Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[deliverable/linux.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14 * <dgoeddel@trustedcs.com>
15 * Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
16 * Paul Moore, <paul.moore@hp.com>
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License version 2,
20 * as published by the Free Software Foundation.
21 */
22
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/errno.h>
28 #include <linux/sched.h>
29 #include <linux/security.h>
30 #include <linux/xattr.h>
31 #include <linux/capability.h>
32 #include <linux/unistd.h>
33 #include <linux/mm.h>
34 #include <linux/mman.h>
35 #include <linux/slab.h>
36 #include <linux/pagemap.h>
37 #include <linux/swap.h>
38 #include <linux/spinlock.h>
39 #include <linux/syscalls.h>
40 #include <linux/file.h>
41 #include <linux/namei.h>
42 #include <linux/mount.h>
43 #include <linux/ext2_fs.h>
44 #include <linux/proc_fs.h>
45 #include <linux/kd.h>
46 #include <linux/netfilter_ipv4.h>
47 #include <linux/netfilter_ipv6.h>
48 #include <linux/tty.h>
49 #include <net/icmp.h>
50 #include <net/ip.h> /* for local_port_range[] */
51 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
52 #include <asm/uaccess.h>
53 #include <asm/ioctls.h>
54 #include <linux/bitops.h>
55 #include <linux/interrupt.h>
56 #include <linux/netdevice.h> /* for network interface checks */
57 #include <linux/netlink.h>
58 #include <linux/tcp.h>
59 #include <linux/udp.h>
60 #include <linux/dccp.h>
61 #include <linux/quota.h>
62 #include <linux/un.h> /* for Unix socket types */
63 #include <net/af_unix.h> /* for Unix socket types */
64 #include <linux/parser.h>
65 #include <linux/nfs_mount.h>
66 #include <net/ipv6.h>
67 #include <linux/hugetlb.h>
68 #include <linux/personality.h>
69 #include <linux/sysctl.h>
70 #include <linux/audit.h>
71 #include <linux/string.h>
72 #include <linux/selinux.h>
73 #include <linux/mutex.h>
74
75 #include "avc.h"
76 #include "objsec.h"
77 #include "netif.h"
78 #include "xfrm.h"
79 #include "netlabel.h"
80
81 #define XATTR_SELINUX_SUFFIX "selinux"
82 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
83
84 extern unsigned int policydb_loaded_version;
85 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
86 extern int selinux_compat_net;
87
88 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
89 int selinux_enforcing = 0;
90
91 static int __init enforcing_setup(char *str)
92 {
93 selinux_enforcing = simple_strtol(str,NULL,0);
94 return 1;
95 }
96 __setup("enforcing=", enforcing_setup);
97 #endif
98
99 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
100 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
101
102 static int __init selinux_enabled_setup(char *str)
103 {
104 selinux_enabled = simple_strtol(str, NULL, 0);
105 return 1;
106 }
107 __setup("selinux=", selinux_enabled_setup);
108 #else
109 int selinux_enabled = 1;
110 #endif
111
112 /* Original (dummy) security module. */
113 static struct security_operations *original_ops = NULL;
114
115 /* Minimal support for a secondary security module,
116 just to allow the use of the dummy or capability modules.
117 The owlsm module can alternatively be used as a secondary
118 module as long as CONFIG_OWLSM_FD is not enabled. */
119 static struct security_operations *secondary_ops = NULL;
120
121 /* Lists of inode and superblock security structures initialized
122 before the policy was loaded. */
123 static LIST_HEAD(superblock_security_head);
124 static DEFINE_SPINLOCK(sb_security_lock);
125
126 static struct kmem_cache *sel_inode_cache;
127
128 /* Return security context for a given sid or just the context
129 length if the buffer is null or length is 0 */
130 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
131 {
132 char *context;
133 unsigned len;
134 int rc;
135
136 rc = security_sid_to_context(sid, &context, &len);
137 if (rc)
138 return rc;
139
140 if (!buffer || !size)
141 goto getsecurity_exit;
142
143 if (size < len) {
144 len = -ERANGE;
145 goto getsecurity_exit;
146 }
147 memcpy(buffer, context, len);
148
149 getsecurity_exit:
150 kfree(context);
151 return len;
152 }
153
154 /* Allocate and free functions for each kind of security blob. */
155
156 static int task_alloc_security(struct task_struct *task)
157 {
158 struct task_security_struct *tsec;
159
160 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
161 if (!tsec)
162 return -ENOMEM;
163
164 tsec->task = task;
165 tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
166 task->security = tsec;
167
168 return 0;
169 }
170
171 static void task_free_security(struct task_struct *task)
172 {
173 struct task_security_struct *tsec = task->security;
174 task->security = NULL;
175 kfree(tsec);
176 }
177
178 static int inode_alloc_security(struct inode *inode)
179 {
180 struct task_security_struct *tsec = current->security;
181 struct inode_security_struct *isec;
182
183 isec = kmem_cache_zalloc(sel_inode_cache, GFP_KERNEL);
184 if (!isec)
185 return -ENOMEM;
186
187 mutex_init(&isec->lock);
188 INIT_LIST_HEAD(&isec->list);
189 isec->inode = inode;
190 isec->sid = SECINITSID_UNLABELED;
191 isec->sclass = SECCLASS_FILE;
192 isec->task_sid = tsec->sid;
193 inode->i_security = isec;
194
195 return 0;
196 }
197
198 static void inode_free_security(struct inode *inode)
199 {
200 struct inode_security_struct *isec = inode->i_security;
201 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
202
203 spin_lock(&sbsec->isec_lock);
204 if (!list_empty(&isec->list))
205 list_del_init(&isec->list);
206 spin_unlock(&sbsec->isec_lock);
207
208 inode->i_security = NULL;
209 kmem_cache_free(sel_inode_cache, isec);
210 }
211
212 static int file_alloc_security(struct file *file)
213 {
214 struct task_security_struct *tsec = current->security;
215 struct file_security_struct *fsec;
216
217 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
218 if (!fsec)
219 return -ENOMEM;
220
221 fsec->file = file;
222 fsec->sid = tsec->sid;
223 fsec->fown_sid = tsec->sid;
224 file->f_security = fsec;
225
226 return 0;
227 }
228
229 static void file_free_security(struct file *file)
230 {
231 struct file_security_struct *fsec = file->f_security;
232 file->f_security = NULL;
233 kfree(fsec);
234 }
235
236 static int superblock_alloc_security(struct super_block *sb)
237 {
238 struct superblock_security_struct *sbsec;
239
240 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
241 if (!sbsec)
242 return -ENOMEM;
243
244 mutex_init(&sbsec->lock);
245 INIT_LIST_HEAD(&sbsec->list);
246 INIT_LIST_HEAD(&sbsec->isec_head);
247 spin_lock_init(&sbsec->isec_lock);
248 sbsec->sb = sb;
249 sbsec->sid = SECINITSID_UNLABELED;
250 sbsec->def_sid = SECINITSID_FILE;
251 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
252 sb->s_security = sbsec;
253
254 return 0;
255 }
256
257 static void superblock_free_security(struct super_block *sb)
258 {
259 struct superblock_security_struct *sbsec = sb->s_security;
260
261 spin_lock(&sb_security_lock);
262 if (!list_empty(&sbsec->list))
263 list_del_init(&sbsec->list);
264 spin_unlock(&sb_security_lock);
265
266 sb->s_security = NULL;
267 kfree(sbsec);
268 }
269
270 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
271 {
272 struct sk_security_struct *ssec;
273
274 ssec = kzalloc(sizeof(*ssec), priority);
275 if (!ssec)
276 return -ENOMEM;
277
278 ssec->sk = sk;
279 ssec->peer_sid = SECINITSID_UNLABELED;
280 ssec->sid = SECINITSID_UNLABELED;
281 sk->sk_security = ssec;
282
283 selinux_netlbl_sk_security_init(ssec, family);
284
285 return 0;
286 }
287
288 static void sk_free_security(struct sock *sk)
289 {
290 struct sk_security_struct *ssec = sk->sk_security;
291
292 sk->sk_security = NULL;
293 kfree(ssec);
294 }
295
296 /* The security server must be initialized before
297 any labeling or access decisions can be provided. */
298 extern int ss_initialized;
299
300 /* The file system's label must be initialized prior to use. */
301
302 static char *labeling_behaviors[6] = {
303 "uses xattr",
304 "uses transition SIDs",
305 "uses task SIDs",
306 "uses genfs_contexts",
307 "not configured for labeling",
308 "uses mountpoint labeling",
309 };
310
311 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
312
313 static inline int inode_doinit(struct inode *inode)
314 {
315 return inode_doinit_with_dentry(inode, NULL);
316 }
317
318 enum {
319 Opt_error = -1,
320 Opt_context = 1,
321 Opt_fscontext = 2,
322 Opt_defcontext = 4,
323 Opt_rootcontext = 8,
324 };
325
326 static match_table_t tokens = {
327 {Opt_context, "context=%s"},
328 {Opt_fscontext, "fscontext=%s"},
329 {Opt_defcontext, "defcontext=%s"},
330 {Opt_rootcontext, "rootcontext=%s"},
331 {Opt_error, NULL},
332 };
333
334 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
335
336 static int may_context_mount_sb_relabel(u32 sid,
337 struct superblock_security_struct *sbsec,
338 struct task_security_struct *tsec)
339 {
340 int rc;
341
342 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
343 FILESYSTEM__RELABELFROM, NULL);
344 if (rc)
345 return rc;
346
347 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
348 FILESYSTEM__RELABELTO, NULL);
349 return rc;
350 }
351
352 static int may_context_mount_inode_relabel(u32 sid,
353 struct superblock_security_struct *sbsec,
354 struct task_security_struct *tsec)
355 {
356 int rc;
357 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
358 FILESYSTEM__RELABELFROM, NULL);
359 if (rc)
360 return rc;
361
362 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
363 FILESYSTEM__ASSOCIATE, NULL);
364 return rc;
365 }
366
367 static int try_context_mount(struct super_block *sb, void *data)
368 {
369 char *context = NULL, *defcontext = NULL;
370 char *fscontext = NULL, *rootcontext = NULL;
371 const char *name;
372 u32 sid;
373 int alloc = 0, rc = 0, seen = 0;
374 struct task_security_struct *tsec = current->security;
375 struct superblock_security_struct *sbsec = sb->s_security;
376
377 if (!data)
378 goto out;
379
380 name = sb->s_type->name;
381
382 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
383
384 /* NFS we understand. */
385 if (!strcmp(name, "nfs")) {
386 struct nfs_mount_data *d = data;
387
388 if (d->version < NFS_MOUNT_VERSION)
389 goto out;
390
391 if (d->context[0]) {
392 context = d->context;
393 seen |= Opt_context;
394 }
395 } else
396 goto out;
397
398 } else {
399 /* Standard string-based options. */
400 char *p, *options = data;
401
402 while ((p = strsep(&options, "|")) != NULL) {
403 int token;
404 substring_t args[MAX_OPT_ARGS];
405
406 if (!*p)
407 continue;
408
409 token = match_token(p, tokens, args);
410
411 switch (token) {
412 case Opt_context:
413 if (seen & (Opt_context|Opt_defcontext)) {
414 rc = -EINVAL;
415 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
416 goto out_free;
417 }
418 context = match_strdup(&args[0]);
419 if (!context) {
420 rc = -ENOMEM;
421 goto out_free;
422 }
423 if (!alloc)
424 alloc = 1;
425 seen |= Opt_context;
426 break;
427
428 case Opt_fscontext:
429 if (seen & Opt_fscontext) {
430 rc = -EINVAL;
431 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
432 goto out_free;
433 }
434 fscontext = match_strdup(&args[0]);
435 if (!fscontext) {
436 rc = -ENOMEM;
437 goto out_free;
438 }
439 if (!alloc)
440 alloc = 1;
441 seen |= Opt_fscontext;
442 break;
443
444 case Opt_rootcontext:
445 if (seen & Opt_rootcontext) {
446 rc = -EINVAL;
447 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
448 goto out_free;
449 }
450 rootcontext = match_strdup(&args[0]);
451 if (!rootcontext) {
452 rc = -ENOMEM;
453 goto out_free;
454 }
455 if (!alloc)
456 alloc = 1;
457 seen |= Opt_rootcontext;
458 break;
459
460 case Opt_defcontext:
461 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
462 rc = -EINVAL;
463 printk(KERN_WARNING "SELinux: "
464 "defcontext option is invalid "
465 "for this filesystem type\n");
466 goto out_free;
467 }
468 if (seen & (Opt_context|Opt_defcontext)) {
469 rc = -EINVAL;
470 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
471 goto out_free;
472 }
473 defcontext = match_strdup(&args[0]);
474 if (!defcontext) {
475 rc = -ENOMEM;
476 goto out_free;
477 }
478 if (!alloc)
479 alloc = 1;
480 seen |= Opt_defcontext;
481 break;
482
483 default:
484 rc = -EINVAL;
485 printk(KERN_WARNING "SELinux: unknown mount "
486 "option\n");
487 goto out_free;
488
489 }
490 }
491 }
492
493 if (!seen)
494 goto out;
495
496 /* sets the context of the superblock for the fs being mounted. */
497 if (fscontext) {
498 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
499 if (rc) {
500 printk(KERN_WARNING "SELinux: security_context_to_sid"
501 "(%s) failed for (dev %s, type %s) errno=%d\n",
502 fscontext, sb->s_id, name, rc);
503 goto out_free;
504 }
505
506 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
507 if (rc)
508 goto out_free;
509
510 sbsec->sid = sid;
511 }
512
513 /*
514 * Switch to using mount point labeling behavior.
515 * sets the label used on all file below the mountpoint, and will set
516 * the superblock context if not already set.
517 */
518 if (context) {
519 rc = security_context_to_sid(context, strlen(context), &sid);
520 if (rc) {
521 printk(KERN_WARNING "SELinux: security_context_to_sid"
522 "(%s) failed for (dev %s, type %s) errno=%d\n",
523 context, sb->s_id, name, rc);
524 goto out_free;
525 }
526
527 if (!fscontext) {
528 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
529 if (rc)
530 goto out_free;
531 sbsec->sid = sid;
532 } else {
533 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
534 if (rc)
535 goto out_free;
536 }
537 sbsec->mntpoint_sid = sid;
538
539 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
540 }
541
542 if (rootcontext) {
543 struct inode *inode = sb->s_root->d_inode;
544 struct inode_security_struct *isec = inode->i_security;
545 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
546 if (rc) {
547 printk(KERN_WARNING "SELinux: security_context_to_sid"
548 "(%s) failed for (dev %s, type %s) errno=%d\n",
549 rootcontext, sb->s_id, name, rc);
550 goto out_free;
551 }
552
553 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
554 if (rc)
555 goto out_free;
556
557 isec->sid = sid;
558 isec->initialized = 1;
559 }
560
561 if (defcontext) {
562 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
563 if (rc) {
564 printk(KERN_WARNING "SELinux: security_context_to_sid"
565 "(%s) failed for (dev %s, type %s) errno=%d\n",
566 defcontext, sb->s_id, name, rc);
567 goto out_free;
568 }
569
570 if (sid == sbsec->def_sid)
571 goto out_free;
572
573 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
574 if (rc)
575 goto out_free;
576
577 sbsec->def_sid = sid;
578 }
579
580 out_free:
581 if (alloc) {
582 kfree(context);
583 kfree(defcontext);
584 kfree(fscontext);
585 kfree(rootcontext);
586 }
587 out:
588 return rc;
589 }
590
591 static int superblock_doinit(struct super_block *sb, void *data)
592 {
593 struct superblock_security_struct *sbsec = sb->s_security;
594 struct dentry *root = sb->s_root;
595 struct inode *inode = root->d_inode;
596 int rc = 0;
597
598 mutex_lock(&sbsec->lock);
599 if (sbsec->initialized)
600 goto out;
601
602 if (!ss_initialized) {
603 /* Defer initialization until selinux_complete_init,
604 after the initial policy is loaded and the security
605 server is ready to handle calls. */
606 spin_lock(&sb_security_lock);
607 if (list_empty(&sbsec->list))
608 list_add(&sbsec->list, &superblock_security_head);
609 spin_unlock(&sb_security_lock);
610 goto out;
611 }
612
613 /* Determine the labeling behavior to use for this filesystem type. */
614 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
615 if (rc) {
616 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
617 __FUNCTION__, sb->s_type->name, rc);
618 goto out;
619 }
620
621 rc = try_context_mount(sb, data);
622 if (rc)
623 goto out;
624
625 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
626 /* Make sure that the xattr handler exists and that no
627 error other than -ENODATA is returned by getxattr on
628 the root directory. -ENODATA is ok, as this may be
629 the first boot of the SELinux kernel before we have
630 assigned xattr values to the filesystem. */
631 if (!inode->i_op->getxattr) {
632 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
633 "xattr support\n", sb->s_id, sb->s_type->name);
634 rc = -EOPNOTSUPP;
635 goto out;
636 }
637 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
638 if (rc < 0 && rc != -ENODATA) {
639 if (rc == -EOPNOTSUPP)
640 printk(KERN_WARNING "SELinux: (dev %s, type "
641 "%s) has no security xattr handler\n",
642 sb->s_id, sb->s_type->name);
643 else
644 printk(KERN_WARNING "SELinux: (dev %s, type "
645 "%s) getxattr errno %d\n", sb->s_id,
646 sb->s_type->name, -rc);
647 goto out;
648 }
649 }
650
651 if (strcmp(sb->s_type->name, "proc") == 0)
652 sbsec->proc = 1;
653
654 sbsec->initialized = 1;
655
656 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
657 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
658 sb->s_id, sb->s_type->name);
659 }
660 else {
661 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
662 sb->s_id, sb->s_type->name,
663 labeling_behaviors[sbsec->behavior-1]);
664 }
665
666 /* Initialize the root inode. */
667 rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
668
669 /* Initialize any other inodes associated with the superblock, e.g.
