc = -ENOMEM;
898 dput(dentry);
899 goto out_unlock;
900 }
901 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
902 context, len);
903 if (rc == -ERANGE) {
904 /* Need a larger buffer. Query for the right size. */
905 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
906 NULL, 0);
907 if (rc < 0) {
908 dput(dentry);
909 goto out_unlock;
910 }
911 kfree(context);
912 len = rc;
913 context = kmalloc(len, GFP_KERNEL);
914 if (!context) {
915 rc = -ENOMEM;
916 dput(dentry);
917 goto out_unlock;
918 }
919 rc = inode->i_op->getxattr(dentry,
920 XATTR_NAME_SELINUX,
921 context, len);
922 }
923 dput(dentry);
924 if (rc < 0) {
925 if (rc != -ENODATA) {
926 printk(KERN_WARNING "%s: getxattr returned "
927 "%d for dev=%s ino=%ld\n", __FUNCTION__,
928 -rc, inode->i_sb->s_id, inode->i_ino);
929 kfree(context);
930 goto out_unlock;
931 }
932 /* Map ENODATA to the default file SID */
933 sid = sbsec->def_sid;
934 rc = 0;
935 } else {
936 rc = security_context_to_sid_default(context, rc, &sid,
937 sbsec->def_sid);
938 if (rc) {
939 printk(KERN_WARNING "%s: context_to_sid(%s) "
940 "returned %d for dev=%s ino=%ld\n",
941 __FUNCTION__, context, -rc,
942 inode->i_sb->s_id, inode->i_ino);
943 kfree(context);
944 /* Leave with the unlabeled SID */
945 rc = 0;
946 break;
947 }
948 }
949 kfree(context);
950 isec->sid = sid;
951 break;
952 case SECURITY_FS_USE_TASK:
953 isec->sid = isec->task_sid;
954 break;
955 case SECURITY_FS_USE_TRANS:
956 /* Default to the fs SID. */
957 isec->sid = sbsec->sid;
958
959 /* Try to obtain a transition SID. */
960 isec->sclass = inode_mode_to_security_class(inode->i_mode);
961 rc = security_transition_sid(isec->task_sid,
962 sbsec->sid,
963 isec->sclass,
964 &sid);
965 if (rc)
966 goto out_unlock;
967 isec->sid = sid;
968 break;
969 case SECURITY_FS_USE_MNTPOINT:
970 isec->sid = sbsec->mntpoint_sid;
971 break;
972 default:
973 /* Default to the fs superblock SID. */
974 isec->sid = sbsec->sid;
975
976 if (sbsec->proc) {
977 struct proc_inode *proci = PROC_I(inode);
978 if (proci->pde) {
979 isec->sclass = inode_mode_to_security_class(inode->i_mode);
980 rc = selinux_proc_get_sid(proci->pde,
981 isec->sclass,
982 &sid);
983 if (rc)
984 goto out_unlock;
985 isec->sid = sid;
986 }
987 }
988 break;
989 }
990
991 isec->initialized = 1;
992
993 out_unlock:
994 mutex_unlock(&isec->lock);
995 out:
996 if (isec->sclass == SECCLASS_FILE)
997 isec->sclass = inode_mode_to_security_class(inode->i_mode);
998 return rc;
999 }
1000
1001 /* Convert a Linux signal to an access vector. */
1002 static inline u32 signal_to_av(int sig)
1003 {
1004 u32 perm = 0;
1005
1006 switch (sig) {
1007 case SIGCHLD:
1008 /* Commonly granted from child to parent. */
1009 perm = PROCESS__SIGCHLD;
1010 break;
1011 case SIGKILL:
1012 /* Cannot be caught or ignored */
1013 perm = PROCESS__SIGKILL;
1014 break;
1015 case SIGSTOP:
1016 /* Cannot be caught or ignored */
1017 perm = PROCESS__SIGSTOP;
1018 break;
1019 default:
1020 /* All other signals. */
1021 perm = PROCESS__SIGNAL;
1022 break;
1023 }
1024
1025 return perm;
1026 }
1027
1028 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1029 fork check, ptrace check, etc. */
1030 static int task_has_perm(struct task_struct *tsk1,
1031 struct task_struct *tsk2,
1032 u32 perms)
1033 {
1034 struct task_security_struct *tsec1, *tsec2;
1035
1036 tsec1 = tsk1->security;
1037 tsec2 = tsk2->security;
1038 return avc_has_perm(tsec1->sid, tsec2->sid,
1039 SECCLASS_PROCESS, perms, NULL);
1040 }
1041
1042 /* Check whether a task is allowed to use a capability. */
1043 static int task_has_capability(struct task_struct *tsk,
1044 int cap)
1045 {
1046 struct task_security_struct *tsec;
1047 struct avc_audit_data ad;
1048
1049 tsec = tsk->security;
1050
1051 AVC_AUDIT_DATA_INIT(&ad,CAP);
1052 ad.tsk = tsk;
1053 ad.u.cap = cap;
1054
1055 return avc_has_perm(tsec->sid, tsec->sid,
1056 SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1057 }
1058
1059 /* Check whether a task is allowed to use a system operation. */
1060 static int task_has_system(struct task_struct *tsk,
1061 u32 perms)
1062 {
1063 struct task_security_struct *tsec;
1064
1065 tsec = tsk->security;
1066
1067 return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1068 SECCLASS_SYSTEM, perms, NULL);
1069 }
1070
1071 /* Check whether a task has a particular permission to an inode.
1072 The 'adp' parameter is optional and allows other audit
1073 data to be passed (e.g. the dentry). */
1074 static int inode_has_perm(struct task_struct *tsk,
1075 struct inode *inode,
1076 u32 perms,
1077 struct avc_audit_data *adp)
1078 {
1079 struct task_security_struct *tsec;
1080 struct inode_security_struct *isec;
1081 struct avc_audit_data ad;
1082
1083 if (unlikely (IS_PRIVATE (inode)))
1084 return 0;
1085
1086 tsec = tsk->security;
1087 isec = inode->i_security;
1088
1089 if (!adp) {
1090 adp = &ad;
1091 AVC_AUDIT_DATA_INIT(&ad, FS);
1092 ad.u.fs.inode = inode;
1093 }
1094
1095 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1096 }
1097
1098 /* Same as inode_has_perm, but pass explicit audit data containing
1099 the dentry to help the auditing code to more easily generate the
1100 pathname if needed. */
1101 static inline int dentry_has_perm(struct task_struct *tsk,
1102 struct vfsmount *mnt,
1103 struct dentry *dentry,
1104 u32 av)
1105 {
1106 struct inode *inode = dentry->d_inode;
1107 struct avc_audit_data ad;
1108 AVC_AUDIT_DATA_INIT(&ad,FS);
1109 ad.u.fs.mnt = mnt;
1110 ad.u.fs.dentry = dentry;
1111 return inode_has_perm(tsk, inode, av, &ad);
1112 }
1113
1114 /* Check whether a task can use an open file descriptor to
1115 access an inode in a given way. Check access to the
1116 descriptor itself, and then use dentry_has_perm to
1117 check a particular permission to the file.
1118 Access to the descriptor is implicitly granted if it
1119 has the same SID as the process. If av is zero, then
1120 access to the file is not checked, e.g. for cases
1121 where only the descriptor is affected like seek. */
1122 static int file_has_perm(struct task_struct *tsk,
1123 struct file *file,
1124 u32 av)
1125 {
1126 struct task_security_struct *tsec = tsk->security;
1127 struct file_security_struct *fsec = file->f_security;
1128 struct vfsmount *mnt = file->f_path.mnt;
1129 struct dentry *dentry = file->f_path.dentry;
1130 struct inode *inode = dentry->d_inode;
1131 struct avc_audit_data ad;
1132 int rc;
1133
1134 AVC_AUDIT_DATA_INIT(&ad, FS);
1135 ad.u.fs.mnt = mnt;
1136 ad.u.fs.dentry = dentry;
1137
1138 if (tsec->sid != fsec->sid) {
1139 rc = avc_has_perm(tsec->sid, fsec->sid,
1140 SECCLASS_FD,
1141 FD__USE,
1142 &ad);
1143 if (rc)
1144 return rc;
1145 }
1146
1147 /* av is zero if only checking access to the descriptor. */
1148 if (av)
1149 return inode_has_perm(tsk, inode, av, &ad);
1150
1151 return 0;
1152 }
1153
1154 /* Check whether a task can create a file. */
1155 static int may_create(struct inode *dir,
1156 struct dentry *dentry,
1157 u16 tclass)
1158 {
1159 struct task_security_struct *tsec;
1160 struct inode_security_struct *dsec;
1161 struct superblock_security_struct *sbsec;
1162 u32 newsid;
1163 struct avc_audit_data ad;
1164 int rc;
1165
1166 tsec = current->security;
1167 dsec = dir->i_security;
1168 sbsec = dir->i_sb->s_security;
1169
1170 AVC_AUDIT_DATA_INIT(&ad, FS);
1171 ad.u.fs.dentry = dentry;
1172
1173 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1174 DIR__ADD_NAME | DIR__SEARCH,
1175 &ad);
1176 if (rc)
1177 return rc;
1178
1179 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1180 newsid = tsec->create_sid;
1181 } else {
1182 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1183 &newsid);
1184 if (rc)
1185 return rc;
1186 }
1187
1188 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1189 if (rc)
1190 return rc;
1191
1192 return avc_has_perm(newsid, sbsec->sid,
1193 SECCLASS_FILESYSTEM,
1194 FILESYSTEM__ASSOCIATE, &ad);
1195 }
1196
1197 /* Check whether a task can create a key. */
1198 static int may_create_key(u32 ksid,
1199 struct task_struct *ctx)
1200 {
1201 struct task_security_struct *tsec;
1202
1203 tsec = ctx->security;
1204
1205 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1206 }
1207
1208 #define MAY_LINK 0
1209 #define MAY_UNLINK 1
1210 #define MAY_RMDIR 2
1211
1212 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1213 static int may_link(struct inode *dir,
1214 struct dentry *dentry,
1215 int kind)
1216
1217 {
1218 struct task_security_struct *tsec;
1219 struct inode_security_struct *dsec, *isec;
1220 struct avc_audit_data ad;
1221 u32 av;
1222 int rc;
1223
1224 tsec = current->security;
1225 dsec = dir->i_security;
1226 isec = dentry->d_inode->i_security;
1227
1228 AVC_AUDIT_DATA_INIT(&ad, FS);
1229 ad.u.fs.dentry = dentry;
1230
1231 av = DIR__SEARCH;
1232 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1233 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1234 if (rc)
1235 return rc;
1236
1237 switch (kind) {
1238 case MAY_LINK:
1239 av = FILE__LINK;
1240 break;
1241 case MAY_UNLINK:
1242 av = FILE__UNLINK;
1243 break;
1244 case MAY_RMDIR:
1245 av = DIR__RMDIR;
1246 break;
1247 default:
1248 printk(KERN_WARNING "may_link: unrecognized kind %d\n", kind);
1249 return 0;
1250 }
1251
1252 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1253 return rc;
1254 }
1255
1256 static inline int may_rename(struct inode *old_dir,
1257 struct dentry *old_dentry,
1258 struct inode *new_dir,
1259 struct dentry *new_dentry)
1260 {
1261 struct task_security_struct *tsec;
1262 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1263 struct avc_audit_data ad;
1264 u32 av;
1265 int old_is_dir, new_is_dir;
1266 int rc;
1267
1268 tsec = current->security;
1269 old_dsec = old_dir->i_security;
1270 old_isec = old_dentry->d_inode->i_security;
1271 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1272 new_dsec = new_dir->i_security;
1273
1274 AVC_AUDIT_DATA_INIT(&ad, FS);
1275
1276 ad.u.fs.dentry = old_dentry;
1277 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1278 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1279 if (rc)
1280 return rc;
1281 rc = avc_has_perm(tsec->sid, old_isec->sid,
1282 old_isec->sclass, FILE__RENAME, &ad);
1283 if (rc)
1284 return rc;
1285 if (old_is_dir && new_dir != old_dir) {
1286 rc = avc_has_perm(tsec->sid, old_isec->sid,
1287 old_isec->sclass, DIR__REPARENT, &ad);
1288 if (rc)
1289 return rc;
1290 }
1291
1292 ad.u.fs.dentry = new_dentry;
1293 av = DIR__ADD_NAME | DIR__SEARCH;
1294 if (new_dentry->d_inode)
1295 av |= DIR__REMOVE_NAME;
1296 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1297 if (rc)
1298 return rc;
1299 if (new_dentry->d_inode) {
1300 new_isec = new_dentry->d_inode->i_security;
1301 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1302 rc = avc_has_perm(tsec->sid, new_isec->sid,
1303 new_isec->sclass,
1304 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1305 if (rc)
1306 return rc;
1307 }
1308
1309 return 0;
1310 }
1311
1312 /* Check whether a task can perform a filesystem operation. */
1313 static int superblock_has_perm(struct task_struct *tsk,
1314 struct super_block *sb,
1315 u32 perms,
1316 struct avc_audit_data *ad)
1317 {
1318 struct task_security_struct *tsec;
1319 struct superblock_security_struct *sbsec;
1320
1321 tsec = tsk->security;
1322 sbsec = sb->s_security;
1323 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1324 perms, ad);
1325 }
1326
1327 /* Convert a Linux mode and permission mask to an access vector. */
1328 static inline u32 file_mask_to_av(int mode, int mask)
1329 {
1330 u32 av = 0;
1331
1332 if ((mode & S_IFMT) != S_IFDIR) {
1333 if (mask & MAY_EXEC)
1334 av |= FILE__EXECUTE;
1335 if (mask & MAY_READ)
1336 av |= FILE__READ;
1337
1338 if (mask & MAY_APPEND)
1339 av |= FILE__APPEND;
1340 else if (mask & MAY_WRITE)
1341 av |= FILE__WRITE;
1342
1343 } else {
1344 if (mask & MAY_EXEC)
1345 av |= DIR__SEARCH;
1346 if (mask & MAY_WRITE)
1347 av |= DIR__WRITE;
1348 if (mask & MAY_READ)
1349 av |= DIR__READ;
1350 }
1351
1352 return av;
1353 }
1354
1355 /* Convert a Linux file to an access vector. */
1356 static inline u32 file_to_av(struct file *file)
1357 {
1358 u32 av = 0;
1359
1360 if (file->f_mode & FMODE_READ)
1361 av |= FILE__READ;
1362 if (file->f_mode & FMODE_WRITE) {
1363 if (file->f_flags & O_APPEND)
1364 av |= FILE__APPEND;
1365 else
1366 av |= FILE__WRITE;
1367 }
1368
1369 return av;
1370 }
1371
1372 /* Hook functions begin here. */
1373
1374 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1375 {
1376 struct task_security_struct *psec = parent->security;
1377 struct task_security_struct *csec = child->security;
1378 int rc;
1379
1380 rc = secondary_ops->ptrace(parent,child);
1381 if (rc)
1382 return rc;
1383
1384 rc = task_has_perm(parent, child, PROCESS__PTRACE);
1385 /* Save the SID of the tracing process for later use in apply_creds. */
1386 if (!(child->ptrace & PT_PTRACED) && !rc)
1387 csec->ptrace_sid = psec->sid;
1388 return rc;
1389 }
1390
1391 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1392 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1393 {
1394 int error;
1395
1396 error = task_has_perm(current, target, PROCESS__GETCAP);
1397 if (error)
1398 return error;
1399
1400 return secondary_ops->capget(target, effective, inheritable, permitted);
1401 }
1402
1403 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1404 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1405 {
1406 int error;
1407
1408 error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1409 if (error)
1410 return error;
1411
1412 return task_has_perm(current, target, PROCESS__SETCAP);
1413 }
1414
1415 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1416 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1417 {
1418 secondary_ops->capset_set(target, effective, inheritable, permitted);
1419 }
