Linux-2.6.12-rc2
[deliverable/linux.git] / security / selinux / ss / policydb.c
1 /*
2 * Implementation of the policy database.
3 *
4 * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5 */
6
7 /*
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 *
10 * Support for enhanced MLS infrastructure.
11 *
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 *
14 * Added conditional policy language extensions
15 *
16 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
17 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation, version 2.
21 */
22
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/errno.h>
27 #include "security.h"
28
29 #include "policydb.h"
30 #include "conditional.h"
31 #include "mls.h"
32
33 #define _DEBUG_HASHES
34
35 #ifdef DEBUG_HASHES
36 static char *symtab_name[SYM_NUM] = {
37 "common prefixes",
38 "classes",
39 "roles",
40 "types",
41 "users",
42 "bools",
43 "levels",
44 "categories",
45 };
46 #endif
47
48 int selinux_mls_enabled = 0;
49
50 static unsigned int symtab_sizes[SYM_NUM] = {
51 2,
52 32,
53 16,
54 512,
55 128,
56 16,
57 16,
58 16,
59 };
60
61 struct policydb_compat_info {
62 int version;
63 int sym_num;
64 int ocon_num;
65 };
66
67 /* These need to be updated if SYM_NUM or OCON_NUM changes */
68 static struct policydb_compat_info policydb_compat[] = {
69 {
70 .version = POLICYDB_VERSION_BASE,
71 .sym_num = SYM_NUM - 3,
72 .ocon_num = OCON_NUM - 1,
73 },
74 {
75 .version = POLICYDB_VERSION_BOOL,
76 .sym_num = SYM_NUM - 2,
77 .ocon_num = OCON_NUM - 1,
78 },
79 {
80 .version = POLICYDB_VERSION_IPV6,
81 .sym_num = SYM_NUM - 2,
82 .ocon_num = OCON_NUM,
83 },
84 {
85 .version = POLICYDB_VERSION_NLCLASS,
86 .sym_num = SYM_NUM - 2,
87 .ocon_num = OCON_NUM,
88 },
89 {
90 .version = POLICYDB_VERSION_MLS,
91 .sym_num = SYM_NUM,
92 .ocon_num = OCON_NUM,
93 },
94 };
95
96 static struct policydb_compat_info *policydb_lookup_compat(int version)
97 {
98 int i;
99 struct policydb_compat_info *info = NULL;
100
101 for (i = 0; i < sizeof(policydb_compat)/sizeof(*info); i++) {
102 if (policydb_compat[i].version == version) {
103 info = &policydb_compat[i];
104 break;
105 }
106 }
107 return info;
108 }
109
110 /*
111 * Initialize the role table.
112 */
113 static int roles_init(struct policydb *p)
114 {
115 char *key = NULL;
116 int rc;
117 struct role_datum *role;
118
119 role = kmalloc(sizeof(*role), GFP_KERNEL);
120 if (!role) {
121 rc = -ENOMEM;
122 goto out;
123 }
124 memset(role, 0, sizeof(*role));
125 role->value = ++p->p_roles.nprim;
126 if (role->value != OBJECT_R_VAL) {
127 rc = -EINVAL;
128 goto out_free_role;
129 }
130 key = kmalloc(strlen(OBJECT_R)+1,GFP_KERNEL);
131 if (!key) {
132 rc = -ENOMEM;
133 goto out_free_role;
134 }
135 strcpy(key, OBJECT_R);
136 rc = hashtab_insert(p->p_roles.table, key, role);
137 if (rc)
138 goto out_free_key;
139 out:
140 return rc;
141
142 out_free_key:
143 kfree(key);
144 out_free_role:
145 kfree(role);
146 goto out;
147 }
148
149 /*
150 * Initialize a policy database structure.
151 */
152 static int policydb_init(struct policydb *p)
153 {
154 int i, rc;
155
156 memset(p, 0, sizeof(*p));
157
158 for (i = 0; i < SYM_NUM; i++) {
159 rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
160 if (rc)
161 goto out_free_symtab;
162 }
163
164 rc = avtab_init(&p->te_avtab);
165 if (rc)
166 goto out_free_symtab;
167
168 rc = roles_init(p);
169 if (rc)
170 goto out_free_avtab;
171
172 rc = cond_policydb_init(p);
173 if (rc)
174 goto out_free_avtab;
175
176 out:
177 return rc;
178
179 out_free_avtab:
180 avtab_destroy(&p->te_avtab);
181
182 out_free_symtab:
183 for (i = 0; i < SYM_NUM; i++)
184 hashtab_destroy(p->symtab[i].table);
185 goto out;
186 }
187
188 /*
189 * The following *_index functions are used to
190 * define the val_to_name and val_to_struct arrays
191 * in a policy database structure. The val_to_name
192 * arrays are used when converting security context
193 * structures into string representations. The
194 * val_to_struct arrays are used when the attributes
195 * of a class, role, or user are needed.
196 */
197
198 static int common_index(void *key, void *datum, void *datap)
199 {
200 struct policydb *p;
201 struct common_datum *comdatum;
202
203 comdatum = datum;
204 p = datap;
205 if (!comdatum->value || comdatum->value > p->p_commons.nprim)
206 return -EINVAL;
207 p->p_common_val_to_name[comdatum->value - 1] = key;
208 return 0;
209 }
210
211 static int class_index(void *key, void *datum, void *datap)
212 {
213 struct policydb *p;
214 struct class_datum *cladatum;
215
216 cladatum = datum;
217 p = datap;
218 if (!cladatum->value || cladatum->value > p->p_classes.nprim)
219 return -EINVAL;
220 p->p_class_val_to_name[cladatum->value - 1] = key;
221 p->class_val_to_struct[cladatum->value - 1] = cladatum;
222 return 0;
223 }
224
225 static int role_index(void *key, void *datum, void *datap)
226 {
227 struct policydb *p;
228 struct role_datum *role;
229
230 role = datum;
231 p = datap;
232 if (!role->value || role->value > p->p_roles.nprim)
233 return -EINVAL;
234 p->p_role_val_to_name[role->value - 1] = key;
235 p->role_val_to_struct[role->value - 1] = role;
236 return 0;
237 }
238
239 static int type_index(void *key, void *datum, void *datap)
240 {
241 struct policydb *p;
242 struct type_datum *typdatum;
243
244 typdatum = datum;
245 p = datap;
246
247 if (typdatum->primary) {
248 if (!typdatum->value || typdatum->value > p->p_types.nprim)
249 return -EINVAL;
250 p->p_type_val_to_name[typdatum->value - 1] = key;
251 }
252
253 return 0;
254 }
255
256 static int user_index(void *key, void *datum, void *datap)
257 {
258 struct policydb *p;
259 struct user_datum *usrdatum;
260
261 usrdatum = datum;
262 p = datap;
263 if (!usrdatum->value || usrdatum->value > p->p_users.nprim)
264 return -EINVAL;
265 p->p_user_val_to_name[usrdatum->value - 1] = key;
266 p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
267 return 0;
268 }
269
270 static int sens_index(void *key, void *datum, void *datap)
271 {
272 struct policydb *p;
273 struct level_datum *levdatum;
274
275 levdatum = datum;
276 p = datap;
277
278 if (!levdatum->isalias) {
279 if (!levdatum->level->sens ||
280 levdatum->level->sens > p->p_levels.nprim)
281 return -EINVAL;
282 p->p_sens_val_to_name[levdatum->level->sens - 1] = key;
283 }
284
285 return 0;
286 }
287
288 static int cat_index(void *key, void *datum, void *datap)
289 {
290 struct policydb *p;
291 struct cat_datum *catdatum;
292
293 catdatum = datum;
294 p = datap;
295
296 if (!catdatum->isalias) {
297 if (!catdatum->value || catdatum->value > p->p_cats.nprim)
298 return -EINVAL;
299 p->p_cat_val_to_name[catdatum->value - 1] = key;
300 }
301
302 return 0;
303 }
304
305 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
306 {
307 common_index,
308 class_index,
309 role_index,
310 type_index,
311 user_index,
312 cond_index_bool,
313 sens_index,
314 cat_index,
315 };
316
317 /*
318 * Define the common val_to_name array and the class
319 * val_to_name and val_to_struct arrays in a policy
320 * database structure.