670 inodes created prior to initial policy load or inodes created
671 during get_sb by a pseudo filesystem that directly
672 populates itself. */
673 spin_lock(&sbsec->isec_lock);
674 next_inode:
675 if (!list_empty(&sbsec->isec_head)) {
676 struct inode_security_struct *isec =
677 list_entry(sbsec->isec_head.next,
678 struct inode_security_struct, list);
679 struct inode *inode = isec->inode;
680 spin_unlock(&sbsec->isec_lock);
681 inode = igrab(inode);
682 if (inode) {
683 if (!IS_PRIVATE (inode))
684 inode_doinit(inode);
685 iput(inode);
686 }
687 spin_lock(&sbsec->isec_lock);
688 list_del_init(&isec->list);
689 goto next_inode;
690 }
691 spin_unlock(&sbsec->isec_lock);
692 out:
693 mutex_unlock(&sbsec->lock);
694 return rc;
695 }
696
697 static inline u16 inode_mode_to_security_class(umode_t mode)
698 {
699 switch (mode & S_IFMT) {
700 case S_IFSOCK:
701 return SECCLASS_SOCK_FILE;
702 case S_IFLNK:
703 return SECCLASS_LNK_FILE;
704 case S_IFREG:
705 return SECCLASS_FILE;
706 case S_IFBLK:
707 return SECCLASS_BLK_FILE;
708 case S_IFDIR:
709 return SECCLASS_DIR;
710 case S_IFCHR:
711 return SECCLASS_CHR_FILE;
712 case S_IFIFO:
713 return SECCLASS_FIFO_FILE;
714
715 }
716
717 return SECCLASS_FILE;
718 }
719
720 static inline int default_protocol_stream(int protocol)
721 {
722 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
723 }
724
725 static inline int default_protocol_dgram(int protocol)
726 {
727 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
728 }
729
730 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
731 {
732 switch (family) {
733 case PF_UNIX:
734 switch (type) {
735 case SOCK_STREAM:
736 case SOCK_SEQPACKET:
737 return SECCLASS_UNIX_STREAM_SOCKET;
738 case SOCK_DGRAM:
739 return SECCLASS_UNIX_DGRAM_SOCKET;
740 }
741 break;
742 case PF_INET:
743 case PF_INET6:
744 switch (type) {
745 case SOCK_STREAM:
746 if (default_protocol_stream(protocol))
747 return SECCLASS_TCP_SOCKET;
748 else
749 return SECCLASS_RAWIP_SOCKET;
750 case SOCK_DGRAM:
751 if (default_protocol_dgram(protocol))
752 return SECCLASS_UDP_SOCKET;
753 else
754 return SECCLASS_RAWIP_SOCKET;
755 case SOCK_DCCP:
756 return SECCLASS_DCCP_SOCKET;
757 default:
758 return SECCLASS_RAWIP_SOCKET;
759 }
760 break;
761 case PF_NETLINK:
762 switch (protocol) {
763 case NETLINK_ROUTE:
764 return SECCLASS_NETLINK_ROUTE_SOCKET;
765 case NETLINK_FIREWALL:
766 return SECCLASS_NETLINK_FIREWALL_SOCKET;
767 case NETLINK_INET_DIAG:
768 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
769 case NETLINK_NFLOG:
770 return SECCLASS_NETLINK_NFLOG_SOCKET;
771 case NETLINK_XFRM:
772 return SECCLASS_NETLINK_XFRM_SOCKET;
773 case NETLINK_SELINUX:
774 return SECCLASS_NETLINK_SELINUX_SOCKET;
775 case NETLINK_AUDIT:
776 return SECCLASS_NETLINK_AUDIT_SOCKET;
777 case NETLINK_IP6_FW:
778 return SECCLASS_NETLINK_IP6FW_SOCKET;
779 case NETLINK_DNRTMSG:
780 return SECCLASS_NETLINK_DNRT_SOCKET;
781 case NETLINK_KOBJECT_UEVENT:
782 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
783 default:
784 return SECCLASS_NETLINK_SOCKET;
785 }
786 case PF_PACKET:
787 return SECCLASS_PACKET_SOCKET;
788 case PF_KEY:
789 return SECCLASS_KEY_SOCKET;
790 case PF_APPLETALK:
791 return SECCLASS_APPLETALK_SOCKET;
792 }
793
794 return SECCLASS_SOCKET;
795 }
796
797 #ifdef CONFIG_PROC_FS
798 static int selinux_proc_get_sid(struct proc_dir_entry *de,
799 u16 tclass,
800 u32 *sid)
801 {
802 int buflen, rc;
803 char *buffer, *path, *end;
804
805 buffer = (char*)__get_free_page(GFP_KERNEL);
806 if (!buffer)
807 return -ENOMEM;
808
809 buflen = PAGE_SIZE;
810 end = buffer+buflen;
811 *--end = '\0';
812 buflen--;
813 path = end-1;
814 *path = '/';
815 while (de && de != de->parent) {
816 buflen -= de->namelen + 1;
817 if (buflen < 0)
818 break;
819 end -= de->namelen;
820 memcpy(end, de->name, de->namelen);
821 *--end = '/';
822 path = end;
823 de = de->parent;
824 }
825 rc = security_genfs_sid("proc", path, tclass, sid);
826 free_page((unsigned long)buffer);
827 return rc;
828 }
829 #else
830 static int selinux_proc_get_sid(struct proc_dir_entry *de,
831 u16 tclass,
832 u32 *sid)
833 {
834 return -EINVAL;
835 }
836 #endif
837
838 /* The inode's security attributes must be initialized before first use. */
839 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
840 {
841 struct superblock_security_struct *sbsec = NULL;
842 struct inode_security_struct *isec = inode->i_security;
843 u32 sid;
844 struct dentry *dentry;
845 #define INITCONTEXTLEN 255
846 char *context = NULL;
847 unsigned len = 0;
848 int rc = 0;
849
850 if (isec->initialized)
851 goto out;
852
853 mutex_lock(&isec->lock);
854 if (isec->initialized)
855 goto out_unlock;
856
857 sbsec = inode->i_sb->s_security;
858 if (!sbsec->initialized) {
859 /* Defer initialization until selinux_complete_init,
860 after the initial policy is loaded and the security
861 server is ready to handle calls. */
862 spin_lock(&sbsec->isec_lock);
863 if (list_empty(&isec->list))
864 list_add(&isec->list, &sbsec->isec_head);
865 spin_unlock(&sbsec->isec_lock);
866 goto out_unlock;
867 }
868
869 switch (sbsec->behavior) {
870 case SECURITY_FS_USE_XATTR:
871 if (!inode->i_op->getxattr) {
872 isec->sid = sbsec->def_sid;
873 break;
874 }
875
876 /* Need a dentry, since the xattr API requires one.
877 Life would be simpler if we could just pass the inode. */
878 if (opt_dentry) {
879 /* Called from d_instantiate or d_splice_alias. */
880 dentry = dget(opt_dentry);
881 } else {
882 /* Called from selinux_complete_init, try to find a dentry. */
883 dentry = d_find_alias(inode);
884 }
885 if (!dentry) {
886 printk(KERN_WARNING "%s: no dentry for dev=%s "
887 "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
888 inode->i_ino);
889 goto out_unlock;
890 }
891
892 len = INITCONTEXTLEN;
893 context = kmalloc(len, GFP_KERNEL);
894 if (!context) {
895 rc = -ENOMEM;
896 dput(dentry);
897 goto out_unlock;
898 }
899 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
900 context, len);
901 if (rc == -ERANGE) {
902 /* Need a larger buffer. Query for the right size. */
903 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
904 NULL, 0);
905 if (rc < 0) {
906 dput(dentry);
907 goto out_unlock;
908 }
909 kfree(context);
910 len = rc;
911 context = kmalloc(len, GFP_KERNEL);
912 if (!context) {
913 rc = -ENOMEM;
914 dput(dentry);
915 goto out_unlock;
916 }
917 rc = inode->i_op->getxattr(dentry,
918 XATTR_NAME_SELINUX,
919 context, len);
920 }
921 dput(dentry);
922 if (rc < 0) {
923 if (rc != -ENODATA) {
924 printk(KERN_WARNING "%s: getxattr returned "
925 "%d for dev=%s ino=%ld\n", __FUNCTION__,
926 -rc, inode->i_sb->s_id, inode->i_ino);
927 kfree(context);
928 goto out_unlock;
929 }
930 /* Map ENODATA to the default file SID */
931 sid = sbsec->def_sid;
932 rc = 0;
933 } else {
934 rc = security_context_to_sid_default(context, rc, &sid,
935 sbsec->def_sid);
936 if (rc) {
937 printk(KERN_WARNING "%s: context_to_sid(%s) "
938 "returned %d for dev=%s ino=%ld\n",
939 __FUNCTION__, context, -rc,
940 inode->i_sb->s_id, inode->i_ino);
941 kfree(context);
942 /* Leave with the unlabeled SID */
943 rc = 0;
944 break;
945 }
946 }
947 kfree(context);
948 isec->sid = sid;
949 break;
950 case SECURITY_FS_USE_TASK:
951 isec->sid = isec->task_sid;
952 break;
953 case SECURITY_FS_USE_TRANS:
954 /* Default to the fs SID. */
955 isec->sid = sbsec->sid;
956
957 /* Try to obtain a transition SID. */
958 isec->sclass = inode_mode_to_security_class(inode->i_mode);
959 rc = security_transition_sid(isec->task_sid,
960 sbsec->sid,
961 isec->sclass,
962 &sid);
963 if (rc)
964 goto out_unlock;
965 isec->sid = sid;
966 break;
967 case SECURITY_FS_USE_MNTPOINT:
968 isec->sid = sbsec->mntpoint_sid;
969 break;
970 default:
971 /* Default to the fs superblock SID. */
972 isec->sid = sbsec->sid;
973
974 if (sbsec->proc) {
975 struct proc_inode *proci = PROC_I(inode);
976 if (proci->pde) {
977 isec->sclass = inode_mode_to_security_class(inode->i_mode);
978 rc = selinux_proc_get_sid(proci->pde,
979 isec->sclass,
980 &sid);
981 if (rc)
982 goto out_unlock;
983 isec->sid = sid;
984 }
985 }
986 break;
987 }
988
989 isec->initialized = 1;
990
991 out_unlock:
992 mutex_unlock(&isec->lock);
993 out:
994 if (isec->sclass == SECCLASS_FILE)
995 isec->sclass = inode_mode_to_security_class(inode->i_mode);
996 return rc;
997 }
998
999 /* Convert a Linux signal to an access vector. */
1000 static inline u32 signal_to_av(int sig)
1001 {
1002 u32 perm = 0;
1003
1004 switch (sig) {
1005 case SIGCHLD:
1006 /* Commonly granted from child to parent. */
1007 perm = PROCESS__SIGCHLD;
1008 break;
1009 case SIGKILL:
1010 /* Cannot be caught or ignored */
1011 perm = PROCESS__SIGKILL;
1012 break;
1013 case SIGSTOP:
1014 /* Cannot be caught or ignored */
1015 perm = PROCESS__SIGSTOP;
1016 break;
1017 default:
1018 /* All other signals. */
1019 perm = PROCESS__SIGNAL;
1020 break;
1021 }
1022
1023 return perm;
1024 }
1025
1026 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1027 fork check, ptrace check, etc. */
1028 static int task_has_perm(struct task_struct *tsk1,
1029 struct task_struct *tsk2,
1030 u32 perms)
1031 {
1032 struct task_security_struct *tsec1, *tsec2;
1033
1034 tsec1 = tsk1->security;
1035 tsec2 = tsk2->security;
1036 return avc_has_perm(tsec1->sid, tsec2->sid,
1037 SECCLASS_PROCESS, perms, NULL);
1038 }
1039
1040 /* Check whether a task is allowed to use a capability. */
1041 static int task_has_capability(struct task_struct *tsk,
1042 int cap)
1043 {
1044 struct task_security_struct *tsec;
1045 struct avc_audit_data ad;
1046
1047 tsec = tsk->security;
1048
1049 AVC_AUDIT_DATA_INIT(&ad,CAP);
1050 ad.tsk = tsk;
1051 ad.u.cap = cap;
1052
1053 return avc_has_perm(tsec->sid, tsec->sid,
1054 SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1055 }
1056
1057 /* Check whether a task is allowed to use a system operation. */
1058 static int task_has_system(struct task_struct *tsk,
1059 u32 perms)
1060 {
1061 struct task_security_struct *tsec;
1062
1063 tsec = tsk->security;
1064
1065 return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1066 SECCLASS_SYSTEM, perms, NULL);
1067 }
1068
1069 /* Check whether a task has a particular permission to an inode.
1070 The 'adp' parameter is optional and allows other audit
1071 data to be passed (e.g. the dentry). */
1072 static int inode_has_perm(struct task_struct *tsk,
1073 struct inode *inode,
1074 u32 perms,
1075 struct avc_audit_data *adp)
1076 {
1077 struct task_security_struct *tsec;
1078 struct inode_security_struct *isec;
1079 struct avc_audit_data ad;
1080
1081 if (unlikely (IS_PRIVATE (inode)))
1082 return 0;
1083
1084 tsec = tsk->security;
1085 isec = inode->i_security;
1086
1087 if (!adp) {
1088 adp = &ad;
1089 AVC_AUDIT_DATA_INIT(&ad, FS);
1090 ad.u.fs.inode = inode;
1091 }
1092
1093 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1094 }
1095
1096 /* Same as inode_has_perm, but pass explicit audit data containing
1097 the dentry to help the auditing code to more easily generate the
1098 pathname if needed. */
1099 static inline int dentry_has_perm(struct task_struct *tsk,
1100 struct vfsmount *mnt,
1101 struct dentry *dentry,
1102 u32 av)
1103 {
1104 struct inode *inode = dentry->d_inode;
1105 struct avc_audit_data ad;
1106 AVC_AUDIT_DATA_INIT(&ad,FS);
1107 ad.u.fs.mnt = mnt;
1108 ad.u.fs.dentry = dentry;
1109 return inode_has_perm(tsk, inode, av, &ad);
1110 }
1111
1112 /* Check whether a task can use an open file descriptor to
1113 access an inode in a given way. Check access to the
1114 descriptor itself, and then use dentry_has_perm to
1115 check a particular permission to the file.
