sim: msp430: delete unused getopt.h probe
[deliverable/binutils-gdb.git] / sim / m32r / m32r.c
1 /* m32r simulator support code
2 Copyright (C) 1996-2021 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #define WANT_CPU m32rbf
21 #define WANT_CPU_M32RBF
22
23 #include "sim-main.h"
24 #include "cgen-mem.h"
25 #include "cgen-ops.h"
26 #include <stdlib.h>
27
28 /* Return the size of REGNO in bytes. */
29
30 static int
31 m32rbf_register_size (int regno)
32 {
33 return 4;
34 }
35
36 /* Decode gdb ctrl register number. */
37
38 int
39 m32r_decode_gdb_ctrl_regnum (int gdb_regnum)
40 {
41 switch (gdb_regnum)
42 {
43 case PSW_REGNUM : return H_CR_PSW;
44 case CBR_REGNUM : return H_CR_CBR;
45 case SPI_REGNUM : return H_CR_SPI;
46 case SPU_REGNUM : return H_CR_SPU;
47 case BPC_REGNUM : return H_CR_BPC;
48 case BBPSW_REGNUM : return H_CR_BBPSW;
49 case BBPC_REGNUM : return H_CR_BBPC;
50 case EVB_REGNUM : return H_CR_CR5;
51 }
52 abort ();
53 }
54
55 /* The contents of BUF are in target byte order. */
56
57 int
58 m32rbf_fetch_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len)
59 {
60 int size = m32rbf_register_size (rn);
61 if (len != size)
62 return -1;
63
64 if (rn < 16)
65 SETTWI (buf, m32rbf_h_gr_get (current_cpu, rn));
66 else
67 switch (rn)
68 {
69 case PSW_REGNUM :
70 case CBR_REGNUM :
71 case SPI_REGNUM :
72 case SPU_REGNUM :
73 case BPC_REGNUM :
74 case BBPSW_REGNUM :
75 case BBPC_REGNUM :
76 SETTWI (buf, m32rbf_h_cr_get (current_cpu,
77 m32r_decode_gdb_ctrl_regnum (rn)));
78 break;
79 case PC_REGNUM :
80 SETTWI (buf, m32rbf_h_pc_get (current_cpu));
81 break;
82 case ACCL_REGNUM :
83 SETTWI (buf, GETLODI (m32rbf_h_accum_get (current_cpu)));
84 break;
85 case ACCH_REGNUM :
86 SETTWI (buf, GETHIDI (m32rbf_h_accum_get (current_cpu)));
87 break;
88 default :
89 return 0;
90 }
91
92 return size;
93 }
94
95 /* The contents of BUF are in target byte order. */
96
97 int
98 m32rbf_store_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len)
99 {
100 int size = m32rbf_register_size (rn);
101 if (len != size)
102 return -1;
103
104 if (rn < 16)
105 m32rbf_h_gr_set (current_cpu, rn, GETTWI (buf));
106 else
107 switch (rn)
108 {
109 case PSW_REGNUM :
110 case CBR_REGNUM :
111 case SPI_REGNUM :
112 case SPU_REGNUM :
113 case BPC_REGNUM :
114 case BBPSW_REGNUM :
115 case BBPC_REGNUM :
116 m32rbf_h_cr_set (current_cpu,
117 m32r_decode_gdb_ctrl_regnum (rn),
118 GETTWI (buf));
119 break;
120 case PC_REGNUM :
121 m32rbf_h_pc_set (current_cpu, GETTWI (buf));
122 break;
123 case ACCL_REGNUM :
124 {
125 DI val = m32rbf_h_accum_get (current_cpu);
126 SETLODI (val, GETTWI (buf));
127 m32rbf_h_accum_set (current_cpu, val);
128 break;
129 }
130 case ACCH_REGNUM :
131 {
132 DI val = m32rbf_h_accum_get (current_cpu);
133 SETHIDI (val, GETTWI (buf));
134 m32rbf_h_accum_set (current_cpu, val);
135 break;
136 }
137 default :
138 return 0;
139 }
140
141 return size;
142 }
143 \f
144 USI
145 m32rbf_h_cr_get_handler (SIM_CPU *current_cpu, UINT cr)
146 {
147 switch (cr)
148 {
149 case H_CR_PSW : /* psw */
150 return (((CPU (h_bpsw) & 0xc1) << 8)
151 | ((CPU (h_psw) & 0xc0) << 0)
152 | GET_H_COND ());
153 case H_CR_BBPSW : /* backup backup psw */
154 return CPU (h_bbpsw) & 0xc1;
155 case H_CR_CBR : /* condition bit */
156 return GET_H_COND ();
157 case H_CR_SPI : /* interrupt stack pointer */
158 if (! GET_H_SM ())
159 return CPU (h_gr[H_GR_SP]);
160 else
161 return CPU (h_cr[H_CR_SPI]);
162 case H_CR_SPU : /* user stack pointer */
163 if (GET_H_SM ())
164 return CPU (h_gr[H_GR_SP]);
165 else