321 *
322 * Caller must clean up upon failure.
323 */
324 static int policydb_index_classes(struct policydb *p)
325 {
326 int rc;
327
328 p->p_common_val_to_name =
329 kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL);
330 if (!p->p_common_val_to_name) {
331 rc = -ENOMEM;
332 goto out;
333 }
334
335 rc = hashtab_map(p->p_commons.table, common_index, p);
336 if (rc)
337 goto out;
338
339 p->class_val_to_struct =
340 kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL);
341 if (!p->class_val_to_struct) {
342 rc = -ENOMEM;
343 goto out;
344 }
345
346 p->p_class_val_to_name =
347 kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL);
348 if (!p->p_class_val_to_name) {
349 rc = -ENOMEM;
350 goto out;
351 }
352
353 rc = hashtab_map(p->p_classes.table, class_index, p);
354 out:
355 return rc;
356 }
357
358 #ifdef DEBUG_HASHES
359 static void symtab_hash_eval(struct symtab *s)
360 {
361 int i;
362
363 for (i = 0; i < SYM_NUM; i++) {
364 struct hashtab *h = s[i].table;
365 struct hashtab_info info;
366
367 hashtab_stat(h, &info);
368 printk(KERN_INFO "%s: %d entries and %d/%d buckets used, "
369 "longest chain length %d\n", symtab_name[i], h->nel,
370 info.slots_used, h->size, info.max_chain_len);
371 }
372 }
373 #endif
374
375 /*
376 * Define the other val_to_name and val_to_struct arrays
377 * in a policy database structure.
378 *
379 * Caller must clean up on failure.
380 */
381 static int policydb_index_others(struct policydb *p)
382 {
383 int i, rc = 0;
384
385 printk(KERN_INFO "security: %d users, %d roles, %d types, %d bools",
386 p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
387 if (selinux_mls_enabled)
388 printk(", %d sens, %d cats", p->p_levels.nprim,
389 p->p_cats.nprim);
390 printk("\n");
391
392 printk(KERN_INFO "security: %d classes, %d rules\n",
393 p->p_classes.nprim, p->te_avtab.nel);
394
395 #ifdef DEBUG_HASHES
396 avtab_hash_eval(&p->te_avtab, "rules");
397 symtab_hash_eval(p->symtab);
398 #endif
399
400 p->role_val_to_struct =
401 kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
402 GFP_KERNEL);
403 if (!p->role_val_to_struct) {
404 rc = -ENOMEM;
405 goto out;
406 }
407
408 p->user_val_to_struct =
409 kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
410 GFP_KERNEL);
411 if (!p->user_val_to_struct) {
412 rc = -ENOMEM;
413 goto out;
414 }
415
416 if (cond_init_bool_indexes(p)) {
417 rc = -ENOMEM;
418 goto out;
419 }
420
421 for (i = SYM_ROLES; i < SYM_NUM; i++) {
422 p->sym_val_to_name[i] =
423 kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL);
424 if (!p->sym_val_to_name[i]) {
425 rc = -ENOMEM;
426 goto out;
427 }
428 rc = hashtab_map(p->symtab[i].table, index_f[i], p);
429 if (rc)
430 goto out;
431 }
432
433 out:
434 return rc;
435 }
436
437 /*
438 * The following *_destroy functions are used to
439 * free any memory allocated for each kind of
440 * symbol data in the policy database.
441 */
442
443 static int perm_destroy(void *key, void *datum, void *p)
444 {
445 kfree(key);
446 kfree(datum);
447 return 0;
448 }
449
450 static int common_destroy(void *key, void *datum, void *p)
451 {
452 struct common_datum *comdatum;
453
454 kfree(key);
455 comdatum = datum;
456 hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
457 hashtab_destroy(comdatum->permissions.table);
458 kfree(datum);
459 return 0;
460 }
461
462 static int class_destroy(void *key, void *datum, void *p)
463 {
464 struct class_datum *cladatum;
465 struct constraint_node *constraint, *ctemp;
466 struct constraint_expr *e, *etmp;
467
468 kfree(key);
469 cladatum = datum;
470 hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
471 hashtab_destroy(cladatum->permissions.table);
472 constraint = cladatum->constraints;
473 while (constraint) {
474 e = constraint->expr;
475 while (e) {
476 ebitmap_destroy(&e->names);
477 etmp = e;
478 e = e->next;
479 kfree(etmp);
480 }
481 ctemp = constraint;
482 constraint = constraint->next;
483 kfree(ctemp);
484 }
485
486 constraint = cladatum->validatetrans;
487 while (constraint) {
488 e = constraint->expr;
489 while (e) {
490 ebitmap_destroy(&e->names);
491 etmp = e;
492 e = e->next;
493 kfree(etmp);
494 }
495 ctemp = constraint;
496 constraint = constraint->next;
497 kfree(ctemp);
498 }
499
500 kfree(cladatum->comkey);
501 kfree(datum);
502 return 0;
503 }
504
505 static int role_destroy(void *key, void *datum, void *p)
506 {
507 struct role_datum *role;
508
509 kfree(key);
510 role = datum;
511 ebitmap_destroy(&role->dominates);
512 ebitmap_destroy(&role->types);
513 kfree(datum);
514 return 0;
515 }
516
517 static int type_destroy(void *key, void *datum, void *p)
518 {
519 kfree(key);
520 kfree(datum);
521 return 0;
522 }
523
524 static int user_destroy(void *key, void *datum, void *p)
525 {
526 struct user_datum *usrdatum;
527
528 kfree(key);
529 usrdatum = datum;
530 ebitmap_destroy(&usrdatum->roles);
531 ebitmap_destroy(&usrdatum->range.level[0].cat);
532 ebitmap_destroy(&usrdatum->range.level[1].cat);
533 ebitmap_destroy(&usrdatum->dfltlevel.cat);
534 kfree(datum);
535 return 0;
536 }
537
538 static int sens_destroy(void *key, void *datum, void *p)
539 {
540 struct level_datum *levdatum;
541
542 kfree(key);
543 levdatum = datum;
544 ebitmap_destroy(&levdatum->level->cat);
545 kfree(levdatum->level);
546 kfree(datum);
547 return 0;
548 }
549
550 static int cat_destroy(void *key, void *datum, void *p)
551 {
552 kfree(key);
553 kfree(datum);
554 return 0;
555 }
556
557 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
558 {
559 common_destroy,
560 class_destroy,
561 role_destroy,
562 type_destroy,
563 user_destroy,
564 cond_destroy_bool,
565 sens_destroy,
566 cat_destroy,
567 };
568
569 static void ocontext_destroy(struct ocontext *c, int i)
570 {
571 context_destroy(&c->context[0]);
572 context_destroy(&c->context[1]);
573 if (i == OCON_ISID || i == OCON_FS ||
574 i == OCON_NETIF || i == OCON_FSUSE)
575 kfree(c->u.name);
576 kfree(c);
577 }
578
579 /*
580 * Free any memory allocated by a policy database structure.