1420
1421 static int selinux_capable(struct task_struct *tsk, int cap)
1422 {
1423 int rc;
1424
1425 rc = secondary_ops->capable(tsk, cap);
1426 if (rc)
1427 return rc;
1428
1429 return task_has_capability(tsk,cap);
1430 }
1431
1432 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1433 {
1434 int buflen, rc;
1435 char *buffer, *path, *end;
1436
1437 rc = -ENOMEM;
1438 buffer = (char*)__get_free_page(GFP_KERNEL);
1439 if (!buffer)
1440 goto out;
1441
1442 buflen = PAGE_SIZE;
1443 end = buffer+buflen;
1444 *--end = '\0';
1445 buflen--;
1446 path = end-1;
1447 *path = '/';
1448 while (table) {
1449 const char *name = table->procname;
1450 size_t namelen = strlen(name);
1451 buflen -= namelen + 1;
1452 if (buflen < 0)
1453 goto out_free;
1454 end -= namelen;
1455 memcpy(end, name, namelen);
1456 *--end = '/';
1457 path = end;
1458 table = table->parent;
1459 }
1460 buflen -= 4;
1461 if (buflen < 0)
1462 goto out_free;
1463 end -= 4;
1464 memcpy(end, "/sys", 4);
1465 path = end;
1466 rc = security_genfs_sid("proc", path, tclass, sid);
1467 out_free:
1468 free_page((unsigned long)buffer);
1469 out:
1470 return rc;
1471 }
1472
1473 static int selinux_sysctl(ctl_table *table, int op)
1474 {
1475 int error = 0;
1476 u32 av;
1477 struct task_security_struct *tsec;
1478 u32 tsid;
1479 int rc;
1480
1481 rc = secondary_ops->sysctl(table, op);
1482 if (rc)
1483 return rc;
1484
1485 tsec = current->security;
1486
1487 rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1488 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1489 if (rc) {
1490 /* Default to the well-defined sysctl SID. */
1491 tsid = SECINITSID_SYSCTL;
1492 }
1493
1494 /* The op values are "defined" in sysctl.c, thereby creating
1495 * a bad coupling between this module and sysctl.c */
1496 if(op == 001) {
1497 error = avc_has_perm(tsec->sid, tsid,
1498 SECCLASS_DIR, DIR__SEARCH, NULL);
1499 } else {
1500 av = 0;
1501 if (op & 004)
1502 av |= FILE__READ;
1503 if (op & 002)
1504 av |= FILE__WRITE;
1505 if (av)
1506 error = avc_has_perm(tsec->sid, tsid,
1507 SECCLASS_FILE, av, NULL);
1508 }
1509
1510 return error;
1511 }
1512
1513 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1514 {
1515 int rc = 0;
1516
1517 if (!sb)
1518 return 0;
1519
1520 switch (cmds) {
1521 case Q_SYNC:
1522 case Q_QUOTAON:
1523 case Q_QUOTAOFF:
1524 case Q_SETINFO:
1525 case Q_SETQUOTA:
1526 rc = superblock_has_perm(current,
1527 sb,
1528 FILESYSTEM__QUOTAMOD, NULL);
1529 break;
1530 case Q_GETFMT:
1531 case Q_GETINFO:
1532 case Q_GETQUOTA:
1533 rc = superblock_has_perm(current,
1534 sb,
1535 FILESYSTEM__QUOTAGET, NULL);
1536 break;
1537 default:
1538 rc = 0; /* let the kernel handle invalid cmds */
1539 break;
1540 }
1541 return rc;
1542 }
1543
1544 static int selinux_quota_on(struct dentry *dentry)
1545 {
1546 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1547 }
1548
1549 static int selinux_syslog(int type)
1550 {
1551 int rc;
1552
1553 rc = secondary_ops->syslog(type);
1554 if (rc)
1555 return rc;
1556
1557 switch (type) {
1558 case 3: /* Read last kernel messages */
1559 case 10: /* Return size of the log buffer */
1560 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1561 break;
1562 case 6: /* Disable logging to console */
1563 case 7: /* Enable logging to console */
1564 case 8: /* Set level of messages printed to console */
1565 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1566 break;
1567 case 0: /* Close log */
1568 case 1: /* Open log */
1569 case 2: /* Read from log */
1570 case 4: /* Read/clear last kernel messages */
1571 case 5: /* Clear ring buffer */
1572 default:
1573 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1574 break;
1575 }
1576 return rc;
1577 }
1578
1579 /*
1580 * Check that a process has enough memory to allocate a new virtual
1581 * mapping. 0 means there is enough memory for the allocation to
1582 * succeed and -ENOMEM implies there is not.
1583 *
1584 * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1585 * if the capability is granted, but __vm_enough_memory requires 1 if
1586 * the capability is granted.
1587 *
1588 * Do not audit the selinux permission check, as this is applied to all
1589 * processes that allocate mappings.
1590 */
1591 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1592 {
1593 int rc, cap_sys_admin = 0;
1594 struct task_security_struct *tsec = current->security;
1595
1596 rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1597 if (rc == 0)
1598 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1599 SECCLASS_CAPABILITY,
1600 CAP_TO_MASK(CAP_SYS_ADMIN),
1601 0,
1602 NULL);
1603
1604 if (rc == 0)
1605 cap_sys_admin = 1;
1606
1607 return __vm_enough_memory(mm, pages, cap_sys_admin);
1608 }
1609
1610 /* binprm security operations */
1611
1612 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1613 {
1614 struct bprm_security_struct *bsec;
1615
1616 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1617 if (!bsec)
1618 return -ENOMEM;
1619
1620 bsec->bprm = bprm;
1621 bsec->sid = SECINITSID_UNLABELED;
1622 bsec->set = 0;
1623
1624 bprm->security = bsec;
1625 return 0;
1626 }
1627
1628 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1629 {
1630 struct task_security_struct *tsec;
1631 struct inode *inode = bprm->file->f_path.dentry->d_inode;
1632 struct inode_security_struct *isec;
1633 struct bprm_security_struct *bsec;
1634 u32 newsid;
1635 struct avc_audit_data ad;
1636 int rc;
1637
1638 rc = secondary_ops->bprm_set_security(bprm);
1639 if (rc)
1640 return rc;
1641
1642 bsec = bprm->security;
1643
1644 if (bsec->set)
1645 return 0;
1646
1647 tsec = current->security;
1648 isec = inode->i_security;
1649
1650 /* Default to the current task SID. */
1651 bsec->sid = tsec->sid;
1652
1653 /* Reset fs, key, and sock SIDs on execve. */
1654 tsec->create_sid = 0;
1655 tsec->keycreate_sid = 0;
1656 tsec->sockcreate_sid = 0;
1657
1658 if (tsec->exec_sid) {
1659 newsid = tsec->exec_sid;
1660 /* Reset exec SID on execve. */
1661 tsec->exec_sid = 0;
1662 } else {
1663 /* Check for a default transition on this program. */
1664 rc = security_transition_sid(tsec->sid, isec->sid,
1665 SECCLASS_PROCESS, &newsid);
1666 if (rc)
1667 return rc;
1668 }
1669
1670 AVC_AUDIT_DATA_INIT(&ad, FS);
1671 ad.u.fs.mnt = bprm->file->f_path.mnt;
1672 ad.u.fs.dentry = bprm->file->f_path.dentry;
1673
1674 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1675 newsid = tsec->sid;
1676
1677 if (tsec->sid == newsid) {
1678 rc = avc_has_perm(tsec->sid, isec->sid,
1679 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1680 if (rc)
1681 return rc;
1682 } else {
1683 /* Check permissions for the transition. */
1684 rc = avc_has_perm(tsec->sid, newsid,
1685 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1686 if (rc)
1687 return rc;
1688
1689 rc = avc_has_perm(newsid, isec->sid,
1690 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1691 if (rc)
1692 return rc;
1693
1694 /* Clear any possibly unsafe personality bits on exec: */
1695 current->personality &= ~PER_CLEAR_ON_SETID;
1696
1697 /* Set the security field to the new SID. */
1698 bsec->sid = newsid;
1699 }
1700
1701 bsec->set = 1;
1702 return 0;
1703 }
1704
1705 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1706 {
1707 return secondary_ops->bprm_check_security(bprm);
1708 }
1709
1710
1711 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1712 {
1713 struct task_security_struct *tsec = current->security;
1714 int atsecure = 0;
1715
1716 if (tsec->osid != tsec->sid) {
1717 /* Enable secure mode for SIDs transitions unless
1718 the noatsecure permission is granted between
1719 the two SIDs, i.e. ahp returns 0. */
1720 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1721 SECCLASS_PROCESS,
1722 PROCESS__NOATSECURE, NULL);
1723 }
1724
1725 return (atsecure || secondary_ops->bprm_secureexec(bprm));
1726 }
1727
1728 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1729 {
1730 kfree(bprm->security);
1731 bprm->security = NULL;
1732 }
1733
1734 extern struct vfsmount *selinuxfs_mount;
1735 extern struct dentry *selinux_null;
1736
1737 /* Derived from fs/exec.c:flush_old_files. */
1738 static inline void flush_unauthorized_files(struct files_struct * files)
1739 {
1740 struct avc_audit_data ad;
1741 struct file *file, *devnull = NULL;
1742 struct tty_struct *tty;
1743 struct fdtable *fdt;
1744 long j = -1;
1745 int drop_tty = 0;
1746
1747 mutex_lock(&tty_mutex);
1748 tty = get_current_tty();
1749 if (tty) {
1750 file_list_lock();
1751 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1752 if (file) {
1753 /* Revalidate access to controlling tty.
1754 Use inode_has_perm on the tty inode directly rather
1755 than using file_has_perm, as this particular open
1756 file may belong to another process and we are only
1757 interested in the inode-based check here. */
1758 struct inode *inode = file->f_path.dentry->d_inode;
1759 if (inode_has_perm(current, inode,
1760 FILE__READ | FILE__WRITE, NULL)) {
1761 drop_tty = 1;
1762 }
1763 }
1764 file_list_unlock();
1765 }
1766 mutex_unlock(&tty_mutex);
1767 /* Reset controlling tty. */
1768 if (drop_tty)
1769 no_tty();
1770
1771 /* Revalidate access to inherited open files. */
1772
1773 AVC_AUDIT_DATA_INIT(&ad,FS);
1774
1775 spin_lock(&files->file_lock);
1776 for (;;) {
1777 unsigned long set, i;
1778 int fd;
1779
1780 j++;
1781 i = j * __NFDBITS;
1782 fdt = files_fdtable(files);
1783 if (i >= fdt->max_fds)
1784 break;
1785 set = fdt->open_fds->fds_bits[j];
1786 if (!set)
1787 continue;
1788 spin_unlock(&files->file_lock);
1789 for ( ; set ; i++,set >>= 1) {
1790 if (set & 1) {
1791 file = fget(i);
1792 if (!file)
1793 continue;
1794 if (file_has_perm(current,
1795 file,
1796 file_to_av(file))) {
1797 sys_close(i);
1798 fd = get_unused_fd();
1799 if (fd != i) {
1800 if (fd >= 0)
1801 put_unused_fd(fd);
1802 fput(file);
1803 continue;
1804 }
1805 if (devnull) {
1806 get_file(devnull);
1807 } else {
1808 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1809 if (IS_ERR(devnull)) {
1810 devnull = NULL;
1811 put_unused_fd(fd);
1812 fput(file);
1813 continue;
1814 }
1815 }
1816 fd_install(fd, devnull);
1817 }
1818 fput(file);
1819 }
1820 }
1821 spin_lock(&files->file_lock);
1822
1823 }
1824 spin_unlock(&files->file_lock);
1825 }
1826
1827 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1828 {
1829 struct task_security_struct *tsec;
1830 struct bprm_security_struct *bsec;
1831 u32 sid;
1832 int rc;
1833
1834 secondary_ops->bprm_apply_creds(bprm, unsafe);
1835
1836 tsec = current->security;
1837
1838 bsec = bprm->security;
1839 sid = bsec->sid;
1840
1841 tsec->osid = tsec->sid;
1842 bsec->unsafe = 0;
1843 if (tsec->sid != sid) {
1844 /* Check for shared state. If not ok, leave SID
1845 unchanged and kill. */
1846 if (unsafe & LSM_UNSAFE_SHARE) {
1847 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1848 PROCESS__SHARE, NULL);
1849 if (rc) {
1850 bsec->unsafe = 1;
1851 return;
1852 }
1853 }
1854
1855 /* Check for ptracing, and update the task SID if ok.
1856 Otherwise, leave SID unchanged and kill. */
1857 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1858 rc = avc_has_perm(tsec->ptrace_sid, sid,
1859 SECCLASS_PROCESS, PROCESS__PTRACE,
1860 NULL);
1861 if (rc) {
1862 bsec->unsafe = 1;
1863 return;
1864 }
1865 }
1866 tsec->sid = sid;
1867 }
1868 }
1869
1870 /*
1871 * called after apply_creds without the task lock held
1872 */
1873 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1874 {
1875 struct task_security_struct *tsec;
1876 struct rlimit *rlim, *initrlim;
1877 struct itimerval itimer;
1878 struct bprm_security_struct *bsec;
1879 int rc, i;
1880
1881 tsec = current->security;
1882 bsec = bprm->security;
1883
1884 if (bsec->unsafe) {
1885 force_sig_specific(SIGKILL, current);
1886 return;
1887 }
1888 if (tsec->osid == tsec->sid)
1889 return;
1890
1891 /* Close files for which the new task SID is not authorized. */
1892 flush_unauthorized_files(current->files);
1893
1894 /* Check whether the new SID can inherit signal state
1895 from the old SID. If not, clear itimers to avoid
1896 subsequent signal generation and flush and unblock
1897 signals. This must occur _after_ the task SID has
1898 been updated so that any kill done after the flush
1899 will be checked against the new SID. */
1900 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1901 PROCESS__SIGINH, NULL);
1902 if (rc) {
1903 memset(&itimer, 0, sizeof itimer);
1904 for (i = 0; i < 3; i++)
1905 do_setitimer(i, &itimer, NULL);
1906 flush_signals(current);
1907 spin_lock_irq(&current->sighand->siglock);
1908 flush_signal_handlers(current, 1);
1909 sigemptyset(&current->blocked);
1910 recalc_sigpending();
1911 spin_unlock_irq(&current->sighand->siglock);
1912 }
1913
1914 /* Always clear parent death signal on SID transitions. */
1915 current->pdeath_signal = 0;
1916
1917 /* Check whether the new SID can inherit resource limits
1918 from the old SID. If not, reset all soft limits to
1919 the lower of the current task's hard limit and the init
1920 task's soft limit. Note that the setting of hard limits
1921 (even to lower them) can be controlled by the setrlimit
1922 check. The inclusion of the init task's soft limit into
1923 the computation is to avoid resetting soft limits higher
1924 than the default soft limit for cases where the default
1925 is lower than the hard limit, e.g. RLIMIT_CORE or
1926 RLIMIT_STACK.*/
1927 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1928 PROCESS__RLIMITINH, NULL);
1929 if (rc) {
1930 for (i = 0; i < RLIM_NLIMITS; i++) {
1931 rlim = current->signal->rlim + i;
1932 initrlim = init_task.signal->rlim+i;
1933 rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1934 }
1935 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1936 /*
1937 * This will cause RLIMIT_CPU calculations
1938 * to be refigured.
