This commit was generated by cvs2svn to track changes on a CVS vendor
[deliverable/binutils-gdb.git] / sim / common / sim-fpu.c
1 /* This is a software floating point library which can be used instead
2 of the floating point routines in libgcc1.c for targets without
3 hardware floating point. */
4
5 /* Copyright (C) 1994,1997-1998 Free Software Foundation, Inc.
6
7 This file is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file with other programs, and to distribute
15 those programs without any restriction coming from the use of this
16 file. (The General Public License restrictions do apply in other
17 respects; for example, they cover modification of the file, and
18 distribution when not linked into another program.)
19
20 This file is distributed in the hope that it will be useful, but
21 WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; see the file COPYING. If not, write to
27 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
28
29 /* As a special exception, if you link this library with other files,
30 some of which are compiled with GCC, to produce an executable,
31 this library does not by itself cause the resulting executable
32 to be covered by the GNU General Public License.
33 This exception does not however invalidate any other reasons why
34 the executable file might be covered by the GNU General Public License. */
35
36 /* This implements IEEE 754 format arithmetic, but does not provide a
37 mechanism for setting the rounding mode, or for generating or handling
38 exceptions.
39
40 The original code by Steve Chamberlain, hacked by Mark Eichin and Jim
41 Wilson, all of Cygnus Support. */
42
43
44 #ifndef SIM_FPU_C
45 #define SIM_FPU_C
46
47 #include "sim-basics.h"
48 #include "sim-fpu.h"
49
50 #include "sim-io.h"
51 #include "sim-assert.h"
52
53
54 /* Debugging support.
55 If digits is -1, then print all digits. */
56
57 static void
58 print_bits (unsigned64 x,
59 int msbit,
60 int digits,
61 sim_fpu_print_func print,
62 void *arg)
63 {
64 unsigned64 bit = LSBIT64 (msbit);
65 int i = 4;
66 while (bit && digits)
67 {
68 if (i == 0)
69 print (arg, ",");
70
71 if ((x & bit))
72 print (arg, "1");
73 else
74 print (arg, "0");
75 bit >>= 1;
76
77 if (digits > 0) digits--;
78 i = (i + 1) % 4;
79 }
80 }
81
82
83
84 /* Quick and dirty conversion between a host double and host 64bit int */
85
86 typedef union {
87 double d;
88 unsigned64 i;
89 } sim_fpu_map;
90
91
92 /* A packed IEEE floating point number.
93
94 Form is <SIGN:1><BIASEDEXP:NR_EXPBITS><FRAC:NR_FRACBITS> for both
95 32 and 64 bit numbers. This number is interpreted as:
96
97 Normalized (0 < BIASEDEXP && BIASEDEXP < EXPMAX):
98 (sign ? '-' : '+') 1.<FRAC> x 2 ^ (BIASEDEXP - EXPBIAS)
99
100 Denormalized (0 == BIASEDEXP && FRAC != 0):
101 (sign ? "-" : "+") 0.<FRAC> x 2 ^ (- EXPBIAS)
102
103 Zero (0 == BIASEDEXP && FRAC == 0):
104 (sign ? "-" : "+") 0.0
105
106 Infinity (BIASEDEXP == EXPMAX && FRAC == 0):
107 (sign ? "-" : "+") "infinity"
108
109 SignalingNaN (BIASEDEXP == EXPMAX && FRAC > 0 && FRAC < QUIET_NAN):
110 SNaN.FRAC
111
112 QuietNaN (BIASEDEXP == EXPMAX && FRAC > 0 && FRAC > QUIET_NAN):
113 QNaN.FRAC
114
115 */
116
117 #define NR_EXPBITS (is_double ? 11 : 8)
118 #define NR_FRACBITS (is_double ? 52 : 23)
119 #define SIGNBIT (is_double ? MSBIT64 (0) : MSBIT64 (32))
120
121 #define EXPMAX32 (255)
122 #define EXMPAX64 (2047)
123 #define EXPMAX ((unsigned) (is_double ? EXMPAX64 : EXPMAX32))
124
125 #define EXPBIAS32 (127)
126 #define EXPBIAS64 (1023)
127 #define EXPBIAS (is_double ? EXPBIAS64 : EXPBIAS32)
128
129 #define QUIET_NAN LSBIT64 (NR_FRACBITS - 1)
130
131
132
133 /* An unpacked floating point number.
134
135 When unpacked, the fraction of both a 32 and 64 bit floating point
136 number is stored using the same format:
137
138 64 bit - <IMPLICIT_1:1><FRACBITS:52><GUARDS:8><PAD:00>
139 32 bit - <IMPLICIT_1:1><FRACBITS:23><GUARDS:7><PAD:30> */
140
141 #define NR_PAD32 (30)
142 #define NR_PAD64 (0)
143 #define NR_PAD (is_double ? NR_PAD64 : NR_PAD32)
144 #define PADMASK (is_double ? 0 : LSMASK64 (NR_PAD32 - 1, 0))
145
146 #define NR_GUARDS32 (7 + NR_PAD32)
147 #define NR_GUARDS64 (8 + NR_PAD64)
148 #define NR_GUARDS (is_double ? NR_GUARDS64 : NR_GUARDS32)
149 #define GUARDMASK LSMASK64 (NR_GUARDS - 1, 0)
150
151 #define GUARDMSB LSBIT64 (NR_GUARDS - 1)
152 #define GUARDLSB LSBIT64 (NR_PAD)
153 #define GUARDROUND LSMASK64 (NR_GUARDS - 2, 0)
154
155 #define NR_FRAC_GUARD (60)
156 #define IMPLICIT_1 LSBIT64 (NR_FRAC_GUARD)
157 #define IMPLICIT_2 LSBIT64 (NR_FRAC_GUARD + 1)
158 #define IMPLICIT_4 LSBIT64 (NR_FRAC_GUARD + 2)
159 #define NR_SPARE 2
160
161 #define FRAC32MASK LSMASK64 (63, NR_FRAC_GUARD - 32 + 1)
162
163 #define NORMAL_EXPMIN (-(EXPBIAS)+1)
164
165 #define NORMAL_EXPMAX32 (EXPBIAS32)
166 #define NORMAL_EXPMAX64 (EXPBIAS64)
167 #define NORMAL_EXPMAX (EXPBIAS)
168
169
170 /* Integer constants */
171
172 #define MAX_INT32 ((signed64) LSMASK64 (30, 0))
173 #define MAX_UINT32 LSMASK64 (31, 0)
174 #define MIN_INT32 ((signed64) LSMASK64 (63, 31))
175
176 #define MAX_INT64 ((signed64) LSMASK64 (62, 0))
177 #define MAX_UINT64 LSMASK64 (63, 0)
178 #define MIN_INT64 ((signed64) LSMASK64 (63, 63))
179
180 #define MAX_INT (is_64bit ? MAX_INT64 : MAX_INT32)
181 #define MIN_INT (is_64bit ? MIN_INT64 : MIN_INT32)
182 #define MAX_UINT (is_64bit ? MAX_UINT64 : MAX_UINT32)
183 #define NR_INTBITS (is_64bit ? 64 : 32)
184
185 /* Squeese an unpacked sim_fpu struct into a 32/64 bit integer */
186 STATIC_INLINE_SIM_FPU (unsigned64)
187 pack_fpu (const sim_fpu *src,
188 int is_double)
189 {
190 int sign;
191 unsigned64 exp;
192 unsigned64 fraction;
193 unsigned64 packed;
194
195 switch (src->class)
196 {
197 /* create a NaN */
198 case sim_fpu_class_qnan:
199 sign = src->sign;
200 exp = EXPMAX;
201 /* force fraction to correct class */
202 fraction = src->fraction;
203 fraction >>= NR_GUARDS;
204 fraction |= QUIET_NAN;
205 break;
206 case sim_fpu_class_snan:
207 sign = src->sign;
208 exp = EXPMAX;
209 /* force fraction to correct class */
210 fraction = src->fraction;
211 fraction >>= NR_GUARDS;
212 fraction &= ~QUIET_NAN;
213 break;
214 case sim_fpu_class_infinity:
215 sign = src->sign;
216 exp = EXPMAX;
217 fraction = 0;
218 break;
219 case sim_fpu_class_zero:
220 sign = src->sign;
221 exp = 0;
222 fraction = 0;
223 break;
224 case sim_fpu_class_number:
225 case sim_fpu_class_denorm:
226 ASSERT (src->fraction >= IMPLICIT_1);
227 ASSERT (src->fraction < IMPLICIT_2);
228 if (src->normal_exp < NORMAL_EXPMIN)
229 {
230 /* This number's exponent is too low to fit into the bits
231 available in the number We'll denormalize the number by
232 storing zero in the exponent and shift the fraction to
233 the right to make up for it. */
234 int nr_shift = NORMAL_EXPMIN - src->normal_exp;
235 if (nr_shift > NR_FRACBITS)
236 {
237 /* underflow, just make the number zero */
238 sign = src->sign;
239 exp = 0;
240 fraction = 0;
241 }
242 else
243 {
244 sign = src->sign;
245 exp = 0;
246 /* Shift by the value */
247 fraction = src->fraction;
248 fraction >>= NR_GUARDS;
249 fraction >>= nr_shift;
250 }
251 }
252 else if (src->normal_exp > NORMAL_EXPMAX)
253 {
254 /* Infinity */
255 sign = src->sign;
256 exp = EXPMAX;
257 fraction = 0;
258 }
259 else
260 {
261 exp = (src->normal_exp + EXPBIAS);
262 sign = src->sign;
263 fraction = src->fraction;
