f2f2b406767001d8eb4c6ef45225872c69266c0b
[deliverable/binutils-gdb.git] / sim / common / sim-fpu.h
1 /* Simulator Floating-point support.
2
3 Copyright 1997, 1998, 2002, 2003, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support.
7
8 This file is part of GDB, the GNU debugger.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23
24
25 #ifndef SIM_FPU_H
26 #define SIM_FPU_H
27
28
29
30 /* The FPU intermediate type - this object, passed by reference,
31 should be treated as opaque.
32
33
34 Pragmatics - pass struct by ref:
35
36 The alternatives for this object/interface that were considered
37 were: a packed 64 bit value; an unpacked structure passed by value;
38 and an unpacked structure passed by reference.
39
40 The packed 64 bit value was rejected because: it limited the
41 precision of intermediate values; reasonable performance would only
42 be achieved when the sim_fpu package was in-lined allowing repeated
43 unpacking operations to be eliminated.
44
45 For unpacked structures (passed by value and reference), the code
46 quality of GCC-2.7 (on x86) for each alternative was compared.
47 Needless to say the results, while better than for a packed 64 bit
48 object, were still poor (GCC had only limited support for the
49 optimization of references to structure members). Regardless, the
50 struct-by-ref alternative achieved better results when compiled
51 with (better speed) and without (better code density) in-lining.
52 Here's looking forward to an improved GCC optimizer.
53
54
55 Pragmatics - avoid host FP hardware:
56
57 FP operations can be implemented by either: the host's floating
58 point hardware; or by emulating the FP operations using integer
59 only routines. This is direct tradeoff between speed, portability
60 and correctness.
61
62 The two principal reasons for selecting portability and correctness
63 over speed are:
64
65 1 - Correctness. The assumption that FP correctness wasn't an
66 issue for code being run on simulators was wrong. Instead of
67 running FP tolerant (?) code, simulator users instead typically run
68 very aggressive FP code sequences. The sole purpose of those
69 sequences being to test the target ISA's FP implementation.
70
71 2 - Portability. The host FP implementation is not predictable. A
72 simulator modeling aggressive FP code sequences using the hosts FPU
73 relies heavily on the correctness of the hosts FP implementation.
74 It turns out that such trust can be misplaced. The behavior of
75 host FP implementations when handling edge conditions such as SNaNs
76 and exceptions varied widely.
77
78
79 */
80
81
82 typedef enum
83 {
84 sim_fpu_class_zero,
85 sim_fpu_class_snan,
86 sim_fpu_class_qnan,
87 sim_fpu_class_number,
88 sim_fpu_class_denorm,
89 sim_fpu_class_infinity,
90 } sim_fpu_class;
91
92 typedef struct _sim_fpu {
93 sim_fpu_class class;
94 int sign;
95 unsigned64 fraction;
96 int normal_exp;
97 } sim_fpu;
98
99
100
101 /* Rounding options.
102
103 The value zero (sim_fpu_round_default) for ALU operations indicates
104 that, when possible, rounding should be avoided. */
105
106 typedef enum
107 {
108 sim_fpu_round_default = 0,
109 sim_fpu_round_near = 1,
110 sim_fpu_round_zero = 2,
111 sim_fpu_round_up = 3,
112 sim_fpu_round_down = 4,
113 } sim_fpu_round;
114
115
116 /* Options when handling denormalized numbers. */
117
118 typedef enum
119 {
120 sim_fpu_denorm_default = 0,
121 sim_fpu_denorm_underflow_inexact = 1,
122 sim_fpu_denorm_zero = 2,
123 } sim_fpu_denorm;
124
125
126
127 /* Status values returned by FPU operators.
128
129 When checking the result of an FP sequence (ex 32to, add, single,
130 to32) the caller may either: check the return value of each FP
131 operator; or form the union (OR) of the returned values and examine
132 them once at the end.
133
134 FIXME: This facility is still being developed. The choice of
135 status values returned and their exact meaning may changed in the
136 future. */
137
138 typedef enum
139 {
140 sim_fpu_status_invalid_snan = 1,
141 sim_fpu_status_invalid_qnan = 2,
142 sim_fpu_status_invalid_isi = 4, /* (inf - inf) */
143 sim_fpu_status_invalid_idi = 8, /* (inf / inf) */
144 sim_fpu_status_invalid_zdz = 16, /* (0 / 0) */
145 sim_fpu_status_invalid_imz = 32, /* (inf * 0) */
146 sim_fpu_status_invalid_cvi = 64, /* convert to integer */
147 sim_fpu_status_invalid_div0 = 128, /* (X / 0) */
148 sim_fpu_status_invalid_cmp = 256, /* compare */
149 sim_fpu_status_invalid_sqrt = 512,
150 sim_fpu_status_rounded = 1024,
151 sim_fpu_status_inexact = 2048,
152 sim_fpu_status_overflow = 4096,
153 sim_fpu_status_underflow = 8192,
154 sim_fpu_status_denorm = 16384,
155 } sim_fpu_status;
156
157
158
159
160 /* Directly map between a 32/64 bit register and the sim_fpu internal
161 type.