1116 Access to the descriptor is implicitly granted if it
1117 has the same SID as the process. If av is zero, then
1118 access to the file is not checked, e.g. for cases
1119 where only the descriptor is affected like seek. */
1120 static int file_has_perm(struct task_struct *tsk,
1121 struct file *file,
1122 u32 av)
1123 {
1124 struct task_security_struct *tsec = tsk->security;
1125 struct file_security_struct *fsec = file->f_security;
1126 struct vfsmount *mnt = file->f_path.mnt;
1127 struct dentry *dentry = file->f_path.dentry;
1128 struct inode *inode = dentry->d_inode;
1129 struct avc_audit_data ad;
1130 int rc;
1131
1132 AVC_AUDIT_DATA_INIT(&ad, FS);
1133 ad.u.fs.mnt = mnt;
1134 ad.u.fs.dentry = dentry;
1135
1136 if (tsec->sid != fsec->sid) {
1137 rc = avc_has_perm(tsec->sid, fsec->sid,
1138 SECCLASS_FD,
1139 FD__USE,
1140 &ad);
1141 if (rc)
1142 return rc;
1143 }
1144
1145 /* av is zero if only checking access to the descriptor. */
1146 if (av)
1147 return inode_has_perm(tsk, inode, av, &ad);
1148
1149 return 0;
1150 }
1151
1152 /* Check whether a task can create a file. */
1153 static int may_create(struct inode *dir,
1154 struct dentry *dentry,
1155 u16 tclass)
1156 {
1157 struct task_security_struct *tsec;
1158 struct inode_security_struct *dsec;
1159 struct superblock_security_struct *sbsec;
1160 u32 newsid;
1161 struct avc_audit_data ad;
1162 int rc;
1163
1164 tsec = current->security;
1165 dsec = dir->i_security;
1166 sbsec = dir->i_sb->s_security;
1167
1168 AVC_AUDIT_DATA_INIT(&ad, FS);
1169 ad.u.fs.dentry = dentry;
1170
1171 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1172 DIR__ADD_NAME | DIR__SEARCH,
1173 &ad);
1174 if (rc)
1175 return rc;
1176
1177 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1178 newsid = tsec->create_sid;
1179 } else {
1180 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1181 &newsid);
1182 if (rc)
1183 return rc;
1184 }
1185
1186 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1187 if (rc)
1188 return rc;
1189
1190 return avc_has_perm(newsid, sbsec->sid,
1191 SECCLASS_FILESYSTEM,
1192 FILESYSTEM__ASSOCIATE, &ad);
1193 }
1194
1195 /* Check whether a task can create a key. */
1196 static int may_create_key(u32 ksid,
1197 struct task_struct *ctx)
1198 {
1199 struct task_security_struct *tsec;
1200
1201 tsec = ctx->security;
1202
1203 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1204 }
1205
1206 #define MAY_LINK 0
1207 #define MAY_UNLINK 1
1208 #define MAY_RMDIR 2
1209
1210 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1211 static int may_link(struct inode *dir,
1212 struct dentry *dentry,
1213 int kind)
1214
1215 {
1216 struct task_security_struct *tsec;
1217 struct inode_security_struct *dsec, *isec;
1218 struct avc_audit_data ad;
1219 u32 av;
1220 int rc;
1221
1222 tsec = current->security;
1223 dsec = dir->i_security;
1224 isec = dentry->d_inode->i_security;
1225
1226 AVC_AUDIT_DATA_INIT(&ad, FS);
1227 ad.u.fs.dentry = dentry;
1228
1229 av = DIR__SEARCH;
1230 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1231 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1232 if (rc)
1233 return rc;
1234
1235 switch (kind) {
1236 case MAY_LINK:
1237 av = FILE__LINK;
1238 break;
1239 case MAY_UNLINK:
1240 av = FILE__UNLINK;
1241 break;
1242 case MAY_RMDIR:
1243 av = DIR__RMDIR;
1244 break;
1245 default:
1246 printk(KERN_WARNING "may_link: unrecognized kind %d\n", kind);
1247 return 0;
1248 }
1249
1250 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1251 return rc;
1252 }
1253
1254 static inline int may_rename(struct inode *old_dir,
1255 struct dentry *old_dentry,
1256 struct inode *new_dir,
1257 struct dentry *new_dentry)
1258 {
1259 struct task_security_struct *tsec;
1260 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1261 struct avc_audit_data ad;
1262 u32 av;
1263 int old_is_dir, new_is_dir;
1264 int rc;
1265
1266 tsec = current->security;
1267 old_dsec = old_dir->i_security;
1268 old_isec = old_dentry->d_inode->i_security;
1269 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1270 new_dsec = new_dir->i_security;
1271
1272 AVC_AUDIT_DATA_INIT(&ad, FS);
1273
1274 ad.u.fs.dentry = old_dentry;
1275 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1276 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1277 if (rc)
1278 return rc;
1279 rc = avc_has_perm(tsec->sid, old_isec->sid,
1280 old_isec->sclass, FILE__RENAME, &ad);
1281 if (rc)
1282 return rc;
1283 if (old_is_dir && new_dir != old_dir) {
1284 rc = avc_has_perm(tsec->sid, old_isec->sid,
1285 old_isec->sclass, DIR__REPARENT, &ad);
1286 if (rc)
1287 return rc;
1288 }
1289
1290 ad.u.fs.dentry = new_dentry;
1291 av = DIR__ADD_NAME | DIR__SEARCH;
1292 if (new_dentry->d_inode)
1293 av |= DIR__REMOVE_NAME;
1294 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1295 if (rc)
1296 return rc;
1297 if (new_dentry->d_inode) {
1298 new_isec = new_dentry->d_inode->i_security;
1299 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1300 rc = avc_has_perm(tsec->sid, new_isec->sid,
1301 new_isec->sclass,
1302 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1303 if (rc)
1304 return rc;
1305 }
1306
1307 return 0;
1308 }
1309
1310 /* Check whether a task can perform a filesystem operation. */
1311 static int superblock_has_perm(struct task_struct *tsk,
1312 struct super_block *sb,
1313 u32 perms,
1314 struct avc_audit_data *ad)
1315 {
1316 struct task_security_struct *tsec;
1317 struct superblock_security_struct *sbsec;
1318
1319 tsec = tsk->security;
1320 sbsec = sb->s_security;
1321 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1322 perms, ad);
1323 }
1324
1325 /* Convert a Linux mode and permission mask to an access vector. */
1326 static inline u32 file_mask_to_av(int mode, int mask)
1327 {
1328 u32 av = 0;
1329
1330 if ((mode & S_IFMT) != S_IFDIR) {
1331 if (mask & MAY_EXEC)
1332 av |= FILE__EXECUTE;
1333 if (mask & MAY_READ)
1334 av |= FILE__READ;
1335
1336 if (mask & MAY_APPEND)
1337 av |= FILE__APPEND;
1338 else if (mask & MAY_WRITE)
1339 av |= FILE__WRITE;
1340
1341 } else {
1342 if (mask & MAY_EXEC)
1343 av |= DIR__SEARCH;
1344 if (mask & MAY_WRITE)
1345 av |= DIR__WRITE;
1346 if (mask & MAY_READ)
1347 av |= DIR__READ;
1348 }
1349
1350 return av;
1351 }
1352
1353 /* Convert a Linux file to an access vector. */
1354 static inline u32 file_to_av(struct file *file)
1355 {
1356 u32 av = 0;
1357
1358 if (file->f_mode & FMODE_READ)
1359 av |= FILE__READ;
1360 if (file->f_mode & FMODE_WRITE) {
1361 if (file->f_flags & O_APPEND)
1362 av |= FILE__APPEND;
1363 else
1364 av |= FILE__WRITE;
1365 }
1366
1367 return av;
1368 }
1369
1370 /* Hook functions begin here. */
1371
1372 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1373 {
1374 struct task_security_struct *psec = parent->security;
1375 struct task_security_struct *csec = child->security;
1376 int rc;
1377
1378 rc = secondary_ops->ptrace(parent,child);
1379 if (rc)
1380 return rc;
1381
1382 rc = task_has_perm(parent, child, PROCESS__PTRACE);
1383 /* Save the SID of the tracing process for later use in apply_creds. */
1384 if (!(child->ptrace & PT_PTRACED) && !rc)
1385 csec->ptrace_sid = psec->sid;
1386 return rc;
1387 }
1388
1389 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1390 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1391 {
1392 int error;
1393
1394 error = task_has_perm(current, target, PROCESS__GETCAP);
1395 if (error)
1396 return error;
1397
1398 return secondary_ops->capget(target, effective, inheritable, permitted);
1399 }
1400
1401 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1402 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1403 {
1404 int error;
1405
1406 error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1407 if (error)
1408 return error;
1409
1410 return task_has_perm(current, target, PROCESS__SETCAP);
1411 }
1412
1413 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1414 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1415 {
1416 secondary_ops->capset_set(target, effective, inheritable, permitted);
1417 }
1418
1419 static int selinux_capable(struct task_struct *tsk, int cap)
1420 {
1421 int rc;
1422
1423 rc = secondary_ops->capable(tsk, cap);
1424 if (rc)
1425 return rc;
1426
1427 return task_has_capability(tsk,cap);
1428 }
1429
1430 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1431 {
1432 int buflen, rc;
1433 char *buffer, *path, *end;
1434
1435 rc = -ENOMEM;
1436 buffer = (char*)__get_free_page(GFP_KERNEL);
1437 if (!buffer)
1438 goto out;
1439
1440 buflen = PAGE_SIZE;
1441 end = buffer+buflen;
1442 *--end = '\0';
1443 buflen--;
1444 path = end-1;
1445 *path = '/';
1446 while (table) {
1447 const char *name = table->procname;
1448 size_t namelen = strlen(name);
1449 buflen -= namelen + 1;
1450 if (buflen < 0)
1451 goto out_free;
1452 end -= namelen;
1453 memcpy(end, name, namelen);
1454 *--end = '/';
1455 path = end;
1456 table = table->parent;
1457 }
1458 buflen -= 4;
1459 if (buflen < 0)
1460 goto out_free;
1461 end -= 4;
1462 memcpy(end, "/sys", 4);
1463 path = end;
1464 rc = security_genfs_sid("proc", path, tclass, sid);
1465 out_free:
1466 free_page((unsigned long)buffer);
1467 out:
1468 return rc;
1469 }
1470
1471 static int selinux_sysctl(ctl_table *table, int op)
1472 {
1473 int error = 0;
1474 u32 av;
1475 struct task_security_struct *tsec;
1476 u32 tsid;
1477 int rc;
1478
1479 rc = secondary_ops->sysctl(table, op);
1480 if (rc)
1481 return rc;
1482
1483 tsec = current->security;
1484
1485 rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1486 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1487 if (rc) {
1488 /* Default to the well-defined sysctl SID. */
1489 tsid = SECINITSID_SYSCTL;
1490 }
1491
1492 /* The op values are "defined" in sysctl.c, thereby creating
1493 * a bad coupling between this module and sysctl.c */
1494 if(op == 001) {
1495 error = avc_has_perm(tsec->sid, tsid,
1496 SECCLASS_DIR, DIR__SEARCH, NULL);
1497 } else {
1498 av = 0;
1499 if (op & 004)
1500 av |= FILE__READ;
1501 if (op & 002)
1502 av |= FILE__WRITE;
1503 if (av)
1504 error = avc_has_perm(tsec->sid, tsid,
1505 SECCLASS_FILE, av, NULL);
1506 }
1507
1508 return error;
1509 }
1510
1511 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1512 {
1513 int rc = 0;
1514
1515 if (!sb)
1516 return 0;
1517
1518 switch (cmds) {
1519 case Q_SYNC:
1520 case Q_QUOTAON:
1521 case Q_QUOTAOFF:
1522 case Q_SETINFO:
1523 case Q_SETQUOTA:
1524 rc = superblock_has_perm(current,
1525 sb,
1526 FILESYSTEM__QUOTAMOD, NULL);
1527 break;
1528 case Q_GETFMT:
1529 case Q_GETINFO:
1530 case Q_GETQUOTA:
1531 rc = superblock_has_perm(current,
1532 sb,
1533 FILESYSTEM__QUOTAGET, NULL);
1534 break;
1535 default:
1536 rc = 0; /* let the kernel handle invalid cmds */
1537 break;
1538 }
1539 return rc;
1540 }
1541
1542 static int selinux_quota_on(struct dentry *dentry)
1543 {
1544 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1545 }
1546
1547 static int selinux_syslog(int type)
1548 {
1549 int rc;
1550
1551 rc = secondary_ops->syslog(type);
1552 if (rc)
1553 return rc;
1554
1555 switch (type) {
1556 case 3: /* Read last kernel messages */
1557 case 10: /* Return size of the log buffer */
1558 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1559 break;
1560 case 6: /* Disable logging to console */
1561 case 7: /* Enable logging to console */
1562 case 8: /* Set level of messages printed to console */
1563 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1564 break;
1565 case 0: /* Close log */
1566 case 1: /* Open log */
1567 case 2: /* Read from log */
1568 case 4: /* Read/clear last kernel messages */
1569 case 5: /* Clear ring buffer */
1570 default:
1571 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1572 break;
1573 }
1574 return rc;
1575 }
1576
1577 /*
1578 * Check that a process has enough memory to allocate a new virtual
1579 * mapping. 0 means there is enough memory for the allocation to
1580 * succeed and -ENOMEM implies there is not.
1581 *
1582 * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1583 * if the capability is granted, but __vm_enough_memory requires 1 if
1584 * the capability is granted.
1585 *
1586 * Do not audit the selinux permission check, as this is applied to all
1587 * processes that allocate mappings.
1588 */
1589 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1590 {
1591 int rc, cap_sys_admin = 0;
1592 struct task_security_struct *tsec = current->security;
1593
1594 rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1595 if (rc == 0)
1596 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1597 SECCLASS_CAPABILITY,
1598 CAP_TO_MASK(CAP_SYS_ADMIN),
1599 0,
1600 NULL);
1601
1602 if (rc == 0)
1603 cap_sys_admin = 1;
1604
1605 return __vm_enough_memory(mm, pages, cap_sys_admin);
1606 }
1607
1608 /* binprm security operations */
1609
1610 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1611 {
1612 struct bprm_security_struct *bsec;
1613
1614 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1615 if (!bsec)
1616 return -ENOMEM;
1617
1618 bsec->bprm = bprm;
1619 bsec->sid = SECINITSID_UNLABELED;
1620 bsec->set = 0;
1621
1622 bprm->security = bsec;
1623 return 0;
1624 }
1625
1626 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1627 {
1628 struct task_security_struct *tsec;
1629 struct inode *inode = bprm->file->f_path.dentry->d_inode;
1630 struct inode_security_struct *isec;
1631 struct bprm_security_struct *bsec;
1632 u32 newsid;
1633 struct avc_audit_data ad;
1634 int rc;
1635
1636 rc = secondary_ops->bprm_set_security(bprm);
1637 if (rc)
1638 return rc;
1639
1640 bsec = bprm->security;
1641
1642 if (bsec->set)
1643 return 0;
1644
1645 tsec = current->security;
1646 isec = inode->i_security;
1647
1648 /* Default to the current task SID. */
1649 bsec->sid = tsec->sid;
1650
1651 /* Reset fs, key, and sock SIDs on execve. */
1652 tsec->create_sid = 0;
1653 tsec->keycreate_sid = 0;
1654 tsec->sockcreate_sid = 0;
1655
1656 if (tsec->exec_sid) {
1657 newsid = tsec->exec_sid;
1658 /* Reset exec SID on execve. */
1659 tsec->exec_sid = 0;
1660 } else {
1661 /* Check for a default transition on this program. */
1662 rc = security_transition_sid(tsec->sid, isec->sid,
1663 SECCLASS_PROCESS, &newsid);
1664 if (rc)
1665 return rc;
1666 }
1667
1668 AVC_AUDIT_DATA_INIT(&ad, FS);
1669 ad.u.fs.mnt = bprm->file->f_path.mnt;
1670 ad.u.fs.dentry = bprm->file->f_path.dentry;
1671
1672 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1673 newsid = tsec->sid;
1674
1675 if (tsec->sid == newsid) {
1676 rc = avc_has_perm(tsec->sid, isec->sid,
1677 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1678 if (rc)
1679 return rc;
1680 } else {
1681 /* Check permissions for the transition. */
1682 rc = avc_has_perm(tsec->sid, newsid,
1683 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1684 if (rc)
1685 return rc;
1686
1687 rc = avc_has_perm(newsid, isec->sid,
1688 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1689 if (rc)
1690 return rc;
1691
1692 /* Clear any possibly unsafe personality bits on exec: */
1693 current->personality &= ~PER_CLEAR_ON_SETID;
1694
1695 /* Set the security field to the new SID. */
1696 bsec->sid = newsid;
1697 }
1698
1699 bsec->set = 1;
1700 return 0;
1701 }
1702
1703 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1704 {
1705 return secondary_ops->bprm_check_security(bprm);
1706 }
1707
1708
1709 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1710 {
1711 struct task_security_struct *tsec = current->security;
1712 int atsecure = 0;
1713
1714 if (tsec->osid != tsec->sid) {
1715 /* Enable secure mode for SIDs transitions unless
1716 the noatsecure permission is granted between
1717 the two SIDs, i.e. ahp returns 0. */
1718 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1719 SECCLASS_PROCESS,
1720 PROCESS__NOATSECURE, NULL);
1721 }
1722
1723 return (atsecure || secondary_ops->bprm_secureexec(bprm));
1724 }
1725
1726 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1727 {
1728 kfree(bprm->security);
1729 bprm->security = NULL;
1730 }
1731
1732 extern struct vfsmount *selinuxfs_mount;
1733 extern struct dentry *selinux_null;
1734
1735 /* Derived from fs/exec.c:flush_old_files. */
1736 static inline void flush_unauthorized_files(struct files_struct * files)
1737 {
1738 struct avc_audit_data ad;
1739 struct file *file, *devnull = NULL;
1740 struct tty_struct *tty;
1741 struct fdtable *fdt;
1742 long j = -1;
1743 int drop_tty = 0;
1744
1745 mutex_lock(&tty_mutex);
1746 tty = get_current_tty();
1747 if (tty) {
1748 file_list_lock();
1749 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1750 if (file) {
1751 /* Revalidate access to controlling tty.
1752 Use inode_has_perm on the tty inode directly rather
1753 than using file_has_perm, as this particular open
1754 file may belong to another process and we are only
1755 interested in the inode-based check here. */
1756 struct inode *inode = file->f_path.dentry->d_inode;
1757 if (inode_has_perm(current, inode,
1758 FILE__READ | FILE__WRITE, NULL)) {
1759 drop_tty = 1;
1760 }
1761 }
1762 file_list_unlock();
1763 }
1764 mutex_unlock(&tty_mutex);
1765 /* Reset controlling tty. */
1766 if (drop_tty)
1767 no_tty();
1768
1769 /* Revalidate access to inherited open files. */
1770
1771 AVC_AUDIT_DATA_INIT(&ad,FS);
1772
1773 spin_lock(&files->file_lock);
1774 for (;;) {
1775 unsigned long set, i;
1776 int fd;
1777
1778 j++;
1779 i = j * __NFDBITS;
1780 fdt = files_fdtable(files);
1781 if (i >= fdt->max_fds)
1782 break;
1783 set = fdt->open_fds->fds_bits[j];
1784 if (!set)
1785 continue;
1786 spin_unlock(&files->file_lock);
1787 for ( ; set ; i++,set >>= 1) {
1788 if (set & 1) {
1789 file = fget(i);
1790 if (!file)
1791 continue;
1792 if (file_has_perm(current,
1793 file,
1794 file_to_av(file))) {
1795 sys_close(i);
1796 fd = get_unused_fd();
1797 if (fd != i) {
1798 if (fd >= 0)
1799 put_unused_fd(fd);
1800 fput(file);
1801 continue;
1802 }
1803 if (devnull) {
1804 get_file(devnull);
1805 } else {
1806 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1807 if (IS_ERR(devnull)) {
1808 devnull = NULL;
1809 put_unused_fd(fd);
1810 fput(file);
1811 continue;
1812 }
1813 }
1814 fd_install(fd, devnull);
1815 }
1816 fput(file);
1817 }
1818 }
1819 spin_lock(&files->file_lock);
1820
1821 }
1822 spin_unlock(&files->file_lock);
1823 }
1824
1825 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1826 {
1827 struct task_security_struct *tsec;
1828 struct bprm_security_struct *bsec;
1829 u32 sid;
1830 int rc;
1831
1832 secondary_ops->bprm_apply_creds(bprm, unsafe);
1833
1834 tsec = current->security;
1835
1836 bsec = bprm->security;
1837 sid = bsec->sid;
1838
1839 tsec->osid = tsec->sid;
1840 bsec->unsafe = 0;
1841 if (tsec->sid != sid) {
1842 /* Check for shared state. If not ok, leave SID
1843 unchanged and kill. */
1844 if (unsafe & LSM_UNSAFE_SHARE) {
1845 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1846 PROCESS__SHARE, NULL);
1847 if (rc) {
1848 bsec->unsafe = 1;
1849 return;
1850 }
1851 }
1852
1853 /* Check for ptracing, and update the task SID if ok.
1854 Otherwise, leave SID unchanged and kill. */
1855 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1856 rc = avc_has_perm(tsec->ptrace_sid, sid,
1857 SECCLASS_PROCESS, PROCESS__PTRACE,
1858 NULL);
1859 if (rc) {
1860 bsec->unsafe = 1;
1861 return;
1862 }
1863 }
1864 tsec->sid = sid;
1865 }
1866 }
1867
1868 /*
1869 * called after apply_creds without the task lock held
1870 */
1871 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1872 {
1873 struct task_security_struct *tsec;
1874 struct rlimit *rlim, *initrlim;
1875 struct itimerval itimer;
1876 struct bprm_security_struct *bsec;
1877 int rc, i;
1878
1879 tsec = current->security;
1880 bsec = bprm->security;
1881
1882 if (bsec->unsafe) {
1883 force_sig_specific(SIGKILL, current);
1884 return;
1885 }
1886 if (tsec->osid == tsec->sid)
1887 return;
1888
1889 /* Close files for which the new task SID is not authorized. */
1890 flush_unauthorized_files(current->files);
1891
1892 /* Check whether the new SID can inherit signal state
1893 from the old SID. If not, clear itimers to avoid
1894 subsequent signal generation and flush and unblock
1895 signals. This must occur _after_ the task SID has
1896 been updated so that any kill done after the flush
1897 will be checked against the new SID. */
1898 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1899 PROCESS__SIGINH, NULL);
1900 if (rc) {
1901 memset(&itimer, 0, sizeof itimer);
1902 for (i = 0; i < 3; i++)
1903 do_setitimer(i, &itimer, NULL);
1904 flush_signals(current);
1905 spin_lock_irq(&current->sighand->siglock);
1906 flush_signal_handlers(current, 1);
1907 sigemptyset(&current->blocked);
1908 recalc_sigpending();
1909 spin_unlock_irq(&current->sighand->siglock);
1910 }
1911
1912 /* Always clear parent death signal on SID transitions. */
1913 current->pdeath_signal = 0;
1914
1915 /* Check whether the new SID can inherit resource limits
1916 from the old SID. If not, reset all soft limits to
1917 the lower of the current task's hard limit and the init
1918 task's soft limit. Note that the setting of hard limits
1919 (even to lower them) can be controlled by the setrlimit
1920 check. The inclusion of the init task's soft limit into
1921 the computation is to avoid resetting soft limits higher
1922 than the default soft limit for cases where the default
1923 is lower than the hard limit, e.g. RLIMIT_CORE or
1924 RLIMIT_STACK.*/
1925 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1926 PROCESS__RLIMITINH, NULL);
1927 if (rc) {
1928 for (i = 0; i < RLIM_NLIMITS; i++) {
1929 rlim = current->signal->rlim + i;
1930 initrlim = init_task.signal->rlim+i;
1931 rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1932 }
1933 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1934 /*
1935 * This will cause RLIMIT_CPU calculations
1936 * to be refigured.