264 /* FIXME: Need to round according to WITH_SIM_FPU_ROUNDING
265 or some such */
266 /* Round to nearest: If the guard bits are the all zero, but
267 the first, then we're half way between two numbers,
268 choose the one which makes the lsb of the answer 0. */
269 if ((fraction & GUARDMASK) == GUARDMSB)
270 {
271 if ((fraction & (GUARDMSB << 1)))
272 fraction += (GUARDMSB << 1);
273 }
274 else
275 {
276 /* Add a one to the guards to force round to nearest */
277 fraction += GUARDROUND;
278 }
279 if ((fraction & IMPLICIT_2)) /* rounding resulted in carry */
280 {
281 exp += 1;
282 fraction >>= 1;
283 }
284 fraction >>= NR_GUARDS;
285 /* When exp == EXPMAX (overflow from carry) fraction must
286 have been made zero */
287 ASSERT ((exp == EXPMAX) <= ((fraction & ~IMPLICIT_1) == 0));
288 }
289 break;
290 default:
291 abort ();
292 }
293
294 packed = ((sign ? SIGNBIT : 0)
295 | (exp << NR_FRACBITS)
296 | LSMASKED64 (fraction, NR_FRACBITS - 1, 0));
297
298 /* trace operation */
299 #if 0
300 if (is_double)
301 {
302 }
303 else
304 {
305 printf ("pack_fpu: ");
306 printf ("-> %c%0lX.%06lX\n",
307 LSMASKED32 (packed, 31, 31) ? '8' : '0',
308 (long) LSEXTRACTED32 (packed, 30, 23),
309 (long) LSEXTRACTED32 (packed, 23 - 1, 0));
310 }
311 #endif
312
313 return packed;
314 }
315
316
317 /* Unpack a 32/64 bit integer into a sim_fpu structure */
318 STATIC_INLINE_SIM_FPU (void)
319 unpack_fpu (sim_fpu *dst, unsigned64 packed, int is_double)
320 {
321 unsigned64 fraction = LSMASKED64 (packed, NR_FRACBITS - 1, 0);
322 unsigned exp = LSEXTRACTED64 (packed, NR_EXPBITS + NR_FRACBITS - 1, NR_FRACBITS);
323 int sign = (packed & SIGNBIT) != 0;
324
325 if (exp == 0)
326 {
327 /* Hmm. Looks like 0 */
328 if (fraction == 0)
329 {
330 /* tastes like zero */
331 dst->class = sim_fpu_class_zero;
332 dst->sign = sign;
333 dst->normal_exp = 0;
334 }
335 else
336 {
337 /* Zero exponent with non zero fraction - it's denormalized,
338 so there isn't a leading implicit one - we'll shift it so
339 it gets one. */
340 dst->normal_exp = exp - EXPBIAS + 1;
341 dst->class = sim_fpu_class_denorm;
342 dst->sign = sign;
343 fraction <<= NR_GUARDS;
344 while (fraction < IMPLICIT_1)
345 {
346 fraction <<= 1;
347 dst->normal_exp--;
348 }
349 dst->fraction = fraction;
350 }
351 }
352 else if (exp == EXPMAX)
353 {
354 /* Huge exponent*/
355 if (fraction == 0)
356 {
357 /* Attached to a zero fraction - means infinity */
358 dst->class = sim_fpu_class_infinity;
359 dst->sign = sign;
360 /* dst->normal_exp = EXPBIAS; */
361 /* dst->fraction = 0; */
362 }
363 else
364 {
365 /* Non zero fraction, means NaN */
366 dst->sign = sign;
367 dst->fraction = (fraction << NR_GUARDS);
368 if (fraction >= QUIET_NAN)
369 dst->class = sim_fpu_class_qnan;
370 else
371 dst->class = sim_fpu_class_snan;
372 }
373 }
374 else
375 {
376 /* Nothing strange about this number */
377 dst->class = sim_fpu_class_number;
378 dst->sign = sign;
379 dst->fraction = ((fraction << NR_GUARDS) | IMPLICIT_1);
380 dst->normal_exp = exp - EXPBIAS;
381 }
382
383 /* trace operation */
384 #if 0
385 if (is_double)
386 {
387 }
388 else
389 {
390 printf ("unpack_fpu: %c%02lX.%06lX ->\n",
391 LSMASKED32 (packed, 31, 31) ? '8' : '0',
392 (long) LSEXTRACTED32 (packed, 30, 23),
393 (long) LSEXTRACTED32 (packed, 23 - 1, 0));
394 }
395 #endif
396
397 /* sanity checks */
398 {
399 sim_fpu_map val;
400 val.i = pack_fpu (dst, 1);
401 if (is_double)
402 {
403 ASSERT (val.i == packed);
404 }
405 else
406 {
407 unsigned32 val = pack_fpu (dst, 0);
408 unsigned32 org = packed;
409 ASSERT (val == org);
410 }
411 }
412 }
413
414
415 /* Convert a floating point into an integer */
416 STATIC_INLINE_SIM_FPU (int)
417 fpu2i (signed64 *i,
418 const sim_fpu *s,
419 int is_64bit,
420 sim_fpu_round round)
421 {
422 unsigned64 tmp;
423 int shift;
424 int status = 0;
425 if (sim_fpu_is_zero (s))
426 {
427 *i = 0;
428 return 0;
429 }
430 if (sim_fpu_is_snan (s))
431 {
432 *i = MIN_INT; /* FIXME */
433 return sim_fpu_status_invalid_cvi;
434 }
435 if (sim_fpu_is_qnan (s))
436 {
437 *i = MIN_INT; /* FIXME */
438 return sim_fpu_status_invalid_cvi;
439 }
440 /* map infinity onto MAX_INT... */
441 if (sim_fpu_is_infinity (s))
442 {
443 *i = s->sign ? MIN_INT : MAX_INT;
444 return sim_fpu_status_invalid_cvi;
445 }
446 /* it is a number, but a small one */
447 if (s->normal_exp < 0)
448 {
449 *i = 0;
450 return sim_fpu_status_inexact;
451 }
452 /* Is the floating point MIN_INT or just close? */
453 if (s->sign && s->normal_exp == (NR_INTBITS - 1))
454 {
455 *i = MIN_INT;
456 ASSERT (s->fraction >= IMPLICIT_1);
457 if (s->fraction == IMPLICIT_1)
458 return 0; /* exact */
459 if (is_64bit) /* can't round */
460 return sim_fpu_status_invalid_cvi; /* must be overflow */
461 /* For a 32bit with MAX_INT, rounding is possible */
462 switch (round)
463 {
464 case sim_fpu_round_default:
465 abort ();
466 case sim_fpu_round_zero:
467 if ((s->fraction & FRAC32MASK) != IMPLICIT_1)
468 return sim_fpu_status_invalid_cvi;
469 else
470 return sim_fpu_status_inexact;
471 break;
472 case sim_fpu_round_near:
473 {
474 if ((s->fraction & FRAC32MASK) != IMPLICIT_1)
475 return sim_fpu_status_invalid_cvi;
476 else if ((s->fraction & !FRAC32MASK) >= (~FRAC32MASK >> 1))
477 return sim_fpu_status_invalid_cvi;
478 else
479 return sim_fpu_status_inexact;
480 }
481 case sim_fpu_round_up:
482 if ((s->fraction & FRAC32MASK) == IMPLICIT_1)
483 return sim_fpu_status_inexact;
484 else
485 return sim_fpu_status_invalid_cvi;
486 case sim_fpu_round_down:
487 return sim_fpu_status_invalid_cvi;
488 }
489 }
490 /* Would right shifting result in the FRAC being shifted into
491 (through) the integer's sign bit? */
492 if (s->normal_exp > (NR_INTBITS - 2))
493 {
494 *i = s->sign ? MIN_INT : MAX_INT;
495 return sim_fpu_status_invalid_cvi;
496 }
497 /* normal number shift it into place */
498 tmp = s->fraction;
499 shift = (s->normal_exp - (NR_FRAC_GUARD));
500 if (shift > 0)
501 {
502 tmp <<= shift;
503 }
504 else
505 {
506 shift = -shift;
507 if (tmp & ((SIGNED64 (1) << shift) - 1))
508 status |= sim_fpu_status_inexact;
509 tmp >>= shift;
510 }
511 *i = s->sign ? (-tmp) : (tmp);
512 return status;
513 }
514
515 /* convert an integer into a floating point */
516 STATIC_INLINE_SIM_FPU (int)
517 i2fpu (sim_fpu *f, signed64 i, int is_64bit)
518 {
519 int status = 0;
520 if (i == 0)
521 {
522 f->class = sim_fpu_class_zero;
523 f->sign = 0;
524 f->normal_exp = 0;
525 }
526 else
527 {
528 f->class = sim_fpu_class_number;
529 f->sign = (i < 0);
530 f->normal_exp = NR_FRAC_GUARD;
531
532 if (f->sign)
533 {
534 /* Special case for minint, since there is no corresponding
535 +ve integer representation for it */
536 if (i == MIN_INT)
537 {
538 f->fraction = IMPLICIT_1;
539 f->normal_exp = NR_INTBITS - 1;
540 }
541 else
542 f->fraction = (-i);
543 }
544 else
545 f->fraction = i;
546
547 if (f->fraction >= IMPLICIT_2)
548 {
549 do
550 {
551 f->fraction = (f->fraction >> 1) | (f->fraction & 1);
552 f->normal_exp += 1;
553 }
554 while (f->fraction >= IMPLICIT_2);
555 }
556 else if (f->fraction < IMPLICIT_1)
557 {
558 do
559 {
560 f->fraction <<= 1;
561 f->normal_exp -= 1;
562 }
563 while (f->fraction < IMPLICIT_1);
564 }
565 }
566
567 /* trace operation */
568 #if 0
569 {
570 printf ("i2fpu: 0x%08lX ->\n", (long) i);
571 }
572 #endif
573
574 /* sanity check */