1939 */
1940 current->it_prof_expires = jiffies_to_cputime(1);
1941 }
1942 }
1943
1944 /* Wake up the parent if it is waiting so that it can
1945 recheck wait permission to the new task SID. */
1946 wake_up_interruptible(&current->parent->signal->wait_chldexit);
1947 }
1948
1949 /* superblock security operations */
1950
1951 static int selinux_sb_alloc_security(struct super_block *sb)
1952 {
1953 return superblock_alloc_security(sb);
1954 }
1955
1956 static void selinux_sb_free_security(struct super_block *sb)
1957 {
1958 superblock_free_security(sb);
1959 }
1960
1961 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1962 {
1963 if (plen > olen)
1964 return 0;
1965
1966 return !memcmp(prefix, option, plen);
1967 }
1968
1969 static inline int selinux_option(char *option, int len)
1970 {
1971 return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1972 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1973 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1974 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1975 }
1976
1977 static inline void take_option(char **to, char *from, int *first, int len)
1978 {
1979 if (!*first) {
1980 **to = ',';
1981 *to += 1;
1982 } else
1983 *first = 0;
1984 memcpy(*to, from, len);
1985 *to += len;
1986 }
1987
1988 static inline void take_selinux_option(char **to, char *from, int *first,
1989 int len)
1990 {
1991 int current_size = 0;
1992
1993 if (!*first) {
1994 **to = '|';
1995 *to += 1;
1996 }
1997 else
1998 *first = 0;
1999
2000 while (current_size < len) {
2001 if (*from != '"') {
2002 **to = *from;
2003 *to += 1;
2004 }
2005 from += 1;
2006 current_size += 1;
2007 }
2008 }
2009
2010 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
2011 {
2012 int fnosec, fsec, rc = 0;
2013 char *in_save, *in_curr, *in_end;
2014 char *sec_curr, *nosec_save, *nosec;
2015 int open_quote = 0;
2016
2017 in_curr = orig;
2018 sec_curr = copy;
2019
2020 /* Binary mount data: just copy */
2021 if (type->fs_flags & FS_BINARY_MOUNTDATA) {
2022 copy_page(sec_curr, in_curr);
2023 goto out;
2024 }
2025
2026 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2027 if (!nosec) {
2028 rc = -ENOMEM;
2029 goto out;
2030 }
2031
2032 nosec_save = nosec;
2033 fnosec = fsec = 1;
2034 in_save = in_end = orig;
2035
2036 do {
2037 if (*in_end == '"')
2038 open_quote = !open_quote;
2039 if ((*in_end == ',' && open_quote == 0) ||
2040 *in_end == '\0') {
2041 int len = in_end - in_curr;
2042
2043 if (selinux_option(in_curr, len))
2044 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2045 else
2046 take_option(&nosec, in_curr, &fnosec, len);
2047
2048 in_curr = in_end + 1;
2049 }
2050 } while (*in_end++);
2051
2052 strcpy(in_save, nosec_save);
2053 free_page((unsigned long)nosec_save);
2054 out:
2055 return rc;
2056 }
2057
2058 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2059 {
2060 struct avc_audit_data ad;
2061 int rc;
2062
2063 rc = superblock_doinit(sb, data);
2064 if (rc)
2065 return rc;
2066
2067 AVC_AUDIT_DATA_INIT(&ad,FS);
2068 ad.u.fs.dentry = sb->s_root;
2069 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2070 }
2071
2072 static int selinux_sb_statfs(struct dentry *dentry)
2073 {
2074 struct avc_audit_data ad;
2075
2076 AVC_AUDIT_DATA_INIT(&ad,FS);
2077 ad.u.fs.dentry = dentry->d_sb->s_root;
2078 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2079 }
2080
2081 static int selinux_mount(char * dev_name,
2082 struct nameidata *nd,
2083 char * type,
2084 unsigned long flags,
2085 void * data)
2086 {
2087 int rc;
2088
2089 rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2090 if (rc)
2091 return rc;
2092
2093 if (flags & MS_REMOUNT)
2094 return superblock_has_perm(current, nd->mnt->mnt_sb,
2095 FILESYSTEM__REMOUNT, NULL);
2096 else
2097 return dentry_has_perm(current, nd->mnt, nd->dentry,
2098 FILE__MOUNTON);
2099 }
2100
2101 static int selinux_umount(struct vfsmount *mnt, int flags)
2102 {
2103 int rc;
2104
2105 rc = secondary_ops->sb_umount(mnt, flags);
2106 if (rc)
2107 return rc;
2108
2109 return superblock_has_perm(current,mnt->mnt_sb,
2110 FILESYSTEM__UNMOUNT,NULL);
2111 }
2112
2113 /* inode security operations */
2114
2115 static int selinux_inode_alloc_security(struct inode *inode)
2116 {
2117 return inode_alloc_security(inode);
2118 }
2119
2120 static void selinux_inode_free_security(struct inode *inode)
2121 {
2122 inode_free_security(inode);
2123 }
2124
2125 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2126 char **name, void **value,
2127 size_t *len)
2128 {
2129 struct task_security_struct *tsec;
2130 struct inode_security_struct *dsec;
2131 struct superblock_security_struct *sbsec;
2132 u32 newsid, clen;
2133 int rc;
2134 char *namep = NULL, *context;
2135
2136 tsec = current->security;
2137 dsec = dir->i_security;
2138 sbsec = dir->i_sb->s_security;
2139
2140 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2141 newsid = tsec->create_sid;
2142 } else {
2143 rc = security_transition_sid(tsec->sid, dsec->sid,
2144 inode_mode_to_security_class(inode->i_mode),
2145 &newsid);
2146 if (rc) {
2147 printk(KERN_WARNING "%s: "
2148 "security_transition_sid failed, rc=%d (dev=%s "
2149 "ino=%ld)\n",
2150 __FUNCTION__,
2151 -rc, inode->i_sb->s_id, inode->i_ino);
2152 return rc;
2153 }
2154 }
2155
2156 /* Possibly defer initialization to selinux_complete_init. */
2157 if (sbsec->initialized) {
2158 struct inode_security_struct *isec = inode->i_security;
2159 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2160 isec->sid = newsid;
2161 isec->initialized = 1;
2162 }
2163
2164 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2165 return -EOPNOTSUPP;
2166
2167 if (name) {
2168 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2169 if (!namep)
2170 return -ENOMEM;
2171 *name = namep;
2172 }
2173
2174 if (value && len) {
2175 rc = security_sid_to_context(newsid, &context, &clen);
2176 if (rc) {
2177 kfree(namep);
2178 return rc;
2179 }
2180 *value = context;
2181 *len = clen;
2182 }
2183
2184 return 0;
2185 }
2186
2187 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2188 {
2189 return may_create(dir, dentry, SECCLASS_FILE);
2190 }
2191
2192 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2193 {
2194 int rc;
2195
2196 rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2197 if (rc)
2198 return rc;
2199 return may_link(dir, old_dentry, MAY_LINK);
2200 }
2201
2202 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2203 {
2204 int rc;
2205
2206 rc = secondary_ops->inode_unlink(dir, dentry);
2207 if (rc)
2208 return rc;
2209 return may_link(dir, dentry, MAY_UNLINK);
2210 }
2211
2212 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2213 {
2214 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2215 }
2216
2217 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2218 {
2219 return may_create(dir, dentry, SECCLASS_DIR);
2220 }
2221
2222 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2223 {
2224 return may_link(dir, dentry, MAY_RMDIR);
2225 }
2226
2227 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2228 {
2229 int rc;
2230
2231 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2232 if (rc)
2233 return rc;
2234
2235 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2236 }
2237
2238 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2239 struct inode *new_inode, struct dentry *new_dentry)
2240 {
2241 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2242 }
2243
2244 static int selinux_inode_readlink(struct dentry *dentry)
2245 {
2246 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2247 }
2248
2249 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2250 {
2251 int rc;
2252
2253 rc = secondary_ops->inode_follow_link(dentry,nameidata);
2254 if (rc)
2255 return rc;
2256 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2257 }
2258
2259 static int selinux_inode_permission(struct inode *inode, int mask,
2260 struct nameidata *nd)
2261 {
2262 int rc;
2263
2264 rc = secondary_ops->inode_permission(inode, mask, nd);
2265 if (rc)
2266 return rc;
2267
2268 if (!mask) {
2269 /* No permission to check. Existence test. */
2270 return 0;
2271 }
2272
2273 return inode_has_perm(current, inode,
2274 file_mask_to_av(inode->i_mode, mask), NULL);
2275 }
2276
2277 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2278 {
2279 int rc;
2280
2281 rc = secondary_ops->inode_setattr(dentry, iattr);
2282 if (rc)
2283 return rc;
2284
2285 if (iattr->ia_valid & ATTR_FORCE)
2286 return 0;
2287
2288 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2289 ATTR_ATIME_SET | ATTR_MTIME_SET))
2290 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2291
2292 return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2293 }
2294
2295 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2296 {
2297 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2298 }
2299
2300 static int selinux_inode_setotherxattr(struct dentry *dentry, char *name)
2301 {
2302 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2303 sizeof XATTR_SECURITY_PREFIX - 1)) {
2304 if (!strcmp(name, XATTR_NAME_CAPS)) {
2305 if (!capable(CAP_SETFCAP))
2306 return -EPERM;
2307 } else if (!capable(CAP_SYS_ADMIN)) {
2308 /* A different attribute in the security namespace.
2309 Restrict to administrator. */
2310 return -EPERM;
2311 }
2312 }
2313
2314 /* Not an attribute we recognize, so just check the
2315 ordinary setattr permission. */
2316 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2317 }
2318
2319 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2320 {
2321 struct task_security_struct *tsec = current->security;
2322 struct inode *inode = dentry->d_inode;
2323 struct inode_security_struct *isec = inode->i_security;
2324 struct superblock_security_struct *sbsec;
2325 struct avc_audit_data ad;
2326 u32 newsid;
2327 int rc = 0;
2328
2329 if (strcmp(name, XATTR_NAME_SELINUX))
2330 return selinux_inode_setotherxattr(dentry, name);
2331
2332 sbsec = inode->i_sb->s_security;
2333 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2334 return -EOPNOTSUPP;
2335
2336 if (!is_owner_or_cap(inode))
2337 return -EPERM;
2338
2339 AVC_AUDIT_DATA_INIT(&ad,FS);
2340 ad.u.fs.dentry = dentry;
2341
2342 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2343 FILE__RELABELFROM, &ad);
2344 if (rc)
2345 return rc;
2346
2347 rc = security_context_to_sid(value, size, &newsid);
2348 if (rc)
2349 return rc;
2350
2351 rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2352 FILE__RELABELTO, &ad);
2353 if (rc)
2354 return rc;
2355
2356 rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2357 isec->sclass);
2358 if (rc)
2359 return rc;
2360
2361 return avc_has_perm(newsid,
2362 sbsec->sid,
2363 SECCLASS_FILESYSTEM,
2364 FILESYSTEM__ASSOCIATE,
2365 &ad);
2366 }
2367
2368 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2369 void *value, size_t size, int flags)
2370 {
2371 struct inode *inode = dentry->d_inode;
2372 struct inode_security_struct *isec = inode->i_security;
2373 u32 newsid;
2374 int rc;
2375
2376 if (strcmp(name, XATTR_NAME_SELINUX)) {
2377 /* Not an attribute we recognize, so nothing to do. */
2378 return;
2379 }
2380
2381 rc = security_context_to_sid(value, size, &newsid);
2382 if (rc) {
2383 printk(KERN_WARNING "%s: unable to obtain SID for context "
2384 "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2385 return;
2386 }
2387
2388 isec->sid = newsid;
2389 return;
2390 }
2391
2392 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2393 {
2394 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2395 }
2396
2397 static int selinux_inode_listxattr (struct dentry *dentry)
2398 {
2399 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2400 }
2401
2402 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2403 {
2404 if (strcmp(name, XATTR_NAME_SELINUX))
2405 return selinux_inode_setotherxattr(dentry, name);
2406
2407 /* No one is allowed to remove a SELinux security label.
2408 You can change the label, but all data must be labeled. */
2409 return -EACCES;
2410 }
2411
2412 /*
2413 * Copy the in-core inode security context value to the user. If the
2414 * getxattr() prior to this succeeded, check to see if we need to
2415 * canonicalize the value to be finally returned to the user.
2416 *
2417 * Permission check is handled by selinux_inode_getxattr hook.
2418 */
2419 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2420 {
2421 struct inode_security_struct *isec = inode->i_security;
2422
2423 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2424 return -EOPNOTSUPP;
2425
2426 return selinux_getsecurity(isec->sid, buffer, size);
2427 }
2428
2429 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2430 const void *value, size_t size, int flags)
2431 {
2432 struct inode_security_struct *isec = inode->i_security;
2433 u32 newsid;
2434 int rc;
2435
2436 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2437 return -EOPNOTSUPP;
2438
2439 if (!value || !size)
2440 return -EACCES;
2441
2442 rc = security_context_to_sid((void*)value, size, &newsid);
2443 if (rc)
2444 return rc;
2445
2446 isec->sid = newsid;
2447 return 0;
2448 }
2449
2450 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2451 {
2452 const int len = sizeof(XATTR_NAME_SELINUX);
2453 if (buffer && len <= buffer_size)
2454 memcpy(buffer, XATTR_NAME_SELINUX, len);
2455 return len;
2456 }
2457
2458 static int selinux_inode_need_killpriv(struct dentry *dentry)
2459 {
2460 return secondary_ops->inode_need_killpriv(dentry);
2461 }
2462
2463 static int selinux_inode_killpriv(struct dentry *dentry)
2464 {
2465 return secondary_ops->inode_killpriv(dentry);
2466 }
2467
2468 /* file security operations */
2469
2470 static int selinux_revalidate_file_permission(struct file *file, int mask)
2471 {
2472 int rc;
2473 struct inode *inode = file->f_path.dentry->d_inode;
2474
2475 if (!mask) {
2476 /* No permission to check. Existence test. */
2477 return 0;
2478 }
2479
2480 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2481 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2482 mask |= MAY_APPEND;
2483
2484 rc = file_has_perm(current, file,
2485 file_mask_to_av(inode->i_mode, mask));
2486 if (rc)
2487 return rc;
2488
2489 return selinux_netlbl_inode_permission(inode, mask);
2490 }
2491
2492 static int selinux_file_permission(struct file *file, int mask)
2493 {
2494 struct inode *inode = file->f_path.dentry->d_inode;
2495 struct task_security_struct *tsec = current->security;
2496 struct file_security_struct *fsec = file->f_security;
2497 struct inode_security_struct *isec = inode->i_security;
2498
2499 if (!mask) {
2500 /* No permission to check. Existence test. */
2501 return 0;
2502 }
2503
2504 if (tsec->sid == fsec->sid && fsec->isid == isec->sid
2505 && fsec->pseqno == avc_policy_seqno())
2506 return selinux_netlbl_inode_permission(inode, mask);
2507
2508 return selinux_revalidate_file_permission(file, mask);
2509 }
2510
2511 static int selinux_file_alloc_security(struct file *file)
2512 {
2513 return file_alloc_security(file);
2514 }
2515
2516 static void selinux_file_free_security(struct file *file)
2517 {
2518 file_free_security(file);
2519 }
2520
2521 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2522 unsigned long arg)
2523 {
2524 int error = 0;
2525
2526 switch (cmd) {
2527 case FIONREAD:
2528 /* fall through */
2529 case FIBMAP:
2530 /* fall through */
2531 case FIGETBSZ:
2532 /* fall through */
2533 case EXT2_IOC_GETFLAGS:
2534 /* fall through */
2535 case EXT2_IOC_GETVERSION:
2536 error = file_has_perm(current, file, FILE__GETATTR);
2537 break;
2538
2539 case EXT2_IOC_SETFLAGS:
2540 /* fall through */
2541 case EXT2_IOC_SETVERSION:
2542 error = file_has_perm(current, file, FILE__SETATTR);
2543 break;
2544
2545 /* sys_ioctl() checks */
2546 case FIONBIO:
2547 /* fall through */
2548 case FIOASYNC:
2549 error = file_has_perm(current, file, 0);
2550 break;
2551
2552 case KDSKBENT:
2553 case KDSKBSENT:
2554 error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2555 break;
2556
2557 /* default case assumes that the command will go
2558 * to the file's ioctl() function.