166 return CPU (h_cr[H_CR_SPU]);
167 case H_CR_BPC : /* backup pc */
168 return CPU (h_cr[H_CR_BPC]) & 0xfffffffe;
169 case H_CR_BBPC : /* backup backup pc */
170 return CPU (h_cr[H_CR_BBPC]) & 0xfffffffe;
171 case 4 : /* ??? unspecified, but apparently available */
172 case 5 : /* ??? unspecified, but apparently available */
173 return CPU (h_cr[cr]);
174 default :
175 return 0;
176 }
177 }
178
179 void
180 m32rbf_h_cr_set_handler (SIM_CPU *current_cpu, UINT cr, USI newval)
181 {
182 switch (cr)
183 {
184 case H_CR_PSW : /* psw */
185 {
186 int old_sm = (CPU (h_psw) & 0x80) != 0;
187 int new_sm = (newval & 0x80) != 0;
188 CPU (h_bpsw) = (newval >> 8) & 0xff;
189 CPU (h_psw) = newval & 0xff;
190 SET_H_COND (newval & 1);
191 /* When switching stack modes, update the registers. */
192 if (old_sm != new_sm)
193 {
194 if (old_sm)
195 {
196 /* Switching user -> system. */
197 CPU (h_cr[H_CR_SPU]) = CPU (h_gr[H_GR_SP]);
198 CPU (h_gr[H_GR_SP]) = CPU (h_cr[H_CR_SPI]);
199 }
200 else
201 {
202 /* Switching system -> user. */
203 CPU (h_cr[H_CR_SPI]) = CPU (h_gr[H_GR_SP]);
204 CPU (h_gr[H_GR_SP]) = CPU (h_cr[H_CR_SPU]);
205 }
206 }
207 break;
208 }
209 case H_CR_BBPSW : /* backup backup psw */
210 CPU (h_bbpsw) = newval & 0xff;
211 break;
212 case H_CR_CBR : /* condition bit */
213 SET_H_COND (newval & 1);
214 break;
215 case H_CR_SPI : /* interrupt stack pointer */
216 if (! GET_H_SM ())
217 CPU (h_gr[H_GR_SP]) = newval;
218 else
219 CPU (h_cr[H_CR_SPI]) = newval;
220 break;
221 case H_CR_SPU : /* user stack pointer */
222 if (GET_H_SM ())
223 CPU (h_gr[H_GR_SP]) = newval;
224 else
225 CPU (h_cr[H_CR_SPU]) = newval;
226 break;
227 case H_CR_BPC : /* backup pc */
228 CPU (h_cr[H_CR_BPC]) = newval;
229 break;
230 case H_CR_BBPC : /* backup backup pc */
231 CPU (h_cr[H_CR_BBPC]) = newval;
232 break;
233 case 4 : /* ??? unspecified, but apparently available */
234 case 5 : /* ??? unspecified, but apparently available */
235 CPU (h_cr[cr]) = newval;
236 break;
237 default :
238 /* ignore */
239 break;
240 }
241 }
242
243 /* Cover fns to access h-psw. */
244
245 UQI
246 m32rbf_h_psw_get_handler (SIM_CPU *current_cpu)
247 {
248 return (CPU (h_psw) & 0xfe) | (CPU (h_cond) & 1);
249 }
250
251 void
252 m32rbf_h_psw_set_handler (SIM_CPU *current_cpu, UQI newval)
253 {
254 CPU (h_psw) = newval;
255 CPU (h_cond) = newval & 1;
256 }
257
258 /* Cover fns to access h-accum. */
259
260 DI
261 m32rbf_h_accum_get_handler (SIM_CPU *current_cpu)
262 {
263 /* Sign extend the top 8 bits. */
264 DI r;
265 #if 1
266 r = ANDDI (CPU (h_accum), MAKEDI (0xffffff, 0xffffffff));
267 r = XORDI (r, MAKEDI (0x800000, 0));
268 r = SUBDI (r, MAKEDI (0x800000, 0));
269 #else
270 SI hi,lo;
271 r = CPU (h_accum);
272 hi = GETHIDI (r);
273 lo = GETLODI (r);
274 hi = ((hi & 0xffffff) ^ 0x800000) - 0x800000;
275 r = MAKEDI (hi, lo);
276 #endif
277 return r;
278 }
279
280 void
281 m32rbf_h_accum_set_handler (SIM_CPU *current_cpu, DI newval)
282 {
283 CPU (h_accum) = newval;
284 }
285 \f
286 #if WITH_PROFILE_MODEL_P
287
288 /* FIXME: Some of these should be inline or macros. Later. */
289
290 /* Initialize cycle counting for an insn.
291 FIRST_P is non-zero if this is the first insn in a set of parallel
292 insns. */
293
294 void
295 m32rbf_model_insn_before (SIM_CPU *cpu, int first_p)
296 {
297 M32R_MISC_PROFILE *mp = CPU_M32R_MISC_PROFILE (cpu);
298 mp->cti_stall = 0;
299 mp->load_stall = 0;
300 if (first_p)
301 {
302 mp->load_regs_pending = 0;
303 mp->biggest_cycles = 0;
304 }
305 }
306
307 /* Record the cycles computed for an insn.