575 {
576 signed64 val;
577 fpu2i (&val, f, is_64bit, sim_fpu_round_zero);
578 if (i >= MIN_INT32 && i <= MAX_INT32)
579 {
580 ASSERT (val == i);
581 }
582 }
583
584 return status;
585 }
586
587
588 /* Convert a floating point into an integer */
589 STATIC_INLINE_SIM_FPU (int)
590 fpu2u (unsigned64 *u, const sim_fpu *s, int is_64bit)
591 {
592 const int is_double = 1;
593 unsigned64 tmp;
594 int shift;
595 if (sim_fpu_is_zero (s))
596 {
597 *u = 0;
598 return 0;
599 }
600 if (sim_fpu_is_nan (s))
601 {
602 *u = 0;
603 return 0;
604 }
605 /* it is a negative number */
606 if (s->sign)
607 {
608 *u = 0;
609 return 0;
610 }
611 /* get reasonable MAX_USI_INT... */
612 if (sim_fpu_is_infinity (s))
613 {
614 *u = MAX_UINT;
615 return 0;
616 }
617 /* it is a number, but a small one */
618 if (s->normal_exp < 0)
619 {
620 *u = 0;
621 return 0;
622 }
623 /* overflow */
624 if (s->normal_exp > (NR_INTBITS - 1))
625 {
626 *u = MAX_UINT;
627 return 0;
628 }
629 /* normal number */
630 tmp = (s->fraction & ~PADMASK);
631 shift = (s->normal_exp - (NR_FRACBITS + NR_GUARDS));
632 if (shift > 0)
633 {
634 tmp <<= shift;
635 }
636 else
637 {
638 shift = -shift;
639 tmp >>= shift;
640 }
641 *u = tmp;
642 return 0;
643 }
644
645 /* Convert an unsigned integer into a floating point */
646 STATIC_INLINE_SIM_FPU (int)
647 u2fpu (sim_fpu *f, unsigned64 u, int is_64bit)
648 {
649 if (u == 0)
650 {
651 f->class = sim_fpu_class_zero;
652 f->sign = 0;
653 f->normal_exp = 0;
654 }
655 else
656 {
657 f->class = sim_fpu_class_number;
658 f->sign = 0;
659 f->normal_exp = NR_FRAC_GUARD;
660 f->fraction = u;
661
662 while (f->fraction < IMPLICIT_1)
663 {
664 f->fraction <<= 1;
665 f->normal_exp -= 1;
666 }
667 }
668 return 0;
669 }
670
671
672 /* register <-> sim_fpu */
673
674 INLINE_SIM_FPU (void)
675 sim_fpu_32to (sim_fpu *f, unsigned32 s)
676 {
677 unpack_fpu (f, s, 0);
678 }
679
680
681 INLINE_SIM_FPU (void)
682 sim_fpu_232to (sim_fpu *f, unsigned32 h, unsigned32 l)
683 {
684 unsigned64 s = h;
685 s = (s << 32) | l;
686 unpack_fpu (f, s, 1);
687 }
688
689
690 INLINE_SIM_FPU (void)
691 sim_fpu_64to (sim_fpu *f, unsigned64 s)
692 {
693 unpack_fpu (f, s, 1);
694 }
695
696
697 INLINE_SIM_FPU (void)
698 sim_fpu_to32 (unsigned32 *s,
699 const sim_fpu *f)
700 {
701 *s = pack_fpu (f, 0);
702 }
703
704
705 INLINE_SIM_FPU (void)
706 sim_fpu_to232 (unsigned32 *h, unsigned32 *l,
707 const sim_fpu *f)
708 {
709 unsigned64 s = pack_fpu (f, 1);
710 *l = s;
711 *h = (s >> 32);
712 }
713
714
715 INLINE_SIM_FPU (void)
716 sim_fpu_to64 (unsigned64 *u,
717 const sim_fpu *f)
718 {
719 *u = pack_fpu (f, 1);
720 }
721
722
723 INLINE_SIM_FPU (void)
724 sim_fpu_fractionto (sim_fpu *f,
725 int sign,
726 int normal_exp,
727 unsigned64 fraction,
728 int precision)
729 {
730 int shift = (NR_FRAC_GUARD - precision);
731 f->class = sim_fpu_class_number;
732 f->sign = sign;
733 f->normal_exp = normal_exp;
734 /* shift the fraction to where sim-fpu expects it */
735 if (shift >= 0)
736 f->fraction = (fraction << shift);
737 else
738 f->fraction = (fraction >> -shift);
739 f->fraction |= IMPLICIT_1;
740 }
741
742
743 INLINE_SIM_FPU (unsigned64)
744 sim_fpu_tofraction (const sim_fpu *d,
745 int precision)
746 {
747 /* we have NR_FRAC_GUARD bits, we want only PRECISION bits */
748 int shift = (NR_FRAC_GUARD - precision);
749 unsigned64 fraction = (d->fraction & ~IMPLICIT_1);
750 if (shift >= 0)
751 return fraction >> shift;
752 else
753 return fraction << -shift;
754 }
755
756
757 /* Rounding */
758
759 STATIC_INLINE_SIM_FPU (int)
760 do_normal_overflow (sim_fpu *f,
761 int is_double,
762 sim_fpu_round round)
763 {
764 switch (round)
765 {
766 case sim_fpu_round_default:
767 return 0;
768 case sim_fpu_round_near:
769 f->class = sim_fpu_class_infinity;
770 break;
771 case sim_fpu_round_up:
772 if (!f->sign)
773 f->class = sim_fpu_class_infinity;
774 break;
775 case sim_fpu_round_down:
776 if (f->sign)
777 f->class = sim_fpu_class_infinity;
778 break;
779 case sim_fpu_round_zero:
780 break;
781 }
782 f->normal_exp = NORMAL_EXPMAX;
783 f->fraction = LSMASK64 (NR_FRAC_GUARD, NR_GUARDS);
784 return (sim_fpu_status_overflow | sim_fpu_status_inexact);
785 }
786
787 STATIC_INLINE_SIM_FPU (int)
788 do_normal_underflow (sim_fpu *f,
789 int is_double,
790 sim_fpu_round round)
791 {
792 switch (round)
793 {
794 case sim_fpu_round_default:
795 return 0;
796 case sim_fpu_round_near:
797 f->class = sim_fpu_class_zero;
798 break;
799 case sim_fpu_round_up:
800 if (f->sign)
801 f->class = sim_fpu_class_zero;
802 break;
803 case sim_fpu_round_down:
804 if (!f->sign)
805 f->class = sim_fpu_class_zero;
806 break;
807 case sim_fpu_round_zero:
808 f->class = sim_fpu_class_zero;
809 break;
810 }
811 f->normal_exp = NORMAL_EXPMIN - NR_FRACBITS;
812 f->fraction = IMPLICIT_1;
813 return (sim_fpu_status_inexact | sim_fpu_status_underflow);
814 }
815
816
817
818 /* Round a number using NR_GUARDS.
819 Will return the rounded number or F->FRACTION == 0 when underflow */
820
821 STATIC_INLINE_SIM_FPU (int)
822 do_normal_round (sim_fpu *f,
823 int nr_guards,
824 sim_fpu_round round)
825 {
826 unsigned64 guardmask = LSMASK64 (nr_guards - 1, 0);
827 unsigned64 guardmsb = LSBIT64 (nr_guards - 1);
828 unsigned64 fraclsb = guardmsb << 1;
829 if ((f->fraction & guardmask))
830 {
831 int status = sim_fpu_status_inexact;
832 switch (round)
833 {
834 case sim_fpu_round_default:
835 return 0;
836 case sim_fpu_round_near:
837 if ((f->fraction & guardmsb))
838 {
839 if ((f->fraction & fraclsb))
840 {
841 status |= sim_fpu_status_rounded;
842 }
843 else if ((f->fraction & (guardmask >> 1)))
844 {
845 status |= sim_fpu_status_rounded;
846 }
847 }
848 break;
849 case sim_fpu_round_up:
850 if (!f->sign)
851 status |= sim_fpu_status_rounded;
852 break;
853 case sim_fpu_round_down:
854 if (f->sign)
855 status |= sim_fpu_status_rounded;
856 break;
857 case sim_fpu_round_zero:
858 break;
859 }
860 f->fraction &= ~guardmask;
861 /* round if needed, handle resulting overflow */
862 if ((status & sim_fpu_status_rounded))
863 {
864 f->fraction += fraclsb;
865 if ((f->fraction & IMPLICIT_2))
866 {
867 f->fraction >>= 1;
868 f->normal_exp += 1;
869 }
870 }
871 return status;
872 }
873 else
874 return 0;
875 }
876
877
878 STATIC_INLINE_SIM_FPU (int)
879 do_round (sim_fpu *f,
880 int is_double,
881 sim_fpu_round round,
882 sim_fpu_denorm denorm)
883 {
884 switch (f->class)
885 {
886 case sim_fpu_class_qnan:
887 case sim_fpu_class_zero:
888 case sim_fpu_class_infinity:
889 return 0;
890 break;
891 case sim_fpu_class_snan:
892 /* Quieten a SignalingNaN */
893 f->class = sim_fpu_class_qnan;
894 return sim_fpu_status_invalid_snan;
895 break;
896 case sim_fpu_class_number:
897 case sim_fpu_class_denorm:
898 {
899 int status;
900 ASSERT (f->fraction < IMPLICIT_2);
901 ASSERT (f->fraction >= IMPLICIT_1);
902 if (f->normal_exp < NORMAL_EXPMIN)
903 {
904 /* This number's exponent is too low to fit into the bits
905 available in the number. Round off any bits that will be
906 discarded as a result of denormalization. Edge case is
907 the implicit bit shifted to GUARD0 and then rounded
908 up. */
909 int shift = NORMAL_EXPMIN - f->normal_exp;
910 if (shift + NR_GUARDS <= NR_FRAC_GUARD + 1
911 && !(denorm & sim_fpu_denorm_zero))
912 {
913 status = do_normal_round (f, shift + NR_GUARDS, round);
914 if (f->fraction == 0) /* rounding underflowed */