2559 */
2560 default:
2561 error = file_has_perm(current, file, FILE__IOCTL);
2562
2563 }
2564 return error;
2565 }
2566
2567 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2568 {
2569 #ifndef CONFIG_PPC32
2570 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2571 /*
2572 * We are making executable an anonymous mapping or a
2573 * private file mapping that will also be writable.
2574 * This has an additional check.
2575 */
2576 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2577 if (rc)
2578 return rc;
2579 }
2580 #endif
2581
2582 if (file) {
2583 /* read access is always possible with a mapping */
2584 u32 av = FILE__READ;
2585
2586 /* write access only matters if the mapping is shared */
2587 if (shared && (prot & PROT_WRITE))
2588 av |= FILE__WRITE;
2589
2590 if (prot & PROT_EXEC)
2591 av |= FILE__EXECUTE;
2592
2593 return file_has_perm(current, file, av);
2594 }
2595 return 0;
2596 }
2597
2598 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2599 unsigned long prot, unsigned long flags,
2600 unsigned long addr, unsigned long addr_only)
2601 {
2602 int rc = 0;
2603 u32 sid = ((struct task_security_struct*)(current->security))->sid;
2604
2605 if (addr < mmap_min_addr)
2606 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
2607 MEMPROTECT__MMAP_ZERO, NULL);
2608 if (rc || addr_only)
2609 return rc;
2610
2611 if (selinux_checkreqprot)
2612 prot = reqprot;
2613
2614 return file_map_prot_check(file, prot,
2615 (flags & MAP_TYPE) == MAP_SHARED);
2616 }
2617
2618 static int selinux_file_mprotect(struct vm_area_struct *vma,
2619 unsigned long reqprot,
2620 unsigned long prot)
2621 {
2622 int rc;
2623
2624 rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2625 if (rc)
2626 return rc;
2627
2628 if (selinux_checkreqprot)
2629 prot = reqprot;
2630
2631 #ifndef CONFIG_PPC32
2632 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2633 rc = 0;
2634 if (vma->vm_start >= vma->vm_mm->start_brk &&
2635 vma->vm_end <= vma->vm_mm->brk) {
2636 rc = task_has_perm(current, current,
2637 PROCESS__EXECHEAP);
2638 } else if (!vma->vm_file &&
2639 vma->vm_start <= vma->vm_mm->start_stack &&
2640 vma->vm_end >= vma->vm_mm->start_stack) {
2641 rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2642 } else if (vma->vm_file && vma->anon_vma) {
2643 /*
2644 * We are making executable a file mapping that has
2645 * had some COW done. Since pages might have been
2646 * written, check ability to execute the possibly
2647 * modified content. This typically should only
2648 * occur for text relocations.
2649 */
2650 rc = file_has_perm(current, vma->vm_file,
2651 FILE__EXECMOD);
2652 }
2653 if (rc)
2654 return rc;
2655 }
2656 #endif
2657
2658 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2659 }
2660
2661 static int selinux_file_lock(struct file *file, unsigned int cmd)
2662 {
2663 return file_has_perm(current, file, FILE__LOCK);
2664 }
2665
2666 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2667 unsigned long arg)
2668 {
2669 int err = 0;
2670
2671 switch (cmd) {
2672 case F_SETFL:
2673 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2674 err = -EINVAL;
2675 break;
2676 }
2677
2678 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2679 err = file_has_perm(current, file,FILE__WRITE);
2680 break;
2681 }
2682 /* fall through */
2683 case F_SETOWN:
2684 case F_SETSIG:
2685 case F_GETFL:
2686 case F_GETOWN:
2687 case F_GETSIG:
2688 /* Just check FD__USE permission */
2689 err = file_has_perm(current, file, 0);
2690 break;
2691 case F_GETLK:
2692 case F_SETLK:
2693 case F_SETLKW:
2694 #if BITS_PER_LONG == 32
2695 case F_GETLK64:
2696 case F_SETLK64:
2697 case F_SETLKW64:
2698 #endif
2699 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2700 err = -EINVAL;
2701 break;
2702 }
2703 err = file_has_perm(current, file, FILE__LOCK);
2704 break;
2705 }
2706
2707 return err;
2708 }
2709
2710 static int selinux_file_set_fowner(struct file *file)
2711 {
2712 struct task_security_struct *tsec;
2713 struct file_security_struct *fsec;
2714
2715 tsec = current->security;
2716 fsec = file->f_security;
2717 fsec->fown_sid = tsec->sid;
2718
2719 return 0;
2720 }
2721
2722 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2723 struct fown_struct *fown, int signum)
2724 {
2725 struct file *file;
2726 u32 perm;
2727 struct task_security_struct *tsec;
2728 struct file_security_struct *fsec;
2729
2730 /* struct fown_struct is never outside the context of a struct file */
2731 file = container_of(fown, struct file, f_owner);
2732
2733 tsec = tsk->security;
2734 fsec = file->f_security;
2735
2736 if (!signum)
2737 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2738 else
2739 perm = signal_to_av(signum);
2740
2741 return avc_has_perm(fsec->fown_sid, tsec->sid,
2742 SECCLASS_PROCESS, perm, NULL);
2743 }
2744
2745 static int selinux_file_receive(struct file *file)
2746 {
2747 return file_has_perm(current, file, file_to_av(file));
2748 }
2749
2750 static int selinux_dentry_open(struct file *file)
2751 {
2752 struct file_security_struct *fsec;
2753 struct inode *inode;
2754 struct inode_security_struct *isec;
2755 inode = file->f_path.dentry->d_inode;
2756 fsec = file->f_security;
2757 isec = inode->i_security;
2758 /*
2759 * Save inode label and policy sequence number
2760 * at open-time so that selinux_file_permission
2761 * can determine whether revalidation is necessary.
2762 * Task label is already saved in the file security
2763 * struct as its SID.
2764 */
2765 fsec->isid = isec->sid;
2766 fsec->pseqno = avc_policy_seqno();
2767 /*
2768 * Since the inode label or policy seqno may have changed
2769 * between the selinux_inode_permission check and the saving
2770 * of state above, recheck that access is still permitted.
2771 * Otherwise, access might never be revalidated against the
2772 * new inode label or new policy.
2773 * This check is not redundant - do not remove.
2774 */
2775 return inode_has_perm(current, inode, file_to_av(file), NULL);
2776 }
2777
2778 /* task security operations */
2779
2780 static int selinux_task_create(unsigned long clone_flags)
2781 {
2782 int rc;
2783
2784 rc = secondary_ops->task_create(clone_flags);
2785 if (rc)
2786 return rc;
2787
2788 return task_has_perm(current, current, PROCESS__FORK);
2789 }
2790
2791 static int selinux_task_alloc_security(struct task_struct *tsk)
2792 {
2793 struct task_security_struct *tsec1, *tsec2;
2794 int rc;
2795
2796 tsec1 = current->security;
2797
2798 rc = task_alloc_security(tsk);
2799 if (rc)
2800 return rc;
2801 tsec2 = tsk->security;
2802
2803 tsec2->osid = tsec1->osid;
2804 tsec2->sid = tsec1->sid;
2805
2806 /* Retain the exec, fs, key, and sock SIDs across fork */
2807 tsec2->exec_sid = tsec1->exec_sid;
2808 tsec2->create_sid = tsec1->create_sid;
2809 tsec2->keycreate_sid = tsec1->keycreate_sid;
2810 tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2811
2812 /* Retain ptracer SID across fork, if any.
2813 This will be reset by the ptrace hook upon any
2814 subsequent ptrace_attach operations. */
2815 tsec2->ptrace_sid = tsec1->ptrace_sid;
2816
2817 return 0;
2818 }
2819
2820 static void selinux_task_free_security(struct task_struct *tsk)
2821 {
2822 task_free_security(tsk);
2823 }
2824
2825 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2826 {
2827 /* Since setuid only affects the current process, and
2828 since the SELinux controls are not based on the Linux
2829 identity attributes, SELinux does not need to control
2830 this operation. However, SELinux does control the use
2831 of the CAP_SETUID and CAP_SETGID capabilities using the
2832 capable hook. */
2833 return 0;
2834 }
2835
2836 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2837 {
2838 return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2839 }
2840
2841 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2842 {
2843 /* See the comment for setuid above. */
2844 return 0;
2845 }
2846
2847 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2848 {
2849 return task_has_perm(current, p, PROCESS__SETPGID);
2850 }
2851
2852 static int selinux_task_getpgid(struct task_struct *p)
2853 {
2854 return task_has_perm(current, p, PROCESS__GETPGID);
2855 }
2856
2857 static int selinux_task_getsid(struct task_struct *p)
2858 {
2859 return task_has_perm(current, p, PROCESS__GETSESSION);
2860 }
2861
2862 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2863 {
2864 selinux_get_task_sid(p, secid);
2865 }
2866
2867 static int selinux_task_setgroups(struct group_info *group_info)
2868 {
2869 /* See the comment for setuid above. */
2870 return 0;
2871 }
2872
2873 static int selinux_task_setnice(struct task_struct *p, int nice)
2874 {
2875 int rc;
2876
2877 rc = secondary_ops->task_setnice(p, nice);
2878 if (rc)
2879 return rc;
2880
2881 return task_has_perm(current,p, PROCESS__SETSCHED);
2882 }
2883
2884 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2885 {
2886 int rc;
2887
2888 rc = secondary_ops->task_setioprio(p, ioprio);
2889 if (rc)
2890 return rc;
2891
2892 return task_has_perm(current, p, PROCESS__SETSCHED);
2893 }
2894
2895 static int selinux_task_getioprio(struct task_struct *p)
2896 {
2897 return task_has_perm(current, p, PROCESS__GETSCHED);
2898 }
2899
2900 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2901 {
2902 struct rlimit *old_rlim = current->signal->rlim + resource;
2903 int rc;
2904
2905 rc = secondary_ops->task_setrlimit(resource, new_rlim);
2906 if (rc)
2907 return rc;
2908
2909 /* Control the ability to change the hard limit (whether
2910 lowering or raising it), so that the hard limit can
2911 later be used as a safe reset point for the soft limit
2912 upon context transitions. See selinux_bprm_apply_creds. */
2913 if (old_rlim->rlim_max != new_rlim->rlim_max)
2914 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2915
2916 return 0;
2917 }
2918
2919 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2920 {
2921 int rc;
2922
2923 rc = secondary_ops->task_setscheduler(p, policy, lp);
2924 if (rc)
2925 return rc;
2926
2927 return task_has_perm(current, p, PROCESS__SETSCHED);
2928 }
2929
2930 static int selinux_task_getscheduler(struct task_struct *p)
2931 {
2932 return task_has_perm(current, p, PROCESS__GETSCHED);
2933 }
2934
2935 static int selinux_task_movememory(struct task_struct *p)
2936 {
2937 return task_has_perm(current, p, PROCESS__SETSCHED);
2938 }
2939
2940 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2941 int sig, u32 secid)
2942 {
2943 u32 perm;
2944 int rc;
2945 struct task_security_struct *tsec;
2946
2947 rc = secondary_ops->task_kill(p, info, sig, secid);
2948 if (rc)
2949 return rc;
2950
2951 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2952 return 0;
2953
2954 if (!sig)
2955 perm = PROCESS__SIGNULL; /* null signal; existence test */
2956 else
2957 perm = signal_to_av(sig);
2958 tsec = p->security;
2959 if (secid)
2960 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2961 else
2962 rc = task_has_perm(current, p, perm);
2963 return rc;
2964 }
2965
2966 static int selinux_task_prctl(int option,
2967 unsigned long arg2,
2968 unsigned long arg3,
2969 unsigned long arg4,
2970 unsigned long arg5)
2971 {
2972 /* The current prctl operations do not appear to require
2973 any SELinux controls since they merely observe or modify
2974 the state of the current process. */
2975 return 0;
2976 }
2977
2978 static int selinux_task_wait(struct task_struct *p)
2979 {
2980 return task_has_perm(p, current, PROCESS__SIGCHLD);
2981 }
2982
2983 static void selinux_task_reparent_to_init(struct task_struct *p)
2984 {
2985 struct task_security_struct *tsec;
2986
2987 secondary_ops->task_reparent_to_init(p);
2988
2989 tsec = p->security;
2990 tsec->osid = tsec->sid;
2991 tsec->sid = SECINITSID_KERNEL;
2992 return;
2993 }
2994
2995 static void selinux_task_to_inode(struct task_struct *p,
2996 struct inode *inode)
2997 {
2998 struct task_security_struct *tsec = p->security;
2999 struct inode_security_struct *isec = inode->i_security;
3000
3001 isec->sid = tsec->sid;
3002 isec->initialized = 1;
3003 return;
3004 }
3005
3006 /* Returns error only if unable to parse addresses */
3007 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3008 struct avc_audit_data *ad, u8 *proto)
3009 {
3010 int offset, ihlen, ret = -EINVAL;
3011 struct iphdr _iph, *ih;
3012
3013 offset = skb_network_offset(skb);
3014 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3015 if (ih == NULL)
3016 goto out;
3017
3018 ihlen = ih->ihl * 4;
3019 if (ihlen < sizeof(_iph))
3020 goto out;
3021
3022 ad->u.net.v4info.saddr = ih->saddr;
3023 ad->u.net.v4info.daddr = ih->daddr;
3024 ret = 0;
3025
3026 if (proto)
3027 *proto = ih->protocol;
3028
3029 switch (ih->protocol) {
3030 case IPPROTO_TCP: {
3031 struct tcphdr _tcph, *th;
3032
3033 if (ntohs(ih->frag_off) & IP_OFFSET)
3034 break;
3035
3036 offset += ihlen;
3037 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3038 if (th == NULL)
3039 break;
3040
3041 ad->u.net.sport = th->source;
3042 ad->u.net.dport = th->dest;
3043 break;
3044 }
3045
3046 case IPPROTO_UDP: {
3047 struct udphdr _udph, *uh;
3048
3049 if (ntohs(ih->frag_off) & IP_OFFSET)
3050 break;
3051
3052 offset += ihlen;
3053 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3054 if (uh == NULL)
3055 break;
3056
3057 ad->u.net.sport = uh->source;
3058 ad->u.net.dport = uh->dest;
3059 break;
3060 }
3061
3062 case IPPROTO_DCCP: {
3063 struct dccp_hdr _dccph, *dh;
3064
3065 if (ntohs(ih->frag_off) & IP_OFFSET)
3066 break;
3067
3068 offset += ihlen;
3069 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3070 if (dh == NULL)
3071 break;
3072
3073 ad->u.net.sport = dh->dccph_sport;
3074 ad->u.net.dport = dh->dccph_dport;
3075 break;
3076 }
3077
3078 default:
3079 break;
3080 }
3081 out:
3082 return ret;
3083 }
3084
3085 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3086
3087 /* Returns error only if unable to parse addresses */
3088 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3089 struct avc_audit_data *ad, u8 *proto)
3090 {
3091 u8 nexthdr;
3092 int ret = -EINVAL, offset;
3093 struct ipv6hdr _ipv6h, *ip6;
3094
3095 offset = skb_network_offset(skb);
3096 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3097 if (ip6 == NULL)
3098 goto out;
3099
3100 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3101 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3102 ret = 0;
3103
3104 nexthdr = ip6->nexthdr;
3105 offset += sizeof(_ipv6h);
3106 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3107 if (offset < 0)
3108 goto out;
3109
3110 if (proto)
3111 *proto = nexthdr;
3112
3113 switch (nexthdr) {
3114 case IPPROTO_TCP: {
3115 struct tcphdr _tcph, *th;
3116
3117 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3118 if (th == NULL)
3119 break;
3120
3121 ad->u.net.sport = th->source;
3122 ad->u.net.dport = th->dest;
3123 break;
3124 }
3125
3126 case IPPROTO_UDP: {
3127 struct udphdr _udph, *uh;
3128
3129 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3130 if (uh == NULL)
3131 break;
3132
3133 ad->u.net.sport = uh->source;
3134 ad->u.net.dport = uh->dest;
3135 break;
3136 }
3137
3138 case IPPROTO_DCCP: {
3139 struct dccp_hdr _dccph, *dh;
3140
3141 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3142 if (dh == NULL)
3143 break;
3144
3145 ad->u.net.sport = dh->dccph_sport;
3146 ad->u.net.dport = dh->dccph_dport;
3147 break;
3148 }
3149
3150 /* includes fragments */
3151 default:
3152 break;
3153 }
3154 out:
3155 return ret;
3156 }
3157
3158 #endif /* IPV6 */
3159
3160 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3161 char **addrp, int *len, int src, u8 *proto)
3162 {
3163 int ret = 0;
3164
3165 switch (ad->u.net.family) {
3166 case PF_INET:
3167 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3168 if (ret || !addrp)
3169 break;
3170 *len = 4;
3171 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3172 &ad->u.net.v4info.daddr);
3173 break;
3174
3175 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3176 case PF_INET6:
3177 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3178 if (ret || !addrp)
3179 break;
3180 *len = 16;
3181 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3182 &ad->u.net.v6info.daddr);
3183 break;
3184 #endif /* IPV6 */
3185 default:
3186 break;
3187 }
3188
3189 return ret;
3190 }
3191
3192 /**
3193 * selinux_skb_extlbl_sid - Determine the external label of a packet
3194 * @skb: the packet
3195 * @sid: the packet's SID
3196 *
3197 * Description:
3198 * Check the various different forms of external packet labeling and determine
3199 * the external SID for the packet. If only one form of external labeling is
3200 * present then it is used, if both labeled IPsec and NetLabel labels are
3201 * present then the SELinux type information is taken from the labeled IPsec
3202 * SA and the MLS sensitivity label information is taken from the NetLabel
3203 * security attributes. This bit of "magic" is done in the call to
3204 * selinux_netlbl_skbuff_getsid().