1937 */
1938 current->it_prof_expires = jiffies_to_cputime(1);
1939 }
1940 }
1941
1942 /* Wake up the parent if it is waiting so that it can
1943 recheck wait permission to the new task SID. */
1944 wake_up_interruptible(&current->parent->signal->wait_chldexit);
1945 }
1946
1947 /* superblock security operations */
1948
1949 static int selinux_sb_alloc_security(struct super_block *sb)
1950 {
1951 return superblock_alloc_security(sb);
1952 }
1953
1954 static void selinux_sb_free_security(struct super_block *sb)
1955 {
1956 superblock_free_security(sb);
1957 }
1958
1959 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1960 {
1961 if (plen > olen)
1962 return 0;
1963
1964 return !memcmp(prefix, option, plen);
1965 }
1966
1967 static inline int selinux_option(char *option, int len)
1968 {
1969 return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1970 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1971 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1972 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1973 }
1974
1975 static inline void take_option(char **to, char *from, int *first, int len)
1976 {
1977 if (!*first) {
1978 **to = ',';
1979 *to += 1;
1980 } else
1981 *first = 0;
1982 memcpy(*to, from, len);
1983 *to += len;
1984 }
1985
1986 static inline void take_selinux_option(char **to, char *from, int *first,
1987 int len)
1988 {
1989 int current_size = 0;
1990
1991 if (!*first) {
1992 **to = '|';
1993 *to += 1;
1994 }
1995 else
1996 *first = 0;
1997
1998 while (current_size < len) {
1999 if (*from != '"') {
2000 **to = *from;
2001 *to += 1;
2002 }
2003 from += 1;
2004 current_size += 1;
2005 }
2006 }
2007
2008 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
2009 {
2010 int fnosec, fsec, rc = 0;
2011 char *in_save, *in_curr, *in_end;
2012 char *sec_curr, *nosec_save, *nosec;
2013 int open_quote = 0;
2014
2015 in_curr = orig;
2016 sec_curr = copy;
2017
2018 /* Binary mount data: just copy */
2019 if (type->fs_flags & FS_BINARY_MOUNTDATA) {
2020 copy_page(sec_curr, in_curr);
2021 goto out;
2022 }
2023
2024 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2025 if (!nosec) {
2026 rc = -ENOMEM;
2027 goto out;
2028 }
2029
2030 nosec_save = nosec;
2031 fnosec = fsec = 1;
2032 in_save = in_end = orig;
2033
2034 do {
2035 if (*in_end == '"')
2036 open_quote = !open_quote;
2037 if ((*in_end == ',' && open_quote == 0) ||
2038 *in_end == '\0') {
2039 int len = in_end - in_curr;
2040
2041 if (selinux_option(in_curr, len))
2042 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2043 else
2044 take_option(&nosec, in_curr, &fnosec, len);
2045
2046 in_curr = in_end + 1;
2047 }
2048 } while (*in_end++);
2049
2050 strcpy(in_save, nosec_save);
2051 free_page((unsigned long)nosec_save);
2052 out:
2053 return rc;
2054 }
2055
2056 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2057 {
2058 struct avc_audit_data ad;
2059 int rc;
2060
2061 rc = superblock_doinit(sb, data);
2062 if (rc)
2063 return rc;
2064
2065 AVC_AUDIT_DATA_INIT(&ad,FS);
2066 ad.u.fs.dentry = sb->s_root;
2067 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2068 }
2069
2070 static int selinux_sb_statfs(struct dentry *dentry)
2071 {
2072 struct avc_audit_data ad;
2073
2074 AVC_AUDIT_DATA_INIT(&ad,FS);
2075 ad.u.fs.dentry = dentry->d_sb->s_root;
2076 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2077 }
2078
2079 static int selinux_mount(char * dev_name,
2080 struct nameidata *nd,
2081 char * type,
2082 unsigned long flags,
2083 void * data)
2084 {
2085 int rc;
2086
2087 rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2088 if (rc)
2089 return rc;
2090
2091 if (flags & MS_REMOUNT)
2092 return superblock_has_perm(current, nd->mnt->mnt_sb,
2093 FILESYSTEM__REMOUNT, NULL);
2094 else
2095 return dentry_has_perm(current, nd->mnt, nd->dentry,
2096 FILE__MOUNTON);
2097 }
2098
2099 static int selinux_umount(struct vfsmount *mnt, int flags)
2100 {
2101 int rc;
2102
2103 rc = secondary_ops->sb_umount(mnt, flags);
2104 if (rc)
2105 return rc;
2106
2107 return superblock_has_perm(current,mnt->mnt_sb,
2108 FILESYSTEM__UNMOUNT,NULL);
2109 }
2110
2111 /* inode security operations */
2112
2113 static int selinux_inode_alloc_security(struct inode *inode)
2114 {
2115 return inode_alloc_security(inode);
2116 }
2117
2118 static void selinux_inode_free_security(struct inode *inode)
2119 {
2120 inode_free_security(inode);
2121 }
2122
2123 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2124 char **name, void **value,
2125 size_t *len)
2126 {
2127 struct task_security_struct *tsec;
2128 struct inode_security_struct *dsec;
2129 struct superblock_security_struct *sbsec;
2130 u32 newsid, clen;
2131 int rc;
2132 char *namep = NULL, *context;
2133
2134 tsec = current->security;
2135 dsec = dir->i_security;
2136 sbsec = dir->i_sb->s_security;
2137
2138 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2139 newsid = tsec->create_sid;
2140 } else {
2141 rc = security_transition_sid(tsec->sid, dsec->sid,
2142 inode_mode_to_security_class(inode->i_mode),
2143 &newsid);
2144 if (rc) {
2145 printk(KERN_WARNING "%s: "
2146 "security_transition_sid failed, rc=%d (dev=%s "
2147 "ino=%ld)\n",
2148 __FUNCTION__,
2149 -rc, inode->i_sb->s_id, inode->i_ino);
2150 return rc;
2151 }
2152 }
2153
2154 /* Possibly defer initialization to selinux_complete_init. */
2155 if (sbsec->initialized) {
2156 struct inode_security_struct *isec = inode->i_security;
2157 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2158 isec->sid = newsid;
2159 isec->initialized = 1;
2160 }
2161
2162 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2163 return -EOPNOTSUPP;
2164
2165 if (name) {
2166 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2167 if (!namep)
2168 return -ENOMEM;
2169 *name = namep;
2170 }
2171
2172 if (value && len) {
2173 rc = security_sid_to_context(newsid, &context, &clen);
2174 if (rc) {
2175 kfree(namep);
2176 return rc;
2177 }
2178 *value = context;
2179 *len = clen;
2180 }
2181
2182 return 0;
2183 }
2184
2185 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2186 {
2187 return may_create(dir, dentry, SECCLASS_FILE);
2188 }
2189
2190 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2191 {
2192 int rc;
2193
2194 rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2195 if (rc)
2196 return rc;
2197 return may_link(dir, old_dentry, MAY_LINK);
2198 }
2199
2200 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2201 {
2202 int rc;
2203
2204 rc = secondary_ops->inode_unlink(dir, dentry);
2205 if (rc)
2206 return rc;
2207 return may_link(dir, dentry, MAY_UNLINK);
2208 }
2209
2210 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2211 {
2212 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2213 }
2214
2215 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2216 {
2217 return may_create(dir, dentry, SECCLASS_DIR);
2218 }
2219
2220 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2221 {
2222 return may_link(dir, dentry, MAY_RMDIR);
2223 }
2224
2225 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2226 {
2227 int rc;
2228
2229 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2230 if (rc)
2231 return rc;
2232
2233 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2234 }
2235
2236 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2237 struct inode *new_inode, struct dentry *new_dentry)
2238 {
2239 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2240 }
2241
2242 static int selinux_inode_readlink(struct dentry *dentry)
2243 {
2244 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2245 }
2246
2247 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2248 {
2249 int rc;
2250
2251 rc = secondary_ops->inode_follow_link(dentry,nameidata);
2252 if (rc)
2253 return rc;
2254 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2255 }
2256
2257 static int selinux_inode_permission(struct inode *inode, int mask,
2258 struct nameidata *nd)
2259 {
2260 int rc;
2261
2262 rc = secondary_ops->inode_permission(inode, mask, nd);
2263 if (rc)
2264 return rc;
2265
2266 if (!mask) {
2267 /* No permission to check. Existence test. */
2268 return 0;
2269 }
2270
2271 return inode_has_perm(current, inode,
2272 file_mask_to_av(inode->i_mode, mask), NULL);
2273 }
2274
2275 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2276 {
2277 int rc;
2278
2279 rc = secondary_ops->inode_setattr(dentry, iattr);
2280 if (rc)
2281 return rc;
2282
2283 if (iattr->ia_valid & ATTR_FORCE)
2284 return 0;
2285
2286 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2287 ATTR_ATIME_SET | ATTR_MTIME_SET))
2288 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2289
2290 return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2291 }
2292
2293 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2294 {
2295 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2296 }
2297
2298 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2299 {
2300 struct task_security_struct *tsec = current->security;
2301 struct inode *inode = dentry->d_inode;
2302 struct inode_security_struct *isec = inode->i_security;
2303 struct superblock_security_struct *sbsec;
2304 struct avc_audit_data ad;
2305 u32 newsid;
2306 int rc = 0;
2307
2308 if (strcmp(name, XATTR_NAME_SELINUX)) {
2309 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2310 sizeof XATTR_SECURITY_PREFIX - 1) &&
2311 !capable(CAP_SYS_ADMIN)) {
2312 /* A different attribute in the security namespace.
2313 Restrict to administrator. */
2314 return -EPERM;
2315 }
2316
2317 /* Not an attribute we recognize, so just check the
2318 ordinary setattr permission. */
2319 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2320 }
2321
2322 sbsec = inode->i_sb->s_security;
2323 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2324 return -EOPNOTSUPP;
2325
2326 if (!is_owner_or_cap(inode))
2327 return -EPERM;
2328
2329 AVC_AUDIT_DATA_INIT(&ad,FS);
2330 ad.u.fs.dentry = dentry;
2331
2332 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2333 FILE__RELABELFROM, &ad);
2334 if (rc)
2335 return rc;
2336
2337 rc = security_context_to_sid(value, size, &newsid);
2338 if (rc)
2339 return rc;
2340
2341 rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2342 FILE__RELABELTO, &ad);
2343 if (rc)
2344 return rc;
2345
2346 rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2347 isec->sclass);
2348 if (rc)
2349 return rc;
2350
2351 return avc_has_perm(newsid,
2352 sbsec->sid,
2353 SECCLASS_FILESYSTEM,
2354 FILESYSTEM__ASSOCIATE,
2355 &ad);
2356 }
2357
2358 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2359 void *value, size_t size, int flags)
2360 {
2361 struct inode *inode = dentry->d_inode;
2362 struct inode_security_struct *isec = inode->i_security;
2363 u32 newsid;
2364 int rc;
2365
2366 if (strcmp(name, XATTR_NAME_SELINUX)) {
2367 /* Not an attribute we recognize, so nothing to do. */
2368 return;
2369 }
2370
2371 rc = security_context_to_sid(value, size, &newsid);
2372 if (rc) {
2373 printk(KERN_WARNING "%s: unable to obtain SID for context "
2374 "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2375 return;
2376 }
2377
2378 isec->sid = newsid;
2379 return;
2380 }
2381
2382 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2383 {
2384 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2385 }
2386
2387 static int selinux_inode_listxattr (struct dentry *dentry)
2388 {
2389 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2390 }
2391
2392 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2393 {
2394 if (strcmp(name, XATTR_NAME_SELINUX)) {
2395 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2396 sizeof XATTR_SECURITY_PREFIX - 1) &&
2397 !capable(CAP_SYS_ADMIN)) {
2398 /* A different attribute in the security namespace.
2399 Restrict to administrator. */
2400 return -EPERM;
2401 }
2402
2403 /* Not an attribute we recognize, so just check the
2404 ordinary setattr permission. Might want a separate
2405 permission for removexattr. */
2406 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2407 }
2408
2409 /* No one is allowed to remove a SELinux security label.
2410 You can change the label, but all data must be labeled. */
2411 return -EACCES;
2412 }
2413
2414 static const char *selinux_inode_xattr_getsuffix(void)
2415 {
2416 return XATTR_SELINUX_SUFFIX;
2417 }
2418
2419 /*
2420 * Copy the in-core inode security context value to the user. If the
2421 * getxattr() prior to this succeeded, check to see if we need to
2422 * canonicalize the value to be finally returned to the user.
2423 *
2424 * Permission check is handled by selinux_inode_getxattr hook.
2425 */
2426 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2427 {
2428 struct inode_security_struct *isec = inode->i_security;
2429
2430 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2431 return -EOPNOTSUPP;
2432
2433 return selinux_getsecurity(isec->sid, buffer, size);
2434 }
2435
2436 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2437 const void *value, size_t size, int flags)
2438 {
2439 struct inode_security_struct *isec = inode->i_security;
2440 u32 newsid;
2441 int rc;
2442
2443 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2444 return -EOPNOTSUPP;
2445
2446 if (!value || !size)
2447 return -EACCES;
2448
2449 rc = security_context_to_sid((void*)value, size, &newsid);
2450 if (rc)
2451 return rc;
2452
2453 isec->sid = newsid;
2454 return 0;
2455 }
2456
2457 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2458 {
2459 const int len = sizeof(XATTR_NAME_SELINUX);
2460 if (buffer && len <= buffer_size)
2461 memcpy(buffer, XATTR_NAME_SELINUX, len);
2462 return len;
2463 }
2464
2465 /* file security operations */
2466
2467 static int selinux_file_permission(struct file *file, int mask)
2468 {
2469 int rc;
2470 struct inode *inode = file->f_path.dentry->d_inode;
2471
2472 if (!mask) {
2473 /* No permission to check. Existence test. */
2474 return 0;
2475 }
2476
2477 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2478 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2479 mask |= MAY_APPEND;
2480
2481 rc = file_has_perm(current, file,
2482 file_mask_to_av(inode->i_mode, mask));
2483 if (rc)
2484 return rc;
2485
2486 return selinux_netlbl_inode_permission(inode, mask);
2487 }
2488
2489 static int selinux_file_alloc_security(struct file *file)
2490 {
2491 return file_alloc_security(file);
2492 }
2493
2494 static void selinux_file_free_security(struct file *file)
2495 {
2496 file_free_security(file);
2497 }
2498
2499 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2500 unsigned long arg)
2501 {
2502 int error = 0;
2503
2504 switch (cmd) {
2505 case FIONREAD:
2506 /* fall through */
2507 case FIBMAP:
2508 /* fall through */
2509 case FIGETBSZ:
2510 /* fall through */
2511 case EXT2_IOC_GETFLAGS:
2512 /* fall through */
2513 case EXT2_IOC_GETVERSION:
2514 error = file_has_perm(current, file, FILE__GETATTR);
2515 break;
2516
2517 case EXT2_IOC_SETFLAGS:
2518 /* fall through */
2519 case EXT2_IOC_SETVERSION:
2520 error = file_has_perm(current, file, FILE__SETATTR);
2521 break;
2522
2523 /* sys_ioctl() checks */
2524 case FIONBIO:
2525 /* fall through */
2526 case FIOASYNC:
2527 error = file_has_perm(current, file, 0);
2528 break;
2529
2530 case KDSKBENT:
2531 case KDSKBSENT:
2532 error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2533 break;
2534
2535 /* default case assumes that the command will go
2536 * to the file's ioctl() function.
2537 */
2538 default:
2539 error = file_has_perm(current, file, FILE__IOCTL);
2540
2541 }
2542 return error;
2543 }
2544
2545 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2546 {
2547 #ifndef CONFIG_PPC32
2548 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2549 /*
2550 * We are making executable an anonymous mapping or a
2551 * private file mapping that will also be writable.
2552 * This has an additional check.
2553 */
2554 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2555 if (rc)
2556 return rc;
2557 }
2558 #endif
2559
2560 if (file) {
2561 /* read access is always possible with a mapping */
2562 u32 av = FILE__READ;
2563
2564 /* write access only matters if the mapping is shared */
2565 if (shared && (prot & PROT_WRITE))
2566 av |= FILE__WRITE;
2567
2568 if (prot & PROT_EXEC)
2569 av |= FILE__EXECUTE;
2570
2571 return file_has_perm(current, file, av);
2572 }
2573 return 0;
2574 }
2575
2576 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2577 unsigned long prot, unsigned long flags,
2578 unsigned long addr, unsigned long addr_only)
2579 {
2580 int rc = 0;
2581 u32 sid = ((struct task_security_struct*)(current->security))->sid;
2582
2583 if (addr < mmap_min_addr)
2584 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
2585 MEMPROTECT__MMAP_ZERO, NULL);
2586 if (rc || addr_only)
2587 return rc;
2588
2589 if (selinux_checkreqprot)
2590 prot = reqprot;
2591
2592 return file_map_prot_check(file, prot,
2593 (flags & MAP_TYPE) == MAP_SHARED);
2594 }
2595
2596 static int selinux_file_mprotect(struct vm_area_struct *vma,
2597 unsigned long reqprot,
2598 unsigned long prot)
2599 {
2600 int rc;
2601
2602 rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2603 if (rc)
2604 return rc;
2605
2606 if (selinux_checkreqprot)
2607 prot = reqprot;
2608
2609 #ifndef CONFIG_PPC32
2610 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2611 rc = 0;
2612 if (vma->vm_start >= vma->vm_mm->start_brk &&
2613 vma->vm_end <= vma->vm_mm->brk) {
2614 rc = task_has_perm(current, current,
2615 PROCESS__EXECHEAP);
2616 } else if (!vma->vm_file &&
2617 vma->vm_start <= vma->vm_mm->start_stack &&
2618 vma->vm_end >= vma->vm_mm->start_stack) {
2619 rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2620 } else if (vma->vm_file && vma->anon_vma) {
2621 /*
2622 * We are making executable a file mapping that has
2623 * had some COW done. Since pages might have been
2624 * written, check ability to execute the possibly
2625 * modified content. This typically should only
2626 * occur for text relocations.