915 {
916 status |= do_normal_underflow (f, is_double, round);
917 }
918 else if (f->normal_exp < NORMAL_EXPMIN) /* still underflow? */
919 {
920 status |= sim_fpu_status_denorm;
921 /* Any loss of precision when denormalizing is
922 underflow. Some processors check for underflow
923 before rounding, some after! */
924 if (status & sim_fpu_status_inexact)
925 status |= sim_fpu_status_underflow;
926 /* Flag that resultant value has been denormalized */
927 f->class = sim_fpu_class_denorm;
928 }
929 else if ((denorm & sim_fpu_denorm_underflow_inexact))
930 {
931 if ((status & sim_fpu_status_inexact))
932 status |= sim_fpu_status_underflow;
933 }
934 }
935 else
936 {
937 status = do_normal_underflow (f, is_double, round);
938 }
939 }
940 else if (f->normal_exp > NORMAL_EXPMAX)
941 {
942 /* Infinity */
943 status = do_normal_overflow (f, is_double, round);
944 }
945 else
946 {
947 status = do_normal_round (f, NR_GUARDS, round);
948 if (f->fraction == 0)
949 /* f->class = sim_fpu_class_zero; */
950 status |= do_normal_underflow (f, is_double, round);
951 else if (f->normal_exp > NORMAL_EXPMAX)
952 /* oops! rounding caused overflow */
953 status |= do_normal_overflow (f, is_double, round);
954 }
955 ASSERT ((f->class == sim_fpu_class_number
956 || f->class == sim_fpu_class_denorm)
957 <= (f->fraction < IMPLICIT_2 && f->fraction >= IMPLICIT_1));
958 return status;
959 }
960 }
961 return 0;
962 }
963
964 INLINE_SIM_FPU (int)
965 sim_fpu_round_32 (sim_fpu *f,
966 sim_fpu_round round,
967 sim_fpu_denorm denorm)
968 {
969 return do_round (f, 0, round, denorm);
970 }
971
972 INLINE_SIM_FPU (int)
973 sim_fpu_round_64 (sim_fpu *f,
974 sim_fpu_round round,
975 sim_fpu_denorm denorm)
976 {
977 return do_round (f, 1, round, denorm);
978 }
979
980
981
982 /* Arithmetic ops */
983
984 INLINE_SIM_FPU (int)
985 sim_fpu_add (sim_fpu *f,
986 const sim_fpu *l,
987 const sim_fpu *r)
988 {
989 if (sim_fpu_is_snan (l))
990 {
991 *f = *l;
992 f->class = sim_fpu_class_qnan;
993 return sim_fpu_status_invalid_snan;
994 }
995 if (sim_fpu_is_snan (r))
996 {
997 *f = *r;
998 f->class = sim_fpu_class_qnan;
999 return sim_fpu_status_invalid_snan;
1000 }
1001 if (sim_fpu_is_qnan (l))
1002 {
1003 *f = *l;
1004 return 0;
1005 }
1006 if (sim_fpu_is_qnan (r))
1007 {
1008 *f = *r;
1009 return 0;
1010 }
1011 if (sim_fpu_is_infinity (l))
1012 {
1013 if (sim_fpu_is_infinity (r)
1014 && l->sign != r->sign)
1015 {
1016 *f = sim_fpu_qnan;
1017 return sim_fpu_status_invalid_isi;
1018 }
1019 *f = *l;
1020 return 0;
1021 }
1022 if (sim_fpu_is_infinity (r))
1023 {
1024 *f = *r;
1025 return 0;
1026 }
1027 if (sim_fpu_is_zero (l))
1028 {
1029 if (sim_fpu_is_zero (r))
1030 {
1031 *f = sim_fpu_zero;
1032 f->sign = l->sign & r->sign;
1033 }
1034 else
1035 *f = *r;
1036 return 0;
1037 }
1038 if (sim_fpu_is_zero (r))
1039 {
1040 *f = *l;
1041 return 0;
1042 }
1043 {
1044 int status = 0;
1045 int shift = l->normal_exp - r->normal_exp;
1046 unsigned64 lfraction;
1047 unsigned64 rfraction;
1048 /* use exp of larger */
1049 if (shift >= NR_FRAC_GUARD)
1050 {
1051 /* left has much bigger magnitute */
1052 *f = *l;
1053 return sim_fpu_status_inexact;
1054 }
1055 if (shift <= - NR_FRAC_GUARD)
1056 {
1057 /* right has much bigger magnitute */
1058 *f = *r;
1059 return sim_fpu_status_inexact;
1060 }
1061 lfraction = l->fraction;
1062 rfraction = r->fraction;
1063 if (shift > 0)
1064 {
1065 f->normal_exp = l->normal_exp;
1066 if (rfraction & LSMASK64 (shift - 1, 0))
1067 {
1068 status |= sim_fpu_status_inexact;
1069 rfraction |= LSBIT64 (shift); /* stick LSBit */
1070 }
1071 rfraction >>= shift;
1072 }
1073 else if (shift < 0)
1074 {
1075 f->normal_exp = r->normal_exp;
1076 if (lfraction & LSMASK64 (- shift - 1, 0))
1077 {
1078 status |= sim_fpu_status_inexact;
1079 lfraction |= LSBIT64 (- shift); /* stick LSBit */
1080 }
1081 lfraction >>= -shift;
1082 }
1083 else
1084 {
1085 f->normal_exp = r->normal_exp;
1086 }
1087
1088 /* perform the addition */
1089 if (l->sign)
1090 lfraction = - lfraction;
1091 if (r->sign)
1092 rfraction = - rfraction;
1093 f->fraction = lfraction + rfraction;
1094
1095 /* zero? */
1096 if (f->fraction == 0)
1097 {
1098 *f = sim_fpu_zero;
1099 return 0;
1100 }
1101
1102 /* sign? */
1103 f->class = sim_fpu_class_number;
1104 if ((signed64) f->fraction >= 0)
1105 f->sign = 0;
1106 else
1107 {
1108 f->sign = 1;
1109 f->fraction = - f->fraction;
1110 }
1111
1112 /* normalize it */
1113 if ((f->fraction & IMPLICIT_2))
1114 {
1115 f->fraction = (f->fraction >> 1) | (f->fraction & 1);
1116 f->normal_exp ++;
1117 }
1118 else if (f->fraction < IMPLICIT_1)
1119 {
1120 do
1121 {
1122 f->fraction <<= 1;
1123 f->normal_exp --;
1124 }
1125 while (f->fraction < IMPLICIT_1);
1126 }
1127 ASSERT (f->fraction >= IMPLICIT_1 && f->fraction < IMPLICIT_2);
1128 return status;
1129 }
1130 }
1131
1132
1133 INLINE_SIM_FPU (int)
1134 sim_fpu_sub (sim_fpu *f,
1135 const sim_fpu *l,
1136 const sim_fpu *r)
1137 {
1138 if (sim_fpu_is_snan (l))
1139 {
1140 *f = *l;
1141 f->class = sim_fpu_class_qnan;
1142 return sim_fpu_status_invalid_snan;
1143 }
1144 if (sim_fpu_is_snan (r))
1145 {
1146 *f = *r;
1147 f->class = sim_fpu_class_qnan;
1148 return sim_fpu_status_invalid_snan;
1149 }
1150 if (sim_fpu_is_qnan (l))
1151 {
1152 *f = *l;
1153 return 0;
1154 }
1155 if (sim_fpu_is_qnan (r))
1156 {
1157 *f = *r;
1158 return 0;
1159 }
1160 if (sim_fpu_is_infinity (l))
1161 {
1162 if (sim_fpu_is_infinity (r)
1163 && l->sign == r->sign)
1164 {
1165 *f = sim_fpu_qnan;
1166 return sim_fpu_status_invalid_isi;
1167 }
1168 *f = *l;
1169 return 0;
1170 }
1171 if (sim_fpu_is_infinity (r))
1172 {
1173 *f = *r;
1174 f->sign = !r->sign;
1175 return 0;
1176 }
1177 if (sim_fpu_is_zero (l))
1178 {
1179 if (sim_fpu_is_zero (r))
1180 {
1181 *f = sim_fpu_zero;
1182 f->sign = l->sign & !r->sign;
1183 }
1184 else
1185 {
1186 *f = *r;
1187 f->sign = !r->sign;
1188 }
1189 return 0;
1190 }
1191 if (sim_fpu_is_zero (r))
1192 {
1193 *f = *l;
1194 return 0;
1195 }
1196 {
1197 int status = 0;
1198 int shift = l->normal_exp - r->normal_exp;
1199 unsigned64 lfraction;
1200 unsigned64 rfraction;
1201 /* use exp of larger */
1202 if (shift >= NR_FRAC_GUARD)
1203 {
1204 /* left has much bigger magnitute */
1205 *f = *l;
1206 return sim_fpu_status_inexact;
1207 }
1208 if (shift <= - NR_FRAC_GUARD)
1209 {
1210 /* right has much bigger magnitute */
1211 *f = *r;
1212 f->sign = !r->sign;
1213 return sim_fpu_status_inexact;
1214 }
1215 lfraction = l->fraction;
1216 rfraction = r->fraction;
1217 if (shift > 0)
1218 {
1219 f->normal_exp = l->normal_exp;
1220 if (rfraction & LSMASK64 (shift - 1, 0))
1221 {
1222 status |= sim_fpu_status_inexact;
1223 rfraction |= LSBIT64 (shift); /* stick LSBit */
1224 }
1225 rfraction >>= shift;
1226 }
1227 else if (shift < 0)
1228 {
1229 f->normal_exp = r->normal_exp;
1230 if (lfraction & LSMASK64 (- shift - 1, 0))
1231 {
1232 status |= sim_fpu_status_inexact;
1233 lfraction |= LSBIT64 (- shift); /* stick LSBit */
1234 }
1235 lfraction >>= -shift;
1236 }
1237 else
1238 {
1239 f->normal_exp = r->normal_exp;
1240 }
1241
1242 /* perform the subtraction */
1243 if (l->sign)
1244 lfraction = - lfraction;
1245 if (!r->sign)
1246 rfraction = - rfraction;
1247 f->fraction = lfraction + rfraction;
1248
1249 /* zero? */
1250 if (f->fraction == 0)
1251 {
1252 *f = sim_fpu_zero;
