sim: clean up SIM_HAVE_BIENDIAN
[deliverable/binutils-gdb.git] / sim / mips / sim-main.h
1 /* MIPS Simulator definition.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #ifndef SIM_MAIN_H
21 #define SIM_MAIN_H
22
23 /* This simulator doesn't cache the Current Instruction Address */
24 /* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */
25 /* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */
26
27 /* hobble some common features for moment */
28 #define WITH_WATCHPOINTS 1
29 #define WITH_MODULO_MEMORY 1
30
31
32 #define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \
33 mips_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR))
34
35 #include "sim-basics.h"
36
37 typedef address_word sim_cia;
38
39 #include "sim-base.h"
40 #include "bfd.h"
41
42 /* Deprecated macros and types for manipulating 64bit values. Use
43 ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
44
45 typedef signed64 word64;
46 typedef unsigned64 uword64;
47
48 #define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
49 #define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
50 #define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
51 #define SET64HI(t) (((uword64)(t))<<32)
52 #define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
53 #define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
54
55 /* Check if a value will fit within a halfword: */
56 #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
57
58
59
60 /* Floating-point operations: */
61
62 #include "sim-fpu.h"
63 #include "cp1.h"
64
65 /* FPU registers must be one of the following types. All other values
66 are reserved (and undefined). */
67 typedef enum {
68 fmt_single = 0,
69 fmt_double = 1,
70 fmt_word = 4,
71 fmt_long = 5,
72 fmt_ps = 6,
73 /* The following are well outside the normal acceptable format
74 range, and are used in the register status vector. */
75 fmt_unknown = 0x10000000,
76 fmt_uninterpreted = 0x20000000,
77 fmt_uninterpreted_32 = 0x40000000,
78 fmt_uninterpreted_64 = 0x80000000U,
79 } FP_formats;
80
81 /* For paired word (pw) operations, the opcode representation is fmt_word,
82 but register transfers (StoreFPR, ValueFPR, etc.) are done as fmt_long. */
83 #define fmt_pw fmt_long
84
85 /* This should be the COC1 value at the start of the preceding
86 instruction: */
87 #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
88
89 #ifdef TARGET_ENABLE_FR
90 /* FIXME: this should be enabled for all targets, but needs testing first. */
91 #define SizeFGR() (((WITH_TARGET_FLOATING_POINT_BITSIZE) == 64) \
92 ? ((SR & status_FR) ? 64 : 32) \
93 : (WITH_TARGET_FLOATING_POINT_BITSIZE))
94 #else
95 #define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
96 #endif
97
98
99
100
101
102 /* HI/LO register accesses */
103
104 /* For some MIPS targets, the HI/LO registers have certain timing
105 restrictions in that, for instance, a read of a HI register must be
106 separated by at least three instructions from a preceeding read.
107
108 The struct below is used to record the last access by each of A MT,
109 MF or other OP instruction to a HI/LO register. See mips.igen for
110 more details. */
111
112 typedef struct _hilo_access {
113 signed64 timestamp;
114 address_word cia;
115 } hilo_access;
116
117 typedef struct _hilo_history {
118 hilo_access mt;
119 hilo_access mf;
120 hilo_access op;
121 } hilo_history;
122
123
124
125
126 /* Integer ALU operations: */
127
128 #include "sim-alu.h"
129
130 #define ALU32_END(ANS) \
131 if (ALU32_HAD_OVERFLOW) \
132 SignalExceptionIntegerOverflow (); \
133 (ANS) = (signed32) ALU32_OVERFLOW_RESULT
134
135
136 #define ALU64_END(ANS) \