581 */
582 void policydb_destroy(struct policydb *p)
583 {
584 struct ocontext *c, *ctmp;
585 struct genfs *g, *gtmp;
586 int i;
587
588 for (i = 0; i < SYM_NUM; i++) {
589 hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
590 hashtab_destroy(p->symtab[i].table);
591 }
592
593 for (i = 0; i < SYM_NUM; i++) {
594 if (p->sym_val_to_name[i])
595 kfree(p->sym_val_to_name[i]);
596 }
597
598 if (p->class_val_to_struct)
599 kfree(p->class_val_to_struct);
600 if (p->role_val_to_struct)
601 kfree(p->role_val_to_struct);
602 if (p->user_val_to_struct)
603 kfree(p->user_val_to_struct);
604
605 avtab_destroy(&p->te_avtab);
606
607 for (i = 0; i < OCON_NUM; i++) {
608 c = p->ocontexts[i];
609 while (c) {
610 ctmp = c;
611 c = c->next;
612 ocontext_destroy(ctmp,i);
613 }
614 }
615
616 g = p->genfs;
617 while (g) {
618 kfree(g->fstype);
619 c = g->head;
620 while (c) {
621 ctmp = c;
622 c = c->next;
623 ocontext_destroy(ctmp,OCON_FSUSE);
624 }
625 gtmp = g;
626 g = g->next;
627 kfree(gtmp);
628 }
629
630 cond_policydb_destroy(p);
631
632 return;
633 }
634
635 /*
636 * Load the initial SIDs specified in a policy database
637 * structure into a SID table.
638 */
639 int policydb_load_isids(struct policydb *p, struct sidtab *s)
640 {
641 struct ocontext *head, *c;
642 int rc;
643
644 rc = sidtab_init(s);
645 if (rc) {
646 printk(KERN_ERR "security: out of memory on SID table init\n");
647 goto out;
648 }
649
650 head = p->ocontexts[OCON_ISID];
651 for (c = head; c; c = c->next) {
652 if (!c->context[0].user) {
653 printk(KERN_ERR "security: SID %s was never "
654 "defined.\n", c->u.name);
655 rc = -EINVAL;
656 goto out;
657 }
658 if (sidtab_insert(s, c->sid[0], &c->context[0])) {
659 printk(KERN_ERR "security: unable to load initial "
660 "SID %s.\n", c->u.name);
661 rc = -EINVAL;
662 goto out;
663 }
664 }
665 out:
666 return rc;
667 }
668
669 /*
670 * Return 1 if the fields in the security context
671 * structure `c' are valid. Return 0 otherwise.
672 */
673 int policydb_context_isvalid(struct policydb *p, struct context *c)
674 {
675 struct role_datum *role;
676 struct user_datum *usrdatum;
677
678 if (!c->role || c->role > p->p_roles.nprim)
679 return 0;
680
681 if (!c->user || c->user > p->p_users.nprim)
682 return 0;
683
684 if (!c->type || c->type > p->p_types.nprim)
685 return 0;
686
687 if (c->role != OBJECT_R_VAL) {
688 /*
689 * Role must be authorized for the type.
690 */
691 role = p->role_val_to_struct[c->role - 1];
692 if (!ebitmap_get_bit(&role->types,
693 c->type - 1))
694 /* role may not be associated with type */
695 return 0;
696
697 /*
698 * User must be authorized for the role.
699 */
700 usrdatum = p->user_val_to_struct[c->user - 1];
701 if (!usrdatum)
702 return 0;
703
704 if (!ebitmap_get_bit(&usrdatum->roles,
705 c->role - 1))
706 /* user may not be associated with role */
707 return 0;
708 }
709
710 if (!mls_context_isvalid(p, c))
711 return 0;
712
713 return 1;
714 }
715
716 /*
717 * Read a MLS range structure from a policydb binary
718 * representation file.
719 */
720 static int mls_read_range_helper(struct mls_range *r, void *fp)
721 {
722 u32 buf[2], items;
723 int rc;
724
725 rc = next_entry(buf, fp, sizeof(u32));
726 if (rc < 0)
727 goto out;
728
729 items = le32_to_cpu(buf[0]);
730 if (items > ARRAY_SIZE(buf)) {
731 printk(KERN_ERR "security: mls: range overflow\n");
732 rc = -EINVAL;
733 goto out;
734 }
735 rc = next_entry(buf, fp, sizeof(u32) * items);
736 if (rc < 0) {
737 printk(KERN_ERR "security: mls: truncated range\n");
738 goto out;
739 }
740 r->level[0].sens = le32_to_cpu(buf[0]);
741 if (items > 1)
742 r->level[1].sens = le32_to_cpu(buf[1]);
743 else
744 r->level[1].sens = r->level[0].sens;
745
746 rc = ebitmap_read(&r->level[0].cat, fp);
747 if (rc) {
748 printk(KERN_ERR "security: mls: error reading low "
749 "categories\n");
750 goto out;
751 }
752 if (items > 1) {
753 rc = ebitmap_read(&r->level[1].cat, fp);
754 if (rc) {
755 printk(KERN_ERR "security: mls: error reading high "
756 "categories\n");
757 goto bad_high;
758 }
759 } else {
760 rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
761 if (rc) {
762 printk(KERN_ERR "security: mls: out of memory\n");
763 goto bad_high;
764 }
765 }
766
767 rc = 0;
768 out:
769 return rc;
770 bad_high:
771 ebitmap_destroy(&r->level[0].cat);
772 goto out;
773 }
774
775 /*
776 * Read and validate a security context structure
777 * from a policydb binary representation file.