1253 return 0;
1254 }
1255
1256 /* sign? */
1257 f->class = sim_fpu_class_number;
1258 if ((signed64) f->fraction >= 0)
1259 f->sign = 0;
1260 else
1261 {
1262 f->sign = 1;
1263 f->fraction = - f->fraction;
1264 }
1265
1266 /* normalize it */
1267 if ((f->fraction & IMPLICIT_2))
1268 {
1269 f->fraction = (f->fraction >> 1) | (f->fraction & 1);
1270 f->normal_exp ++;
1271 }
1272 else if (f->fraction < IMPLICIT_1)
1273 {
1274 do
1275 {
1276 f->fraction <<= 1;
1277 f->normal_exp --;
1278 }
1279 while (f->fraction < IMPLICIT_1);
1280 }
1281 ASSERT (f->fraction >= IMPLICIT_1 && f->fraction < IMPLICIT_2);
1282 return status;
1283 }
1284 }
1285
1286
1287 INLINE_SIM_FPU (int)
1288 sim_fpu_mul (sim_fpu *f,
1289 const sim_fpu *l,
1290 const sim_fpu *r)
1291 {
1292 if (sim_fpu_is_snan (l))
1293 {
1294 *f = *l;
1295 f->class = sim_fpu_class_qnan;
1296 return sim_fpu_status_invalid_snan;
1297 }
1298 if (sim_fpu_is_snan (r))
1299 {
1300 *f = *r;
1301 f->class = sim_fpu_class_qnan;
1302 return sim_fpu_status_invalid_snan;
1303 }
1304 if (sim_fpu_is_qnan (l))
1305 {
1306 *f = *l;
1307 return 0;
1308 }
1309 if (sim_fpu_is_qnan (r))
1310 {
1311 *f = *r;
1312 return 0;
1313 }
1314 if (sim_fpu_is_infinity (l))
1315 {
1316 if (sim_fpu_is_zero (r))
1317 {
1318 *f = sim_fpu_qnan;
1319 return sim_fpu_status_invalid_imz;
1320 }
1321 *f = *l;
1322 f->sign = l->sign ^ r->sign;
1323 return 0;
1324 }
1325 if (sim_fpu_is_infinity (r))
1326 {
1327 if (sim_fpu_is_zero (l))
1328 {
1329 *f = sim_fpu_qnan;
1330 return sim_fpu_status_invalid_imz;
1331 }
1332 *f = *r;
1333 f->sign = l->sign ^ r->sign;
1334 return 0;
1335 }
1336 if (sim_fpu_is_zero (l) || sim_fpu_is_zero (r))
1337 {
1338 *f = sim_fpu_zero;
1339 f->sign = l->sign ^ r->sign;
1340 return 0;
1341 }
1342 /* Calculate the mantissa by multiplying both 64bit numbers to get a
1343 128 bit number */
1344 {
1345 unsigned64 low;
1346 unsigned64 high;
1347 unsigned64 nl = l->fraction & 0xffffffff;
1348 unsigned64 nh = l->fraction >> 32;
1349 unsigned64 ml = r->fraction & 0xffffffff;
1350 unsigned64 mh = r->fraction >>32;
1351 unsigned64 pp_ll = ml * nl;
1352 unsigned64 pp_hl = mh * nl;
1353 unsigned64 pp_lh = ml * nh;
1354 unsigned64 pp_hh = mh * nh;
1355 unsigned64 res2 = 0;
1356 unsigned64 res0 = 0;
1357 unsigned64 ps_hh__ = pp_hl + pp_lh;
1358 if (ps_hh__ < pp_hl)
1359 res2 += UNSIGNED64 (0x100000000);
1360 pp_hl = (ps_hh__ << 32) & UNSIGNED64 (0xffffffff00000000);
1361 res0 = pp_ll + pp_hl;
1362 if (res0 < pp_ll)
1363 res2++;
1364 res2 += ((ps_hh__ >> 32) & 0xffffffff) + pp_hh;
1365 high = res2;
1366 low = res0;
1367
1368 f->normal_exp = l->normal_exp + r->normal_exp;
1369 f->sign = l->sign ^ r->sign;
1370 f->class = sim_fpu_class_number;
1371
1372 /* Input is bounded by [1,2) ; [2^60,2^61)
1373 Output is bounded by [1,4) ; [2^120,2^122) */
1374
1375 /* Adjust the exponent according to where the decimal point ended
1376 up in the high 64 bit word. In the source the decimal point
1377 was at NR_FRAC_GUARD. */
1378 f->normal_exp += NR_FRAC_GUARD + 64 - (NR_FRAC_GUARD * 2);
1379
1380 /* The high word is bounded according to the above. Consequently
1381 it has never overflowed into IMPLICIT_2. */
1382 ASSERT (high < LSBIT64 (((NR_FRAC_GUARD + 1) * 2) - 64));
1383 ASSERT (high >= LSBIT64 ((NR_FRAC_GUARD * 2) - 64));
1384 ASSERT (LSBIT64 (((NR_FRAC_GUARD + 1) * 2) - 64) < IMPLICIT_1);
1385
1386 /* normalize */
1387 do
1388 {
1389 f->normal_exp--;
1390 high <<= 1;
1391 if (low & LSBIT64 (63))
1392 high |= 1;
1393 low <<= 1;
1394 }
1395 while (high < IMPLICIT_1);
1396
1397 ASSERT (high >= IMPLICIT_1 && high < IMPLICIT_2);
1398 if (low != 0)
1399 {
1400 f->fraction = (high | 1); /* sticky */
1401 return sim_fpu_status_inexact;
1402 }
1403 else
1404 {
1405 f->fraction = high;
1406 return 0;
1407 }
1408 return 0;
1409 }
1410 }
1411
1412 INLINE_SIM_FPU (int)
1413 sim_fpu_div (sim_fpu *f,
1414 const sim_fpu *l,
1415 const sim_fpu *r)
1416 {
1417 if (sim_fpu_is_snan (l))
1418 {
1419 *f = *l;
1420 f->class = sim_fpu_class_qnan;
1421 return sim_fpu_status_invalid_snan;
1422 }
1423 if (sim_fpu_is_snan (r))
1424 {
1425 *f = *r;
1426 f->class = sim_fpu_class_qnan;
1427 return sim_fpu_status_invalid_snan;
1428 }
1429 if (sim_fpu_is_qnan (l))
1430 {
1431 *f = *l;
1432 f->class = sim_fpu_class_qnan;
1433 return 0;
1434 }
1435 if (sim_fpu_is_qnan (r))
1436 {
1437 *f = *r;
1438 f->class = sim_fpu_class_qnan;
1439 return 0;
1440 }
1441 if (sim_fpu_is_infinity (l))
1442 {
1443 if (sim_fpu_is_infinity (r))
1444 {
1445 *f = sim_fpu_qnan;
1446 return sim_fpu_status_invalid_idi;
1447 }
1448 else
1449 {
1450 *f = *l;
1451 f->sign = l->sign ^ r->sign;
1452 return 0;
1453 }
1454 }
1455 if (sim_fpu_is_zero (l))
1456 {
1457 if (sim_fpu_is_zero (r))
1458 {
1459 *f = sim_fpu_qnan;
1460 return sim_fpu_status_invalid_zdz;
1461 }
1462 else
1463 {
1464 *f = *l;
1465 f->sign = l->sign ^ r->sign;
1466 return 0;
1467 }
1468 }
1469 if (sim_fpu_is_infinity (r))
1470 {
1471 *f = sim_fpu_zero;
1472 f->sign = l->sign ^ r->sign;
1473 return 0;
1474 }
1475 if (sim_fpu_is_zero (r))
1476 {
1477 f->class = sim_fpu_class_infinity;
1478 f->sign = l->sign ^ r->sign;
1479 return sim_fpu_status_invalid_div0;
1480 }
1481
1482 /* Calculate the mantissa by multiplying both 64bit numbers to get a
1483 128 bit number */
1484 {
1485 /* quotient = ( ( numerator / denominator)
1486 x 2^(numerator exponent - denominator exponent)
1487 */
1488 unsigned64 numerator;
1489 unsigned64 denominator;
1490 unsigned64 quotient;
1491 unsigned64 bit;
1492
1493 f->class = sim_fpu_class_number;
1494 f->sign = l->sign ^ r->sign;
1495 f->normal_exp = l->normal_exp - r->normal_exp;
1496
1497 numerator = l->fraction;
1498 denominator = r->fraction;
1499
1500 /* Fraction will be less than 1.0 */
1501 if (numerator < denominator)
1502 {
1503 numerator <<= 1;
1504 f->normal_exp--;
1505 }
1506 ASSERT (numerator >= denominator);
1507
1508 /* Gain extra precision, already used one spare bit */
1509 numerator <<= NR_SPARE;
1510 denominator <<= NR_SPARE;
1511
1512 /* Does divide one bit at a time. Optimize??? */
1513 quotient = 0;
1514 bit = (IMPLICIT_1 << NR_SPARE);
1515 while (bit)
1516 {
1517 if (numerator >= denominator)
1518 {
1519 quotient |= bit;
1520 numerator -= denominator;
1521 }
1522 bit >>= 1;
1523 numerator <<= 1;
1524 }
1525
1526 /* discard (but save) the extra bits */
1527 if ((quotient & LSMASK64 (NR_SPARE -1, 0)))
1528 quotient = (quotient >> NR_SPARE) | 1;
1529 else
1530 quotient = (quotient >> NR_SPARE);
1531
1532 f->fraction = quotient;
1533 ASSERT (f->fraction >= IMPLICIT_1 && f->fraction < IMPLICIT_2);
1534 if (numerator != 0)
1535 {
1536 f->fraction |= 1; /* stick remaining bits */
1537 return sim_fpu_status_inexact;
1538 }
1539 else
1540 return 0;
1541 }
1542 }
1543
1544
1545 INLINE_SIM_FPU (int)
1546 sim_fpu_max (sim_fpu *f,
1547 const sim_fpu *l,
1548 const sim_fpu *r)
1549 {
1550 if (sim_fpu_is_snan (l))
1551 {
1552 *f = *l;
1553 f->class = sim_fpu_class_qnan;
1554 return sim_fpu_status_invalid_snan;
1555 }
1556 if (sim_fpu_is_snan (r))
1557 {
1558 *f = *r;
1559 f->class = sim_fpu_class_qnan;
1560 return sim_fpu_status_invalid_snan;
1561 }
1562 if (sim_fpu_is_qnan (l))
1563 {
1564 *f = *l;
1565 return 0;
1566 }
1567 if (sim_fpu_is_qnan (r))
1568 {
1569 *f = *r;
1570 return 0;
1571 }
1572 if (sim_fpu_is_infinity (l))
1573 {