3205 *
3206 */
3207 static void selinux_skb_extlbl_sid(struct sk_buff *skb, u32 *sid)
3208 {
3209 u32 xfrm_sid;
3210 u32 nlbl_sid;
3211
3212 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3213 if (selinux_netlbl_skbuff_getsid(skb,
3214 (xfrm_sid == SECSID_NULL ?
3215 SECINITSID_NETMSG : xfrm_sid),
3216 &nlbl_sid) != 0)
3217 nlbl_sid = SECSID_NULL;
3218 *sid = (nlbl_sid == SECSID_NULL ? xfrm_sid : nlbl_sid);
3219 }
3220
3221 /* socket security operations */
3222 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3223 u32 perms)
3224 {
3225 struct inode_security_struct *isec;
3226 struct task_security_struct *tsec;
3227 struct avc_audit_data ad;
3228 int err = 0;
3229
3230 tsec = task->security;
3231 isec = SOCK_INODE(sock)->i_security;
3232
3233 if (isec->sid == SECINITSID_KERNEL)
3234 goto out;
3235
3236 AVC_AUDIT_DATA_INIT(&ad,NET);
3237 ad.u.net.sk = sock->sk;
3238 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3239
3240 out:
3241 return err;
3242 }
3243
3244 static int selinux_socket_create(int family, int type,
3245 int protocol, int kern)
3246 {
3247 int err = 0;
3248 struct task_security_struct *tsec;
3249 u32 newsid;
3250
3251 if (kern)
3252 goto out;
3253
3254 tsec = current->security;
3255 newsid = tsec->sockcreate_sid ? : tsec->sid;
3256 err = avc_has_perm(tsec->sid, newsid,
3257 socket_type_to_security_class(family, type,
3258 protocol), SOCKET__CREATE, NULL);
3259
3260 out:
3261 return err;
3262 }
3263
3264 static int selinux_socket_post_create(struct socket *sock, int family,
3265 int type, int protocol, int kern)
3266 {
3267 int err = 0;
3268 struct inode_security_struct *isec;
3269 struct task_security_struct *tsec;
3270 struct sk_security_struct *sksec;
3271 u32 newsid;
3272
3273 isec = SOCK_INODE(sock)->i_security;
3274
3275 tsec = current->security;
3276 newsid = tsec->sockcreate_sid ? : tsec->sid;
3277 isec->sclass = socket_type_to_security_class(family, type, protocol);
3278 isec->sid = kern ? SECINITSID_KERNEL : newsid;
3279 isec->initialized = 1;
3280
3281 if (sock->sk) {
3282 sksec = sock->sk->sk_security;
3283 sksec->sid = isec->sid;
3284 err = selinux_netlbl_socket_post_create(sock);
3285 }
3286
3287 return err;
3288 }
3289
3290 /* Range of port numbers used to automatically bind.
3291 Need to determine whether we should perform a name_bind
3292 permission check between the socket and the port number. */
3293
3294 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3295 {
3296 u16 family;
3297 int err;
3298
3299 err = socket_has_perm(current, sock, SOCKET__BIND);
3300 if (err)
3301 goto out;
3302
3303 /*
3304 * If PF_INET or PF_INET6, check name_bind permission for the port.
3305 * Multiple address binding for SCTP is not supported yet: we just
3306 * check the first address now.
3307 */
3308 family = sock->sk->sk_family;
3309 if (family == PF_INET || family == PF_INET6) {
3310 char *addrp;
3311 struct inode_security_struct *isec;
3312 struct task_security_struct *tsec;
3313 struct avc_audit_data ad;
3314 struct sockaddr_in *addr4 = NULL;
3315 struct sockaddr_in6 *addr6 = NULL;
3316 unsigned short snum;
3317 struct sock *sk = sock->sk;
3318 u32 sid, node_perm, addrlen;
3319
3320 tsec = current->security;
3321 isec = SOCK_INODE(sock)->i_security;
3322
3323 if (family == PF_INET) {
3324 addr4 = (struct sockaddr_in *)address;
3325 snum = ntohs(addr4->sin_port);
3326 addrlen = sizeof(addr4->sin_addr.s_addr);
3327 addrp = (char *)&addr4->sin_addr.s_addr;
3328 } else {
3329 addr6 = (struct sockaddr_in6 *)address;
3330 snum = ntohs(addr6->sin6_port);
3331 addrlen = sizeof(addr6->sin6_addr.s6_addr);
3332 addrp = (char *)&addr6->sin6_addr.s6_addr;
3333 }
3334
3335 if (snum) {
3336 int low, high;
3337
3338 inet_get_local_port_range(&low, &high);
3339
3340 if (snum < max(PROT_SOCK, low) || snum > high) {
3341 err = security_port_sid(sk->sk_family,
3342 sk->sk_type,
3343 sk->sk_protocol, snum,
3344 &sid);
3345 if (err)
3346 goto out;
3347 AVC_AUDIT_DATA_INIT(&ad,NET);
3348 ad.u.net.sport = htons(snum);
3349 ad.u.net.family = family;
3350 err = avc_has_perm(isec->sid, sid,
3351 isec->sclass,
3352 SOCKET__NAME_BIND, &ad);
3353 if (err)
3354 goto out;
3355 }
3356 }
3357
3358 switch(isec->sclass) {
3359 case SECCLASS_TCP_SOCKET:
3360 node_perm = TCP_SOCKET__NODE_BIND;
3361 break;
3362
3363 case SECCLASS_UDP_SOCKET:
3364 node_perm = UDP_SOCKET__NODE_BIND;
3365 break;
3366
3367 case SECCLASS_DCCP_SOCKET:
3368 node_perm = DCCP_SOCKET__NODE_BIND;
3369 break;
3370
3371 default:
3372 node_perm = RAWIP_SOCKET__NODE_BIND;
3373 break;
3374 }
3375
3376 err = security_node_sid(family, addrp, addrlen, &sid);
3377 if (err)
3378 goto out;
3379
3380 AVC_AUDIT_DATA_INIT(&ad,NET);
3381 ad.u.net.sport = htons(snum);
3382 ad.u.net.family = family;
3383
3384 if (family == PF_INET)
3385 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3386 else
3387 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3388
3389 err = avc_has_perm(isec->sid, sid,
3390 isec->sclass, node_perm, &ad);
3391 if (err)
3392 goto out;
3393 }
3394 out:
3395 return err;
3396 }
3397
3398 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3399 {
3400 struct inode_security_struct *isec;
3401 int err;
3402
3403 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3404 if (err)
3405 return err;
3406
3407 /*
3408 * If a TCP or DCCP socket, check name_connect permission for the port.
3409 */
3410 isec = SOCK_INODE(sock)->i_security;
3411 if (isec->sclass == SECCLASS_TCP_SOCKET ||
3412 isec->sclass == SECCLASS_DCCP_SOCKET) {
3413 struct sock *sk = sock->sk;
3414 struct avc_audit_data ad;
3415 struct sockaddr_in *addr4 = NULL;
3416 struct sockaddr_in6 *addr6 = NULL;
3417 unsigned short snum;
3418 u32 sid, perm;
3419
3420 if (sk->sk_family == PF_INET) {
3421 addr4 = (struct sockaddr_in *)address;
3422 if (addrlen < sizeof(struct sockaddr_in))
3423 return -EINVAL;
3424 snum = ntohs(addr4->sin_port);
3425 } else {
3426 addr6 = (struct sockaddr_in6 *)address;
3427 if (addrlen < SIN6_LEN_RFC2133)
3428 return -EINVAL;
3429 snum = ntohs(addr6->sin6_port);
3430 }
3431
3432 err = security_port_sid(sk->sk_family, sk->sk_type,
3433 sk->sk_protocol, snum, &sid);
3434 if (err)
3435 goto out;
3436
3437 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3438 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3439
3440 AVC_AUDIT_DATA_INIT(&ad,NET);
3441 ad.u.net.dport = htons(snum);
3442 ad.u.net.family = sk->sk_family;
3443 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3444 if (err)
3445 goto out;
3446 }
3447
3448 out:
3449 return err;
3450 }
3451
3452 static int selinux_socket_listen(struct socket *sock, int backlog)
3453 {
3454 return socket_has_perm(current, sock, SOCKET__LISTEN);
3455 }
3456
3457 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3458 {
3459 int err;
3460 struct inode_security_struct *isec;
3461 struct inode_security_struct *newisec;
3462
3463 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3464 if (err)
3465 return err;
3466
3467 newisec = SOCK_INODE(newsock)->i_security;
3468
3469 isec = SOCK_INODE(sock)->i_security;
3470 newisec->sclass = isec->sclass;
3471 newisec->sid = isec->sid;
3472 newisec->initialized = 1;
3473
3474 return 0;
3475 }
3476
3477 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3478 int size)
3479 {
3480 int rc;
3481
3482 rc = socket_has_perm(current, sock, SOCKET__WRITE);
3483 if (rc)
3484 return rc;
3485
3486 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3487 }
3488
3489 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3490 int size, int flags)
3491 {
3492 return socket_has_perm(current, sock, SOCKET__READ);
3493 }
3494
3495 static int selinux_socket_getsockname(struct socket *sock)
3496 {
3497 return socket_has_perm(current, sock, SOCKET__GETATTR);
3498 }
3499
3500 static int selinux_socket_getpeername(struct socket *sock)
3501 {
3502 return socket_has_perm(current, sock, SOCKET__GETATTR);
3503 }
3504
3505 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3506 {
3507 int err;
3508
3509 err = socket_has_perm(current, sock, SOCKET__SETOPT);
3510 if (err)
3511 return err;
3512
3513 return selinux_netlbl_socket_setsockopt(sock, level, optname);
3514 }
3515
3516 static int selinux_socket_getsockopt(struct socket *sock, int level,
3517 int optname)
3518 {
3519 return socket_has_perm(current, sock, SOCKET__GETOPT);
3520 }
3521
3522 static int selinux_socket_shutdown(struct socket *sock, int how)
3523 {
3524 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3525 }
3526
3527 static int selinux_socket_unix_stream_connect(struct socket *sock,
3528 struct socket *other,
3529 struct sock *newsk)
3530 {
3531 struct sk_security_struct *ssec;
3532 struct inode_security_struct *isec;
3533 struct inode_security_struct *other_isec;
3534 struct avc_audit_data ad;
3535 int err;
3536
3537 err = secondary_ops->unix_stream_connect(sock, other, newsk);
3538 if (err)
3539 return err;
3540
3541 isec = SOCK_INODE(sock)->i_security;
3542 other_isec = SOCK_INODE(other)->i_security;
3543
3544 AVC_AUDIT_DATA_INIT(&ad,NET);
3545 ad.u.net.sk = other->sk;
3546
3547 err = avc_has_perm(isec->sid, other_isec->sid,
3548 isec->sclass,
3549 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3550 if (err)
3551 return err;
3552
3553 /* connecting socket */
3554 ssec = sock->sk->sk_security;
3555 ssec->peer_sid = other_isec->sid;
3556
3557 /* server child socket */
3558 ssec = newsk->sk_security;
3559 ssec->peer_sid = isec->sid;
3560 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3561
3562 return err;
3563 }
3564
3565 static int selinux_socket_unix_may_send(struct socket *sock,
3566 struct socket *other)
3567 {
3568 struct inode_security_struct *isec;
3569 struct inode_security_struct *other_isec;
3570 struct avc_audit_data ad;
3571 int err;
3572
3573 isec = SOCK_INODE(sock)->i_security;
3574 other_isec = SOCK_INODE(other)->i_security;
3575
3576 AVC_AUDIT_DATA_INIT(&ad,NET);
3577 ad.u.net.sk = other->sk;
3578
3579 err = avc_has_perm(isec->sid, other_isec->sid,
3580 isec->sclass, SOCKET__SENDTO, &ad);
3581 if (err)
3582 return err;
3583
3584 return 0;
3585 }
3586
3587 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3588 struct avc_audit_data *ad, u16 family, char *addrp, int len)
3589 {
3590 int err = 0;
3591 u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3592 struct socket *sock;
3593 u16 sock_class = 0;
3594 u32 sock_sid = 0;
3595
3596 read_lock_bh(&sk->sk_callback_lock);
3597 sock = sk->sk_socket;
3598 if (sock) {
3599 struct inode *inode;
3600 inode = SOCK_INODE(sock);
3601 if (inode) {
3602 struct inode_security_struct *isec;
3603 isec = inode->i_security;
3604 sock_sid = isec->sid;
3605 sock_class = isec->sclass;
3606 }
3607 }
3608 read_unlock_bh(&sk->sk_callback_lock);
3609 if (!sock_sid)
3610 goto out;
3611
3612 if (!skb->dev)
3613 goto out;
3614
3615 err = sel_netif_sids(skb->dev, &if_sid, NULL);
3616 if (err)
3617 goto out;
3618
3619 switch (sock_class) {
3620 case SECCLASS_UDP_SOCKET:
3621 netif_perm = NETIF__UDP_RECV;
3622 node_perm = NODE__UDP_RECV;
3623 recv_perm = UDP_SOCKET__RECV_MSG;
3624 break;
3625
3626 case SECCLASS_TCP_SOCKET:
3627 netif_perm = NETIF__TCP_RECV;
3628 node_perm = NODE__TCP_RECV;
3629 recv_perm = TCP_SOCKET__RECV_MSG;
3630 break;
3631
3632 case SECCLASS_DCCP_SOCKET:
3633 netif_perm = NETIF__DCCP_RECV;
3634 node_perm = NODE__DCCP_RECV;
3635 recv_perm = DCCP_SOCKET__RECV_MSG;
3636 break;
3637
3638 default:
3639 netif_perm = NETIF__RAWIP_RECV;
3640 node_perm = NODE__RAWIP_RECV;
3641 break;
3642 }
3643
3644 err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3645 if (err)
3646 goto out;
3647
3648 err = security_node_sid(family, addrp, len, &node_sid);
3649 if (err)
3650 goto out;
3651
3652 err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3653 if (err)
3654 goto out;
3655
3656 if (recv_perm) {
3657 u32 port_sid;
3658
3659 err = security_port_sid(sk->sk_family, sk->sk_type,
3660 sk->sk_protocol, ntohs(ad->u.net.sport),
3661 &port_sid);
3662 if (err)
3663 goto out;
3664
3665 err = avc_has_perm(sock_sid, port_sid,
3666 sock_class, recv_perm, ad);
3667 }
3668
3669 out:
3670 return err;
3671 }
3672
3673 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3674 {
3675 u16 family;
3676 char *addrp;
3677 int len, err = 0;
3678 struct avc_audit_data ad;
3679 struct sk_security_struct *sksec = sk->sk_security;
3680
3681 family = sk->sk_family;
3682 if (family != PF_INET && family != PF_INET6)
3683 goto out;
3684
3685 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3686 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
3687 family = PF_INET;
3688