778 */
779 static int context_read_and_validate(struct context *c,
780 struct policydb *p,
781 void *fp)
782 {
783 u32 buf[3];
784 int rc;
785
786 rc = next_entry(buf, fp, sizeof buf);
787 if (rc < 0) {
788 printk(KERN_ERR "security: context truncated\n");
789 goto out;
790 }
791 c->user = le32_to_cpu(buf[0]);
792 c->role = le32_to_cpu(buf[1]);
793 c->type = le32_to_cpu(buf[2]);
794 if (p->policyvers >= POLICYDB_VERSION_MLS) {
795 if (mls_read_range_helper(&c->range, fp)) {
796 printk(KERN_ERR "security: error reading MLS range of "
797 "context\n");
798 rc = -EINVAL;
799 goto out;
800 }
801 }
802
803 if (!policydb_context_isvalid(p, c)) {
804 printk(KERN_ERR "security: invalid security context\n");
805 context_destroy(c);
806 rc = -EINVAL;
807 }
808 out:
809 return rc;
810 }
811
812 /*
813 * The following *_read functions are used to
814 * read the symbol data from a policy database
815 * binary representation file.
816 */
817
818 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
819 {
820 char *key = NULL;
821 struct perm_datum *perdatum;
822 int rc;
823 u32 buf[2], len;
824
825 perdatum = kmalloc(sizeof(*perdatum), GFP_KERNEL);
826 if (!perdatum) {
827 rc = -ENOMEM;
828 goto out;
829 }
830 memset(perdatum, 0, sizeof(*perdatum));
831
832 rc = next_entry(buf, fp, sizeof buf);
833 if (rc < 0)
834 goto bad;
835
836 len = le32_to_cpu(buf[0]);
837 perdatum->value = le32_to_cpu(buf[1]);
838
839 key = kmalloc(len + 1,GFP_KERNEL);
840 if (!key) {
841 rc = -ENOMEM;
842 goto bad;
843 }
844 rc = next_entry(key, fp, len);
845 if (rc < 0)
846 goto bad;
847 key[len] = 0;
848
849 rc = hashtab_insert(h, key, perdatum);
850 if (rc)
851 goto bad;
852 out:
853 return rc;
854 bad:
855 perm_destroy(key, perdatum, NULL);
856 goto out;
857 }
858
859 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
860 {
861 char *key = NULL;
862 struct common_datum *comdatum;
863 u32 buf[4], len, nel;
864 int i, rc;
865
866 comdatum = kmalloc(sizeof(*comdatum), GFP_KERNEL);
867 if (!comdatum) {
868 rc = -ENOMEM;
869 goto out;
870 }
871 memset(comdatum, 0, sizeof(*comdatum));
872
873 rc = next_entry(buf, fp, sizeof buf);
874 if (rc < 0)
875 goto bad;
876
877 len = le32_to_cpu(buf[0]);
878 comdatum->value = le32_to_cpu(buf[1]);
879
880 rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
881 if (rc)
882 goto bad;
883 comdatum->permissions.nprim = le32_to_cpu(buf[2]);
884 nel = le32_to_cpu(buf[3]);
885
886 key = kmalloc(len + 1,GFP_KERNEL);
887 if (!key) {
888 rc = -ENOMEM;
889 goto bad;
890 }
891 rc = next_entry(key, fp, len);
892 if (rc < 0)
893 goto bad;
894 key[len] = 0;
895
896 for (i = 0; i < nel; i++) {
897 rc = perm_read(p, comdatum->permissions.table, fp);
898 if (rc)
899 goto bad;
900 }
901
902 rc = hashtab_insert(h, key, comdatum);
903 if (rc)
904 goto bad;
905 out:
906 return rc;
907 bad:
908 common_destroy(key, comdatum, NULL);
909 goto out;
910 }
911
912 static int read_cons_helper(struct constraint_node **nodep, int ncons,
913 int allowxtarget, void *fp)
914 {
915 struct constraint_node *c, *lc;
916 struct constraint_expr *e, *le;
917 u32 buf[3], nexpr;
918 int rc, i, j, depth;
919
920 lc = NULL;
921 for (i = 0; i < ncons; i++) {
922 c = kmalloc(sizeof(*c), GFP_KERNEL);
923 if (!c)
924 return -ENOMEM;
925 memset(c, 0, sizeof(*c));
926
927 if (lc) {
928 lc->next = c;
929 } else {
930 *nodep = c;
931 }
932
933 rc = next_entry(buf, fp, (sizeof(u32) * 2));
934 if (rc < 0)
935 return rc;
936 c->permissions = le32_to_cpu(buf[0]);
937 nexpr = le32_to_cpu(buf[1]);
938 le = NULL;
939 depth = -1;
940 for (j = 0; j < nexpr; j++) {
941 e = kmalloc(sizeof(*e), GFP_KERNEL);
942 if (!e)
943 return -ENOMEM;
944 memset(e, 0, sizeof(*e));
945
946 if (le) {
947 le->next = e;
948 } else {
949 c->expr = e;
950 }
951
952 rc = next_entry(buf, fp, (sizeof(u32) * 3));
953 if (rc < 0)
954 return rc;
955 e->expr_type = le32_to_cpu(buf[0]);
956 e->attr = le32_to_cpu(buf[1]);
957 e->op = le32_to_cpu(buf[2]);
958
959 switch (e->expr_type) {
960 case CEXPR_NOT:
961 if (depth < 0)
962 return -EINVAL;
963 break;
964 case CEXPR_AND:
965 case CEXPR_OR:
966 if (depth < 1)
967 return -EINVAL;
968 depth--;
969 break;
970 case CEXPR_ATTR:
971 if (depth == (CEXPR_MAXDEPTH - 1))
972 return -EINVAL;
973 depth++;
974 break;
975 case CEXPR_NAMES:
976 if (!allowxtarget && (e->attr & CEXPR_XTARGET))
977 return -EINVAL;
978 if (depth == (CEXPR_MAXDEPTH - 1))
979 return -EINVAL;
980 depth++;
981 if (ebitmap_read(&e->names, fp))
982 return -EINVAL;
983 break;
984 default:
985 return -EINVAL;