162
163 When converting from the 32/64 bit packed format to the sim_fpu
164 internal type, the operation is exact.
165
166 When converting from the sim_fpu internal type to 32/64 bit packed
167 format, the operation may result in a loss of precision. The
168 configuration macro WITH_FPU_CONVERSION controls this. By default,
169 silent round to nearest is performed. Alternatively, round up,
170 round down and round to zero can be performed. In a simulator
171 emulating exact FPU behavior, sim_fpu_round_{32,64} should be
172 called before packing the sim_fpu value. */
173
174 INLINE_SIM_FPU (void) sim_fpu_32to (sim_fpu *f, unsigned32 s);
175 INLINE_SIM_FPU (void) sim_fpu_232to (sim_fpu *f, unsigned32 h, unsigned32 l);
176 INLINE_SIM_FPU (void) sim_fpu_64to (sim_fpu *f, unsigned64 d);
177
178 INLINE_SIM_FPU (void) sim_fpu_to32 (unsigned32 *s, const sim_fpu *f);
179 INLINE_SIM_FPU (void) sim_fpu_to232 (unsigned32 *h, unsigned32 *l, const sim_fpu *f);
180 INLINE_SIM_FPU (void) sim_fpu_to64 (unsigned64 *d, const sim_fpu *f);
181
182
183 /* Create a sim_fpu struct using raw information. (FRACTION & LSMASK
184 (PRECISION-1, 0)) is assumed to contain the fraction part of the
185 floating-point number. The leading bit LSBIT (PRECISION) is always
186 implied. The number created can be represented by:
187
188 (SIGN ? "-" : "+") "1." FRACTION{PRECISION-1,0} X 2 ^ NORMAL_EXP>
189
190 You can not specify zero using this function. */
191
192 INLINE_SIM_FPU (void) sim_fpu_fractionto (sim_fpu *f, int sign, int normal_exp, unsigned64 fraction, int precision);
193
194 /* Reverse operation. If S is a non-zero number, discards the implied
195 leading one and returns PRECISION fraction bits. No rounding is
196 performed. */
197 INLINE_SIM_FPU (unsigned64) sim_fpu_tofraction (const sim_fpu *s, int precision);
198
199
200
201 /* Rounding operators.
202
203 Force an intermediate result to an exact 32/64 bit
204 representation. */
205
206 INLINE_SIM_FPU (int) sim_fpu_round_32 (sim_fpu *f,
207 sim_fpu_round round,
208 sim_fpu_denorm denorm);
209 INLINE_SIM_FPU (int) sim_fpu_round_64 (sim_fpu *f,
210 sim_fpu_round round,
211 sim_fpu_denorm denorm);
212
213
214
215 /* Arithmetic operators.
216
217 FIXME: In the future, additional arguments ROUNDING and BITSIZE may
218 be added. */
219
220 typedef int (sim_fpu_op1) (sim_fpu *f,
221 const sim_fpu *l);
222 typedef int (sim_fpu_op2) (sim_fpu *f,
223 const sim_fpu *l,
224 const sim_fpu *r);
225
226 INLINE_SIM_FPU (int) sim_fpu_add (sim_fpu *f,
227 const sim_fpu *l, const sim_fpu *r);
228 INLINE_SIM_FPU (int) sim_fpu_sub (sim_fpu *f,
229 const sim_fpu *l, const sim_fpu *r);
230 INLINE_SIM_FPU (int) sim_fpu_mul (sim_fpu *f,
231 const sim_fpu *l, const sim_fpu *r);
232 INLINE_SIM_FPU (int) sim_fpu_div (sim_fpu *f,
233 const sim_fpu *l, const sim_fpu *r);
234 INLINE_SIM_FPU (int) sim_fpu_max (sim_fpu *f,
235 const sim_fpu *l, const sim_fpu *r);
236 INLINE_SIM_FPU (int) sim_fpu_min (sim_fpu *f,
237 const sim_fpu *l, const sim_fpu *r);
238 INLINE_SIM_FPU (int) sim_fpu_neg (sim_fpu *f,
239 const sim_fpu *a);
240 INLINE_SIM_FPU (int) sim_fpu_abs (sim_fpu *f,
241 const sim_fpu *a);
242 INLINE_SIM_FPU (int) sim_fpu_inv (sim_fpu *f,
243 const sim_fpu *a);
244 INLINE_SIM_FPU (int) sim_fpu_sqrt (sim_fpu *f,
245 const sim_fpu *sqr);
246
247
248
249 /* Conversion of integer <-> floating point. */
250
251 INLINE_SIM_FPU (int) sim_fpu_i32to (sim_fpu *f, signed32 i,
252 sim_fpu_round round);
253 INLINE_SIM_FPU (int) sim_fpu_u32to (sim_fpu *f, unsigned32 u,
254 sim_fpu_round round);
255 INLINE_SIM_FPU (int) sim_fpu_i64to (sim_fpu *f, signed64 i,
256 sim_fpu_round round);
257 INLINE_SIM_FPU (int) sim_fpu_u64to (sim_fpu *f, unsigned64 u,