3689 AVC_AUDIT_DATA_INIT(&ad, NET);
3690 ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3691 ad.u.net.family = family;
3692
3693 err = selinux_parse_skb(skb, &ad, &addrp, &len, 1, NULL);
3694 if (err)
3695 goto out;
3696
3697 if (selinux_compat_net)
3698 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family,
3699 addrp, len);
3700 else
3701 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3702 PACKET__RECV, &ad);
3703 if (err)
3704 goto out;
3705
3706 err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad);
3707 if (err)
3708 goto out;
3709
3710 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
3711 out:
3712 return err;
3713 }
3714
3715 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3716 int __user *optlen, unsigned len)
3717 {
3718 int err = 0;
3719 char *scontext;
3720 u32 scontext_len;
3721 struct sk_security_struct *ssec;
3722 struct inode_security_struct *isec;
3723 u32 peer_sid = SECSID_NULL;
3724
3725 isec = SOCK_INODE(sock)->i_security;
3726
3727 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
3728 isec->sclass == SECCLASS_TCP_SOCKET) {
3729 ssec = sock->sk->sk_security;
3730 peer_sid = ssec->peer_sid;
3731 }
3732 if (peer_sid == SECSID_NULL) {
3733 err = -ENOPROTOOPT;
3734 goto out;
3735 }
3736
3737 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3738
3739 if (err)
3740 goto out;
3741
3742 if (scontext_len > len) {
3743 err = -ERANGE;
3744 goto out_len;
3745 }
3746
3747 if (copy_to_user(optval, scontext, scontext_len))
3748 err = -EFAULT;
3749
3750 out_len:
3751 if (put_user(scontext_len, optlen))
3752 err = -EFAULT;
3753
3754 kfree(scontext);
3755 out:
3756 return err;
3757 }
3758
3759 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3760 {
3761 u32 peer_secid = SECSID_NULL;
3762 int err = 0;
3763
3764 if (sock && sock->sk->sk_family == PF_UNIX)
3765 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
3766 else if (skb)
3767 selinux_skb_extlbl_sid(skb, &peer_secid);
3768
3769 if (peer_secid == SECSID_NULL)
3770 err = -EINVAL;
3771 *secid = peer_secid;
3772
3773 return err;
3774 }
3775
3776 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3777 {
3778 return sk_alloc_security(sk, family, priority);
3779 }
3780
3781 static void selinux_sk_free_security(struct sock *sk)
3782 {
3783 sk_free_security(sk);
3784 }
3785
3786 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
3787 {
3788 struct sk_security_struct *ssec = sk->sk_security;
3789 struct sk_security_struct *newssec = newsk->sk_security;
3790
3791 newssec->sid = ssec->sid;
3792 newssec->peer_sid = ssec->peer_sid;
3793
3794 selinux_netlbl_sk_security_clone(ssec, newssec);
3795 }
3796
3797 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
3798 {
3799 if (!sk)
3800 *secid = SECINITSID_ANY_SOCKET;
3801 else {
3802 struct sk_security_struct *sksec = sk->sk_security;
3803
3804 *secid = sksec->sid;
3805 }
3806 }
3807
3808 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
3809 {
3810 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
3811 struct sk_security_struct *sksec = sk->sk_security;
3812
3813 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
3814 sk->sk_family == PF_UNIX)
3815 isec->sid = sksec->sid;
3816
3817 selinux_netlbl_sock_graft(sk, parent);
3818 }
3819
3820 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
3821 struct request_sock *req)
3822 {
3823 struct sk_security_struct *sksec = sk->sk_security;
3824 int err;
3825 u32 newsid;
3826 u32 peersid;
3827
3828 selinux_skb_extlbl_sid(skb, &peersid);
3829 if (peersid == SECSID_NULL) {
3830 req->secid = sksec->sid;
3831 req->peer_secid = SECSID_NULL;
3832 return 0;
3833 }
3834
3835 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
3836 if (err)
3837 return err;
3838
3839 req->secid = newsid;
3840 req->peer_secid = peersid;
3841 return 0;
3842 }
3843
3844 static void selinux_inet_csk_clone(struct sock *newsk,
3845 const struct request_sock *req)
3846 {
3847 struct sk_security_struct *newsksec = newsk->sk_security;
3848
3849 newsksec->sid = req->secid;
3850 newsksec->peer_sid = req->peer_secid;
3851 /* NOTE: Ideally, we should also get the isec->sid for the
3852 new socket in sync, but we don't have the isec available yet.
3853 So we will wait until sock_graft to do it, by which
3854 time it will have been created and available. */
3855
3856 /* We don't need to take any sort of lock here as we are the only
3857 * thread with access to newsksec */
3858 selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
3859 }
3860
3861 static void selinux_inet_conn_established(struct sock *sk,
3862 struct sk_buff *skb)
3863 {
3864 struct sk_security_struct *sksec = sk->sk_security;
3865
3866 selinux_skb_extlbl_sid(skb, &sksec->peer_sid);
3867 }
3868
3869 static void selinux_req_classify_flow(const struct request_sock *req,
3870 struct flowi *fl)
3871 {
3872 fl->secid = req->secid;
3873 }
3874
3875 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3876 {
3877 int err = 0;
3878 u32 perm;
3879 struct nlmsghdr *nlh;
3880 struct socket *sock = sk->sk_socket;
3881 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3882
3883 if (skb->len < NLMSG_SPACE(0)) {
3884 err = -EINVAL;
3885 goto out;
3886 }
3887 nlh = nlmsg_hdr(skb);
3888
3889 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3890 if (err) {
3891 if (err == -EINVAL) {
3892 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3893 "SELinux: unrecognized netlink message"
3894 " type=%hu for sclass=%hu\n",
3895 nlh->nlmsg_type, isec->sclass);
3896 if (!selinux_enforcing)
3897 err = 0;
3898 }
3899
3900 /* Ignore */
3901 if (err == -ENOENT)
3902 err = 0;
3903 goto out;
3904 }
3905
3906 err = socket_has_perm(current, sock, perm);
3907 out:
3908 return err;
3909 }
3910
3911 #ifdef CONFIG_NETFILTER
3912
3913 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3914 struct avc_audit_data *ad,
3915 u16 family, char *addrp, int len)
3916 {
3917 int err = 0;
3918 u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3919 struct socket *sock;
3920 struct inode *inode;
3921 struct inode_security_struct *isec;
3922
3923 sock = sk->sk_socket;
3924 if (!sock)
3925 goto out;
3926
3927 inode = SOCK_INODE(sock);
3928 if (!inode)
3929 goto out;
3930
3931 isec = inode->i_security;
3932
3933 err = sel_netif_sids(dev, &if_sid, NULL);
3934 if (err)
3935 goto out;
3936
3937 switch (isec->sclass) {
3938 case SECCLASS_UDP_SOCKET:
3939 netif_perm = NETIF__UDP_SEND;
3940 node_perm = NODE__UDP_SEND;
3941 send_perm = UDP_SOCKET__SEND_MSG;
3942 break;
3943
3944 case SECCLASS_TCP_SOCKET:
3945 netif_perm = NETIF__TCP_SEND;
3946 node_perm = NODE__TCP_SEND;
3947 send_perm = TCP_SOCKET__SEND_MSG;
3948 break;
3949
3950 case SECCLASS_DCCP_SOCKET:
3951 netif_perm = NETIF__DCCP_SEND;
3952 node_perm = NODE__DCCP_SEND;
3953 send_perm = DCCP_SOCKET__SEND_MSG;
3954 break;
3955
3956 default:
3957 netif_perm = NETIF__RAWIP_SEND;
3958 node_perm = NODE__RAWIP_SEND;
3959 break;
3960 }
3961
3962 err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3963 if (err)
3964 goto out;
3965
3966 err = security_node_sid(family, addrp, len, &node_sid);
3967 if (err)
3968 goto out;
3969
3970 err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3971 if (err)
3972 goto out;
3973
3974 if (send_perm) {
3975 u32 port_sid;
3976
3977 err = security_port_sid(sk->sk_family,
3978 sk->sk_type,
3979 sk->sk_protocol,
3980 ntohs(ad->u.net.dport),
3981 &port_sid);
3982 if (err)
3983 goto out;
3984
3985 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3986 send_perm, ad);
3987 }
3988 out:
3989 return err;
3990 }
3991
3992 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3993 struct sk_buff *skb,
3994 const struct net_device *in,
3995 const struct net_device *out,
3996 int (*okfn)(struct sk_buff *),
3997 u16 family)
3998 {
3999 char *addrp;
4000 int len, err = 0;
4001 struct sock *sk;
4002 struct avc_audit_data ad;
4003 struct net_device *dev = (struct net_device *)out;
4004 struct sk_security_struct *sksec;
4005 u8 proto;
4006
4007 sk = skb->sk;
4008 if (!sk)
4009 goto out;
4010
4011 sksec = sk->sk_security;
4012
4013 AVC_AUDIT_DATA_INIT(&ad, NET);
4014 ad.u.net.netif = dev->name;
4015 ad.u.net.family = family;
4016
4017 err = selinux_parse_skb(skb, &ad, &addrp, &len, 0, &proto);
4018 if (err)
4019 goto out;
4020
4021 if (selinux_compat_net)
4022 err = selinux_ip_postroute_last_compat(sk, dev, &ad,
4023 family, addrp, len);
4024 else
4025 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
4026 PACKET__SEND, &ad);
4027
4028 if (err)
4029 goto out;
4030
4031 err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto);
4032 out:
4033 return err ? NF_DROP : NF_ACCEPT;
4034 }
4035
4036 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
4037 struct sk_buff *skb,
4038 const struct net_device *in,
4039 const struct net_device *out,
4040 int (*okfn)(struct sk_buff *))
4041 {
4042 return selinux_ip_postroute_last(hooknum, skb, in, out, okfn, PF_INET);
4043 }
4044
4045 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4046
4047 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
4048 struct sk_buff *skb,
4049 const struct net_device *in,
4050 const struct net_device *out,
4051 int (*okfn)(struct sk_buff *))
4052 {
4053 return selinux_ip_postroute_last(hooknum, skb, in, out, okfn, PF_INET6);
4054 }
4055
4056 #endif /* IPV6 */
4057
4058 #endif /* CONFIG_NETFILTER */
4059
4060 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4061 {
4062 int err;
4063
4064 err = secondary_ops->netlink_send(sk, skb);
4065 if (err)
4066 return err;
4067
4068 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4069 err = selinux_nlmsg_perm(sk, skb);
4070
4071 return err;
4072 }
4073
4074 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4075 {
4076 int err;
4077 struct avc_audit_data ad;
4078
4079 err = secondary_ops->netlink_recv(skb, capability);
4080 if (err)
4081 return err;
4082
4083 AVC_AUDIT_DATA_INIT(&ad, CAP);
4084 ad.u.cap = capability;
4085
4086 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4087 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4088 }
4089
4090 static int ipc_alloc_security(struct task_struct *task,
4091 struct kern_ipc_perm *perm,
4092 u16 sclass)
4093 {
4094 struct task_security_struct *tsec = task->security;
4095 struct ipc_security_struct *isec;
4096
4097 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4098 if (!isec)
4099 return -ENOMEM;
4100
4101 isec->sclass = sclass;
4102 isec->ipc_perm = perm;
4103 isec->sid = tsec->sid;
4104 perm->security = isec;
4105
4106 return 0;
4107 }
4108
4109 static void ipc_free_security(struct kern_ipc_perm *perm)
4110 {
4111 struct ipc_security_struct *isec = perm->security;
4112 perm->security = NULL;
4113 kfree(isec);
4114 }
4115
4116 static int msg_msg_alloc_security(struct msg_msg *msg)
4117 {
4118 struct msg_security_struct *msec;
4119
4120 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4121 if (!msec)
4122 return -ENOMEM;
4123
4124 msec->msg = msg;
4125 msec->sid = SECINITSID_UNLABELED;
4126 msg->security = msec;
4127
4128 return 0;
4129 }
4130
4131 static void msg_msg_free_security(struct msg_msg *msg)
4132 {
4133 struct msg_security_struct *msec = msg->security;
4134
4135 msg->security = NULL;
4136 kfree(msec);
4137 }
4138
4139 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4140 u32 perms)
4141 {
4142 struct task_security_struct *tsec;
4143 struct ipc_security_struct *isec;
4144 struct avc_audit_data ad;
4145
4146 tsec = current->security;
4147 isec = ipc_perms->security;
4148
4149 AVC_AUDIT_DATA_INIT(&ad, IPC);
4150 ad.u.ipc_id = ipc_perms->key;
4151
4152 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4153 }
4154
4155 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4156 {
4157 return msg_msg_alloc_security(msg);
4158 }
4159
4160 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4161 {
4162 msg_msg_free_security(msg);
4163 }
4164
4165 /* message queue security operations */
4166 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4167 {
4168 struct task_security_struct *tsec;
4169 struct ipc_security_struct *isec;
4170 struct avc_audit_data ad;
4171 int rc;
4172
4173 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4174 if (rc)
4175 return rc;
4176
4177 tsec = current->security;
4178 isec = msq->q_perm.security;
4179
4180 AVC_AUDIT_DATA_INIT(&ad, IPC);
4181 ad.u.ipc_id = msq->q_perm.key;
4182
4183 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4184 MSGQ__CREATE, &ad);
4185 if (rc) {
4186 ipc_free_security(&msq->q_perm);
4187 return rc;
4188 }
4189 return 0;
4190 }
4191
4192 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4193 {
4194 ipc_free_security(&msq->q_perm);