137 if (ALU64_HAD_OVERFLOW) \
138 SignalExceptionIntegerOverflow (); \
139 (ANS) = ALU64_OVERFLOW_RESULT;
140
141
142
143
144
145 /* The following is probably not used for MIPS IV onwards: */
146 /* Slots for delayed register updates. For the moment we just have a
147 fixed number of slots (rather than a more generic, dynamic
148 system). This keeps the simulator fast. However, we only allow
149 for the register update to be delayed for a single instruction
150 cycle. */
151 #define PSLOTS (8) /* Maximum number of instruction cycles */
152
153 typedef struct _pending_write_queue {
154 int in;
155 int out;
156 int total;
157 int slot_delay[PSLOTS];
158 int slot_size[PSLOTS];
159 int slot_bit[PSLOTS];
160 void *slot_dest[PSLOTS];
161 unsigned64 slot_value[PSLOTS];
162 } pending_write_queue;
163
164 #ifndef PENDING_TRACE
165 #define PENDING_TRACE 0
166 #endif
167 #define PENDING_IN ((CPU)->pending.in)
168 #define PENDING_OUT ((CPU)->pending.out)
169 #define PENDING_TOTAL ((CPU)->pending.total)
170 #define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
171 #define PENDING_SLOT_BIT ((CPU)->pending.slot_bit)
172 #define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
173 #define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
174 #define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
175
176 /* Invalidate the pending write queue, all pending writes are
177 discarded. */
178
179 #define PENDING_INVALIDATE() \
180 memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
181
182 /* Schedule a write to DEST for N cycles time. For 64 bit
183 destinations, schedule two writes. For floating point registers,
184 the caller should schedule a write to both the dest register and
185 the FPR_STATE register. When BIT is non-negative, only BIT of DEST
186 is updated. */
187
188 #define PENDING_SCHED(DEST,VAL,DELAY,BIT) \
189 do { \
190 if (PENDING_SLOT_DEST[PENDING_IN] != NULL) \
191 sim_engine_abort (SD, CPU, cia, \
192 "PENDING_SCHED - buffer overflow\n"); \
193 if (PENDING_TRACE) \
194 sim_io_eprintf (SD, "PENDING_SCHED - 0x%lx - dest 0x%lx, val 0x%lx, bit %d, size %d, pending_in %d, pending_out %d, pending_total %d\n", \
195 (unsigned long) cia, (unsigned long) &(DEST), \
196 (unsigned long) (VAL), (BIT), (int) sizeof (DEST),\
197 PENDING_IN, PENDING_OUT, PENDING_TOTAL); \
198 PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1; \
199 PENDING_SLOT_DEST[PENDING_IN] = &(DEST); \
200 PENDING_SLOT_VALUE[PENDING_IN] = (VAL); \
201 PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST); \
202 PENDING_SLOT_BIT[PENDING_IN] = (BIT); \
203 PENDING_IN = (PENDING_IN + 1) % PSLOTS; \
204 PENDING_TOTAL += 1; \
205 } while (0)
206
207 #define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
208 #define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
209
210 #define PENDING_TICK() pending_tick (SD, CPU, cia)
211
212 #define PENDING_FLUSH() abort () /* think about this one */
213 #define PENDING_FP() abort () /* think about this one */
214
215 /* For backward compatibility */
216 #define PENDING_FILL(R,VAL) \
217 do { \
218 if ((R) >= FGR_BASE && (R) < FGR_BASE + NR_FGR) \
219 { \
220 PENDING_SCHED(FGR[(R) - FGR_BASE], VAL, 1, -1); \
221 PENDING_SCHED(FPR_STATE[(R) - FGR_BASE], fmt_uninterpreted, 1, -1); \
222 } \
223 else \
224 PENDING_SCHED(GPR[(R)], VAL, 1, -1); \
225 } while (0)
226
227
228 enum float_operation
229 {
230 FLOP_ADD, FLOP_SUB, FLOP_MUL, FLOP_MADD,
231 FLOP_MSUB, FLOP_MAX=10, FLOP_MIN, FLOP_ABS,
232 FLOP_ITOF0=14, FLOP_FTOI0=18, FLOP_NEG=23
233 };
234
235
236 /* The internal representation of an MDMX accumulator.
