import gdb-1999-10-25 snapshot
[deliverable/binutils-gdb.git] / sim / common / cgen-par.c
1 /* Simulator parallel routines for CGEN simulators (and maybe others).
2 Copyright (C) 1999 Free Software Foundation, Inc.
3 Contributed by Cygnus Solutions.
4
5 This file is part of the GNU instruction set simulator.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License along
18 with this program; if not, write to the Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "sim-main.h"
22 #include "cgen-mem.h"
23 #include "cgen-par.h"
24
25 /* Functions required by the cgen interface. These functions add various
26 kinds of writes to the write queue. */
27 void sim_queue_bi_write (SIM_CPU *cpu, BI *target, BI value)
28 {
29 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
30 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
31 element->kind = CGEN_BI_WRITE;
32 element->insn_address = CPU_PC_GET (cpu);
33 element->kinds.bi_write.target = target;
34 element->kinds.bi_write.value = value;
35 }
36
37 void sim_queue_qi_write (SIM_CPU *cpu, UQI *target, UQI value)
38 {
39 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
40 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
41 element->kind = CGEN_QI_WRITE;
42 element->insn_address = CPU_PC_GET (cpu);
43 element->kinds.qi_write.target = target;
44 element->kinds.qi_write.value = value;
45 }
46
47 void sim_queue_si_write (SIM_CPU *cpu, SI *target, SI value)
48 {
49 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
50 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
51 element->kind = CGEN_SI_WRITE;
52 element->insn_address = CPU_PC_GET (cpu);
53 element->kinds.si_write.target = target;
54 element->kinds.si_write.value = value;
55 }
56
57 void sim_queue_sf_write (SIM_CPU *cpu, SI *target, SF value)
58 {
59 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
60 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
61 element->kind = CGEN_SF_WRITE;
62 element->insn_address = CPU_PC_GET (cpu);
63 element->kinds.sf_write.target = target;
64 element->kinds.sf_write.value = value;
65 }
66
67 void sim_queue_pc_write (SIM_CPU *cpu, USI value)
68 {
69 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
70 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
71 element->kind = CGEN_PC_WRITE;
72 element->insn_address = CPU_PC_GET (cpu);
73 element->kinds.pc_write.value = value;
74 }
75
76 void sim_queue_fn_hi_write (
77 SIM_CPU *cpu,
78 void (*write_function)(SIM_CPU *cpu, UINT, UHI),
79 UINT regno,
80 UHI value
81 )
82 {
83 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
84 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
85 element->kind = CGEN_FN_HI_WRITE;
86 element->insn_address = CPU_PC_GET (cpu);
87 element->kinds.fn_hi_write.function = write_function;
88 element->kinds.fn_hi_write.regno = regno;
89 element->kinds.fn_hi_write.value = value;
90 }
91
92 void sim_queue_fn_si_write (
93 SIM_CPU *cpu,
94 void (*write_function)(SIM_CPU *cpu, UINT, USI),
95 UINT regno,
96 SI value
97 )
98 {
99 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
100 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
101 element->kind = CGEN_FN_SI_WRITE;
102 element->insn_address = CPU_PC_GET (cpu);
103 element->kinds.fn_si_write.function = write_function;
104 element->kinds.fn_si_write.regno = regno;
105 element->kinds.fn_si_write.value = value;
106 }
107
108 void sim_queue_fn_di_write (
109 SIM_CPU *cpu,
110 void (*write_function)(SIM_CPU *cpu, UINT, DI),
111 UINT regno,
112 DI value
113 )
114 {
115 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
116 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
117 element->kind = CGEN_FN_DI_WRITE;
118 element->insn_address = CPU_PC_GET (cpu);
119 element->kinds.fn_di_write.function = write_function;
120 element->kinds.fn_di_write.regno = regno;
121 element->kinds.fn_di_write.value = value;
122 }
123
124 void sim_queue_fn_df_write (
125 SIM_CPU *cpu,
126 void (*write_function)(SIM_CPU *cpu, UINT, DI),
127 UINT regno,
128 DF value
129 )
130 {
131 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
132 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
133 element->kind = CGEN_FN_DF_WRITE;
134 element->insn_address = CPU_PC_GET (cpu);
135 element->kinds.fn_df_write.function = write_function;
136 element->kinds.fn_df_write.regno = regno;
137 element->kinds.fn_df_write.value = value;
138 }
139
140 void sim_queue_fn_pc_write (
141 SIM_CPU *cpu,
142 void (*write_function)(SIM_CPU *cpu, USI),
143 USI value
144 )
145 {
146 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
147 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
148 element->kind = CGEN_FN_PC_WRITE;