258 sim_fpu_round round);
259 #if 0
260 INLINE_SIM_FPU (int) sim_fpu_i232to (sim_fpu *f, signed32 h, signed32 l,
261 sim_fpu_round round);
262 #endif
263 #if 0
264 INLINE_SIM_FPU (int) sim_fpu_u232to (sim_fpu *f, unsigned32 h, unsigned32 l,
265 sim_fpu_round round);
266 #endif
267
268 INLINE_SIM_FPU (int) sim_fpu_to32i (signed32 *i, const sim_fpu *f,
269 sim_fpu_round round);
270 INLINE_SIM_FPU (int) sim_fpu_to32u (unsigned32 *u, const sim_fpu *f,
271 sim_fpu_round round);
272 INLINE_SIM_FPU (int) sim_fpu_to64i (signed64 *i, const sim_fpu *f,
273 sim_fpu_round round);
274 INLINE_SIM_FPU (int) sim_fpu_to64u (unsigned64 *u, const sim_fpu *f,
275 sim_fpu_round round);
276 #if 0
277 INLINE_SIM_FPU (int) sim_fpu_to232i (signed64 *h, signed64 *l, const sim_fpu *f,
278 sim_fpu_round round);
279 #endif
280 #if 0
281 INLINE_SIM_FPU (int) sim_fpu_to232u (unsigned64 *h, unsigned64 *l, const sim_fpu *f,
282 sim_fpu_round round);
283 #endif
284
285
286 /* Conversion of internal sim_fpu type to host double format.
287
288 For debugging/tracing only. A SNaN is never returned. */
289
290 /* INLINE_SIM_FPU (float) sim_fpu_2f (const sim_fpu *f); */
291 INLINE_SIM_FPU (double) sim_fpu_2d (const sim_fpu *d);
292
293 /* INLINE_SIM_FPU (void) sim_fpu_f2 (sim_fpu *f, float s); */
294 INLINE_SIM_FPU (void) sim_fpu_d2 (sim_fpu *f, double d);
295
296
297
298 /* Specific number classes.
299
300 NB: When either, a 32/64 bit floating points is converted to
301 internal format, or an internal format number is rounded to 32/64
302 bit precision, a special marker is retained that indicates that the
303 value was normalized. For such numbers both is_number and
304 is_denorm return true. */
305
306 INLINE_SIM_FPU (int) sim_fpu_is_nan (const sim_fpu *s); /* 1 => SNaN or QNaN */
307 INLINE_SIM_FPU (int) sim_fpu_is_snan (const sim_fpu *s); /* 1 => SNaN */
308 INLINE_SIM_FPU (int) sim_fpu_is_qnan (const sim_fpu *s); /* 1 => QNaN */
309
310 INLINE_SIM_FPU (int) sim_fpu_is_zero (const sim_fpu *s);
311 INLINE_SIM_FPU (int) sim_fpu_is_infinity (const sim_fpu *s);
312 INLINE_SIM_FPU (int) sim_fpu_is_number (const sim_fpu *s); /* !zero */
313 INLINE_SIM_FPU (int) sim_fpu_is_denorm (const sim_fpu *s); /* !zero */
314
315
316
317 /* Floating point fields */
318
319 INLINE_SIM_FPU (int) sim_fpu_sign (const sim_fpu *s);
320 INLINE_SIM_FPU (int) sim_fpu_exp (const sim_fpu *s);
321 INLINE_SIM_FPU (unsigned64) sim_fpu_fraction (const sim_fpu *s);
322 INLINE_SIM_FPU (unsigned64) sim_fpu_guard (const sim_fpu *s, int is_double);
323
324
325
326 /* Specific comparison operators
327
328 For NaNs et al., the comparison operators will set IS to zero and
329 return a nonzero result. */
330
331 INLINE_SIM_FPU (int) sim_fpu_lt (int *is, const sim_fpu *l, const sim_fpu *r);
332 INLINE_SIM_FPU (int) sim_fpu_le (int *is, const sim_fpu *l, const sim_fpu *r);
333 INLINE_SIM_FPU (int) sim_fpu_eq (int *is, const sim_fpu *l, const sim_fpu *r);
334 INLINE_SIM_FPU (int) sim_fpu_ne (int *is, const sim_fpu *l, const sim_fpu *r);
335 INLINE_SIM_FPU (int) sim_fpu_ge (int *is, const sim_fpu *l, const sim_fpu *r);
336 INLINE_SIM_FPU (int) sim_fpu_gt (int *is, const sim_fpu *l, const sim_fpu *r);
337
338 INLINE_SIM_FPU (int) sim_fpu_is_lt (const sim_fpu *l, const sim_fpu *r);
339 INLINE_SIM_FPU (int) sim_fpu_is_le (const sim_fpu *l, const sim_fpu *r);
340 INLINE_SIM_FPU (int) sim_fpu_is_eq (const sim_fpu *l, const sim_fpu *r);
341 INLINE_SIM_FPU (int) sim_fpu_is_ne (const sim_fpu *l, const sim_fpu *r);
342 INLINE_SIM_FPU (int) sim_fpu_is_ge (const sim_fpu *l, const sim_fpu *r);
343 INLINE_SIM_FPU (int) sim_fpu_is_gt (const sim_fpu *l, const sim_fpu *r);
344
345
346
347 /* General number class and comparison operators.