237 Note that 24 and 48 bit accumulator elements are represented in
238 32 or 64 bits. Since the accumulators are 2's complement with
239 overflow suppressed, high-order bits can be ignored in most contexts. */
240
241 typedef signed32 signed24;
242 typedef signed64 signed48;
243
244 typedef union {
245 signed24 ob[8];
246 signed48 qh[4];
247 } MDMX_accumulator;
248
249
250 /* Conventional system arguments. */
251 #define SIM_STATE sim_cpu *cpu, address_word cia
252 #define SIM_ARGS CPU, cia
253
254 struct _sim_cpu {
255
256
257 /* The following are internal simulator state variables: */
258 #define CIA_GET(CPU) ((CPU)->registers[PCIDX] + 0)
259 #define CIA_SET(CPU,CIA) ((CPU)->registers[PCIDX] = (CIA))
260 address_word dspc; /* delay-slot PC */
261 #define DSPC ((CPU)->dspc)
262
263 #define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET))
264 #define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_)
265
266
267 /* State of the simulator */
268 unsigned int state;
269 unsigned int dsstate;
270 #define STATE ((CPU)->state)
271 #define DSSTATE ((CPU)->dsstate)
272
273 /* Flags in the "state" variable: */
274 #define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
275 #define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
276 #define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
277 #define simPCOC0 (1 << 17) /* COC[1] from current */
278 #define simPCOC1 (1 << 18) /* COC[1] from previous */
279 #define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
280 #define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
281 #define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
282 #define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
283
284 #ifndef ENGINE_ISSUE_PREFIX_HOOK
285 #define ENGINE_ISSUE_PREFIX_HOOK() \
286 { \
287 /* Perform any pending writes */ \
288 PENDING_TICK(); \
289 /* Set previous flag, depending on current: */ \
290 if (STATE & simPCOC0) \
291 STATE |= simPCOC1; \
292 else \
293 STATE &= ~simPCOC1; \
294 /* and update the current value: */ \
295 if (GETFCC(0)) \
296 STATE |= simPCOC0; \
297 else \
298 STATE &= ~simPCOC0; \
299 }
300 #endif /* ENGINE_ISSUE_PREFIX_HOOK */
301
302
303 /* This is nasty, since we have to rely on matching the register
304 numbers used by GDB. Unfortunately, depending on the MIPS target
305 GDB uses different register numbers. We cannot just include the
306 relevant "gdb/tm.h" link, since GDB may not be configured before
307 the sim world, and also the GDB header file requires too much other
308 state. */
309
310 #ifndef TM_MIPS_H
311 #define LAST_EMBED_REGNUM (96)
312 #define NUM_REGS (LAST_EMBED_REGNUM + 1)
313
314 #define FP0_REGNUM 38 /* Floating point register 0 (single float) */
315 #define FCRCS_REGNUM 70 /* FP control/status */
316 #define FCRIR_REGNUM 71 /* FP implementation/revision */
317 #endif
318
319
320 /* To keep this default simulator simple, and fast, we use a direct
321 vector of registers. The internal simulator engine then uses
322 manifests to access the correct slot. */
323
324 unsigned_word registers[LAST_EMBED_REGNUM + 1];
325
326 int register_widths[NUM_REGS];
327 #define REGISTERS ((CPU)->registers)
328
329 #define GPR (&REGISTERS[0])