149 element->insn_address = CPU_PC_GET (cpu);
150 element->kinds.fn_pc_write.function = write_function;
151 element->kinds.fn_pc_write.value = value;
152 }
153
154 void sim_queue_mem_qi_write (SIM_CPU *cpu, SI address, QI value)
155 {
156 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
157 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
158 element->kind = CGEN_MEM_QI_WRITE;
159 element->insn_address = CPU_PC_GET (cpu);
160 element->kinds.mem_qi_write.address = address;
161 element->kinds.mem_qi_write.value = value;
162 }
163
164 void sim_queue_mem_hi_write (SIM_CPU *cpu, SI address, HI value)
165 {
166 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
167 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
168 element->kind = CGEN_MEM_HI_WRITE;
169 element->insn_address = CPU_PC_GET (cpu);
170 element->kinds.mem_hi_write.address = address;
171 element->kinds.mem_hi_write.value = value;
172 }
173
174 void sim_queue_mem_si_write (SIM_CPU *cpu, SI address, SI value)
175 {
176 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
177 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
178 element->kind = CGEN_MEM_SI_WRITE;
179 element->insn_address = CPU_PC_GET (cpu);
180 element->kinds.mem_si_write.address = address;
181 element->kinds.mem_si_write.value = value;
182 }
183
184 void sim_queue_mem_di_write (SIM_CPU *cpu, SI address, DI value)
185 {
186 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
187 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
188 element->kind = CGEN_MEM_DI_WRITE;
189 element->insn_address = CPU_PC_GET (cpu);
190 element->kinds.mem_di_write.address = address;
191 element->kinds.mem_di_write.value = value;
192 }
193
194 void sim_queue_mem_df_write (SIM_CPU *cpu, SI address, DF value)
195 {
196 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (cpu);
197 CGEN_WRITE_QUEUE_ELEMENT *element = CGEN_WRITE_QUEUE_NEXT (q);
198 element->kind = CGEN_MEM_DF_WRITE;
199 element->insn_address = CPU_PC_GET (cpu);
200 element->kinds.mem_df_write.address = address;
201 element->kinds.mem_df_write.value = value;
202 }
203
204 /* Execute a write stored on the write queue. */
205 void
206 cgen_write_queue_element_execute (SIM_CPU *cpu, CGEN_WRITE_QUEUE_ELEMENT *item)
207 {
208 IADDR pc;
209 switch (CGEN_WRITE_QUEUE_ELEMENT_KIND (item))
210 {
211 case CGEN_BI_WRITE:
212 *item->kinds.bi_write.target = item->kinds.bi_write.value;
213 break;
214 case CGEN_QI_WRITE:
215 *item->kinds.qi_write.target = item->kinds.qi_write.value;
216 break;
217 case CGEN_SI_WRITE:
218 *item->kinds.si_write.target = item->kinds.si_write.value;
219 break;
220 case CGEN_SF_WRITE:
221 *item->kinds.sf_write.target = item->kinds.sf_write.value;
222 break;
223 case CGEN_PC_WRITE:
224 CPU_PC_SET (cpu, item->kinds.pc_write.value);
225 break;
226 case CGEN_FN_HI_WRITE:
227 item->kinds.fn_hi_write.function (cpu,
228 item->kinds.fn_hi_write.regno,
229 item->kinds.fn_hi_write.value);
230 break;
231 case CGEN_FN_SI_WRITE:
232 item->kinds.fn_si_write.function (cpu,
233 item->kinds.fn_si_write.regno,
234 item->kinds.fn_si_write.value);
235 break;
236 case CGEN_FN_DI_WRITE:
237 item->kinds.fn_di_write.function (cpu,
238 item->kinds.fn_di_write.regno,
239 item->kinds.fn_di_write.value);
240 break;
241 case CGEN_FN_DF_WRITE:
242 item->kinds.fn_df_write.function (cpu,
243 item->kinds.fn_df_write.regno,
244 item->kinds.fn_df_write.value);
245 break;
246 case CGEN_FN_PC_WRITE:
247 item->kinds.fn_pc_write.function (cpu, item->kinds.fn_pc_write.value);
248 break;
249 case CGEN_MEM_QI_WRITE:
250 pc = item->insn_address;
251 SETMEMQI (cpu, pc, item->kinds.mem_qi_write.address,
252 item->kinds.mem_qi_write.value);
253 break;
254 case CGEN_MEM_HI_WRITE:
255 pc = item->insn_address;
256 SETMEMHI (cpu, pc, item->kinds.mem_hi_write.address,
257 item->kinds.mem_hi_write.value);
258 break;
259 case CGEN_MEM_SI_WRITE:
260 pc = item->insn_address;
261 SETMEMSI (cpu, pc, item->kinds.mem_si_write.address,
262 item->kinds.mem_si_write.value);
263 break;
264 case CGEN_MEM_DI_WRITE:
265 pc = item->insn_address;
266 SETMEMDI (cpu, pc, item->kinds.mem_di_write.address,
267 item->kinds.mem_di_write.value);
268 break;
269 case CGEN_MEM_DF_WRITE:
270 pc = item->insn_address;
271 SETMEMDF (cpu, pc, item->kinds.mem_df_write.address,
272 item->kinds.mem_df_write.value);
273 break;
274 default:
275 break; /* FIXME: for now....print message later. */
276 }
277 }
278
279 /* Utilities for the write queue. */
280 CGEN_WRITE_QUEUE_ELEMENT *
281 cgen_write_queue_overflow (CGEN_WRITE_QUEUE *q)
282 {
283 abort (); /* FIXME: for now....print message later. */
284 return 0;
285 }
This page took 0.036655 seconds and 5 git commands to generate.