986 }
987 le = e;
988 }
989 if (depth != 0)
990 return -EINVAL;
991 lc = c;
992 }
993
994 return 0;
995 }
996
997 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
998 {
999 char *key = NULL;
1000 struct class_datum *cladatum;
1001 u32 buf[6], len, len2, ncons, nel;
1002 int i, rc;
1003
1004 cladatum = kmalloc(sizeof(*cladatum), GFP_KERNEL);
1005 if (!cladatum) {
1006 rc = -ENOMEM;
1007 goto out;
1008 }
1009 memset(cladatum, 0, sizeof(*cladatum));
1010
1011 rc = next_entry(buf, fp, sizeof(u32)*6);
1012 if (rc < 0)
1013 goto bad;
1014
1015 len = le32_to_cpu(buf[0]);
1016 len2 = le32_to_cpu(buf[1]);
1017 cladatum->value = le32_to_cpu(buf[2]);
1018
1019 rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1020 if (rc)
1021 goto bad;
1022 cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1023 nel = le32_to_cpu(buf[4]);
1024
1025 ncons = le32_to_cpu(buf[5]);
1026
1027 key = kmalloc(len + 1,GFP_KERNEL);
1028 if (!key) {
1029 rc = -ENOMEM;
1030 goto bad;
1031 }
1032 rc = next_entry(key, fp, len);
1033 if (rc < 0)
1034 goto bad;
1035 key[len] = 0;
1036
1037 if (len2) {
1038 cladatum->comkey = kmalloc(len2 + 1,GFP_KERNEL);
1039 if (!cladatum->comkey) {
1040 rc = -ENOMEM;
1041 goto bad;
1042 }
1043 rc = next_entry(cladatum->comkey, fp, len2);
1044 if (rc < 0)
1045 goto bad;
1046 cladatum->comkey[len2] = 0;
1047
1048 cladatum->comdatum = hashtab_search(p->p_commons.table,
1049 cladatum->comkey);
1050 if (!cladatum->comdatum) {
1051 printk(KERN_ERR "security: unknown common %s\n",
1052 cladatum->comkey);
1053 rc = -EINVAL;
1054 goto bad;
1055 }
1056 }
1057 for (i = 0; i < nel; i++) {
1058 rc = perm_read(p, cladatum->permissions.table, fp);
1059 if (rc)
1060 goto bad;
1061 }
1062
1063 rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1064 if (rc)
1065 goto bad;
1066
1067 if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1068 /* grab the validatetrans rules */
1069 rc = next_entry(buf, fp, sizeof(u32));
1070 if (rc < 0)
1071 goto bad;
1072 ncons = le32_to_cpu(buf[0]);
1073 rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1074 if (rc)
1075 goto bad;
1076 }
1077
1078 rc = hashtab_insert(h, key, cladatum);
1079 if (rc)
1080 goto bad;
1081
1082 rc = 0;
1083 out:
1084 return rc;
1085 bad:
1086 class_destroy(key, cladatum, NULL);
1087 goto out;
1088 }
1089
1090 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1091 {
1092 char *key = NULL;
1093 struct role_datum *role;
1094 int rc;
1095 u32 buf[2], len;
1096
1097 role = kmalloc(sizeof(*role), GFP_KERNEL);
1098 if (!role) {
1099 rc = -ENOMEM;
1100 goto out;
1101 }
1102 memset(role, 0, sizeof(*role));
1103
1104 rc = next_entry(buf, fp, sizeof buf);
1105 if (rc < 0)
1106 goto bad;
1107
1108 len = le32_to_cpu(buf[0]);
1109 role->value = le32_to_cpu(buf[1]);
1110
1111 key = kmalloc(len + 1,GFP_KERNEL);
1112 if (!key) {
1113 rc = -ENOMEM;
1114 goto bad;
1115 }
1116 rc = next_entry(key, fp, len);
1117 if (rc < 0)
1118 goto bad;
1119 key[len] = 0;
1120
1121 rc = ebitmap_read(&role->dominates, fp);
1122 if (rc)
1123 goto bad;
1124
1125 rc = ebitmap_read(&role->types, fp);
1126 if (rc)
1127 goto bad;
1128
1129 if (strcmp(key, OBJECT_R) == 0) {
1130 if (role->value != OBJECT_R_VAL) {
1131 printk(KERN_ERR "Role %s has wrong value %d\n",
1132 OBJECT_R, role->value);
1133 rc = -EINVAL;
1134 goto bad;
1135 }
1136 rc = 0;
1137 goto bad;
1138 }
1139
1140 rc = hashtab_insert(h, key, role);
1141 if (rc)
1142 goto bad;
1143 out:
1144 return rc;
1145 bad:
1146 role_destroy(key, role, NULL);
1147 goto out;
1148 }
1149
1150 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1151 {
1152 char *key = NULL;
1153 struct type_datum *typdatum;
1154 int rc;
1155 u32 buf[3], len;
1156
1157 typdatum = kmalloc(sizeof(*typdatum),GFP_KERNEL);
1158 if (!typdatum) {
1159 rc = -ENOMEM;
1160 return rc;
1161 }
1162 memset(typdatum, 0, sizeof(*typdatum));
1163
1164 rc = next_entry(buf, fp, sizeof buf);
1165 if (rc < 0)
1166 goto bad;
1167
1168 len = le32_to_cpu(buf[0]);
1169 typdatum->value = le32_to_cpu(buf[1]);
1170 typdatum->primary = le32_to_cpu(buf[2]);
1171
1172 key = kmalloc(len + 1,GFP_KERNEL);
1173 if (!key) {
1174 rc = -ENOMEM;
1175 goto bad;
1176 }
1177 rc = next_entry(key, fp, len);
1178 if (rc < 0)
1179 goto bad;
1180 key[len] = 0;
1181
1182 rc = hashtab_insert(h, key, typdatum);
1183 if (rc)
1184 goto bad;
1185 out:
1186 return rc;
1187 bad:
1188 type_destroy(key, typdatum, NULL);
1189 goto out;
1190 }
1191
1192
1193 /*
1194 * Read a MLS level structure from a policydb binary
1195 * representation file.