348
349 The result of the comparison is indicated by returning one of the
350 values below. Efficient emulation of a target FP compare
351 instruction can be achieved by redefining the values below to match
352 corresponding target FP status bits.
353
354 For instance. SIM_FPU_QNAN may be redefined to be the bit
355 `INVALID' while SIM_FPU_NINF might be redefined as the bits
356 `NEGATIVE | INFINITY | VALID'. */
357
358 #ifndef SIM_FPU_IS_SNAN
359 enum {
360 SIM_FPU_IS_SNAN = 1, /* Noisy not-a-number */
361 SIM_FPU_IS_QNAN = 2, /* Quiet not-a-number */
362 SIM_FPU_IS_NINF = 3, /* -infinity */
363 SIM_FPU_IS_PINF = 4, /* +infinity */
364 SIM_FPU_IS_NNUMBER = 5, /* -number - [ -MAX .. -MIN ] */
365 SIM_FPU_IS_PNUMBER = 6, /* +number - [ +MIN .. +MAX ] */
366 SIM_FPU_IS_NDENORM = 7, /* -denorm - ( MIN .. 0 ) */
367 SIM_FPU_IS_PDENORM = 8, /* +denorm - ( 0 .. MIN ) */
368 SIM_FPU_IS_NZERO = 9, /* -0 */
369 SIM_FPU_IS_PZERO = 10, /* +0 */
370 };
371 #endif
372
373 INLINE_SIM_FPU (int) sim_fpu_is (const sim_fpu *l);
374 INLINE_SIM_FPU (int) sim_fpu_cmp (const sim_fpu *l, const sim_fpu *r);
375
376
377
378 /* A number of useful constants. */
379
380 extern const sim_fpu sim_fpu_zero;
381 extern const sim_fpu sim_fpu_one;
382 extern const sim_fpu sim_fpu_two;
383 extern const sim_fpu sim_fpu_qnan;
384 extern const sim_fpu sim_fpu_max32;
385 extern const sim_fpu sim_fpu_max64;
386
387
388 /* Select the applicable functions for the fp_word type */
389
390 #if WITH_TARGET_FLOATING_POINT_BITSIZE == 32
391 #define sim_fpu_tofp sim_fpu_to32
392 #define sim_fpu_fpto sim_fpu_32to
393 #define sim_fpu_round_fp sim_fpu_round_32
394 #define sim_fpu_maxfp sim_fpu_max32
395 #endif
396 #if WITH_TARGET_FLOATING_POINT_BITSIZE == 64
397 #define sim_fpu_tofp sim_fpu_to64
398 #define sim_fpu_fpto sim_fpu_64to
399 #define sim_fpu_round_fp sim_fpu_round_64
400 #define sim_fpu_maxfp sim_fpu_max64
401 #endif
402
403
404
405 /* For debugging */
406
407 typedef void sim_fpu_print_func (void *, const char *, ...);
408
409 /* Print a sim_fpu with full precision. */
410 INLINE_SIM_FPU (void) sim_fpu_print_fpu (const sim_fpu *f,
411 sim_fpu_print_func *print,
412 void *arg);
413
414 /* Print a sim_fpu with `n' trailing digits. */
415 INLINE_SIM_FPU (void) sim_fpu_printn_fpu (const sim_fpu *f,
416 sim_fpu_print_func *print,
417 int digits,
418 void *arg);
419
420 INLINE_SIM_FPU (void) sim_fpu_print_status (int status,
421 sim_fpu_print_func *print,
422 void *arg);
423
424 #if H_REVEALS_MODULE_P (SIM_FPU_INLINE)
425 #include "sim-fpu.c"
426 #endif
427
428 #endif
This page took 0.03831 seconds and 4 git commands to generate.