4195 }
4196
4197 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4198 {
4199 struct task_security_struct *tsec;
4200 struct ipc_security_struct *isec;
4201 struct avc_audit_data ad;
4202
4203 tsec = current->security;
4204 isec = msq->q_perm.security;
4205
4206 AVC_AUDIT_DATA_INIT(&ad, IPC);
4207 ad.u.ipc_id = msq->q_perm.key;
4208
4209 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4210 MSGQ__ASSOCIATE, &ad);
4211 }
4212
4213 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4214 {
4215 int err;
4216 int perms;
4217
4218 switch(cmd) {
4219 case IPC_INFO:
4220 case MSG_INFO:
4221 /* No specific object, just general system-wide information. */
4222 return task_has_system(current, SYSTEM__IPC_INFO);
4223 case IPC_STAT:
4224 case MSG_STAT:
4225 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4226 break;
4227 case IPC_SET:
4228 perms = MSGQ__SETATTR;
4229 break;
4230 case IPC_RMID:
4231 perms = MSGQ__DESTROY;
4232 break;
4233 default:
4234 return 0;
4235 }
4236
4237 err = ipc_has_perm(&msq->q_perm, perms);
4238 return err;
4239 }
4240
4241 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4242 {
4243 struct task_security_struct *tsec;
4244 struct ipc_security_struct *isec;
4245 struct msg_security_struct *msec;
4246 struct avc_audit_data ad;
4247 int rc;
4248
4249 tsec = current->security;
4250 isec = msq->q_perm.security;
4251 msec = msg->security;
4252
4253 /*
4254 * First time through, need to assign label to the message
4255 */
4256 if (msec->sid == SECINITSID_UNLABELED) {
4257 /*
4258 * Compute new sid based on current process and
4259 * message queue this message will be stored in
4260 */
4261 rc = security_transition_sid(tsec->sid,
4262 isec->sid,
4263 SECCLASS_MSG,
4264 &msec->sid);
4265 if (rc)
4266 return rc;
4267 }
4268
4269 AVC_AUDIT_DATA_INIT(&ad, IPC);
4270 ad.u.ipc_id = msq->q_perm.key;
4271
4272 /* Can this process write to the queue? */
4273 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4274 MSGQ__WRITE, &ad);
4275 if (!rc)
4276 /* Can this process send the message */
4277 rc = avc_has_perm(tsec->sid, msec->sid,
4278 SECCLASS_MSG, MSG__SEND, &ad);
4279 if (!rc)
4280 /* Can the message be put in the queue? */
4281 rc = avc_has_perm(msec->sid, isec->sid,
4282 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4283
4284 return rc;
4285 }
4286
4287 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4288 struct task_struct *target,
4289 long type, int mode)
4290 {
4291 struct task_security_struct *tsec;
4292 struct ipc_security_struct *isec;
4293 struct msg_security_struct *msec;
4294 struct avc_audit_data ad;
4295 int rc;
4296
4297 tsec = target->security;
4298 isec = msq->q_perm.security;
4299 msec = msg->security;
4300
4301 AVC_AUDIT_DATA_INIT(&ad, IPC);
4302 ad.u.ipc_id = msq->q_perm.key;
4303
4304 rc = avc_has_perm(tsec->sid, isec->sid,
4305 SECCLASS_MSGQ, MSGQ__READ, &ad);
4306 if (!rc)
4307 rc = avc_has_perm(tsec->sid, msec->sid,
4308 SECCLASS_MSG, MSG__RECEIVE, &ad);
4309 return rc;
4310 }
4311
4312 /* Shared Memory security operations */
4313 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4314 {
4315 struct task_security_struct *tsec;
4316 struct ipc_security_struct *isec;
4317 struct avc_audit_data ad;
4318 int rc;
4319
4320 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4321 if (rc)
4322 return rc;
4323
4324 tsec = current->security;
4325 isec = shp->shm_perm.security;
4326
4327 AVC_AUDIT_DATA_INIT(&ad, IPC);
4328 ad.u.ipc_id = shp->shm_perm.key;
4329
4330 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4331 SHM__CREATE, &ad);
4332 if (rc) {
4333 ipc_free_security(&shp->shm_perm);
4334 return rc;
4335 }
4336 return 0;
4337 }
4338
4339 static void selinux_shm_free_security(struct shmid_kernel *shp)
4340 {
4341 ipc_free_security(&shp->shm_perm);
4342 }
4343
4344 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4345 {
4346 struct task_security_struct *tsec;
4347 struct ipc_security_struct *isec;
4348 struct avc_audit_data ad;
4349
4350 tsec = current->security;
4351 isec = shp->shm_perm.security;
4352
4353 AVC_AUDIT_DATA_INIT(&ad, IPC);
4354 ad.u.ipc_id = shp->shm_perm.key;
4355
4356 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4357 SHM__ASSOCIATE, &ad);
4358 }
4359
4360 /* Note, at this point, shp is locked down */
4361 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4362 {
4363 int perms;
4364 int err;
4365
4366 switch(cmd) {
4367 case IPC_INFO:
4368 case SHM_INFO:
4369 /* No specific object, just general system-wide information. */
4370 return task_has_system(current, SYSTEM__IPC_INFO);
4371 case IPC_STAT:
4372 case SHM_STAT:
4373 perms = SHM__GETATTR | SHM__ASSOCIATE;
4374 break;
4375 case IPC_SET:
4376 perms = SHM__SETATTR;
4377 break;
4378 case SHM_LOCK:
4379 case SHM_UNLOCK:
4380 perms = SHM__LOCK;
4381 break;
4382 case IPC_RMID:
4383 perms = SHM__DESTROY;
4384 break;
4385 default:
4386 return 0;
4387 }
4388
4389 err = ipc_has_perm(&shp->shm_perm, perms);
4390 return err;
4391 }
4392
4393 static int selinux_shm_shmat(struct shmid_kernel *shp,
4394 char __user *shmaddr, int shmflg)
4395 {
4396 u32 perms;
4397 int rc;
4398
4399 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4400 if (rc)
4401 return rc;
4402
4403 if (shmflg & SHM_RDONLY)
4404 perms = SHM__READ;
4405 else
4406 perms = SHM__READ | SHM__WRITE;
4407
4408 return ipc_has_perm(&shp->shm_perm, perms);
4409 }
4410
4411 /* Semaphore security operations */
4412 static int selinux_sem_alloc_security(struct sem_array *sma)
4413 {
4414 struct task_security_struct *tsec;
4415 struct ipc_security_struct *isec;
4416 struct avc_audit_data ad;
4417 int rc;
4418
4419 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4420 if (rc)
4421 return rc;
4422
4423 tsec = current->security;
4424 isec = sma->sem_perm.security;
4425
4426 AVC_AUDIT_DATA_INIT(&ad, IPC);
4427 ad.u.ipc_id = sma->sem_perm.key;
4428
4429 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4430 SEM__CREATE, &ad);
4431 if (rc) {
4432 ipc_free_security(&sma->sem_perm);
4433 return rc;
4434 }
4435 return 0;
4436 }
4437
4438 static void selinux_sem_free_security(struct sem_array *sma)
4439 {
4440 ipc_free_security(&sma->sem_perm);
4441 }
4442
4443 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4444 {
4445 struct task_security_struct *tsec;
4446 struct ipc_security_struct *isec;
4447 struct avc_audit_data ad;
4448
4449 tsec = current->security;
4450 isec = sma->sem_perm.security;
4451
4452 AVC_AUDIT_DATA_INIT(&ad, IPC);
4453 ad.u.ipc_id = sma->sem_perm.key;
4454
4455 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4456 SEM__ASSOCIATE, &ad);
4457 }
4458
4459 /* Note, at this point, sma is locked down */
4460 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4461 {
4462 int err;
4463 u32 perms;
4464
4465 switch(cmd) {
4466 case IPC_INFO:
4467 case SEM_INFO:
4468 /* No specific object, just general system-wide information. */
4469 return task_has_system(current, SYSTEM__IPC_INFO);
4470 case GETPID:
4471 case GETNCNT:
4472 case GETZCNT:
4473 perms = SEM__GETATTR;
4474 break;
4475 case GETVAL:
4476 case GETALL:
4477 perms = SEM__READ;
4478 break;
4479 case SETVAL:
4480 case SETALL:
4481 perms = SEM__WRITE;
4482 break;
4483 case IPC_RMID:
4484 perms = SEM__DESTROY;
4485 break;
4486 case IPC_SET:
4487 perms = SEM__SETATTR;
4488 break;
4489 case IPC_STAT:
4490 case SEM_STAT:
4491 perms = SEM__GETATTR | SEM__ASSOCIATE;
4492 break;
4493 default:
4494 return 0;
4495 }
4496
4497 err = ipc_has_perm(&sma->sem_perm, perms);
4498 return err;
4499 }
4500
4501 static int selinux_sem_semop(struct sem_array *sma,
4502 struct sembuf *sops, unsigned nsops, int alter)
4503 {
4504 u32 perms;
4505
4506 if (alter)
4507 perms = SEM__READ | SEM__WRITE;
4508 else
4509 perms = SEM__READ;
4510
4511 return ipc_has_perm(&sma->sem_perm, perms);
4512 }
4513
4514 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4515 {
4516 u32 av = 0;
4517
4518 av = 0;
4519 if (flag & S_IRUGO)
4520 av |= IPC__UNIX_READ;
4521 if (flag & S_IWUGO)
4522 av |= IPC__UNIX_WRITE;
4523
4524 if (av == 0)
4525 return 0;
4526
4527 return ipc_has_perm(ipcp, av);
4528 }
4529
4530 /* module stacking operations */
4531 static int selinux_register_security (const char *name, struct security_operations *ops)
4532 {
4533 if (secondary_ops != original_ops) {
4534 printk(KERN_ERR "%s: There is already a secondary security "
4535 "module registered.\n", __FUNCTION__);
4536 return -EINVAL;
4537 }
4538
4539 secondary_ops = ops;
4540
4541 printk(KERN_INFO "%s: Registering secondary module %s\n",
4542 __FUNCTION__,
4543 name);
4544
4545 return 0;
4546 }
4547
4548 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4549 {
4550 if (inode)
4551 inode_doinit_with_dentry(inode, dentry);
4552 }
4553
4554 static int selinux_getprocattr(struct task_struct *p,
4555 char *name, char **value)
4556 {
4557 struct task_security_struct *tsec;
4558 u32 sid;
4559 int error;
4560 unsigned len;
4561
4562 if (current != p) {
4563 error = task_has_perm(current, p, PROCESS__GETATTR);
4564 if (error)
4565 return error;
4566 }
4567
4568 tsec = p->security;
4569
4570 if (!strcmp(name, "current"))
4571 sid = tsec->sid;
4572 else if (!strcmp(name, "prev"))
4573 sid = tsec->osid;
4574 else if (!strcmp(name, "exec"))
4575 sid = tsec->exec_sid;
4576 else if (!strcmp(name, "fscreate"))
4577 sid = tsec->create_sid;
4578 else if (!strcmp(name, "keycreate"))
4579 sid = tsec->keycreate_sid;
4580 else if (!strcmp(name, "sockcreate"))
4581 sid = tsec->sockcreate_sid;
4582 else
4583 return -EINVAL;
4584
4585 if (!sid)
4586 return 0;
4587
4588 error = security_sid_to_context(sid, value, &len);
4589 if (error)
4590 return error;
4591 return len;
4592 }
4593
4594 static int selinux_setprocattr(struct task_struct *p,
4595 char *name, void *value, size_t size)
4596 {
4597 struct task_security_struct *tsec;
4598 u32 sid = 0;
4599 int error;
4600 char *str = value;
4601
4602 if (current != p) {
4603 /* SELinux only allows a process to change its own
4604 security attributes. */
4605 return -EACCES;
4606 }
4607
4608 /*
4609 * Basic control over ability to set these attributes at all.
4610 * current == p, but we'll pass them separately in case the
4611 * above restriction is ever removed.
4612 */
4613 if (!strcmp(name, "exec"))
4614 error = task_has_perm(current, p, PROCESS__SETEXEC);
4615 else if (!strcmp(name, "fscreate"))
4616 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4617 else if (!strcmp(name, "keycreate"))
4618 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4619 else if (!strcmp(name, "sockcreate"))
4620 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4621 else if (!strcmp(name, "current"))
4622 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4623 else
4624 error = -EINVAL;
4625 if (error)
4626 return error;
4627
4628 /* Obtain a SID for the context, if one was specified. */
4629 if (size && str[1] && str[1] != '\n') {
4630 if (str[size-1] == '\n') {
4631 str[size-1] = 0;
4632 size--;
4633 }
4634 error = security_context_to_sid(value, size, &sid);
4635 if (error)
4636 return error;
4637 }
4638
4639 /* Permission checking based on the specified context is
4640 performed during the actual operation (execve,
4641 open/mkdir/...), when we know the full context of the
4642 operation. See selinux_bprm_set_security for the execve
4643 checks and may_create for the file creation checks. The
4644 operation will then fail if the context is not permitted. */
4645 tsec = p->security;
4646 if (!strcmp(name, "exec"))
4647 tsec->exec_sid = sid;
4648 else if (!strcmp(name, "fscreate"))
4649 tsec->create_sid = sid;
4650 else if (!strcmp(name, "keycreate")) {
4651 error = may_create_key(sid, p);
4652 if (error)
4653 return error;
4654 tsec->keycreate_sid = sid;
4655 } else if (!strcmp(name, "sockcreate"))
4656 tsec->sockcreate_sid = sid;
4657 else if (!strcmp(name, "current")) {
4658 struct av_decision avd;
4659
4660 if (sid == 0)
4661 return -EINVAL;
4662
4663 /* Only allow single threaded processes to change context */
4664 if (atomic_read(&p->mm->mm_users) != 1) {
4665 struct task_struct *g, *t;
4666 struct mm_struct *mm = p->mm;
4667 read_lock(&tasklist_lock);
4668 do_each_thread(g, t)
4669 if (t->mm == mm && t != p) {
4670 read_unlock(&tasklist_lock);
4671 return -EPERM;
4672 }
4673 while_each_thread(g, t);
4674 read_unlock(&tasklist_lock);
4675 }
4676
4677 /* Check permissions for the transition. */
4678 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4679 PROCESS__DYNTRANSITION, NULL);
4680 if (error)
4681 return error;
4682
4683 /* Check for ptracing, and update the task SID if ok.