2627 */
2628 rc = file_has_perm(current, vma->vm_file,
2629 FILE__EXECMOD);
2630 }
2631 if (rc)
2632 return rc;
2633 }
2634 #endif
2635
2636 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2637 }
2638
2639 static int selinux_file_lock(struct file *file, unsigned int cmd)
2640 {
2641 return file_has_perm(current, file, FILE__LOCK);
2642 }
2643
2644 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2645 unsigned long arg)
2646 {
2647 int err = 0;
2648
2649 switch (cmd) {
2650 case F_SETFL:
2651 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2652 err = -EINVAL;
2653 break;
2654 }
2655
2656 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2657 err = file_has_perm(current, file,FILE__WRITE);
2658 break;
2659 }
2660 /* fall through */
2661 case F_SETOWN:
2662 case F_SETSIG:
2663 case F_GETFL:
2664 case F_GETOWN:
2665 case F_GETSIG:
2666 /* Just check FD__USE permission */
2667 err = file_has_perm(current, file, 0);
2668 break;
2669 case F_GETLK:
2670 case F_SETLK:
2671 case F_SETLKW:
2672 #if BITS_PER_LONG == 32
2673 case F_GETLK64:
2674 case F_SETLK64:
2675 case F_SETLKW64:
2676 #endif
2677 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2678 err = -EINVAL;
2679 break;
2680 }
2681 err = file_has_perm(current, file, FILE__LOCK);
2682 break;
2683 }
2684
2685 return err;
2686 }
2687
2688 static int selinux_file_set_fowner(struct file *file)
2689 {
2690 struct task_security_struct *tsec;
2691 struct file_security_struct *fsec;
2692
2693 tsec = current->security;
2694 fsec = file->f_security;
2695 fsec->fown_sid = tsec->sid;
2696
2697 return 0;
2698 }
2699
2700 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2701 struct fown_struct *fown, int signum)
2702 {
2703 struct file *file;
2704 u32 perm;
2705 struct task_security_struct *tsec;
2706 struct file_security_struct *fsec;
2707
2708 /* struct fown_struct is never outside the context of a struct file */
2709 file = container_of(fown, struct file, f_owner);
2710
2711 tsec = tsk->security;
2712 fsec = file->f_security;
2713
2714 if (!signum)
2715 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2716 else
2717 perm = signal_to_av(signum);
2718
2719 return avc_has_perm(fsec->fown_sid, tsec->sid,
2720 SECCLASS_PROCESS, perm, NULL);
2721 }
2722
2723 static int selinux_file_receive(struct file *file)
2724 {
2725 return file_has_perm(current, file, file_to_av(file));
2726 }
2727
2728 /* task security operations */
2729
2730 static int selinux_task_create(unsigned long clone_flags)
2731 {
2732 int rc;
2733
2734 rc = secondary_ops->task_create(clone_flags);
2735 if (rc)
2736 return rc;
2737
2738 return task_has_perm(current, current, PROCESS__FORK);
2739 }
2740
2741 static int selinux_task_alloc_security(struct task_struct *tsk)
2742 {
2743 struct task_security_struct *tsec1, *tsec2;
2744 int rc;
2745
2746 tsec1 = current->security;
2747
2748 rc = task_alloc_security(tsk);
2749 if (rc)
2750 return rc;
2751 tsec2 = tsk->security;
2752
2753 tsec2->osid = tsec1->osid;
2754 tsec2->sid = tsec1->sid;
2755
2756 /* Retain the exec, fs, key, and sock SIDs across fork */
2757 tsec2->exec_sid = tsec1->exec_sid;
2758 tsec2->create_sid = tsec1->create_sid;
2759 tsec2->keycreate_sid = tsec1->keycreate_sid;
2760 tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2761
2762 /* Retain ptracer SID across fork, if any.
2763 This will be reset by the ptrace hook upon any
2764 subsequent ptrace_attach operations. */
2765 tsec2->ptrace_sid = tsec1->ptrace_sid;
2766
2767 return 0;
2768 }
2769
2770 static void selinux_task_free_security(struct task_struct *tsk)
2771 {
2772 task_free_security(tsk);
2773 }
2774
2775 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2776 {
2777 /* Since setuid only affects the current process, and
2778 since the SELinux controls are not based on the Linux
2779 identity attributes, SELinux does not need to control
2780 this operation. However, SELinux does control the use
2781 of the CAP_SETUID and CAP_SETGID capabilities using the
2782 capable hook. */
2783 return 0;
2784 }
2785
2786 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2787 {
2788 return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2789 }
2790
2791 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2792 {
2793 /* See the comment for setuid above. */
2794 return 0;
2795 }
2796
2797 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2798 {
2799 return task_has_perm(current, p, PROCESS__SETPGID);
2800 }
2801
2802 static int selinux_task_getpgid(struct task_struct *p)
2803 {
2804 return task_has_perm(current, p, PROCESS__GETPGID);
2805 }
2806
2807 static int selinux_task_getsid(struct task_struct *p)
2808 {
2809 return task_has_perm(current, p, PROCESS__GETSESSION);
2810 }
2811
2812 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2813 {
2814 selinux_get_task_sid(p, secid);
2815 }
2816
2817 static int selinux_task_setgroups(struct group_info *group_info)
2818 {
2819 /* See the comment for setuid above. */
2820 return 0;
2821 }
2822
2823 static int selinux_task_setnice(struct task_struct *p, int nice)
2824 {
2825 int rc;
2826
2827 rc = secondary_ops->task_setnice(p, nice);
2828 if (rc)
2829 return rc;
2830
2831 return task_has_perm(current,p, PROCESS__SETSCHED);
2832 }
2833
2834 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2835 {
2836 return task_has_perm(current, p, PROCESS__SETSCHED);
2837 }
2838
2839 static int selinux_task_getioprio(struct task_struct *p)
2840 {
2841 return task_has_perm(current, p, PROCESS__GETSCHED);
2842 }
2843
2844 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2845 {
2846 struct rlimit *old_rlim = current->signal->rlim + resource;
2847 int rc;
2848
2849 rc = secondary_ops->task_setrlimit(resource, new_rlim);
2850 if (rc)
2851 return rc;
2852
2853 /* Control the ability to change the hard limit (whether
2854 lowering or raising it), so that the hard limit can
2855 later be used as a safe reset point for the soft limit
2856 upon context transitions. See selinux_bprm_apply_creds. */
2857 if (old_rlim->rlim_max != new_rlim->rlim_max)
2858 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2859
2860 return 0;
2861 }
2862
2863 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2864 {
2865 return task_has_perm(current, p, PROCESS__SETSCHED);
2866 }
2867
2868 static int selinux_task_getscheduler(struct task_struct *p)
2869 {
2870 return task_has_perm(current, p, PROCESS__GETSCHED);
2871 }
2872
2873 static int selinux_task_movememory(struct task_struct *p)
2874 {
2875 return task_has_perm(current, p, PROCESS__SETSCHED);
2876 }
2877
2878 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2879 int sig, u32 secid)
2880 {
2881 u32 perm;
2882 int rc;
2883 struct task_security_struct *tsec;
2884
2885 rc = secondary_ops->task_kill(p, info, sig, secid);
2886 if (rc)
2887 return rc;
2888
2889 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2890 return 0;
2891
2892 if (!sig)
2893 perm = PROCESS__SIGNULL; /* null signal; existence test */
2894 else
2895 perm = signal_to_av(sig);
2896 tsec = p->security;
2897 if (secid)
2898 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2899 else
2900 rc = task_has_perm(current, p, perm);
2901 return rc;
2902 }
2903
2904 static int selinux_task_prctl(int option,
2905 unsigned long arg2,
2906 unsigned long arg3,
2907 unsigned long arg4,
2908 unsigned long arg5)
2909 {
2910 /* The current prctl operations do not appear to require
2911 any SELinux controls since they merely observe or modify
2912 the state of the current process. */
2913 return 0;
2914 }
2915
2916 static int selinux_task_wait(struct task_struct *p)
2917 {
2918 u32 perm;
2919
2920 perm = signal_to_av(p->exit_signal);
2921
2922 return task_has_perm(p, current, perm);
2923 }
2924
2925 static void selinux_task_reparent_to_init(struct task_struct *p)
2926 {
2927 struct task_security_struct *tsec;
2928
2929 secondary_ops->task_reparent_to_init(p);
2930
2931 tsec = p->security;
2932 tsec->osid = tsec->sid;
2933 tsec->sid = SECINITSID_KERNEL;
2934 return;
2935 }
2936
2937 static void selinux_task_to_inode(struct task_struct *p,
2938 struct inode *inode)
2939 {
2940 struct task_security_struct *tsec = p->security;
2941 struct inode_security_struct *isec = inode->i_security;
2942
2943 isec->sid = tsec->sid;
2944 isec->initialized = 1;
2945 return;
2946 }
2947
2948 /* Returns error only if unable to parse addresses */
2949 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
2950 struct avc_audit_data *ad, u8 *proto)
2951 {
2952 int offset, ihlen, ret = -EINVAL;
2953 struct iphdr _iph, *ih;
2954
2955 offset = skb_network_offset(skb);
2956 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2957 if (ih == NULL)
2958 goto out;
2959
2960 ihlen = ih->ihl * 4;
2961 if (ihlen < sizeof(_iph))
2962 goto out;
2963
2964 ad->u.net.v4info.saddr = ih->saddr;
2965 ad->u.net.v4info.daddr = ih->daddr;
2966 ret = 0;
2967
2968 if (proto)
2969 *proto = ih->protocol;
2970
2971 switch (ih->protocol) {
2972 case IPPROTO_TCP: {
2973 struct tcphdr _tcph, *th;
2974
2975 if (ntohs(ih->frag_off) & IP_OFFSET)
2976 break;
2977
2978 offset += ihlen;
2979 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2980 if (th == NULL)
2981 break;
2982
2983 ad->u.net.sport = th->source;
2984 ad->u.net.dport = th->dest;
2985 break;
2986 }
2987
2988 case IPPROTO_UDP: {
2989 struct udphdr _udph, *uh;
2990
2991 if (ntohs(ih->frag_off) & IP_OFFSET)
2992 break;
2993
2994 offset += ihlen;
2995 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2996 if (uh == NULL)
2997 break;
2998
2999 ad->u.net.sport = uh->source;
3000 ad->u.net.dport = uh->dest;
3001 break;
3002 }
3003
3004 case IPPROTO_DCCP: {
3005 struct dccp_hdr _dccph, *dh;
3006
3007 if (ntohs(ih->frag_off) & IP_OFFSET)
3008 break;
3009
3010 offset += ihlen;
3011 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3012 if (dh == NULL)
3013 break;
3014
3015 ad->u.net.sport = dh->dccph_sport;
3016 ad->u.net.dport = dh->dccph_dport;
3017 break;
3018 }
3019
3020 default:
3021 break;
3022 }
3023 out:
3024 return ret;
3025 }
3026
3027 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3028
3029 /* Returns error only if unable to parse addresses */
3030 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3031 struct avc_audit_data *ad, u8 *proto)
3032 {
3033 u8 nexthdr;
3034 int ret = -EINVAL, offset;
3035 struct ipv6hdr _ipv6h, *ip6;
3036
3037 offset = skb_network_offset(skb);
3038 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3039 if (ip6 == NULL)
3040 goto out;
3041
3042 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3043 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3044 ret = 0;
3045
3046 nexthdr = ip6->nexthdr;
3047 offset += sizeof(_ipv6h);
3048 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3049 if (offset < 0)
3050 goto out;
3051
3052 if (proto)
3053 *proto = nexthdr;
3054
3055 switch (nexthdr) {
3056 case IPPROTO_TCP: {
3057 struct tcphdr _tcph, *th;
3058
3059 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3060 if (th == NULL)
3061 break;
3062
3063 ad->u.net.sport = th->source;
3064 ad->u.net.dport = th->dest;
3065 break;
3066 }
3067
3068 case IPPROTO_UDP: {
3069 struct udphdr _udph, *uh;
3070
3071 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3072 if (uh == NULL)
3073 break;
3074
3075 ad->u.net.sport = uh->source;
3076 ad->u.net.dport = uh->dest;
3077 break;
3078 }
3079
3080 case IPPROTO_DCCP: {
3081 struct dccp_hdr _dccph, *dh;
3082
3083 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3084 if (dh == NULL)
3085 break;
3086
3087 ad->u.net.sport = dh->dccph_sport;
3088 ad->u.net.dport = dh->dccph_dport;
3089 break;
3090 }
3091
3092 /* includes fragments */
3093 default:
3094 break;
3095 }
3096 out:
3097 return ret;
3098 }
3099
3100 #endif /* IPV6 */
3101
3102 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3103 char **addrp, int *len, int src, u8 *proto)
3104 {
3105 int ret = 0;
3106
3107 switch (ad->u.net.family) {
3108 case PF_INET:
3109 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3110 if (ret || !addrp)
3111 break;
3112 *len = 4;
3113 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3114 &ad->u.net.v4info.daddr);
3115 break;
3116
3117 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3118 case PF_INET6:
3119 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3120 if (ret || !addrp)
3121 break;
3122 *len = 16;
3123 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3124 &ad->u.net.v6info.daddr);
3125 break;
3126 #endif /* IPV6 */
3127 default:
3128 break;
3129 }
3130
3131 return ret;
3132 }
3133
3134 /**
3135 * selinux_skb_extlbl_sid - Determine the external label of a packet
3136 * @skb: the packet
3137 * @sid: the packet's SID
3138 *
3139 * Description:
3140 * Check the various different forms of external packet labeling and determine
3141 * the external SID for the packet. If only one form of external labeling is
3142 * present then it is used, if both labeled IPsec and NetLabel labels are
3143 * present then the SELinux type information is taken from the labeled IPsec
3144 * SA and the MLS sensitivity label information is taken from the NetLabel
3145 * security attributes. This bit of "magic" is done in the call to
3146 * selinux_netlbl_skbuff_getsid().
3147 *
3148 */
3149 static void selinux_skb_extlbl_sid(struct sk_buff *skb, u32 *sid)
3150 {
3151 u32 xfrm_sid;
3152 u32 nlbl_sid;
3153
3154 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3155 if (selinux_netlbl_skbuff_getsid(skb,
3156 (xfrm_sid == SECSID_NULL ?
3157 SECINITSID_NETMSG : xfrm_sid),
3158 &nlbl_sid) != 0)
3159 nlbl_sid = SECSID_NULL;
3160 *sid = (nlbl_sid == SECSID_NULL ? xfrm_sid : nlbl_sid);
3161 }
3162
3163 /* socket security operations */
3164 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3165 u32 perms)
3166 {
3167 struct inode_security_struct *isec;
3168 struct task_security_struct *tsec;
3169 struct avc_audit_data ad;
3170 int err = 0;
3171
3172 tsec = task->security;
3173 isec = SOCK_INODE(sock)->i_security;
3174
3175 if (isec->sid == SECINITSID_KERNEL)
3176 goto out;
3177
3178 AVC_AUDIT_DATA_INIT(&ad,NET);
3179 ad.u.net.sk = sock->sk;
3180 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3181
3182 out:
3183 return err;
3184 }
3185
3186 static int selinux_socket_create(int family, int type,
3187 int protocol, int kern)
3188 {
3189 int err = 0;
3190 struct task_security_struct *tsec;
3191 u32 newsid;
3192
3193 if (kern)
3194 goto out;
3195
3196 tsec = current->security;
3197 newsid = tsec->sockcreate_sid ? : tsec->sid;
3198 err = avc_has_perm(tsec->sid, newsid,
3199 socket_type_to_security_class(family, type,
3200 protocol), SOCKET__CREATE, NULL);
3201
3202 out:
3203 return err;
3204 }
3205
3206 static int selinux_socket_post_create(struct socket *sock, int family,
3207 int type, int protocol, int kern)
3208 {
3209 int err = 0;
3210 struct inode_security_struct *isec;
3211 struct task_security_struct *tsec;
3212 struct sk_security_struct *sksec;
3213 u32 newsid;
3214
3215 isec = SOCK_INODE(sock)->i_security;
3216
3217 tsec = current->security;
3218 newsid = tsec->sockcreate_sid ? : tsec->sid;
3219 isec->sclass = socket_type_to_security_class(family, type, protocol);
3220 isec->sid = kern ? SECINITSID_KERNEL : newsid;
3221 isec->initialized = 1;
3222
3223 if (sock->sk) {
3224 sksec = sock->sk->sk_security;
3225 sksec->sid = isec->sid;
3226 err = selinux_netlbl_socket_post_create(sock);
3227 }
3228
3229 return err;
3230 }
3231
3232 /* Range of port numbers used to automatically bind.
3233 Need to determine whether we should perform a name_bind
3234 permission check between the socket and the port number. */
3235
3236 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3237 {
3238 u16 family;
3239 int err;
3240
3241 err = socket_has_perm(current, sock, SOCKET__BIND);
3242 if (err)
3243 goto out;
3244
3245 /*
3246 * If PF_INET or PF_INET6, check name_bind permission for the port.
3247 * Multiple address binding for SCTP is not supported yet: we just
3248 * check the first address now.