308 LAST_P is non-zero if this is the last insn in a set of parallel insns,
309 and we update the total cycle count.
310 CYCLES is the cycle count of the insn. */
311
312 void
313 m32rbf_model_insn_after (SIM_CPU *cpu, int last_p, int cycles)
314 {
315 PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
316 M32R_MISC_PROFILE *mp = CPU_M32R_MISC_PROFILE (cpu);
317 unsigned long total = cycles + mp->cti_stall + mp->load_stall;
318
319 if (last_p)
320 {
321 unsigned long biggest = total > mp->biggest_cycles ? total : mp->biggest_cycles;
322 PROFILE_MODEL_TOTAL_CYCLES (p) += biggest;
323 PROFILE_MODEL_CUR_INSN_CYCLES (p) = total;
324 }
325 else
326 {
327 /* Here we take advantage of the fact that !last_p -> first_p. */
328 mp->biggest_cycles = total;
329 PROFILE_MODEL_CUR_INSN_CYCLES (p) = total;
330 }
331
332 /* Branch and load stall counts are recorded independently of the
333 total cycle count. */
334 PROFILE_MODEL_CTI_STALL_CYCLES (p) += mp->cti_stall;
335 PROFILE_MODEL_LOAD_STALL_CYCLES (p) += mp->load_stall;
336
337 mp->load_regs = mp->load_regs_pending;
338 }
339
340 static INLINE void
341 check_load_stall (SIM_CPU *cpu, int regno)
342 {
343 UINT h_gr = CPU_M32R_MISC_PROFILE (cpu)->load_regs;
344
345 if (regno != -1
346 && (h_gr & (1 << regno)) != 0)
347 {
348 CPU_M32R_MISC_PROFILE (cpu)->load_stall += 2;
349 if (TRACE_INSN_P (cpu))
350 cgen_trace_printf (cpu, " ; Load stall of 2 cycles.");
351 }
352 }
353
354 int
355 m32rbf_model_m32r_d_u_exec (SIM_CPU *cpu, const IDESC *idesc,
356 int unit_num, int referenced,
357 INT sr, INT sr2, INT dr)
358 {
359 check_load_stall (cpu, sr);
360 check_load_stall (cpu, sr2);
361 return idesc->timing->units[unit_num].done;
362 }
363
364 int
365 m32rbf_model_m32r_d_u_cmp (SIM_CPU *cpu, const IDESC *idesc,
366 int unit_num, int referenced,
367 INT src1, INT src2)
368 {
369 check_load_stall (cpu, src1);
370 check_load_stall (cpu, src2);
371 return idesc->timing->units[unit_num].done;
372 }
373
374 int
375 m32rbf_model_m32r_d_u_mac (SIM_CPU *cpu, const IDESC *idesc,
376 int unit_num, int referenced,
377 INT src1, INT src2)
378 {
379 check_load_stall (cpu, src1);
380 check_load_stall (cpu, src2);
381 return idesc->timing->units[unit_num].done;
382 }
383
384 int
385 m32rbf_model_m32r_d_u_cti (SIM_CPU *cpu, const IDESC *idesc,
386 int unit_num, int referenced,
387 INT sr)
388 {
389 PROFILE_DATA *profile = CPU_PROFILE_DATA (cpu);
390 int taken_p = (referenced & (1 << 1)) != 0;
391
392 check_load_stall (cpu, sr);
393 if (taken_p)
394 {
395 CPU_M32R_MISC_PROFILE (cpu)->cti_stall += 2;
396 PROFILE_MODEL_TAKEN_COUNT (profile) += 1;
397 }
398 else
399 PROFILE_MODEL_UNTAKEN_COUNT (profile) += 1;
400 return idesc->timing->units[unit_num].done;
401 }
402
403 int
404 m32rbf_model_m32r_d_u_load (SIM_CPU *cpu, const IDESC *idesc,
405 int unit_num, int referenced,
406 INT sr, INT dr)
407 {
408 CPU_M32R_MISC_PROFILE (cpu)->load_regs_pending |= (1 << dr);
409 check_load_stall (cpu, sr);
410 return idesc->timing->units[unit_num].done;
411 }
412
413 int
414 m32rbf_model_m32r_d_u_store (SIM_CPU *cpu, const IDESC *idesc,
415 int unit_num, int referenced,
416 INT src1, INT src2)
417 {
418 check_load_stall (cpu, src1);
419 check_load_stall (cpu, src2);
420 return idesc->timing->units[unit_num].done;
421 }
422
423 int
424 m32rbf_model_test_u_exec (SIM_CPU *cpu, const IDESC *idesc,
425 int unit_num, int referenced)
426 {
427 return idesc->timing->units[unit_num].done;
428 }
429
430 #endif /* WITH_PROFILE_MODEL_P */
This page took 0.037337 seconds and 4 git commands to generate.