1574 if (sim_fpu_is_infinity (r)
1575 && l->sign == r->sign)
1576 {
1577 *f = sim_fpu_qnan;
1578 return sim_fpu_status_invalid_isi;
1579 }
1580 if (l->sign)
1581 *f = *r; /* -inf < anything */
1582 else
1583 *f = *l; /* +inf > anthing */
1584 return 0;
1585 }
1586 if (sim_fpu_is_infinity (r))
1587 {
1588 if (r->sign)
1589 *f = *l; /* anything > -inf */
1590 else
1591 *f = *r; /* anthing < +inf */
1592 return 0;
1593 }
1594 if (l->sign > r->sign)
1595 {
1596 *f = *r; /* -ve < +ve */
1597 return 0;
1598 }
1599 if (l->sign < r->sign)
1600 {
1601 *f = *l; /* +ve > -ve */
1602 return 0;
1603 }
1604 ASSERT (l->sign == r->sign);
1605 if (l->normal_exp > r->normal_exp
1606 || (l->normal_exp == r->normal_exp &&
1607 l->fraction > r->fraction))
1608 {
1609 /* |l| > |r| */
1610 if (l->sign)
1611 *f = *r; /* -ve < -ve */
1612 else
1613 *f = *l; /* +ve > +ve */
1614 return 0;
1615 }
1616 else
1617 {
1618 /* |l| <= |r| */
1619 if (l->sign)
1620 *f = *l; /* -ve > -ve */
1621 else
1622 *f = *r; /* +ve < +ve */
1623 return 0;
1624 }
1625 }
1626
1627
1628 INLINE_SIM_FPU (int)
1629 sim_fpu_min (sim_fpu *f,
1630 const sim_fpu *l,
1631 const sim_fpu *r)
1632 {
1633 if (sim_fpu_is_snan (l))
1634 {
1635 *f = *l;
1636 f->class = sim_fpu_class_qnan;
1637 return sim_fpu_status_invalid_snan;
1638 }
1639 if (sim_fpu_is_snan (r))
1640 {
1641 *f = *r;
1642 f->class = sim_fpu_class_qnan;
1643 return sim_fpu_status_invalid_snan;
1644 }
1645 if (sim_fpu_is_qnan (l))
1646 {
1647 *f = *l;
1648 return 0;
1649 }
1650 if (sim_fpu_is_qnan (r))
1651 {
1652 *f = *r;
1653 return 0;
1654 }
1655 if (sim_fpu_is_infinity (l))
1656 {
1657 if (sim_fpu_is_infinity (r)
1658 && l->sign == r->sign)
1659 {
1660 *f = sim_fpu_qnan;
1661 return sim_fpu_status_invalid_isi;
1662 }
1663 if (l->sign)
1664 *f = *l; /* -inf < anything */
1665 else
1666 *f = *r; /* +inf > anthing */
1667 return 0;
1668 }
1669 if (sim_fpu_is_infinity (r))
1670 {
1671 if (r->sign)
1672 *f = *r; /* anything > -inf */
1673 else
1674 *f = *l; /* anything < +inf */
1675 return 0;
1676 }
1677 if (l->sign > r->sign)
1678 {
1679 *f = *l; /* -ve < +ve */
1680 return 0;
1681 }
1682 if (l->sign < r->sign)
1683 {
1684 *f = *r; /* +ve > -ve */
1685 return 0;
1686 }
1687 ASSERT (l->sign == r->sign);
1688 if (l->normal_exp > r->normal_exp
1689 || (l->normal_exp == r->normal_exp &&
1690 l->fraction > r->fraction))
1691 {
1692 /* |l| > |r| */
1693 if (l->sign)
1694 *f = *l; /* -ve < -ve */
1695 else
1696 *f = *r; /* +ve > +ve */
1697 return 0;
1698 }
1699 else
1700 {
1701 /* |l| <= |r| */
1702 if (l->sign)
1703 *f = *r; /* -ve > -ve */
1704 else
1705 *f = *l; /* +ve < +ve */
1706 return 0;
1707 }
1708 }
1709
1710
1711 INLINE_SIM_FPU (int)
1712 sim_fpu_neg (sim_fpu *f,
1713 const sim_fpu *r)
1714 {
1715 if (sim_fpu_is_snan (r))
1716 {
1717 *f = *r;
1718 f->class = sim_fpu_class_qnan;
1719 return sim_fpu_status_invalid_snan;
1720 }
1721 if (sim_fpu_is_qnan (r))
1722 {
1723 *f = *r;
1724 return 0;
1725 }
1726 *f = *r;
1727 f->sign = !r->sign;
1728 return 0;
1729 }
1730
1731
1732 INLINE_SIM_FPU (int)
1733 sim_fpu_abs (sim_fpu *f,
1734 const sim_fpu *r)
1735 {
1736 if (sim_fpu_is_snan (r))
1737 {
1738 *f = *r;
1739 f->class = sim_fpu_class_qnan;
1740 return sim_fpu_status_invalid_snan;
1741 }
1742 if (sim_fpu_is_qnan (r))
1743 {
1744 *f = *r;
1745 return 0;
1746 }
1747 *f = *r;
1748 f->sign = 0;
1749 return 0;
1750 }
1751
1752
1753 INLINE_SIM_FPU (int)
1754 sim_fpu_inv (sim_fpu *f,
1755 const sim_fpu *r)
1756 {
1757 if (sim_fpu_is_snan (r))
1758 {
1759 *f = *r;
1760 f->class = sim_fpu_class_qnan;
1761 return sim_fpu_status_invalid_snan;
1762 }
1763 if (sim_fpu_is_qnan (r))
1764 {
1765 *f = *r;
1766 f->class = sim_fpu_class_qnan;
1767 return 0;
1768 }
1769 if (sim_fpu_is_infinity (r))
1770 {
1771 *f = sim_fpu_zero;
1772 f->sign = r->sign;
1773 return 0;
1774 }
1775 if (sim_fpu_is_zero (r))
1776 {
1777 f->class = sim_fpu_class_infinity;
1778 f->sign = r->sign;
1779 return sim_fpu_status_invalid_div0;
1780 }
1781 *f = *r;
1782 f->normal_exp = - r->normal_exp;
1783 return 0;
1784 }
1785
1786
1787 INLINE_SIM_FPU (int)
1788 sim_fpu_sqrt (sim_fpu *f,
1789 const sim_fpu *r)
1790 {
1791 if (sim_fpu_is_snan (r))
1792 {
1793 *f = sim_fpu_qnan;
1794 return sim_fpu_status_invalid_snan;
1795 }
1796 if (sim_fpu_is_qnan (r))
1797 {
1798 *f = sim_fpu_qnan;
1799 return 0;
1800 }
1801 if (sim_fpu_is_zero (r))
1802 {
1803 f->class = sim_fpu_class_zero;
1804 f->sign = r->sign;
1805 f->normal_exp = 0;
1806 return 0;
1807 }
1808 if (sim_fpu_is_infinity (r))
1809 {
1810 if (r->sign)
1811 {
1812 *f = sim_fpu_qnan;
1813 return sim_fpu_status_invalid_sqrt;
1814 }
1815 else
1816 {
1817 f->class = sim_fpu_class_infinity;
1818 f->sign = 0;
1819 f->sign = 0;
1820 return 0;
1821 }
1822 }
1823 if (r->sign)
1824 {
1825 *f = sim_fpu_qnan;
1826 return sim_fpu_status_invalid_sqrt;
1827 }
1828
1829 /* @(#)e_sqrt.c 5.1 93/09/24 */
1830 /*
1831 * ====================================================
1832 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
1833 *
1834 * Developed at SunPro, a Sun Microsystems, Inc. business.
1835 * Permission to use, copy, modify, and distribute this
1836 * software is freely granted, provided that this notice
1837 * is preserved.
1838 * ====================================================
1839 */
1840
1841 /* __ieee754_sqrt(x)
1842 * Return correctly rounded sqrt.
1843 * ------------------------------------------
1844 * | Use the hardware sqrt if you have one |
1845 * ------------------------------------------
1846 * Method:
1847 * Bit by bit method using integer arithmetic. (Slow, but portable)
1848 * 1. Normalization
1849 * Scale x to y in [1,4) with even powers of 2:
1850 * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
1851 * sqrt(x) = 2^k * sqrt(y)
1852 -
1853 - Since:
1854 - sqrt ( x*2^(2m) ) = sqrt(x).2^m ; m even
1855 - sqrt ( x*2^(2m + 1) ) = sqrt(2.x).2^m ; m odd
1856 - Define:
1857 - y = ((m even) ? x : 2.x)
1858 - Then:
1859 - y in [1, 4) ; [IMPLICIT_1,IMPLICIT_4)
1860 - And:
1861 - sqrt (y) in [1, 2) ; [IMPLICIT_1,IMPLICIT_2)
1862 -
1863 * 2. Bit by bit computation
1864 * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
1865 * i 0
1866 * i+1 2
1867 * s = 2*q , and y = 2 * ( y - q ). (1)
1868 * i i i i
1869 *
1870 * To compute q from q , one checks whether
1871 * i+1 i
1872 *
1873 * -(i+1) 2
1874 * (q + 2 ) <= y. (2)
1875 * i
1876 * -(i+1)
1877 * If (2) is false, then q = q ; otherwise q = q + 2 .
1878 * i+1 i i+1 i
1879 *
1880 * With some algebric manipulation, it is not difficult to see
1881 * that (2) is equivalent to
1882 * -(i+1)
1883 * s + 2 <= y (3)
1884 * i i
1885 *
1886 * The advantage of (3) is that s and y can be computed by
1887 * i i
1888 * the following recurrence formula:
1889 * if (3) is false
1890 *
1891 * s = s , y = y ; (4)
1892 * i+1 i i+1 i
1893 *
1894 -
1895 - NOTE: y = 2*y
1896 - i+1 i
1897 -
1898 * otherwise,
1899 * -i -(i+1)
1900 * s = s + 2 , y = y - s - 2 (5)
1901 * i+1 i i+1 i i
1902 *
1903 -
1904 - -(i+1)
1905 - NOTE: y = 2 (y - s - 2 )
1906 - i+1 i i
1907 -
1908 * One may easily use induction to prove (4) and (5).
1909 * Note. Since the left hand side of (3) contain only i+2 bits,
1910 * it does not necessary to do a full (53-bit) comparison
1911 * in (3).
1912 * 3. Final rounding
1913 * After generating the 53 bits result, we compute one more bit.