1196 */
1197 static int mls_read_level(struct mls_level *lp, void *fp)
1198 {
1199 u32 buf[1];
1200 int rc;
1201
1202 memset(lp, 0, sizeof(*lp));
1203
1204 rc = next_entry(buf, fp, sizeof buf);
1205 if (rc < 0) {
1206 printk(KERN_ERR "security: mls: truncated level\n");
1207 goto bad;
1208 }
1209 lp->sens = le32_to_cpu(buf[0]);
1210
1211 if (ebitmap_read(&lp->cat, fp)) {
1212 printk(KERN_ERR "security: mls: error reading level "
1213 "categories\n");
1214 goto bad;
1215 }
1216 return 0;
1217
1218 bad:
1219 return -EINVAL;
1220 }
1221
1222 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1223 {
1224 char *key = NULL;
1225 struct user_datum *usrdatum;
1226 int rc;
1227 u32 buf[2], len;
1228
1229 usrdatum = kmalloc(sizeof(*usrdatum), GFP_KERNEL);
1230 if (!usrdatum) {
1231 rc = -ENOMEM;
1232 goto out;
1233 }
1234 memset(usrdatum, 0, sizeof(*usrdatum));
1235
1236 rc = next_entry(buf, fp, sizeof buf);
1237 if (rc < 0)
1238 goto bad;
1239
1240 len = le32_to_cpu(buf[0]);
1241 usrdatum->value = le32_to_cpu(buf[1]);
1242
1243 key = kmalloc(len + 1,GFP_KERNEL);
1244 if (!key) {
1245 rc = -ENOMEM;
1246 goto bad;
1247 }
1248 rc = next_entry(key, fp, len);
1249 if (rc < 0)
1250 goto bad;
1251 key[len] = 0;
1252
1253 rc = ebitmap_read(&usrdatum->roles, fp);
1254 if (rc)
1255 goto bad;
1256
1257 if (p->policyvers >= POLICYDB_VERSION_MLS) {
1258 rc = mls_read_range_helper(&usrdatum->range, fp);
1259 if (rc)
1260 goto bad;
1261 rc = mls_read_level(&usrdatum->dfltlevel, fp);
1262 if (rc)
1263 goto bad;
1264 }
1265
1266 rc = hashtab_insert(h, key, usrdatum);
1267 if (rc)
1268 goto bad;
1269 out:
1270 return rc;
1271 bad:
1272 user_destroy(key, usrdatum, NULL);
1273 goto out;
1274 }
1275
1276 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1277 {
1278 char *key = NULL;
1279 struct level_datum *levdatum;
1280 int rc;
1281 u32 buf[2], len;
1282
1283 levdatum = kmalloc(sizeof(*levdatum), GFP_ATOMIC);
1284 if (!levdatum) {
1285 rc = -ENOMEM;
1286 goto out;
1287 }
1288 memset(levdatum, 0, sizeof(*levdatum));
1289
1290 rc = next_entry(buf, fp, sizeof buf);
1291 if (rc < 0)
1292 goto bad;
1293
1294 len = le32_to_cpu(buf[0]);
1295 levdatum->isalias = le32_to_cpu(buf[1]);
1296
1297 key = kmalloc(len + 1,GFP_ATOMIC);
1298 if (!key) {
1299 rc = -ENOMEM;
1300 goto bad;
1301 }
1302 rc = next_entry(key, fp, len);
1303 if (rc < 0)
1304 goto bad;
1305 key[len] = 0;
1306
1307 levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1308 if (!levdatum->level) {
1309 rc = -ENOMEM;
1310 goto bad;
1311 }
1312 if (mls_read_level(levdatum->level, fp)) {
1313 rc = -EINVAL;
1314 goto bad;
1315 }
1316
1317 rc = hashtab_insert(h, key, levdatum);
1318 if (rc)
1319 goto bad;
1320 out:
1321 return rc;
1322 bad:
1323 sens_destroy(key, levdatum, NULL);
1324 goto out;
1325 }
1326
1327 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1328 {
1329 char *key = NULL;
1330 struct cat_datum *catdatum;
1331 int rc;
1332 u32 buf[3], len;
1333
1334 catdatum = kmalloc(sizeof(*catdatum), GFP_ATOMIC);
1335 if (!catdatum) {
1336 rc = -ENOMEM;
1337 goto out;
1338 }
1339 memset(catdatum, 0, sizeof(*catdatum));
1340
1341 rc = next_entry(buf, fp, sizeof buf);
1342 if (rc < 0)
1343 goto bad;
1344
1345 len = le32_to_cpu(buf[0]);
1346 catdatum->value = le32_to_cpu(buf[1]);
1347 catdatum->isalias = le32_to_cpu(buf[2]);
1348
1349 key = kmalloc(len + 1,GFP_ATOMIC);
1350 if (!key) {
1351 rc = -ENOMEM;
1352 goto bad;
1353 }
1354 rc = next_entry(key, fp, len);
1355 if (rc < 0)
1356 goto bad;
1357 key[len] = 0;
1358
1359 rc = hashtab_insert(h, key, catdatum);
1360 if (rc)
1361 goto bad;
1362 out:
1363 return rc;
1364
1365 bad:
1366 cat_destroy(key, catdatum, NULL);
1367 goto out;
1368 }
1369
1370 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1371 {
1372 common_read,
1373 class_read,
1374 role_read,
1375 type_read,
1376 user_read,
1377 cond_read_bool,
1378 sens_read,
1379 cat_read,
1380 };
1381
1382 extern int ss_initialized;
1383
1384 /*
1385 * Read the configuration data from a policy database binary
1386 * representation file into a policy database structure.
1387 */
1388 int policydb_read(struct policydb *p, void *fp)
1389 {
1390 struct role_allow *ra, *lra;
1391 struct role_trans *tr, *ltr;
1392 struct ocontext *l, *c, *newc;
1393 struct genfs *genfs_p, *genfs, *newgenfs;
1394 int i, j, rc;
1395 u32 buf[8], len, len2, config, nprim, nel, nel2;
1396 char *policydb_str;
1397 struct policydb_compat_info *info;
1398 struct range_trans *rt, *lrt;
1399
1400 config = 0;
1401
1402 rc = policydb_init(p);
1403 if (rc)
1404 goto out;
1405
1406 /* Read the magic number and string length. */
1407 rc = next_entry(buf, fp, sizeof(u32)* 2);
1408 if (rc < 0)
1409 goto bad;
1410
1411 for (i = 0; i < 2; i++)
1412 buf[i] = le32_to_cpu(buf[i]);
1413
1414 if (buf[0] != POLICYDB_MAGIC) {
1415 printk(KERN_ERR "security: policydb magic number 0x%x does "
1416 "not match expected magic number 0x%x\n",
1417 buf[0], POLICYDB_MAGIC);
1418 goto bad;
1419 }
1420
1421 len = buf[1];
1422 if (len != strlen(POLICYDB_STRING)) {
1423 printk(KERN_ERR "security: policydb string length %d does not "
1424 "match expected length %Zu\n",
1425 len, strlen(POLICYDB_STRING));
1426 goto bad;
1427 }
1428 policydb_str = kmalloc(len + 1,GFP_KERNEL);
1429 if (!policydb_str) {