3249 */
3250 family = sock->sk->sk_family;
3251 if (family == PF_INET || family == PF_INET6) {
3252 char *addrp;
3253 struct inode_security_struct *isec;
3254 struct task_security_struct *tsec;
3255 struct avc_audit_data ad;
3256 struct sockaddr_in *addr4 = NULL;
3257 struct sockaddr_in6 *addr6 = NULL;
3258 unsigned short snum;
3259 struct sock *sk = sock->sk;
3260 u32 sid, node_perm, addrlen;
3261
3262 tsec = current->security;
3263 isec = SOCK_INODE(sock)->i_security;
3264
3265 if (family == PF_INET) {
3266 addr4 = (struct sockaddr_in *)address;
3267 snum = ntohs(addr4->sin_port);
3268 addrlen = sizeof(addr4->sin_addr.s_addr);
3269 addrp = (char *)&addr4->sin_addr.s_addr;
3270 } else {
3271 addr6 = (struct sockaddr_in6 *)address;
3272 snum = ntohs(addr6->sin6_port);
3273 addrlen = sizeof(addr6->sin6_addr.s6_addr);
3274 addrp = (char *)&addr6->sin6_addr.s6_addr;
3275 }
3276
3277 if (snum) {
3278 int low, high;
3279
3280 inet_get_local_port_range(&low, &high);
3281
3282 if (snum < max(PROT_SOCK, low) || snum > high) {
3283 err = security_port_sid(sk->sk_family,
3284 sk->sk_type,
3285 sk->sk_protocol, snum,
3286 &sid);
3287 if (err)
3288 goto out;
3289 AVC_AUDIT_DATA_INIT(&ad,NET);
3290 ad.u.net.sport = htons(snum);
3291 ad.u.net.family = family;
3292 err = avc_has_perm(isec->sid, sid,
3293 isec->sclass,
3294 SOCKET__NAME_BIND, &ad);
3295 if (err)
3296 goto out;
3297 }
3298 }
3299
3300 switch(isec->sclass) {
3301 case SECCLASS_TCP_SOCKET:
3302 node_perm = TCP_SOCKET__NODE_BIND;
3303 break;
3304
3305 case SECCLASS_UDP_SOCKET:
3306 node_perm = UDP_SOCKET__NODE_BIND;
3307 break;
3308
3309 case SECCLASS_DCCP_SOCKET:
3310 node_perm = DCCP_SOCKET__NODE_BIND;
3311 break;
3312
3313 default:
3314 node_perm = RAWIP_SOCKET__NODE_BIND;
3315 break;
3316 }
3317
3318 err = security_node_sid(family, addrp, addrlen, &sid);
3319 if (err)
3320 goto out;
3321
3322 AVC_AUDIT_DATA_INIT(&ad,NET);
3323 ad.u.net.sport = htons(snum);
3324 ad.u.net.family = family;
3325
3326 if (family == PF_INET)
3327 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3328 else
3329 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3330
3331 err = avc_has_perm(isec->sid, sid,
3332 isec->sclass, node_perm, &ad);
3333 if (err)
3334 goto out;
3335 }
3336 out:
3337 return err;
3338 }
3339
3340 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3341 {
3342 struct inode_security_struct *isec;
3343 int err;
3344
3345 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3346 if (err)
3347 return err;
3348
3349 /*
3350 * If a TCP or DCCP socket, check name_connect permission for the port.
3351 */
3352 isec = SOCK_INODE(sock)->i_security;
3353 if (isec->sclass == SECCLASS_TCP_SOCKET ||
3354 isec->sclass == SECCLASS_DCCP_SOCKET) {
3355 struct sock *sk = sock->sk;
3356 struct avc_audit_data ad;
3357 struct sockaddr_in *addr4 = NULL;
3358 struct sockaddr_in6 *addr6 = NULL;
3359 unsigned short snum;
3360 u32 sid, perm;
3361
3362 if (sk->sk_family == PF_INET) {
3363 addr4 = (struct sockaddr_in *)address;
3364 if (addrlen < sizeof(struct sockaddr_in))
3365 return -EINVAL;
3366 snum = ntohs(addr4->sin_port);
3367 } else {
3368 addr6 = (struct sockaddr_in6 *)address;
3369 if (addrlen < SIN6_LEN_RFC2133)
3370 return -EINVAL;
3371 snum = ntohs(addr6->sin6_port);
3372 }
3373
3374 err = security_port_sid(sk->sk_family, sk->sk_type,
3375 sk->sk_protocol, snum, &sid);
3376 if (err)
3377 goto out;
3378
3379 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3380 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3381
3382 AVC_AUDIT_DATA_INIT(&ad,NET);
3383 ad.u.net.dport = htons(snum);
3384 ad.u.net.family = sk->sk_family;
3385 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3386 if (err)
3387 goto out;
3388 }
3389
3390 out:
3391 return err;
3392 }
3393
3394 static int selinux_socket_listen(struct socket *sock, int backlog)
3395 {
3396 return socket_has_perm(current, sock, SOCKET__LISTEN);
3397 }
3398
3399 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3400 {
3401 int err;
3402 struct inode_security_struct *isec;
3403 struct inode_security_struct *newisec;
3404
3405 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3406 if (err)
3407 return err;
3408
3409 newisec = SOCK_INODE(newsock)->i_security;
3410
3411 isec = SOCK_INODE(sock)->i_security;
3412 newisec->sclass = isec->sclass;
3413 newisec->sid = isec->sid;
3414 newisec->initialized = 1;
3415
3416 return 0;
3417 }
3418
3419 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3420 int size)
3421 {
3422 int rc;
3423
3424 rc = socket_has_perm(current, sock, SOCKET__WRITE);
3425 if (rc)
3426 return rc;
3427
3428 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3429 }
3430
3431 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3432 int size, int flags)
3433 {
3434 return socket_has_perm(current, sock, SOCKET__READ);
3435 }
3436
3437 static int selinux_socket_getsockname(struct socket *sock)
3438 {
3439 return socket_has_perm(current, sock, SOCKET__GETATTR);
3440 }
3441
3442 static int selinux_socket_getpeername(struct socket *sock)
3443 {
3444 return socket_has_perm(current, sock, SOCKET__GETATTR);
3445 }
3446
3447 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3448 {
3449 int err;
3450
3451 err = socket_has_perm(current, sock, SOCKET__SETOPT);
3452 if (err)
3453 return err;
3454
3455 return selinux_netlbl_socket_setsockopt(sock, level, optname);
3456 }
3457
3458 static int selinux_socket_getsockopt(struct socket *sock, int level,
3459 int optname)
3460 {
3461 return socket_has_perm(current, sock, SOCKET__GETOPT);
3462 }
3463
3464 static int selinux_socket_shutdown(struct socket *sock, int how)
3465 {
3466 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3467 }
3468
3469 static int selinux_socket_unix_stream_connect(struct socket *sock,
3470 struct socket *other,
3471 struct sock *newsk)
3472 {
3473 struct sk_security_struct *ssec;
3474 struct inode_security_struct *isec;
3475 struct inode_security_struct *other_isec;
3476 struct avc_audit_data ad;
3477 int err;
3478
3479 err = secondary_ops->unix_stream_connect(sock, other, newsk);
3480 if (err)
3481 return err;
3482
3483 isec = SOCK_INODE(sock)->i_security;
3484 other_isec = SOCK_INODE(other)->i_security;
3485
3486 AVC_AUDIT_DATA_INIT(&ad,NET);
3487 ad.u.net.sk = other->sk;
3488
3489 err = avc_has_perm(isec->sid, other_isec->sid,
3490 isec->sclass,
3491 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3492 if (err)
3493 return err;
3494
3495 /* connecting socket */
3496 ssec = sock->sk->sk_security;
3497 ssec->peer_sid = other_isec->sid;
3498
3499 /* server child socket */
3500 ssec = newsk->sk_security;
3501 ssec->peer_sid = isec->sid;
3502 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3503
3504 return err;
3505 }
3506
3507 static int selinux_socket_unix_may_send(struct socket *sock,
3508 struct socket *other)
3509 {
3510 struct inode_security_struct *isec;
3511 struct inode_security_struct *other_isec;
3512 struct avc_audit_data ad;
3513 int err;
3514
3515 isec = SOCK_INODE(sock)->i_security;
3516 other_isec = SOCK_INODE(other)->i_security;
3517
3518 AVC_AUDIT_DATA_INIT(&ad,NET);
3519 ad.u.net.sk = other->sk;
3520
3521 err = avc_has_perm(isec->sid, other_isec->sid,
3522 isec->sclass, SOCKET__SENDTO, &ad);
3523 if (err)
3524 return err;
3525
3526 return 0;
3527 }
3528
3529 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3530 struct avc_audit_data *ad, u16 family, char *addrp, int len)
3531 {
3532 int err = 0;
3533 u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3534 struct socket *sock;
3535 u16 sock_class = 0;
3536 u32 sock_sid = 0;
3537
3538 read_lock_bh(&sk->sk_callback_lock);
3539 sock = sk->sk_socket;
3540 if (sock) {
3541 struct inode *inode;
3542 inode = SOCK_INODE(sock);
3543 if (inode) {
3544 struct inode_security_struct *isec;
3545 isec = inode->i_security;
3546 sock_sid = isec->sid;
3547 sock_class = isec->sclass;
3548 }
3549 }
3550 read_unlock_bh(&sk->sk_callback_lock);
3551 if (!sock_sid)
3552 goto out;
3553
3554 if (!skb->dev)
3555 goto out;
3556
3557 err = sel_netif_sids(skb->dev, &if_sid, NULL);
3558 if (err)
3559 goto out;
3560
3561 switch (sock_class) {
3562 case SECCLASS_UDP_SOCKET:
3563 netif_perm = NETIF__UDP_RECV;
3564 node_perm = NODE__UDP_RECV;
3565 recv_perm = UDP_SOCKET__RECV_MSG;
3566 break;
3567
3568 case SECCLASS_TCP_SOCKET:
3569 netif_perm = NETIF__TCP_RECV;
3570 node_perm = NODE__TCP_RECV;
3571 recv_perm = TCP_SOCKET__RECV_MSG;
3572 break;
3573
3574 case SECCLASS_DCCP_SOCKET:
3575 netif_perm = NETIF__DCCP_RECV;
3576 node_perm = NODE__DCCP_RECV;
3577 recv_perm = DCCP_SOCKET__RECV_MSG;
3578 break;
3579
3580 default:
3581 netif_perm = NETIF__RAWIP_RECV;
3582 node_perm = NODE__RAWIP_RECV;
3583 break;
3584 }
3585
3586 err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3587 if (err)
3588 goto out;
3589
3590 err = security_node_sid(family, addrp, len, &node_sid);
3591 if (err)
3592 goto out;
3593
3594 err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3595 if (err)
3596 goto out;
3597
3598 if (recv_perm) {
3599 u32 port_sid;
3600
3601 err = security_port_sid(sk->sk_family, sk->sk_type,
3602 sk->sk_protocol, ntohs(ad->u.net.sport),
3603 &port_sid);
3604 if (err)
3605 goto out;
3606
3607 err = avc_has_perm(sock_sid, port_sid,
3608 sock_class, recv_perm, ad);
3609 }
3610
3611 out:
3612 return err;
3613 }
3614
3615 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3616 {
3617 u16 family;
3618 char *addrp;
3619 int len, err = 0;
3620 struct avc_audit_data ad;
3621 struct sk_security_struct *sksec = sk->sk_security;
3622
3623 family = sk->sk_family;
3624 if (family != PF_INET && family != PF_INET6)
3625 goto out;
3626
3627 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3628 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
3629 family = PF_INET;
3630
3631 AVC_AUDIT_DATA_INIT(&ad, NET);
3632 ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3633 ad.u.net.family = family;
3634
3635 err = selinux_parse_skb(skb, &ad, &addrp, &len, 1, NULL);
3636 if (err)
3637 goto out;
3638
3639 if (selinux_compat_net)
3640 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family,
3641 addrp, len);
3642 else
3643 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3644 PACKET__RECV, &ad);
3645 if (err)
3646 goto out;
3647
3648 err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad);
3649 if (err)
3650 goto out;
3651
3652 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
3653 out:
3654 return err;
3655 }
3656
3657 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3658 int __user *optlen, unsigned len)
3659 {
3660 int err = 0;
3661 char *scontext;
3662 u32 scontext_len;
3663 struct sk_security_struct *ssec;
3664 struct inode_security_struct *isec;
3665 u32 peer_sid = SECSID_NULL;
3666
3667 isec = SOCK_INODE(sock)->i_security;
3668
3669 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
3670 isec->sclass == SECCLASS_TCP_SOCKET) {
3671 ssec = sock->sk->sk_security;
3672 peer_sid = ssec->peer_sid;
3673 }
3674 if (peer_sid == SECSID_NULL) {
3675 err = -ENOPROTOOPT;
3676 goto out;
3677 }
3678
3679 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3680
3681 if (err)
3682 goto out;
3683
3684 if (scontext_len > len) {
3685 err = -ERANGE;
3686 goto out_len;
3687 }
3688
3689 if (copy_to_user(optval, scontext, scontext_len))
3690 err = -EFAULT;
3691
3692 out_len:
3693 if (put_user(scontext_len, optlen))
3694 err = -EFAULT;
3695
3696 kfree(scontext);
3697 out:
3698 return err;
3699 }
3700
3701 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3702 {
3703 u32 peer_secid = SECSID_NULL;
3704 int err = 0;
3705
3706 if (sock && sock->sk->sk_family == PF_UNIX)
3707 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
3708 else if (skb)
3709 selinux_skb_extlbl_sid(skb, &peer_secid);
3710
3711 if (peer_secid == SECSID_NULL)
3712 err = -EINVAL;
3713 *secid = peer_secid;
3714
3715 return err;
3716 }
3717
3718 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3719 {
3720 return sk_alloc_security(sk, family, priority);
3721 }
3722
3723 static void selinux_sk_free_security(struct sock *sk)
3724 {
3725 sk_free_security(sk);
3726 }
3727
3728 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
3729 {
3730 struct sk_security_struct *ssec = sk->sk_security;
3731 struct sk_security_struct *newssec = newsk->sk_security;
3732
3733 newssec->sid = ssec->sid;
3734 newssec->peer_sid = ssec->peer_sid;
3735
3736 selinux_netlbl_sk_security_clone(ssec, newssec);
3737 }
3738
3739 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
3740 {
3741 if (!sk)
3742 *secid = SECINITSID_ANY_SOCKET;
3743 else {
3744 struct sk_security_struct *sksec = sk->sk_security;
3745
3746 *secid = sksec->sid;
3747 }
3748 }
3749
3750 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
3751 {
3752 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
3753 struct sk_security_struct *sksec = sk->sk_security;
3754
3755 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
3756 sk->sk_family == PF_UNIX)
3757 isec->sid = sksec->sid;
3758
3759 selinux_netlbl_sock_graft(sk, parent);
3760 }
3761
3762 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
3763 struct request_sock *req)
3764 {
3765 struct sk_security_struct *sksec = sk->sk_security;
3766 int err;
3767 u32 newsid;
3768 u32 peersid;
3769
3770 selinux_skb_extlbl_sid(skb, &peersid);
3771 if (peersid == SECSID_NULL) {
3772 req->secid = sksec->sid;
3773 req->peer_secid = SECSID_NULL;
3774 return 0;
3775 }
3776
3777 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
3778 if (err)
3779 return err;
3780
3781 req->secid = newsid;
3782 req->peer_secid = peersid;
3783 return 0;
3784 }
3785
3786 static void selinux_inet_csk_clone(struct sock *newsk,
3787 const struct request_sock *req)
3788 {
3789 struct sk_security_struct *newsksec = newsk->sk_security;
3790
3791 newsksec->sid = req->secid;
3792 newsksec->peer_sid = req->peer_secid;
3793 /* NOTE: Ideally, we should also get the isec->sid for the
3794 new socket in sync, but we don't have the isec available yet.