1914 * Together with the remainder, we can decide whether the
1915 * result is exact, bigger than 1/2ulp, or less than 1/2ulp
1916 * (it will never equal to 1/2ulp).
1917 * The rounding mode can be detected by checking whether
1918 * huge + tiny is equal to huge, and whether huge - tiny is
1919 * equal to huge for some floating point number "huge" and "tiny".
1920 *
1921 * Special cases:
1922 * sqrt(+-0) = +-0 ... exact
1923 * sqrt(inf) = inf
1924 * sqrt(-ve) = NaN ... with invalid signal
1925 * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
1926 *
1927 * Other methods : see the appended file at the end of the program below.
1928 *---------------
1929 */
1930
1931 {
1932 /* generate sqrt(x) bit by bit */
1933 unsigned64 y;
1934 unsigned64 q;
1935 unsigned64 s;
1936 unsigned64 b;
1937
1938 f->class = sim_fpu_class_number;
1939 f->sign = 0;
1940 y = r->fraction;
1941 f->normal_exp = (r->normal_exp >> 1); /* exp = [exp/2] */
1942
1943 /* odd exp, double x to make it even */
1944 ASSERT (y >= IMPLICIT_1 && y < IMPLICIT_4);
1945 if ((r->normal_exp & 1))
1946 {
1947 y += y;
1948 }
1949 ASSERT (y >= IMPLICIT_1 && y < (IMPLICIT_2 << 1));
1950
1951 /* Let loop determine first value of s (either 1 or 2) */
1952 b = IMPLICIT_1;
1953 q = 0;
1954 s = 0;
1955
1956 while (b)
1957 {
1958 unsigned64 t = s + b;
1959 if (t <= y)
1960 {
1961 s |= (b << 1);
1962 y -= t;
1963 q |= b;
1964 }
1965 y <<= 1;
1966 b >>= 1;
1967 }
1968
1969 ASSERT (q >= IMPLICIT_1 && q < IMPLICIT_2);
1970 f->fraction = q;
1971 if (y != 0)
1972 {
1973 f->fraction |= 1; /* stick remaining bits */
1974 return sim_fpu_status_inexact;
1975 }
1976 else
1977 return 0;
1978 }
1979 }
1980
1981
1982 /* int/long <-> sim_fpu */
1983
1984 INLINE_SIM_FPU (int)
1985 sim_fpu_i32to (sim_fpu *f,
1986 signed32 i,
1987 sim_fpu_round round)
1988 {
1989 i2fpu (f, i, 0);
1990 return 0;
1991 }
1992
1993 INLINE_SIM_FPU (int)
1994 sim_fpu_u32to (sim_fpu *f,
1995 unsigned32 u,
1996 sim_fpu_round round)
1997 {
1998 u2fpu (f, u, 0);
1999 return 0;
2000 }
2001
2002 INLINE_SIM_FPU (int)
2003 sim_fpu_i64to (sim_fpu *f,
2004 signed64 i,
2005 sim_fpu_round round)
2006 {
2007 i2fpu (f, i, 1);
2008 return 0;
2009 }
2010
2011 INLINE_SIM_FPU (int)
2012 sim_fpu_u64to (sim_fpu *f,
2013 unsigned64 u,
2014 sim_fpu_round round)
2015 {
2016 u2fpu (f, u, 1);
2017 return 0;
2018 }
2019
2020
2021 INLINE_SIM_FPU (int)
2022 sim_fpu_to32i (signed32 *i,
2023 const sim_fpu *f,
2024 sim_fpu_round round)
2025 {
2026 signed64 i64;
2027 int status = fpu2i (&i64, f, 0, round);
2028 *i = i64;
2029 return status;
2030 }
2031
2032 INLINE_SIM_FPU (int)
2033 sim_fpu_to32u (unsigned32 *u,
2034 const sim_fpu *f,
2035 sim_fpu_round round)
2036 {
2037 unsigned64 u64;
2038 int status = fpu2u (&u64, f, 0);
2039 *u = u64;
2040 return status;
2041 }
2042
2043 INLINE_SIM_FPU (int)
2044 sim_fpu_to64i (signed64 *i,
2045 const sim_fpu *f,
2046 sim_fpu_round round)
2047 {
2048 return fpu2i (i, f, 1, round);
2049 }
2050
2051
2052 INLINE_SIM_FPU (int)
2053 sim_fpu_to64u (unsigned64 *u,
2054 const sim_fpu *f,
2055 sim_fpu_round round)
2056 {
2057 return fpu2u (u, f, 1);
2058 }
2059
2060
2061
2062 /* sim_fpu -> host format */
2063
2064 #if 0
2065 INLINE_SIM_FPU (float)
2066 sim_fpu_2f (const sim_fpu *f)
2067 {
2068 return fval.d;
2069 }
2070 #endif
2071
2072
2073 INLINE_SIM_FPU (double)
2074 sim_fpu_2d (const sim_fpu *s)
2075 {
2076 sim_fpu_map val;
2077 if (sim_fpu_is_snan (s))
2078 {
2079 /* gag SNaN's */
2080 sim_fpu n = *s;
2081 n.class = sim_fpu_class_qnan;
2082 val.i = pack_fpu (&n, 1);
2083 }
2084 else
2085 {
2086 val.i = pack_fpu (s, 1);
2087 }
2088 return val.d;
2089 }
2090
2091
2092 #if 0
2093 INLINE_SIM_FPU (void)
2094 sim_fpu_f2 (sim_fpu *f,
2095 float s)
2096 {
2097 sim_fpu_map val;
2098 val.d = s;
2099 unpack_fpu (f, val.i, 1);
2100 }
2101 #endif
2102
2103
2104 INLINE_SIM_FPU (void)
2105 sim_fpu_d2 (sim_fpu *f,
2106 double d)
2107 {
2108 sim_fpu_map val;
2109 val.d = d;
2110 unpack_fpu (f, val.i, 1);
2111 }
2112
2113
2114 /* General */
2115
2116 INLINE_SIM_FPU (int)
2117 sim_fpu_is_nan (const sim_fpu *d)
2118 {
2119 switch (d->class)
2120 {
2121 case sim_fpu_class_qnan:
2122 case sim_fpu_class_snan:
2123 return 1;
2124 default:
2125 return 0;
2126 }
2127 }
2128
2129 INLINE_SIM_FPU (int)
2130 sim_fpu_is_qnan (const sim_fpu *d)
2131 {
2132 switch (d->class)
2133 {
2134 case sim_fpu_class_qnan:
2135 return 1;
2136 default:
2137 return 0;
2138 }
2139 }
2140
2141 INLINE_SIM_FPU (int)
2142 sim_fpu_is_snan (const sim_fpu *d)
2143 {
2144 switch (d->class)
2145 {
2146 case sim_fpu_class_snan:
2147 return 1;
2148 default:
2149 return 0;
2150 }
2151 }
2152
2153 INLINE_SIM_FPU (int)
2154 sim_fpu_is_zero (const sim_fpu *d)
2155 {
2156 switch (d->class)
2157 {
2158 case sim_fpu_class_zero:
2159 return 1;
2160 default:
2161 return 0;
2162 }
2163 }
2164
2165 INLINE_SIM_FPU (int)
2166 sim_fpu_is_infinity (const sim_fpu *d)
2167 {
2168 switch (d->class)
2169 {
2170 case sim_fpu_class_infinity:
2171 return 1;
2172 default:
2173 return 0;
2174 }
2175 }
2176
2177 INLINE_SIM_FPU (int)
2178 sim_fpu_is_number (const sim_fpu *d)
2179 {
2180 switch (d->class)
2181 {
2182 case sim_fpu_class_denorm:
2183 case sim_fpu_class_number:
2184 return 1;
2185 default:
2186 return 0;
2187 }
2188 }
2189
2190 INLINE_SIM_FPU (int)
2191 sim_fpu_is_denorm (const sim_fpu *d)
2192 {
2193 switch (d->class)
2194 {
2195 case sim_fpu_class_denorm:
2196 return 1;
2197 default:
2198 return 0;
2199 }
2200 }
2201
2202
2203 INLINE_SIM_FPU (int)
2204 sim_fpu_sign (const sim_fpu *d)
2205 {
2206 return d->sign;
2207 }
2208
2209
2210 INLINE_SIM_FPU (int)
2211 sim_fpu_exp (const sim_fpu *d)
2212 {
2213 return d->normal_exp;
2214 }
2215
2216
2217
2218 INLINE_SIM_FPU (int)
2219 sim_fpu_is (const sim_fpu *d)
2220 {
2221 switch (d->class)
2222 {
2223 case sim_fpu_class_qnan:
2224 return SIM_FPU_IS_QNAN;
2225 case sim_fpu_class_snan:
2226 return SIM_FPU_IS_SNAN;
2227 case sim_fpu_class_infinity:
2228 if (d->sign)
2229 return SIM_FPU_IS_NINF;
2230 else
2231 return SIM_FPU_IS_PINF;
2232 case sim_fpu_class_number:
2233 if (d->sign)
2234 return SIM_FPU_IS_NNUMBER;
2235 else
2236 return SIM_FPU_IS_PNUMBER;
2237 case sim_fpu_class_denorm:
2238 if (d->sign)
2239 return SIM_FPU_IS_NDENORM;
2240 else
2241 return SIM_FPU_IS_PDENORM;
2242 case sim_fpu_class_zero:
2243 if (d->sign)
2244 return SIM_FPU_IS_NZERO;
2245 else
2246 return SIM_FPU_IS_PZERO;
2247 default:
2248 return -1;
2249 abort ();
2250 }
2251 }
2252
2253 INLINE_SIM_FPU (int)
2254 sim_fpu_cmp (const sim_fpu *l, const sim_fpu *r)
2255 {
2256 sim_fpu res;
2257 sim_fpu_sub (&res, l, r);
2258 return sim_fpu_is (&res);
2259 }
2260
2261 INLINE_SIM_FPU (int)
2262 sim_fpu_is_lt (const sim_fpu *l, const sim_fpu *r)
2263 {
2264 int status;
2265 sim_fpu_lt (&status, l, r);
2266 return status;
2267 }
2268
2269 INLINE_SIM_FPU (int)