1430 printk(KERN_ERR "security: unable to allocate memory for policydb "
1431 "string of length %d\n", len);
1432 rc = -ENOMEM;
1433 goto bad;
1434 }
1435 rc = next_entry(policydb_str, fp, len);
1436 if (rc < 0) {
1437 printk(KERN_ERR "security: truncated policydb string identifier\n");
1438 kfree(policydb_str);
1439 goto bad;
1440 }
1441 policydb_str[len] = 0;
1442 if (strcmp(policydb_str, POLICYDB_STRING)) {
1443 printk(KERN_ERR "security: policydb string %s does not match "
1444 "my string %s\n", policydb_str, POLICYDB_STRING);
1445 kfree(policydb_str);
1446 goto bad;
1447 }
1448 /* Done with policydb_str. */
1449 kfree(policydb_str);
1450 policydb_str = NULL;
1451
1452 /* Read the version, config, and table sizes. */
1453 rc = next_entry(buf, fp, sizeof(u32)*4);
1454 if (rc < 0)
1455 goto bad;
1456 for (i = 0; i < 4; i++)
1457 buf[i] = le32_to_cpu(buf[i]);
1458
1459 p->policyvers = buf[0];
1460 if (p->policyvers < POLICYDB_VERSION_MIN ||
1461 p->policyvers > POLICYDB_VERSION_MAX) {
1462 printk(KERN_ERR "security: policydb version %d does not match "
1463 "my version range %d-%d\n",
1464 buf[0], POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
1465 goto bad;
1466 }
1467
1468 if ((buf[1] & POLICYDB_CONFIG_MLS)) {
1469 if (ss_initialized && !selinux_mls_enabled) {
1470 printk(KERN_ERR "Cannot switch between non-MLS and MLS "
1471 "policies\n");
1472 goto bad;
1473 }
1474 selinux_mls_enabled = 1;
1475 config |= POLICYDB_CONFIG_MLS;
1476
1477 if (p->policyvers < POLICYDB_VERSION_MLS) {
1478 printk(KERN_ERR "security policydb version %d (MLS) "
1479 "not backwards compatible\n", p->policyvers);
1480 goto bad;
1481 }
1482 } else {
1483 if (ss_initialized && selinux_mls_enabled) {
1484 printk(KERN_ERR "Cannot switch between MLS and non-MLS "
1485 "policies\n");
1486 goto bad;
1487 }
1488 }
1489
1490 info = policydb_lookup_compat(p->policyvers);
1491 if (!info) {
1492 printk(KERN_ERR "security: unable to find policy compat info "
1493 "for version %d\n", p->policyvers);
1494 goto bad;
1495 }
1496
1497 if (buf[2] != info->sym_num || buf[3] != info->ocon_num) {
1498 printk(KERN_ERR "security: policydb table sizes (%d,%d) do "
1499 "not match mine (%d,%d)\n", buf[2], buf[3],
1500 info->sym_num, info->ocon_num);
1501 goto bad;
1502 }
1503
1504 for (i = 0; i < info->sym_num; i++) {
1505 rc = next_entry(buf, fp, sizeof(u32)*2);
1506 if (rc < 0)
1507 goto bad;
1508 nprim = le32_to_cpu(buf[0]);
1509 nel = le32_to_cpu(buf[1]);
1510 for (j = 0; j < nel; j++) {
1511 rc = read_f[i](p, p->symtab[i].table, fp);
1512 if (rc)
1513 goto bad;
1514 }
1515
1516 p->symtab[i].nprim = nprim;
1517 }
1518
1519 rc = avtab_read(&p->te_avtab, fp, config);
1520 if (rc)
1521 goto bad;
1522
1523 if (p->policyvers >= POLICYDB_VERSION_BOOL) {
1524 rc = cond_read_list(p, fp);
1525 if (rc)
1526 goto bad;
1527 }
1528
1529 rc = next_entry(buf, fp, sizeof(u32));
1530 if (rc < 0)
1531 goto bad;
1532 nel = le32_to_cpu(buf[0]);
1533 ltr = NULL;
1534 for (i = 0; i < nel; i++) {
1535 tr = kmalloc(sizeof(*tr), GFP_KERNEL);
1536 if (!tr) {
1537 rc = -ENOMEM;
1538 goto bad;
1539 }
1540 memset(tr, 0, sizeof(*tr));
1541 if (ltr) {
1542 ltr->next = tr;
1543 } else {
1544 p->role_tr = tr;
1545 }
1546 rc = next_entry(buf, fp, sizeof(u32)*3);
1547 if (rc < 0)
1548 goto bad;
1549 tr->role = le32_to_cpu(buf[0]);
1550 tr->type = le32_to_cpu(buf[1]);
1551 tr->new_role = le32_to_cpu(buf[2]);
1552 ltr = tr;
1553 }
1554
1555 rc = next_entry(buf, fp, sizeof(u32));
1556 if (rc < 0)
1557 goto bad;
1558 nel = le32_to_cpu(buf[0]);
1559 lra = NULL;
1560 for (i = 0; i < nel; i++) {
1561 ra = kmalloc(sizeof(*ra), GFP_KERNEL);
1562 if (!ra) {
1563 rc = -ENOMEM;
1564 goto bad;
1565 }
1566 memset(ra, 0, sizeof(*ra));
1567 if (lra) {
1568 lra->next = ra;
1569 } else {
1570 p->role_allow = ra;
1571 }
1572 rc = next_entry(buf, fp, sizeof(u32)*2);
1573 if (rc < 0)
1574 goto bad;
1575 ra->role = le32_to_cpu(buf[0]);
1576 ra->new_role = le32_to_cpu(buf[1]);
1577 lra = ra;
1578 }
1579
1580 rc = policydb_index_classes(p);
1581 if (rc)
1582 goto bad;
1583
1584 rc = policydb_index_others(p);
1585 if (rc)
1586 goto bad;
1587
1588 for (i = 0; i < info->ocon_num; i++) {
1589 rc = next_entry(buf, fp, sizeof(u32));
1590 if (rc < 0)
1591 goto bad;
1592 nel = le32_to_cpu(buf[0]);
1593 l = NULL;
1594 for (j = 0; j < nel; j++) {
1595 c = kmalloc(sizeof(*c), GFP_KERNEL);
1596 if (!c) {
1597 rc = -ENOMEM;
1598 goto bad;
1599 }
1600 memset(c, 0, sizeof(*c));
1601 if (l) {
1602 l->next = c;
1603 } else {
1604 p->ocontexts[i] = c;
1605 }
1606 l = c;
1607 rc = -EINVAL;
1608 switch (i) {
1609 case OCON_ISID:
1610 rc = next_entry(buf, fp, sizeof(u32));
1611 if (rc < 0)
1612 goto bad;
1613 c->sid[0] = le32_to_cpu(buf[0]);
1614 rc = context_read_and_validate(&c->context[0], p, fp);
1615 if (rc)
1616 goto bad;
1617 break;
1618 case OCON_FS:
1619 case OCON_NETIF:
1620 rc = next_entry(buf, fp, sizeof(u32));
1621 if (rc < 0)
1622 goto bad;
1623 len = le32_to_cpu(buf[0]);
1624 c->u.name = kmalloc(len + 1,GFP_KERNEL);
1625 if (!c->u.name) {
1626 rc = -ENOMEM;
1627 goto bad;
1628 }
1629 rc = next_entry(c->u.name, fp, len);
1630 if (rc < 0)
1631 goto bad;
1632 c->u.name[len] = 0;
1633 rc = context_read_and_validate(&c->context[0], p, fp);
1634 if (rc)
1635 goto bad;