3795 So we will wait until sock_graft to do it, by which
3796 time it will have been created and available. */
3797
3798 /* We don't need to take any sort of lock here as we are the only
3799 * thread with access to newsksec */
3800 selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
3801 }
3802
3803 static void selinux_inet_conn_established(struct sock *sk,
3804 struct sk_buff *skb)
3805 {
3806 struct sk_security_struct *sksec = sk->sk_security;
3807
3808 selinux_skb_extlbl_sid(skb, &sksec->peer_sid);
3809 }
3810
3811 static void selinux_req_classify_flow(const struct request_sock *req,
3812 struct flowi *fl)
3813 {
3814 fl->secid = req->secid;
3815 }
3816
3817 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3818 {
3819 int err = 0;
3820 u32 perm;
3821 struct nlmsghdr *nlh;
3822 struct socket *sock = sk->sk_socket;
3823 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3824
3825 if (skb->len < NLMSG_SPACE(0)) {
3826 err = -EINVAL;
3827 goto out;
3828 }
3829 nlh = nlmsg_hdr(skb);
3830
3831 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3832 if (err) {
3833 if (err == -EINVAL) {
3834 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3835 "SELinux: unrecognized netlink message"
3836 " type=%hu for sclass=%hu\n",
3837 nlh->nlmsg_type, isec->sclass);
3838 if (!selinux_enforcing)
3839 err = 0;
3840 }
3841
3842 /* Ignore */
3843 if (err == -ENOENT)
3844 err = 0;
3845 goto out;
3846 }
3847
3848 err = socket_has_perm(current, sock, perm);
3849 out:
3850 return err;
3851 }
3852
3853 #ifdef CONFIG_NETFILTER
3854
3855 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3856 struct avc_audit_data *ad,
3857 u16 family, char *addrp, int len)
3858 {
3859 int err = 0;
3860 u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3861 struct socket *sock;
3862 struct inode *inode;
3863 struct inode_security_struct *isec;
3864
3865 sock = sk->sk_socket;
3866 if (!sock)
3867 goto out;
3868
3869 inode = SOCK_INODE(sock);
3870 if (!inode)
3871 goto out;
3872
3873 isec = inode->i_security;
3874
3875 err = sel_netif_sids(dev, &if_sid, NULL);
3876 if (err)
3877 goto out;
3878
3879 switch (isec->sclass) {
3880 case SECCLASS_UDP_SOCKET:
3881 netif_perm = NETIF__UDP_SEND;
3882 node_perm = NODE__UDP_SEND;
3883 send_perm = UDP_SOCKET__SEND_MSG;
3884 break;
3885
3886 case SECCLASS_TCP_SOCKET:
3887 netif_perm = NETIF__TCP_SEND;
3888 node_perm = NODE__TCP_SEND;
3889 send_perm = TCP_SOCKET__SEND_MSG;
3890 break;
3891
3892 case SECCLASS_DCCP_SOCKET:
3893 netif_perm = NETIF__DCCP_SEND;
3894 node_perm = NODE__DCCP_SEND;
3895 send_perm = DCCP_SOCKET__SEND_MSG;
3896 break;
3897
3898 default:
3899 netif_perm = NETIF__RAWIP_SEND;
3900 node_perm = NODE__RAWIP_SEND;
3901 break;
3902 }
3903
3904 err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3905 if (err)
3906 goto out;
3907
3908 err = security_node_sid(family, addrp, len, &node_sid);
3909 if (err)
3910 goto out;
3911
3912 err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3913 if (err)
3914 goto out;
3915
3916 if (send_perm) {
3917 u32 port_sid;
3918
3919 err = security_port_sid(sk->sk_family,
3920 sk->sk_type,
3921 sk->sk_protocol,
3922 ntohs(ad->u.net.dport),
3923 &port_sid);
3924 if (err)
3925 goto out;
3926
3927 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3928 send_perm, ad);
3929 }
3930 out:
3931 return err;
3932 }
3933
3934 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3935 struct sk_buff **pskb,
3936 const struct net_device *in,
3937 const struct net_device *out,
3938 int (*okfn)(struct sk_buff *),
3939 u16 family)
3940 {
3941 char *addrp;
3942 int len, err = 0;
3943 struct sock *sk;
3944 struct sk_buff *skb = *pskb;
3945 struct avc_audit_data ad;
3946 struct net_device *dev = (struct net_device *)out;
3947 struct sk_security_struct *sksec;
3948 u8 proto;
3949
3950 sk = skb->sk;
3951 if (!sk)
3952 goto out;
3953
3954 sksec = sk->sk_security;
3955
3956 AVC_AUDIT_DATA_INIT(&ad, NET);
3957 ad.u.net.netif = dev->name;
3958 ad.u.net.family = family;
3959
3960 err = selinux_parse_skb(skb, &ad, &addrp, &len, 0, &proto);
3961 if (err)
3962 goto out;
3963
3964 if (selinux_compat_net)
3965 err = selinux_ip_postroute_last_compat(sk, dev, &ad,
3966 family, addrp, len);
3967 else
3968 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3969 PACKET__SEND, &ad);
3970
3971 if (err)
3972 goto out;
3973
3974 err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto);
3975 out:
3976 return err ? NF_DROP : NF_ACCEPT;
3977 }
3978
3979 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3980 struct sk_buff **pskb,
3981 const struct net_device *in,
3982 const struct net_device *out,
3983 int (*okfn)(struct sk_buff *))
3984 {
3985 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3986 }
3987
3988 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3989
3990 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3991 struct sk_buff **pskb,
3992 const struct net_device *in,
3993 const struct net_device *out,
3994 int (*okfn)(struct sk_buff *))
3995 {
3996 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3997 }
3998
3999 #endif /* IPV6 */
4000
4001 #endif /* CONFIG_NETFILTER */
4002
4003 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4004 {
4005 int err;
4006
4007 err = secondary_ops->netlink_send(sk, skb);
4008 if (err)
4009 return err;
4010
4011 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4012 err = selinux_nlmsg_perm(sk, skb);
4013
4014 return err;
4015 }
4016
4017 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4018 {
4019 int err;
4020 struct avc_audit_data ad;
4021
4022 err = secondary_ops->netlink_recv(skb, capability);
4023 if (err)
4024 return err;
4025
4026 AVC_AUDIT_DATA_INIT(&ad, CAP);
4027 ad.u.cap = capability;
4028
4029 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4030 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4031 }
4032
4033 static int ipc_alloc_security(struct task_struct *task,
4034 struct kern_ipc_perm *perm,
4035 u16 sclass)
4036 {
4037 struct task_security_struct *tsec = task->security;
4038 struct ipc_security_struct *isec;
4039
4040 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4041 if (!isec)
4042 return -ENOMEM;
4043
4044 isec->sclass = sclass;
4045 isec->ipc_perm = perm;
4046 isec->sid = tsec->sid;
4047 perm->security = isec;
4048
4049 return 0;
4050 }
4051
4052 static void ipc_free_security(struct kern_ipc_perm *perm)
4053 {
4054 struct ipc_security_struct *isec = perm->security;
4055 perm->security = NULL;
4056 kfree(isec);
4057 }
4058
4059 static int msg_msg_alloc_security(struct msg_msg *msg)
4060 {
4061 struct msg_security_struct *msec;
4062
4063 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4064 if (!msec)
4065 return -ENOMEM;
4066
4067 msec->msg = msg;
4068 msec->sid = SECINITSID_UNLABELED;
4069 msg->security = msec;
4070
4071 return 0;
4072 }
4073
4074 static void msg_msg_free_security(struct msg_msg *msg)
4075 {
4076 struct msg_security_struct *msec = msg->security;
4077
4078 msg->security = NULL;
4079 kfree(msec);
4080 }
4081
4082 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4083 u32 perms)
4084 {
4085 struct task_security_struct *tsec;
4086 struct ipc_security_struct *isec;
4087 struct avc_audit_data ad;
4088
4089 tsec = current->security;
4090 isec = ipc_perms->security;
4091
4092 AVC_AUDIT_DATA_INIT(&ad, IPC);
4093 ad.u.ipc_id = ipc_perms->key;
4094
4095 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4096 }
4097
4098 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4099 {
4100 return msg_msg_alloc_security(msg);
4101 }
4102
4103 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4104 {
4105 msg_msg_free_security(msg);
4106 }
4107
4108 /* message queue security operations */
4109 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4110 {
4111 struct task_security_struct *tsec;
4112 struct ipc_security_struct *isec;
4113 struct avc_audit_data ad;
4114 int rc;
4115
4116 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4117 if (rc)
4118 return rc;
4119
4120 tsec = current->security;
4121 isec = msq->q_perm.security;
4122
4123 AVC_AUDIT_DATA_INIT(&ad, IPC);
4124 ad.u.ipc_id = msq->q_perm.key;
4125
4126 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4127 MSGQ__CREATE, &ad);
4128 if (rc) {
4129 ipc_free_security(&msq->q_perm);
4130 return rc;
4131 }
4132 return 0;
4133 }
4134
4135 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4136 {
4137 ipc_free_security(&msq->q_perm);
4138 }
4139
4140 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4141 {
4142 struct task_security_struct *tsec;
4143 struct ipc_security_struct *isec;
4144 struct avc_audit_data ad;
4145
4146 tsec = current->security;
4147 isec = msq->q_perm.security;
4148
4149 AVC_AUDIT_DATA_INIT(&ad, IPC);
4150 ad.u.ipc_id = msq->q_perm.key;
4151
4152 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4153 MSGQ__ASSOCIATE, &ad);
4154 }
4155
4156 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4157 {
4158 int err;
4159 int perms;
4160
4161 switch(cmd) {
4162 case IPC_INFO:
4163 case MSG_INFO:
4164 /* No specific object, just general system-wide information. */
4165 return task_has_system(current, SYSTEM__IPC_INFO);
4166 case IPC_STAT:
4167 case MSG_STAT:
4168 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4169 break;
4170 case IPC_SET:
4171 perms = MSGQ__SETATTR;
4172 break;
4173 case IPC_RMID:
4174 perms = MSGQ__DESTROY;
4175 break;
4176 default:
4177 return 0;
4178 }
4179
4180 err = ipc_has_perm(&msq->q_perm, perms);
4181 return err;
4182 }
4183
4184 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4185 {
4186 struct task_security_struct *tsec;
4187 struct ipc_security_struct *isec;
4188 struct msg_security_struct *msec;
4189 struct avc_audit_data ad;
4190 int rc;
4191
4192 tsec = current->security;
4193 isec = msq->q_perm.security;
4194 msec = msg->security;
4195
4196 /*
4197 * First time through, need to assign label to the message
4198 */
4199 if (msec->sid == SECINITSID_UNLABELED) {
4200 /*
4201 * Compute new sid based on current process and
4202 * message queue this message will be stored in
4203 */
4204 rc = security_transition_sid(tsec->sid,
4205 isec->sid,
4206 SECCLASS_MSG,
4207 &msec->sid);
4208 if (rc)
4209 return rc;
4210 }
4211
4212 AVC_AUDIT_DATA_INIT(&ad, IPC);
4213 ad.u.ipc_id = msq->q_perm.key;
4214
4215 /* Can this process write to the queue? */
4216 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4217 MSGQ__WRITE, &ad);
4218 if (!rc)
4219 /* Can this process send the message */
4220 rc = avc_has_perm(tsec->sid, msec->sid,
4221 SECCLASS_MSG, MSG__SEND, &ad);
4222 if (!rc)
4223 /* Can the message be put in the queue? */
4224 rc = avc_has_perm(msec->sid, isec->sid,
4225 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4226
4227 return rc;
4228 }
4229
4230 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4231 struct task_struct *target,
4232 long type, int mode)
4233 {
4234 struct task_security_struct *tsec;
4235 struct ipc_security_struct *isec;
4236 struct msg_security_struct *msec;
4237 struct avc_audit_data ad;
4238 int rc;
4239
4240 tsec = target->security;
4241 isec = msq->q_perm.security;
4242 msec = msg->security;
4243
4244 AVC_AUDIT_DATA_INIT(&ad, IPC);
4245 ad.u.ipc_id = msq->q_perm.key;
4246
4247 rc = avc_has_perm(tsec->sid, isec->sid,
4248 SECCLASS_MSGQ, MSGQ__READ, &ad);
4249 if (!rc)
4250 rc = avc_has_perm(tsec->sid, msec->sid,
4251 SECCLASS_MSG, MSG__RECEIVE, &ad);
4252 return rc;
4253 }
4254
4255 /* Shared Memory security operations */
4256 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4257 {
4258 struct task_security_struct *tsec;
4259 struct ipc_security_struct *isec;
4260 struct avc_audit_data ad;
4261 int rc;
4262
4263 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4264 if (rc)
4265 return rc;
4266
4267 tsec = current->security;
4268 isec = shp->shm_perm.security;
4269
4270 AVC_AUDIT_DATA_INIT(&ad, IPC);
4271 ad.u.ipc_id = shp->shm_perm.key;
4272
4273 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4274 SHM__CREATE, &ad);
4275 if (rc) {
4276 ipc_free_security(&shp->shm_perm);
4277 return rc;
4278 }
4279 return 0;
4280 }
4281
4282 static void selinux_shm_free_security(struct shmid_kernel *shp)
4283 {
4284 ipc_free_security(&shp->shm_perm);
4285 }
4286
4287 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4288 {
4289 struct task_security_struct *tsec;
4290 struct ipc_security_struct *isec;
4291 struct avc_audit_data ad;
4292
4293 tsec = current->security;
4294 isec = shp->shm_perm.security;
4295
4296 AVC_AUDIT_DATA_INIT(&ad, IPC);
4297 ad.u.ipc_id = shp->shm_perm.key;
4298
4299 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4300 SHM__ASSOCIATE, &ad);
4301 }
4302
4303 /* Note, at this point, shp is locked down */
4304 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4305 {
4306 int perms;
4307 int err;
4308
4309 switch(cmd) {
4310 case IPC_INFO:
4311 case SHM_INFO:
4312 /* No specific object, just general system-wide information. */
4313 return task_has_system(current, SYSTEM__IPC_INFO);
4314 case IPC_STAT:
4315 case SHM_STAT:
4316 perms = SHM__GETATTR | SHM__ASSOCIATE;
4317 break;
4318 case IPC_SET:
4319 perms = SHM__SETATTR;
4320 break;
4321 case SHM_LOCK:
4322 case SHM_UNLOCK:
4323 perms = SHM__LOCK;
4324 break;
4325 case IPC_RMID:
4326 perms = SHM__DESTROY;
4327 break;
4328 default:
4329 return 0;
4330 }
4331
4332 err = ipc_has_perm(&shp->shm_perm, perms);
4333 return err;
4334 }
4335
4336 static int selinux_shm_shmat(struct shmid_kernel *shp,
4337 char __user *shmaddr, int shmflg)
4338 {
4339 u32 perms;
4340 int rc;
4341
4342 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4343 if (rc)
4344 return rc;
4345
4346 if (shmflg & SHM_RDONLY)
4347 perms = SHM__READ;
4348 else
4349 perms = SHM__READ | SHM__WRITE;
4350
4351 return ipc_has_perm(&shp->shm_perm, perms);
4352 }
4353
4354 /* Semaphore security operations */
4355 static int selinux_sem_alloc_security(struct sem_array *sma)
4356 {
4357 struct task_security_struct *tsec;
4358 struct ipc_security_struct *isec;
4359 struct avc_audit_data ad;
4360 int rc;
4361
4362 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4363 if (rc)
4364 return rc;
4365
4366 tsec = current->security;
4367 isec = sma->sem_perm.security;
4368
4369 AVC_AUDIT_DATA_INIT(&ad, IPC);
4370 ad.u.ipc_id = sma->sem_perm.key;
4371
4372 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4373 SEM__CREATE, &ad);
4374 if (rc) {
4375 ipc_free_security(&sma->sem_perm);
4376 return rc;
4377 }
4378 return 0;
4379 }
4380
4381 static void selinux_sem_free_security(struct sem_array *sma)
4382 {
4383 ipc_free_security(&sma->sem_perm);
4384 }
4385
4386 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4387 {
4388 struct task_security_struct *tsec;
4389 struct ipc_security_struct *isec;
4390 struct avc_audit_data ad;
4391
4392 tsec = current->security;
4393 isec = sma->sem_perm.security;
4394
4395 AVC_AUDIT_DATA_INIT(&ad, IPC);
4396 ad.u.ipc_id = sma->sem_perm.key;
4397
4398 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4399 SEM__ASSOCIATE, &ad);
4400 }
4401
4402 /* Note, at this point, sma is locked down */
4403 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4404 {
4405 int err;
4406 u32 perms;
4407
4408 switch(cmd) {
4409 case IPC_INFO:
4410 case SEM_INFO:
4411 /* No specific object, just general system-wide information. */
4412 return task_has_system(current, SYSTEM__IPC_INFO);
4413 case GETPID:
4414 case GETNCNT:
4415 case GETZCNT:
4416 perms = SEM__GETATTR;
4417 break;
4418 case GETVAL:
4419 case GETALL:
4420 perms = SEM__READ;
4421 break;
4422 case SETVAL:
4423 case SETALL:
4424 perms = SEM__WRITE;
4425 break;
4426 case IPC_RMID:
4427 perms = SEM__DESTROY;
4428 break;
4429 case IPC_SET:
4430 perms = SEM__SETATTR;
4431 break;
4432 case IPC_STAT:
4433 case SEM_STAT:
4434 perms = SEM__GETATTR | SEM__ASSOCIATE;
4435 break;
4436 default:
4437 return 0;
4438 }
4439
4440 err = ipc_has_perm(&sma->sem_perm, perms);
4441 return err;
4442 }
4443
4444 static int selinux_sem_semop(struct sem_array *sma,
4445 struct sembuf *sops, unsigned nsops, int alter)
4446 {
4447 u32 perms;
4448
4449 if (alter)
4450 perms = SEM__READ | SEM__WRITE;
4451 else
4452 perms = SEM__READ;
4453
4454 return ipc_has_perm(&sma->sem_perm, perms);
4455 }
4456
4457 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4458 {
4459 u32 av = 0;
4460
4461 av = 0;
4462 if (flag & S_IRUGO)
4463 av |= IPC__UNIX_READ;
4464 if (flag & S_IWUGO)
4465 av |= IPC__UNIX_WRITE;
4466
4467 if (av == 0)
4468 return 0;
4469
4470 return ipc_has_perm(ipcp, av);
4471 }
4472
4473 /* module stacking operations */
4474 static int selinux_register_security (const char *name, struct security_operations *ops)
4475 {
4476 if (secondary_ops != original_ops) {
4477 printk(KERN_ERR "%s: There is already a secondary security "
4478 "module registered.\n", __FUNCTION__);
4479 return -EINVAL;
4480 }
4481
4482 secondary_ops = ops;
4483
4484 printk(KERN_INFO "%s: Registering secondary module %s\n",
4485 __FUNCTION__,
4486 name);
4487
4488 return 0;
4489 }
4490
4491 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4492 {
4493 if (ops != secondary_ops) {
4494 printk(KERN_ERR "%s: trying to unregister a security module "
4495 "that is not registered.\n", __FUNCTION__);
4496 return -EINVAL;
4497 }
4498
4499 secondary_ops = original_ops;
4500
4501 return 0;
4502 }
4503
4504 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4505 {
4506 if (inode)
4507 inode_doinit_with_dentry(inode, dentry);
4508 }
4509
4510 static int selinux_getprocattr(struct task_struct *p,
4511 char *name, char **value)
4512 {
4513 struct task_security_struct *tsec;
4514 u32 sid;
4515 int error;
4516 unsigned len;
4517
4518 if (current != p) {
4519 error = task_has_perm(current, p, PROCESS__GETATTR);
4520 if (error)
4521 return error;
4522 }
4523
4524 tsec = p->security;
4525
4526 if (!strcmp(name, "current"))
4527 sid = tsec->sid;
4528 else if (!strcmp(name, "prev"))
4529 sid = tsec->osid;
4530 else if (!strcmp(name, "exec"))
4531 sid = tsec->exec_sid;
4532 else if (!strcmp(name, "fscreate"))
4533 sid = tsec->create_sid;
4534 else if (!strcmp(name, "keycreate"))
4535 sid = tsec->keycreate_sid;
4536 else if (!strcmp(name, "sockcreate"))
4537 sid = tsec->sockcreate_sid;
4538 else
4539 return -EINVAL;
4540
4541 if (!sid)
4542 return 0;
4543
4544 error = security_sid_to_context(sid, value, &len);
4545 if (error)
4546 return error;
4547 return len;
4548 }
4549
4550 static int selinux_setprocattr(struct task_struct *p,
4551 char *name, void *value, size_t size)
4552 {
4553 struct task_security_struct *tsec;
4554 u32 sid = 0;
4555 int error;
4556 char *str = value;
4557
4558 if (current != p) {
4559 /* SELinux only allows a process to change its own
4560 security attributes. */
4561 return -EACCES;
4562 }
4563
4564 /*
4565 * Basic control over ability to set these attributes at all.
4566 * current == p, but we'll pass them separately in case the
4567 * above restriction is ever removed.