2270 sim_fpu_is_le (const sim_fpu *l, const sim_fpu *r)
2271 {
2272 int is;
2273 sim_fpu_le (&is, l, r);
2274 return is;
2275 }
2276
2277 INLINE_SIM_FPU (int)
2278 sim_fpu_is_eq (const sim_fpu *l, const sim_fpu *r)
2279 {
2280 int is;
2281 sim_fpu_eq (&is, l, r);
2282 return is;
2283 }
2284
2285 INLINE_SIM_FPU (int)
2286 sim_fpu_is_ne (const sim_fpu *l, const sim_fpu *r)
2287 {
2288 int is;
2289 sim_fpu_ne (&is, l, r);
2290 return is;
2291 }
2292
2293 INLINE_SIM_FPU (int)
2294 sim_fpu_is_ge (const sim_fpu *l, const sim_fpu *r)
2295 {
2296 int is;
2297 sim_fpu_ge (&is, l, r);
2298 return is;
2299 }
2300
2301 INLINE_SIM_FPU (int)
2302 sim_fpu_is_gt (const sim_fpu *l, const sim_fpu *r)
2303 {
2304 int is;
2305 sim_fpu_gt (&is, l, r);
2306 return is;
2307 }
2308
2309
2310 /* Compare operators */
2311
2312 INLINE_SIM_FPU (int)
2313 sim_fpu_lt (int *is,
2314 const sim_fpu *l,
2315 const sim_fpu *r)
2316 {
2317 if (!sim_fpu_is_nan (l) && !sim_fpu_is_nan (r))
2318 {
2319 sim_fpu_map lval;
2320 sim_fpu_map rval;
2321 lval.i = pack_fpu (l, 1);
2322 rval.i = pack_fpu (r, 1);
2323 (*is) = (lval.d < rval.d);
2324 return 0;
2325 }
2326 else if (sim_fpu_is_snan (l) || sim_fpu_is_snan (r))
2327 {
2328 *is = 0;
2329 return sim_fpu_status_invalid_snan;
2330 }
2331 else
2332 {
2333 *is = 0;
2334 return sim_fpu_status_invalid_qnan;
2335 }
2336 }
2337
2338 INLINE_SIM_FPU (int)
2339 sim_fpu_le (int *is,
2340 const sim_fpu *l,
2341 const sim_fpu *r)
2342 {
2343 if (!sim_fpu_is_nan (l) && !sim_fpu_is_nan (r))
2344 {
2345 sim_fpu_map lval;
2346 sim_fpu_map rval;
2347 lval.i = pack_fpu (l, 1);
2348 rval.i = pack_fpu (r, 1);
2349 *is = (lval.d <= rval.d);
2350 return 0;
2351 }
2352 else if (sim_fpu_is_snan (l) || sim_fpu_is_snan (r))
2353 {
2354 *is = 0;
2355 return sim_fpu_status_invalid_snan;
2356 }
2357 else
2358 {
2359 *is = 0;
2360 return sim_fpu_status_invalid_qnan;
2361 }
2362 }
2363
2364 INLINE_SIM_FPU (int)
2365 sim_fpu_eq (int *is,
2366 const sim_fpu *l,
2367 const sim_fpu *r)
2368 {
2369 if (!sim_fpu_is_nan (l) && !sim_fpu_is_nan (r))
2370 {
2371 sim_fpu_map lval;
2372 sim_fpu_map rval;
2373 lval.i = pack_fpu (l, 1);
2374 rval.i = pack_fpu (r, 1);
2375 (*is) = (lval.d == rval.d);
2376 return 0;
2377 }
2378 else if (sim_fpu_is_snan (l) || sim_fpu_is_snan (r))
2379 {
2380 *is = 0;
2381 return sim_fpu_status_invalid_snan;
2382 }
2383 else
2384 {
2385 *is = 0;
2386 return sim_fpu_status_invalid_qnan;
2387 }
2388 }
2389
2390 INLINE_SIM_FPU (int)
2391 sim_fpu_ne (int *is,
2392 const sim_fpu *l,
2393 const sim_fpu *r)
2394 {
2395 if (!sim_fpu_is_nan (l) && !sim_fpu_is_nan (r))
2396 {
2397 sim_fpu_map lval;
2398 sim_fpu_map rval;
2399 lval.i = pack_fpu (l, 1);
2400 rval.i = pack_fpu (r, 1);
2401 (*is) = (lval.d != rval.d);
2402 return 0;
2403 }
2404 else if (sim_fpu_is_snan (l) || sim_fpu_is_snan (r))
2405 {
2406 *is = 0;
2407 return sim_fpu_status_invalid_snan;
2408 }
2409 else
2410 {
2411 *is = 0;
2412 return sim_fpu_status_invalid_qnan;
2413 }
2414 }
2415
2416 INLINE_SIM_FPU (int)
2417 sim_fpu_ge (int *is,
2418 const sim_fpu *l,
2419 const sim_fpu *r)
2420 {
2421 return sim_fpu_le (is, r, l);
2422 }
2423
2424 INLINE_SIM_FPU (int)
2425 sim_fpu_gt (int *is,
2426 const sim_fpu *l,
2427 const sim_fpu *r)
2428 {
2429 return sim_fpu_lt (is, r, l);
2430 }
2431
2432
2433 /* A number of useful constants */
2434
2435 #if EXTERN_SIM_FPU_P
2436 const sim_fpu sim_fpu_zero = {
2437 sim_fpu_class_zero,
2438 };
2439 const sim_fpu sim_fpu_qnan = {
2440 sim_fpu_class_qnan,
2441 };
2442 const sim_fpu sim_fpu_one = {
2443 sim_fpu_class_number, 0, IMPLICIT_1, 0
2444 };
2445 const sim_fpu sim_fpu_two = {
2446 sim_fpu_class_number, 0, IMPLICIT_1, 1
2447 };
2448 const sim_fpu sim_fpu_max32 = {
2449 sim_fpu_class_number, 0, LSMASK64 (NR_FRAC_GUARD, NR_GUARDS32), NORMAL_EXPMAX32
2450 };
2451 const sim_fpu sim_fpu_max64 = {
2452 sim_fpu_class_number, 0, LSMASK64 (NR_FRAC_GUARD, NR_GUARDS64), NORMAL_EXPMAX64
2453 };
2454 #endif
2455
2456
2457 /* For debugging */
2458
2459 INLINE_SIM_FPU (void)
2460 sim_fpu_print_fpu (const sim_fpu *f,
2461 sim_fpu_print_func *print,
2462 void *arg)
2463 {
2464 sim_fpu_printn_fpu (f, print, -1, arg);
2465 }
2466
2467 INLINE_SIM_FPU (void)
2468 sim_fpu_printn_fpu (const sim_fpu *f,
2469 sim_fpu_print_func *print,
2470 int digits,
2471 void *arg)
2472 {
2473 print (arg, "%s", f->sign ? "-" : "+");
2474 switch (f->class)
2475 {
2476 case sim_fpu_class_qnan:
2477 print (arg, "0.");
2478 print_bits (f->fraction, NR_FRAC_GUARD - 1, digits, print, arg);
2479 print (arg, "*QuietNaN");
2480 break;
2481 case sim_fpu_class_snan:
2482 print (arg, "0.");
2483 print_bits (f->fraction, NR_FRAC_GUARD - 1, digits, print, arg);
2484 print (arg, "*SignalNaN");
2485 break;
2486 case sim_fpu_class_zero:
2487 print (arg, "0.0");
2488 break;
2489 case sim_fpu_class_infinity:
2490 print (arg, "INF");
2491 break;
2492 case sim_fpu_class_number:
2493 case sim_fpu_class_denorm:
2494 print (arg, "1.");
2495 print_bits (f->fraction, NR_FRAC_GUARD - 1, digits, print, arg);
2496 print (arg, "*2^%+d", f->normal_exp);
2497 ASSERT (f->fraction >= IMPLICIT_1);
2498 ASSERT (f->fraction < IMPLICIT_2);
2499 }
2500 }
2501
2502
2503 INLINE_SIM_FPU (void)
2504 sim_fpu_print_status (int status,
2505 sim_fpu_print_func *print,
2506 void *arg)
2507 {
2508 int i = 1;
2509 char *prefix = "";
2510 while (status >= i)
2511 {
2512 switch ((sim_fpu_status) (status & i))
2513 {
2514 case sim_fpu_status_denorm:
2515 print (arg, "%sD", prefix);
2516 break;
2517 case sim_fpu_status_invalid_snan:
2518 print (arg, "%sSNaN", prefix);
2519 break;
2520 case sim_fpu_status_invalid_qnan:
2521 print (arg, "%sQNaN", prefix);
2522 break;
2523 case sim_fpu_status_invalid_isi:
2524 print (arg, "%sISI", prefix);
2525 break;
2526 case sim_fpu_status_invalid_idi:
2527 print (arg, "%sIDI", prefix);
2528 break;
2529 case sim_fpu_status_invalid_zdz:
2530 print (arg, "%sZDZ", prefix);
2531 break;
2532 case sim_fpu_status_invalid_imz:
2533 print (arg, "%sIMZ", prefix);
2534 break;
2535 case sim_fpu_status_invalid_cvi:
2536 print (arg, "%sCVI", prefix);
2537 break;
2538 case sim_fpu_status_invalid_cmp:
2539 print (arg, "%sCMP", prefix);
2540 break;
2541 case sim_fpu_status_invalid_sqrt:
2542 print (arg, "%sSQRT", prefix);
2543 break;
2544 break;
2545 case sim_fpu_status_inexact:
2546 print (arg, "%sX", prefix);
2547 break;
2548 break;
2549 case sim_fpu_status_overflow:
2550 print (arg, "%sO", prefix);
2551 break;
2552 break;
2553 case sim_fpu_status_underflow:
2554 print (arg, "%sU", prefix);
2555 break;
2556 break;
2557 case sim_fpu_status_invalid_div0:
2558 print (arg, "%s/", prefix);
2559 break;
2560 break;
2561 case sim_fpu_status_rounded:
2562 print (arg, "%sR", prefix);
2563 break;
2564 break;
2565 }
2566 i <<= 1;
2567 prefix = ",";
2568 }
2569 }
2570
2571 #endif
This page took 0.082446 seconds and 5 git commands to generate.