1636 rc = context_read_and_validate(&c->context[1], p, fp);
1637 if (rc)
1638 goto bad;
1639 break;
1640 case OCON_PORT:
1641 rc = next_entry(buf, fp, sizeof(u32)*3);
1642 if (rc < 0)
1643 goto bad;
1644 c->u.port.protocol = le32_to_cpu(buf[0]);
1645 c->u.port.low_port = le32_to_cpu(buf[1]);
1646 c->u.port.high_port = le32_to_cpu(buf[2]);
1647 rc = context_read_and_validate(&c->context[0], p, fp);
1648 if (rc)
1649 goto bad;
1650 break;
1651 case OCON_NODE:
1652 rc = next_entry(buf, fp, sizeof(u32)* 2);
1653 if (rc < 0)
1654 goto bad;
1655 c->u.node.addr = le32_to_cpu(buf[0]);
1656 c->u.node.mask = le32_to_cpu(buf[1]);
1657 rc = context_read_and_validate(&c->context[0], p, fp);
1658 if (rc)
1659 goto bad;
1660 break;
1661 case OCON_FSUSE:
1662 rc = next_entry(buf, fp, sizeof(u32)*2);
1663 if (rc < 0)
1664 goto bad;
1665 c->v.behavior = le32_to_cpu(buf[0]);
1666 if (c->v.behavior > SECURITY_FS_USE_NONE)
1667 goto bad;
1668 len = le32_to_cpu(buf[1]);
1669 c->u.name = kmalloc(len + 1,GFP_KERNEL);
1670 if (!c->u.name) {
1671 rc = -ENOMEM;
1672 goto bad;
1673 }
1674 rc = next_entry(c->u.name, fp, len);
1675 if (rc < 0)
1676 goto bad;
1677 c->u.name[len] = 0;
1678 rc = context_read_and_validate(&c->context[0], p, fp);
1679 if (rc)
1680 goto bad;
1681 break;
1682 case OCON_NODE6: {
1683 int k;
1684
1685 rc = next_entry(buf, fp, sizeof(u32) * 8);
1686 if (rc < 0)
1687 goto bad;
1688 for (k = 0; k < 4; k++)
1689 c->u.node6.addr[k] = le32_to_cpu(buf[k]);
1690 for (k = 0; k < 4; k++)
1691 c->u.node6.mask[k] = le32_to_cpu(buf[k+4]);
1692 if (context_read_and_validate(&c->context[0], p, fp))
1693 goto bad;
1694 break;
1695 }
1696 }
1697 }
1698 }
1699
1700 rc = next_entry(buf, fp, sizeof(u32));
1701 if (rc < 0)
1702 goto bad;
1703 nel = le32_to_cpu(buf[0]);
1704 genfs_p = NULL;
1705 rc = -EINVAL;
1706 for (i = 0; i < nel; i++) {
1707 rc = next_entry(buf, fp, sizeof(u32));
1708 if (rc < 0)
1709 goto bad;
1710 len = le32_to_cpu(buf[0]);
1711 newgenfs = kmalloc(sizeof(*newgenfs), GFP_KERNEL);
1712 if (!newgenfs) {
1713 rc = -ENOMEM;
1714 goto bad;
1715 }
1716 memset(newgenfs, 0, sizeof(*newgenfs));
1717
1718 newgenfs->fstype = kmalloc(len + 1,GFP_KERNEL);
1719 if (!newgenfs->fstype) {
1720 rc = -ENOMEM;
1721 kfree(newgenfs);
1722 goto bad;
1723 }
1724 rc = next_entry(newgenfs->fstype, fp, len);
1725 if (rc < 0) {
1726 kfree(newgenfs->fstype);
1727 kfree(newgenfs);
1728 goto bad;
1729 }
1730 newgenfs->fstype[len] = 0;
1731 for (genfs_p = NULL, genfs = p->genfs; genfs;
1732 genfs_p = genfs, genfs = genfs->next) {
1733 if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1734 printk(KERN_ERR "security: dup genfs "
1735 "fstype %s\n", newgenfs->fstype);
1736 kfree(newgenfs->fstype);
1737 kfree(newgenfs);
1738 goto bad;
1739 }
1740 if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1741 break;
1742 }
1743 newgenfs->next = genfs;
1744 if (genfs_p)
1745 genfs_p->next = newgenfs;
1746 else
1747 p->genfs = newgenfs;
1748 rc = next_entry(buf, fp, sizeof(u32));
1749 if (rc < 0)
1750 goto bad;
1751 nel2 = le32_to_cpu(buf[0]);
1752 for (j = 0; j < nel2; j++) {
1753 rc = next_entry(buf, fp, sizeof(u32));
1754 if (rc < 0)
1755 goto bad;
1756 len = le32_to_cpu(buf[0]);
1757
1758 newc = kmalloc(sizeof(*newc), GFP_KERNEL);
1759 if (!newc) {
1760 rc = -ENOMEM;
1761 goto bad;
1762 }
1763 memset(newc, 0, sizeof(*newc));
1764
1765 newc->u.name = kmalloc(len + 1,GFP_KERNEL);
1766 if (!newc->u.name) {
1767 rc = -ENOMEM;
1768 goto bad_newc;
1769 }
1770 rc = next_entry(newc->u.name, fp, len);
1771 if (rc < 0)
1772 goto bad_newc;
1773 newc->u.name[len] = 0;
1774 rc = next_entry(buf, fp, sizeof(u32));
1775 if (rc < 0)
1776 goto bad_newc;
1777 newc->v.sclass = le32_to_cpu(buf[0]);
1778 if (context_read_and_validate(&newc->context[0], p, fp))
1779 goto bad_newc;
1780 for (l = NULL, c = newgenfs->head; c;
1781 l = c, c = c->next) {
1782 if (!strcmp(newc->u.name, c->u.name) &&
1783 (!c->v.sclass || !newc->v.sclass ||
1784 newc->v.sclass == c->v.sclass)) {
1785 printk(KERN_ERR "security: dup genfs "
1786 "entry (%s,%s)\n",
1787 newgenfs->fstype, c->u.name);
1788 goto bad_newc;
1789 }
1790 len = strlen(newc->u.name);
1791 len2 = strlen(c->u.name);
1792 if (len > len2)
1793 break;
1794 }
1795
1796 newc->next = c;
1797 if (l)
1798 l->next = newc;
1799 else
1800 newgenfs->head = newc;
1801 }
1802 }
1803
1804 if (p->policyvers >= POLICYDB_VERSION_MLS) {
1805 rc = next_entry(buf, fp, sizeof(u32));
1806 if (rc < 0)
1807 goto bad;
1808 nel = le32_to_cpu(buf[0]);
1809 lrt = NULL;
1810 for (i = 0; i < nel; i++) {
1811 rt = kmalloc(sizeof(*rt), GFP_KERNEL);
1812 if (!rt) {
1813 rc = -ENOMEM;
1814 goto bad;
1815 }
1816 memset(rt, 0, sizeof(*rt));
1817 if (lrt)
1818 lrt->next = rt;
1819 else
1820 p->range_tr = rt;
1821 rc = next_entry(buf, fp, (sizeof(u32) * 2));
1822 if (rc < 0)
1823 goto bad;
1824 rt->dom = le32_to_cpu(buf[0]);
1825 rt->type = le32_to_cpu(buf[1]);
1826 rc = mls_read_range_helper(&rt->range, fp);
1827 if (rc)
1828 goto bad;
1829 lrt = rt;
1830 }
1831 }
1832
1833 rc = 0;
1834 out:
1835 return rc;
1836 bad_newc:
1837 ocontext_destroy(newc,OCON_FSUSE);
1838 bad:
1839 if (!rc)
1840 rc = -EINVAL;
1841 policydb_destroy(p);
1842 goto out;
1843 }
This page took 0.108666 seconds and 5 git commands to generate.