4568 */
4569 if (!strcmp(name, "exec"))
4570 error = task_has_perm(current, p, PROCESS__SETEXEC);
4571 else if (!strcmp(name, "fscreate"))
4572 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4573 else if (!strcmp(name, "keycreate"))
4574 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4575 else if (!strcmp(name, "sockcreate"))
4576 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4577 else if (!strcmp(name, "current"))
4578 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4579 else
4580 error = -EINVAL;
4581 if (error)
4582 return error;
4583
4584 /* Obtain a SID for the context, if one was specified. */
4585 if (size && str[1] && str[1] != '\n') {
4586 if (str[size-1] == '\n') {
4587 str[size-1] = 0;
4588 size--;
4589 }
4590 error = security_context_to_sid(value, size, &sid);
4591 if (error)
4592 return error;
4593 }
4594
4595 /* Permission checking based on the specified context is
4596 performed during the actual operation (execve,
4597 open/mkdir/...), when we know the full context of the
4598 operation. See selinux_bprm_set_security for the execve
4599 checks and may_create for the file creation checks. The
4600 operation will then fail if the context is not permitted. */
4601 tsec = p->security;
4602 if (!strcmp(name, "exec"))
4603 tsec->exec_sid = sid;
4604 else if (!strcmp(name, "fscreate"))
4605 tsec->create_sid = sid;
4606 else if (!strcmp(name, "keycreate")) {
4607 error = may_create_key(sid, p);
4608 if (error)
4609 return error;
4610 tsec->keycreate_sid = sid;
4611 } else if (!strcmp(name, "sockcreate"))
4612 tsec->sockcreate_sid = sid;
4613 else if (!strcmp(name, "current")) {
4614 struct av_decision avd;
4615
4616 if (sid == 0)
4617 return -EINVAL;
4618
4619 /* Only allow single threaded processes to change context */
4620 if (atomic_read(&p->mm->mm_users) != 1) {
4621 struct task_struct *g, *t;
4622 struct mm_struct *mm = p->mm;
4623 read_lock(&tasklist_lock);
4624 do_each_thread(g, t)
4625 if (t->mm == mm && t != p) {
4626 read_unlock(&tasklist_lock);
4627 return -EPERM;
4628 }
4629 while_each_thread(g, t);
4630 read_unlock(&tasklist_lock);
4631 }
4632
4633 /* Check permissions for the transition. */
4634 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4635 PROCESS__DYNTRANSITION, NULL);
4636 if (error)
4637 return error;
4638
4639 /* Check for ptracing, and update the task SID if ok.
4640 Otherwise, leave SID unchanged and fail. */
4641 task_lock(p);
4642 if (p->ptrace & PT_PTRACED) {
4643 error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4644 SECCLASS_PROCESS,
4645 PROCESS__PTRACE, 0, &avd);
4646 if (!error)
4647 tsec->sid = sid;
4648 task_unlock(p);
4649 avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4650 PROCESS__PTRACE, &avd, error, NULL);
4651 if (error)
4652 return error;
4653 } else {
4654 tsec->sid = sid;
4655 task_unlock(p);
4656 }
4657 }
4658 else
4659 return -EINVAL;
4660
4661 return size;
4662 }
4663
4664 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4665 {
4666 return security_sid_to_context(secid, secdata, seclen);
4667 }
4668
4669 static void selinux_release_secctx(char *secdata, u32 seclen)
4670 {
4671 kfree(secdata);
4672 }
4673
4674 #ifdef CONFIG_KEYS
4675
4676 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4677 unsigned long flags)
4678 {
4679 struct task_security_struct *tsec = tsk->security;
4680 struct key_security_struct *ksec;
4681
4682 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4683 if (!ksec)
4684 return -ENOMEM;
4685
4686 ksec->obj = k;
4687 if (tsec->keycreate_sid)
4688 ksec->sid = tsec->keycreate_sid;
4689 else
4690 ksec->sid = tsec->sid;
4691 k->security = ksec;
4692
4693 return 0;
4694 }
4695
4696 static void selinux_key_free(struct key *k)
4697 {
4698 struct key_security_struct *ksec = k->security;
4699
4700 k->security = NULL;
4701 kfree(ksec);
4702 }
4703
4704 static int selinux_key_permission(key_ref_t key_ref,
4705 struct task_struct *ctx,
4706 key_perm_t perm)
4707 {
4708 struct key *key;
4709 struct task_security_struct *tsec;
4710 struct key_security_struct *ksec;
4711
4712 key = key_ref_to_ptr(key_ref);
4713
4714 tsec = ctx->security;
4715 ksec = key->security;
4716
4717 /* if no specific permissions are requested, we skip the
4718 permission check. No serious, additional covert channels
4719 appear to be created. */
4720 if (perm == 0)
4721 return 0;
4722
4723 return avc_has_perm(tsec->sid, ksec->sid,
4724 SECCLASS_KEY, perm, NULL);
4725 }
4726
4727 #endif
4728
4729 static struct security_operations selinux_ops = {
4730 .ptrace = selinux_ptrace,
4731 .capget = selinux_capget,
4732 .capset_check = selinux_capset_check,
4733 .capset_set = selinux_capset_set,
4734 .sysctl = selinux_sysctl,
4735 .capable = selinux_capable,
4736 .quotactl = selinux_quotactl,
4737 .quota_on = selinux_quota_on,
4738 .syslog = selinux_syslog,
4739 .vm_enough_memory = selinux_vm_enough_memory,
4740
4741 .netlink_send = selinux_netlink_send,
4742 .netlink_recv = selinux_netlink_recv,
4743
4744 .bprm_alloc_security = selinux_bprm_alloc_security,
4745 .bprm_free_security = selinux_bprm_free_security,
4746 .bprm_apply_creds = selinux_bprm_apply_creds,
4747 .bprm_post_apply_creds = selinux_bprm_post_apply_creds,
4748 .bprm_set_security = selinux_bprm_set_security,
4749 .bprm_check_security = selinux_bprm_check_security,
4750 .bprm_secureexec = selinux_bprm_secureexec,
4751
4752 .sb_alloc_security = selinux_sb_alloc_security,
4753 .sb_free_security = selinux_sb_free_security,
4754 .sb_copy_data = selinux_sb_copy_data,
4755 .sb_kern_mount = selinux_sb_kern_mount,
4756 .sb_statfs = selinux_sb_statfs,
4757 .sb_mount = selinux_mount,
4758 .sb_umount = selinux_umount,
4759
4760 .inode_alloc_security = selinux_inode_alloc_security,
4761 .inode_free_security = selinux_inode_free_security,
4762 .inode_init_security = selinux_inode_init_security,
4763 .inode_create = selinux_inode_create,
4764 .inode_link = selinux_inode_link,
4765 .inode_unlink = selinux_inode_unlink,
4766 .inode_symlink = selinux_inode_symlink,
4767 .inode_mkdir = selinux_inode_mkdir,
4768 .inode_rmdir = selinux_inode_rmdir,
4769 .inode_mknod = selinux_inode_mknod,
4770 .inode_rename = selinux_inode_rename,
4771 .inode_readlink = selinux_inode_readlink,
4772 .inode_follow_link = selinux_inode_follow_link,
4773 .inode_permission = selinux_inode_permission,
4774 .inode_setattr = selinux_inode_setattr,
4775 .inode_getattr = selinux_inode_getattr,
4776 .inode_setxattr = selinux_inode_setxattr,
4777 .inode_post_setxattr = selinux_inode_post_setxattr,
4778 .inode_getxattr = selinux_inode_getxattr,
4779 .inode_listxattr = selinux_inode_listxattr,
4780 .inode_removexattr = selinux_inode_removexattr,
4781 .inode_xattr_getsuffix = selinux_inode_xattr_getsuffix,
4782 .inode_getsecurity = selinux_inode_getsecurity,
4783 .inode_setsecurity = selinux_inode_setsecurity,
4784 .inode_listsecurity = selinux_inode_listsecurity,
4785
4786 .file_permission = selinux_file_permission,
4787 .file_alloc_security = selinux_file_alloc_security,
4788 .file_free_security = selinux_file_free_security,
4789 .file_ioctl = selinux_file_ioctl,
4790 .file_mmap = selinux_file_mmap,
4791 .file_mprotect = selinux_file_mprotect,
4792 .file_lock = selinux_file_lock,
4793 .file_fcntl = selinux_file_fcntl,
4794 .file_set_fowner = selinux_file_set_fowner,
4795 .file_send_sigiotask = selinux_file_send_sigiotask,
4796 .file_receive = selinux_file_receive,
4797
4798 .task_create = selinux_task_create,
4799 .task_alloc_security = selinux_task_alloc_security,
4800 .task_free_security = selinux_task_free_security,
4801 .task_setuid = selinux_task_setuid,
4802 .task_post_setuid = selinux_task_post_setuid,
4803 .task_setgid = selinux_task_setgid,
4804 .task_setpgid = selinux_task_setpgid,
4805 .task_getpgid = selinux_task_getpgid,
4806 .task_getsid = selinux_task_getsid,
4807 .task_getsecid = selinux_task_getsecid,
4808 .task_setgroups = selinux_task_setgroups,
4809 .task_setnice = selinux_task_setnice,
4810 .task_setioprio = selinux_task_setioprio,
4811 .task_getioprio = selinux_task_getioprio,
4812 .task_setrlimit = selinux_task_setrlimit,
4813 .task_setscheduler = selinux_task_setscheduler,
4814 .task_getscheduler = selinux_task_getscheduler,
4815 .task_movememory = selinux_task_movememory,
4816 .task_kill = selinux_task_kill,
4817 .task_wait = selinux_task_wait,
4818 .task_prctl = selinux_task_prctl,
4819 .task_reparent_to_init = selinux_task_reparent_to_init,
4820 .task_to_inode = selinux_task_to_inode,
4821
4822 .ipc_permission = selinux_ipc_permission,
4823
4824 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
4825 .msg_msg_free_security = selinux_msg_msg_free_security,
4826
4827 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
4828 .msg_queue_free_security = selinux_msg_queue_free_security,
4829 .msg_queue_associate = selinux_msg_queue_associate,
4830 .msg_queue_msgctl = selinux_msg_queue_msgctl,
4831 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
4832 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
4833
4834 .shm_alloc_security = selinux_shm_alloc_security,
4835 .shm_free_security = selinux_shm_free_security,
4836 .shm_associate = selinux_shm_associate,
4837 .shm_shmctl = selinux_shm_shmctl,
4838 .shm_shmat = selinux_shm_shmat,
4839
4840 .sem_alloc_security = selinux_sem_alloc_security,
4841 .sem_free_security = selinux_sem_free_security,
4842 .sem_associate = selinux_sem_associate,
4843 .sem_semctl = selinux_sem_semctl,
4844 .sem_semop = selinux_sem_semop,
4845
4846 .register_security = selinux_register_security,
4847 .unregister_security = selinux_unregister_security,
4848
4849 .d_instantiate = selinux_d_instantiate,
4850
4851 .getprocattr = selinux_getprocattr,
4852 .setprocattr = selinux_setprocattr,
4853
4854 .secid_to_secctx = selinux_secid_to_secctx,
4855 .release_secctx = selinux_release_secctx,
4856
4857 .unix_stream_connect = selinux_socket_unix_stream_connect,
4858 .unix_may_send = selinux_socket_unix_may_send,
4859
4860 .socket_create = selinux_socket_create,
4861 .socket_post_create = selinux_socket_post_create,
4862 .socket_bind = selinux_socket_bind,
4863 .socket_connect = selinux_socket_connect,
4864 .socket_listen = selinux_socket_listen,
4865 .socket_accept = selinux_socket_accept,
4866 .socket_sendmsg = selinux_socket_sendmsg,
4867 .socket_recvmsg = selinux_socket_recvmsg,
4868 .socket_getsockname = selinux_socket_getsockname,
4869 .socket_getpeername = selinux_socket_getpeername,
4870 .socket_getsockopt = selinux_socket_getsockopt,
4871 .socket_setsockopt = selinux_socket_setsockopt,
4872 .socket_shutdown = selinux_socket_shutdown,
4873 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
4874 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
4875 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
4876 .sk_alloc_security = selinux_sk_alloc_security,
4877 .sk_free_security = selinux_sk_free_security,
4878 .sk_clone_security = selinux_sk_clone_security,
4879 .sk_getsecid = selinux_sk_getsecid,
4880 .sock_graft = selinux_sock_graft,
4881 .inet_conn_request = selinux_inet_conn_request,
4882 .inet_csk_clone = selinux_inet_csk_clone,
4883 .inet_conn_established = selinux_inet_conn_established,
4884 .req_classify_flow = selinux_req_classify_flow,
4885
4886 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4887 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
4888 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
4889 .xfrm_policy_free_security = selinux_xfrm_policy_free,
4890 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
4891 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
4892 .xfrm_state_free_security = selinux_xfrm_state_free,
4893 .xfrm_state_delete_security = selinux_xfrm_state_delete,
4894 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
4895 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
4896 .xfrm_decode_session = selinux_xfrm_decode_session,
4897 #endif
4898
4899 #ifdef CONFIG_KEYS
4900 .key_alloc = selinux_key_alloc,
4901 .key_free = selinux_key_free,
4902 .key_permission = selinux_key_permission,
4903 #endif
4904 };
4905
4906 static __init int selinux_init(void)
4907 {
4908 struct task_security_struct *tsec;
4909
4910 if (!selinux_enabled) {
4911 printk(KERN_INFO "SELinux: Disabled at boot.\n");
4912 return 0;
4913 }
4914
4915 printk(KERN_INFO "SELinux: Initializing.\n");
4916
4917 /* Set the security state for the initial task. */
4918 if (task_alloc_security(current))
4919 panic("SELinux: Failed to initialize initial task.\n");
4920 tsec = current->security;
4921 tsec->osid = tsec->sid = SECINITSID_KERNEL;
4922
4923 sel_inode_cache = kmem_cache_create("selinux_inode_security",
4924 sizeof(struct inode_security_struct),
4925 0, SLAB_PANIC, NULL);
4926 avc_init();
4927
4928 original_ops = secondary_ops = security_ops;
4929 if (!secondary_ops)
4930 panic ("SELinux: No initial security operations\n");
4931 if (register_security (&selinux_ops))
4932 panic("SELinux: Unable to register with kernel.\n");
4933
4934 if (selinux_enforcing) {
4935 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
4936 } else {
4937 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
4938 }
4939
4940 #ifdef CONFIG_KEYS
4941 /* Add security information to initial keyrings */
4942 selinux_key_alloc(&root_user_keyring, current,
4943 KEY_ALLOC_NOT_IN_QUOTA);
4944 selinux_key_alloc(&root_session_keyring, current,
4945 KEY_ALLOC_NOT_IN_QUOTA);
4946 #endif
4947
4948 return 0;
4949 }
4950
4951 void selinux_complete_init(void)
4952 {
4953 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
4954
4955 /* Set up any superblocks initialized prior to the policy load. */
4956 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
4957 spin_lock(&sb_lock);
4958 spin_lock(&sb_security_lock);
4959 next_sb:
4960 if (!list_empty(&superblock_security_head)) {
4961 struct superblock_security_struct *sbsec =
4962 list_entry(superblock_security_head.next,
4963 struct superblock_security_struct,
4964 list);
4965 struct super_block *sb = sbsec->sb;
4966 sb->s_count++;
4967 spin_unlock(&sb_security_lock);
4968 spin_unlock(&sb_lock);
4969 down_read(&sb->s_umount);
4970 if (sb->s_root)
4971 superblock_doinit(sb, NULL);
4972 drop_super(sb);
4973 spin_lock(&sb_lock);
4974 spin_lock(&sb_security_lock);
4975 list_del_init(&sbsec->list);
4976 goto next_sb;
4977 }
4978 spin_unlock(&sb_security_lock);
4979 spin_unlock(&sb_lock);
4980 }
4981
4982 /* SELinux requires early initialization in order to label
4983 all processes and objects when they are created. */
4984 security_initcall(selinux_init);
4985
4986 #if defined(CONFIG_NETFILTER)
4987
4988 static struct nf_hook_ops selinux_ipv4_op = {
4989 .hook = selinux_ipv4_postroute_last,
4990 .owner = THIS_MODULE,
4991 .pf = PF_INET,
4992 .hooknum = NF_IP_POST_ROUTING,
4993 .priority = NF_IP_PRI_SELINUX_LAST,
4994 };
4995
4996 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4997
4998 static struct nf_hook_ops selinux_ipv6_op = {
4999 .hook = selinux_ipv6_postroute_last,
5000 .owner = THIS_MODULE,
5001 .pf = PF_INET6,
5002 .hooknum = NF_IP6_POST_ROUTING,
5003 .priority = NF_IP6_PRI_SELINUX_LAST,
5004 };
5005
5006 #endif /* IPV6 */
5007
5008 static int __init selinux_nf_ip_init(void)
5009 {
5010 int err = 0;
5011
5012 if (!selinux_enabled)
5013 goto out;
5014
5015 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5016
5017 err = nf_register_hook(&selinux_ipv4_op);
5018 if (err)
5019 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
5020
5021 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5022
5023 err = nf_register_hook(&selinux_ipv6_op);
5024 if (err)
5025 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
5026
5027 #endif /* IPV6 */
5028
5029 out:
5030 return err;
5031 }
5032
5033 __initcall(selinux_nf_ip_init);
5034
5035 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5036 static void selinux_nf_ip_exit(void)
5037 {
5038 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5039
5040 nf_unregister_hook(&selinux_ipv4_op);
5041 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5042 nf_unregister_hook(&selinux_ipv6_op);
5043 #endif /* IPV6 */
5044 }
5045 #endif
5046
5047 #else /* CONFIG_NETFILTER */
5048
5049 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5050 #define selinux_nf_ip_exit()
5051 #endif
5052
5053 #endif /* CONFIG_NETFILTER */
5054
5055 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5056 int selinux_disable(void)
5057 {
5058 extern void exit_sel_fs(void);
5059 static int selinux_disabled = 0;
5060
5061 if (ss_initialized) {
5062 /* Not permitted after initial policy load. */
5063 return -EINVAL;
5064 }
5065
5066 if (selinux_disabled) {
5067 /* Only do this once. */
5068 return -EINVAL;
5069 }
5070
5071 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5072
5073 selinux_disabled = 1;
5074 selinux_enabled = 0;
5075
5076 /* Reset security_ops to the secondary module, dummy or capability. */
5077 security_ops = secondary_ops;
5078
5079 /* Unregister netfilter hooks. */
5080 selinux_nf_ip_exit();
5081
5082 /* Unregister selinuxfs. */
5083 exit_sel_fs();
5084
5085 return 0;
5086 }
5087 #endif
5088
5089
This page took 0.136517 seconds and 6 git commands to generate.