4684 Otherwise, leave SID unchanged and fail. */
4685 task_lock(p);
4686 if (p->ptrace & PT_PTRACED) {
4687 error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4688 SECCLASS_PROCESS,
4689 PROCESS__PTRACE, 0, &avd);
4690 if (!error)
4691 tsec->sid = sid;
4692 task_unlock(p);
4693 avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4694 PROCESS__PTRACE, &avd, error, NULL);
4695 if (error)
4696 return error;
4697 } else {
4698 tsec->sid = sid;
4699 task_unlock(p);
4700 }
4701 }
4702 else
4703 return -EINVAL;
4704
4705 return size;
4706 }
4707
4708 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4709 {
4710 return security_sid_to_context(secid, secdata, seclen);
4711 }
4712
4713 static void selinux_release_secctx(char *secdata, u32 seclen)
4714 {
4715 kfree(secdata);
4716 }
4717
4718 #ifdef CONFIG_KEYS
4719
4720 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4721 unsigned long flags)
4722 {
4723 struct task_security_struct *tsec = tsk->security;
4724 struct key_security_struct *ksec;
4725
4726 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4727 if (!ksec)
4728 return -ENOMEM;
4729
4730 ksec->obj = k;
4731 if (tsec->keycreate_sid)
4732 ksec->sid = tsec->keycreate_sid;
4733 else
4734 ksec->sid = tsec->sid;
4735 k->security = ksec;
4736
4737 return 0;
4738 }
4739
4740 static void selinux_key_free(struct key *k)
4741 {
4742 struct key_security_struct *ksec = k->security;
4743
4744 k->security = NULL;
4745 kfree(ksec);
4746 }
4747
4748 static int selinux_key_permission(key_ref_t key_ref,
4749 struct task_struct *ctx,
4750 key_perm_t perm)
4751 {
4752 struct key *key;
4753 struct task_security_struct *tsec;
4754 struct key_security_struct *ksec;
4755
4756 key = key_ref_to_ptr(key_ref);
4757
4758 tsec = ctx->security;
4759 ksec = key->security;
4760
4761 /* if no specific permissions are requested, we skip the
4762 permission check. No serious, additional covert channels
4763 appear to be created. */
4764 if (perm == 0)
4765 return 0;
4766
4767 return avc_has_perm(tsec->sid, ksec->sid,
4768 SECCLASS_KEY, perm, NULL);
4769 }
4770
4771 #endif
4772
4773 static struct security_operations selinux_ops = {
4774 .ptrace = selinux_ptrace,
4775 .capget = selinux_capget,
4776 .capset_check = selinux_capset_check,
4777 .capset_set = selinux_capset_set,
4778 .sysctl = selinux_sysctl,
4779 .capable = selinux_capable,
4780 .quotactl = selinux_quotactl,
4781 .quota_on = selinux_quota_on,
4782 .syslog = selinux_syslog,
4783 .vm_enough_memory = selinux_vm_enough_memory,
4784
4785 .netlink_send = selinux_netlink_send,
4786 .netlink_recv = selinux_netlink_recv,
4787
4788 .bprm_alloc_security = selinux_bprm_alloc_security,
4789 .bprm_free_security = selinux_bprm_free_security,
4790 .bprm_apply_creds = selinux_bprm_apply_creds,
4791 .bprm_post_apply_creds = selinux_bprm_post_apply_creds,
4792 .bprm_set_security = selinux_bprm_set_security,
4793 .bprm_check_security = selinux_bprm_check_security,
4794 .bprm_secureexec = selinux_bprm_secureexec,
4795
4796 .sb_alloc_security = selinux_sb_alloc_security,
4797 .sb_free_security = selinux_sb_free_security,
4798 .sb_copy_data = selinux_sb_copy_data,
4799 .sb_kern_mount = selinux_sb_kern_mount,
4800 .sb_statfs = selinux_sb_statfs,
4801 .sb_mount = selinux_mount,
4802 .sb_umount = selinux_umount,
4803
4804 .inode_alloc_security = selinux_inode_alloc_security,
4805 .inode_free_security = selinux_inode_free_security,
4806 .inode_init_security = selinux_inode_init_security,
4807 .inode_create = selinux_inode_create,
4808 .inode_link = selinux_inode_link,
4809 .inode_unlink = selinux_inode_unlink,
4810 .inode_symlink = selinux_inode_symlink,
4811 .inode_mkdir = selinux_inode_mkdir,
4812 .inode_rmdir = selinux_inode_rmdir,
4813 .inode_mknod = selinux_inode_mknod,
4814 .inode_rename = selinux_inode_rename,
4815 .inode_readlink = selinux_inode_readlink,
4816 .inode_follow_link = selinux_inode_follow_link,
4817 .inode_permission = selinux_inode_permission,
4818 .inode_setattr = selinux_inode_setattr,
4819 .inode_getattr = selinux_inode_getattr,
4820 .inode_setxattr = selinux_inode_setxattr,
4821 .inode_post_setxattr = selinux_inode_post_setxattr,
4822 .inode_getxattr = selinux_inode_getxattr,
4823 .inode_listxattr = selinux_inode_listxattr,
4824 .inode_removexattr = selinux_inode_removexattr,
4825 .inode_getsecurity = selinux_inode_getsecurity,
4826 .inode_setsecurity = selinux_inode_setsecurity,
4827 .inode_listsecurity = selinux_inode_listsecurity,
4828 .inode_need_killpriv = selinux_inode_need_killpriv,
4829 .inode_killpriv = selinux_inode_killpriv,
4830
4831 .file_permission = selinux_file_permission,
4832 .file_alloc_security = selinux_file_alloc_security,
4833 .file_free_security = selinux_file_free_security,
4834 .file_ioctl = selinux_file_ioctl,
4835 .file_mmap = selinux_file_mmap,
4836 .file_mprotect = selinux_file_mprotect,
4837 .file_lock = selinux_file_lock,
4838 .file_fcntl = selinux_file_fcntl,
4839 .file_set_fowner = selinux_file_set_fowner,
4840 .file_send_sigiotask = selinux_file_send_sigiotask,
4841 .file_receive = selinux_file_receive,
4842
4843 .dentry_open = selinux_dentry_open,
4844
4845 .task_create = selinux_task_create,
4846 .task_alloc_security = selinux_task_alloc_security,
4847 .task_free_security = selinux_task_free_security,
4848 .task_setuid = selinux_task_setuid,
4849 .task_post_setuid = selinux_task_post_setuid,
4850 .task_setgid = selinux_task_setgid,
4851 .task_setpgid = selinux_task_setpgid,
4852 .task_getpgid = selinux_task_getpgid,
4853 .task_getsid = selinux_task_getsid,
4854 .task_getsecid = selinux_task_getsecid,
4855 .task_setgroups = selinux_task_setgroups,
4856 .task_setnice = selinux_task_setnice,
4857 .task_setioprio = selinux_task_setioprio,
4858 .task_getioprio = selinux_task_getioprio,
4859 .task_setrlimit = selinux_task_setrlimit,
4860 .task_setscheduler = selinux_task_setscheduler,
4861 .task_getscheduler = selinux_task_getscheduler,
4862 .task_movememory = selinux_task_movememory,
4863 .task_kill = selinux_task_kill,
4864 .task_wait = selinux_task_wait,
4865 .task_prctl = selinux_task_prctl,
4866 .task_reparent_to_init = selinux_task_reparent_to_init,
4867 .task_to_inode = selinux_task_to_inode,
4868
4869 .ipc_permission = selinux_ipc_permission,
4870
4871 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
4872 .msg_msg_free_security = selinux_msg_msg_free_security,
4873
4874 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
4875 .msg_queue_free_security = selinux_msg_queue_free_security,
4876 .msg_queue_associate = selinux_msg_queue_associate,
4877 .msg_queue_msgctl = selinux_msg_queue_msgctl,
4878 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
4879 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
4880
4881 .shm_alloc_security = selinux_shm_alloc_security,
4882 .shm_free_security = selinux_shm_free_security,
4883 .shm_associate = selinux_shm_associate,
4884 .shm_shmctl = selinux_shm_shmctl,
4885 .shm_shmat = selinux_shm_shmat,
4886
4887 .sem_alloc_security = selinux_sem_alloc_security,
4888 .sem_free_security = selinux_sem_free_security,
4889 .sem_associate = selinux_sem_associate,
4890 .sem_semctl = selinux_sem_semctl,
4891 .sem_semop = selinux_sem_semop,
4892
4893 .register_security = selinux_register_security,
4894
4895 .d_instantiate = selinux_d_instantiate,
4896
4897 .getprocattr = selinux_getprocattr,
4898 .setprocattr = selinux_setprocattr,
4899
4900 .secid_to_secctx = selinux_secid_to_secctx,
4901 .release_secctx = selinux_release_secctx,
4902
4903 .unix_stream_connect = selinux_socket_unix_stream_connect,
4904 .unix_may_send = selinux_socket_unix_may_send,
4905
4906 .socket_create = selinux_socket_create,
4907 .socket_post_create = selinux_socket_post_create,
4908 .socket_bind = selinux_socket_bind,
4909 .socket_connect = selinux_socket_connect,
4910 .socket_listen = selinux_socket_listen,
4911 .socket_accept = selinux_socket_accept,
4912 .socket_sendmsg = selinux_socket_sendmsg,
4913 .socket_recvmsg = selinux_socket_recvmsg,
4914 .socket_getsockname = selinux_socket_getsockname,
4915 .socket_getpeername = selinux_socket_getpeername,
4916 .socket_getsockopt = selinux_socket_getsockopt,
4917 .socket_setsockopt = selinux_socket_setsockopt,
4918 .socket_shutdown = selinux_socket_shutdown,
4919 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
4920 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
4921 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
4922 .sk_alloc_security = selinux_sk_alloc_security,
4923 .sk_free_security = selinux_sk_free_security,
4924 .sk_clone_security = selinux_sk_clone_security,
4925 .sk_getsecid = selinux_sk_getsecid,
4926 .sock_graft = selinux_sock_graft,
4927 .inet_conn_request = selinux_inet_conn_request,
4928 .inet_csk_clone = selinux_inet_csk_clone,
4929 .inet_conn_established = selinux_inet_conn_established,
4930 .req_classify_flow = selinux_req_classify_flow,
4931
4932 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4933 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
4934 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
4935 .xfrm_policy_free_security = selinux_xfrm_policy_free,
4936 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
4937 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
4938 .xfrm_state_free_security = selinux_xfrm_state_free,
4939 .xfrm_state_delete_security = selinux_xfrm_state_delete,
4940 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
4941 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
4942 .xfrm_decode_session = selinux_xfrm_decode_session,
4943 #endif
4944
4945 #ifdef CONFIG_KEYS
4946 .key_alloc = selinux_key_alloc,
4947 .key_free = selinux_key_free,
4948 .key_permission = selinux_key_permission,
4949 #endif
4950 };
4951
4952 static __init int selinux_init(void)
4953 {
4954 struct task_security_struct *tsec;
4955
4956 if (!selinux_enabled) {
4957 printk(KERN_INFO "SELinux: Disabled at boot.\n");
4958 return 0;
4959 }
4960
4961 printk(KERN_INFO "SELinux: Initializing.\n");
4962
4963 /* Set the security state for the initial task. */
4964 if (task_alloc_security(current))
4965 panic("SELinux: Failed to initialize initial task.\n");
4966 tsec = current->security;
4967 tsec->osid = tsec->sid = SECINITSID_KERNEL;
4968
4969 sel_inode_cache = kmem_cache_create("selinux_inode_security",
4970 sizeof(struct inode_security_struct),
4971 0, SLAB_PANIC, NULL);
4972 avc_init();
4973
4974 original_ops = secondary_ops = security_ops;
4975 if (!secondary_ops)
4976 panic ("SELinux: No initial security operations\n");
4977 if (register_security (&selinux_ops))
4978 panic("SELinux: Unable to register with kernel.\n");
4979
4980 if (selinux_enforcing) {
4981 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
4982 } else {
4983 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
4984 }
4985
4986 #ifdef CONFIG_KEYS
4987 /* Add security information to initial keyrings */
4988 selinux_key_alloc(&root_user_keyring, current,
4989 KEY_ALLOC_NOT_IN_QUOTA);
4990 selinux_key_alloc(&root_session_keyring, current,
4991 KEY_ALLOC_NOT_IN_QUOTA);
4992 #endif
4993
4994 return 0;
4995 }
4996
4997 void selinux_complete_init(void)
4998 {
4999 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5000
5001 /* Set up any superblocks initialized prior to the policy load. */
5002 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5003 spin_lock(&sb_lock);
5004 spin_lock(&sb_security_lock);
5005 next_sb:
5006 if (!list_empty(&superblock_security_head)) {
5007 struct superblock_security_struct *sbsec =
5008 list_entry(superblock_security_head.next,
5009 struct superblock_security_struct,
5010 list);
5011 struct super_block *sb = sbsec->sb;
5012 sb->s_count++;
5013 spin_unlock(&sb_security_lock);
5014 spin_unlock(&sb_lock);
5015 down_read(&sb->s_umount);
5016 if (sb->s_root)
5017 superblock_doinit(sb, NULL);
5018 drop_super(sb);
5019 spin_lock(&sb_lock);
5020 spin_lock(&sb_security_lock);
5021 list_del_init(&sbsec->list);
5022 goto next_sb;
5023 }
5024 spin_unlock(&sb_security_lock);
5025 spin_unlock(&sb_lock);
5026 }
5027
5028 /* SELinux requires early initialization in order to label
5029 all processes and objects when they are created. */
5030 security_initcall(selinux_init);
5031
5032 #if defined(CONFIG_NETFILTER)
5033
5034 static struct nf_hook_ops selinux_ipv4_op = {
5035 .hook = selinux_ipv4_postroute_last,
5036 .owner = THIS_MODULE,
5037 .pf = PF_INET,
5038 .hooknum = NF_IP_POST_ROUTING,
5039 .priority = NF_IP_PRI_SELINUX_LAST,
5040 };
5041
5042 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5043
5044 static struct nf_hook_ops selinux_ipv6_op = {
5045 .hook = selinux_ipv6_postroute_last,
5046 .owner = THIS_MODULE,
5047 .pf = PF_INET6,
5048 .hooknum = NF_IP6_POST_ROUTING,
5049 .priority = NF_IP6_PRI_SELINUX_LAST,
5050 };
5051
5052 #endif /* IPV6 */
5053
5054 static int __init selinux_nf_ip_init(void)
5055 {
5056 int err = 0;
5057
5058 if (!selinux_enabled)
5059 goto out;
5060
5061 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5062
5063 err = nf_register_hook(&selinux_ipv4_op);
5064 if (err)
5065 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
5066
5067 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5068
5069 err = nf_register_hook(&selinux_ipv6_op);
5070 if (err)
5071 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
5072
5073 #endif /* IPV6 */
5074
5075 out:
5076 return err;
5077 }
5078
5079 __initcall(selinux_nf_ip_init);
5080
5081 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5082 static void selinux_nf_ip_exit(void)
5083 {
5084 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5085
5086 nf_unregister_hook(&selinux_ipv4_op);
5087 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5088 nf_unregister_hook(&selinux_ipv6_op);
5089 #endif /* IPV6 */
5090 }
5091 #endif
5092
5093 #else /* CONFIG_NETFILTER */
5094
5095 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5096 #define selinux_nf_ip_exit()
5097 #endif
5098
5099 #endif /* CONFIG_NETFILTER */
5100
5101 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5102 int selinux_disable(void)
5103 {
5104 extern void exit_sel_fs(void);
5105 static int selinux_disabled = 0;
5106
5107 if (ss_initialized) {
5108 /* Not permitted after initial policy load. */
5109 return -EINVAL;
5110 }
5111
5112 if (selinux_disabled) {
5113 /* Only do this once. */
5114 return -EINVAL;
5115 }
5116
5117 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5118
5119 selinux_disabled = 1;
5120 selinux_enabled = 0;
5121
5122 /* Reset security_ops to the secondary module, dummy or capability. */
5123 security_ops = secondary_ops;
5124
5125 /* Unregister netfilter hooks. */
5126 selinux_nf_ip_exit();
5127
5128 /* Unregister selinuxfs. */
5129 exit_sel_fs();
5130
5131 return 0;
5132 }
5133 #endif
5134
5135
This page took 0.173102 seconds and 6 git commands to generate.