330 #define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
331
332 #define LO (REGISTERS[33])
333 #define HI (REGISTERS[34])
334 #define PCIDX 37
335 #define PC (REGISTERS[PCIDX])
336 #define CAUSE (REGISTERS[36])
337 #define SRIDX (32)
338 #define SR (REGISTERS[SRIDX]) /* CPU status register */
339 #define FCR0IDX (71)
340 #define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
341 #define FCR31IDX (70)
342 #define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
343 #define FCSR (FCR31)
344 #define Debug (REGISTERS[86])
345 #define DEPC (REGISTERS[87])
346 #define EPC (REGISTERS[88])
347 #define ACX (REGISTERS[89])
348
349 #define AC0LOIDX (33) /* Must be the same register as LO */
350 #define AC0HIIDX (34) /* Must be the same register as HI */
351 #define AC1LOIDX (90)
352 #define AC1HIIDX (91)
353 #define AC2LOIDX (92)
354 #define AC2HIIDX (93)
355 #define AC3LOIDX (94)
356 #define AC3HIIDX (95)
357
358 #define DSPLO(N) (REGISTERS[DSPLO_REGNUM[N]])
359 #define DSPHI(N) (REGISTERS[DSPHI_REGNUM[N]])
360
361 #define DSPCRIDX (96) /* DSP control register */
362 #define DSPCR (REGISTERS[DSPCRIDX])
363
364 #define DSPCR_POS_SHIFT (0)
365 #define DSPCR_POS_MASK (0x3f)
366 #define DSPCR_POS_SMASK (DSPCR_POS_MASK << DSPCR_POS_SHIFT)
367
368 #define DSPCR_SCOUNT_SHIFT (7)
369 #define DSPCR_SCOUNT_MASK (0x3f)
370 #define DSPCR_SCOUNT_SMASK (DSPCR_SCOUNT_MASK << DSPCR_SCOUNT_SHIFT)
371
372 #define DSPCR_CARRY_SHIFT (13)
373 #define DSPCR_CARRY_MASK (1)
374 #define DSPCR_CARRY_SMASK (DSPCR_CARRY_MASK << DSPCR_CARRY_SHIFT)
375 #define DSPCR_CARRY (1 << DSPCR_CARRY_SHIFT)
376
377 #define DSPCR_EFI_SHIFT (14)
378 #define DSPCR_EFI_MASK (1)
379 #define DSPCR_EFI_SMASK (DSPCR_EFI_MASK << DSPCR_EFI_SHIFT)
380 #define DSPCR_EFI (1 << DSPCR_EFI_MASK)
381
382 #define DSPCR_OUFLAG_SHIFT (16)
383 #define DSPCR_OUFLAG_MASK (0xff)
384 #define DSPCR_OUFLAG_SMASK (DSPCR_OUFLAG_MASK << DSPCR_OUFLAG_SHIFT)
385 #define DSPCR_OUFLAG4 (1 << (DSPCR_OUFLAG_SHIFT + 4))
386 #define DSPCR_OUFLAG5 (1 << (DSPCR_OUFLAG_SHIFT + 5))
387 #define DSPCR_OUFLAG6 (1 << (DSPCR_OUFLAG_SHIFT + 6))
388 #define DSPCR_OUFLAG7 (1 << (DSPCR_OUFLAG_SHIFT + 7))
389
390 #define DSPCR_CCOND_SHIFT (24)
391 #define DSPCR_CCOND_MASK (0xf)
392 #define DSPCR_CCOND_SMASK (DSPCR_CCOND_MASK << DSPCR_CCOND_SHIFT)
393
394 /* All internal state modified by signal_exception() that may need to be
395 rolled back for passing moment-of-exception image back to gdb. */
396 unsigned_word exc_trigger_registers[LAST_EMBED_REGNUM + 1];
397 unsigned_word exc_suspend_registers[LAST_EMBED_REGNUM + 1];
398 int exc_suspended;
399
400 #define SIM_CPU_EXCEPTION_TRIGGER(SD,CPU,CIA) mips_cpu_exception_trigger(SD,CPU,CIA)
401 #define SIM_CPU_EXCEPTION_SUSPEND(SD,CPU,EXC) mips_cpu_exception_suspend(SD,CPU,EXC)
402 #define SIM_CPU_EXCEPTION_RESUME(SD,CPU,EXC) mips_cpu_exception_resume(SD,CPU,EXC)
403
404 unsigned_word c0_config_reg;
405 #define C0_CONFIG ((CPU)->c0_config_reg)
406
407 /* The following are pseudonyms for standard registers */
408 #define ZERO (REGISTERS[0])
409 #define V0 (REGISTERS[2])
410 #define A0 (REGISTERS[4])
411 #define A1 (REGISTERS[5])
412 #define A2 (REGISTERS[6])
413 #define A3 (REGISTERS[7])
414 #define T8IDX 24
415 #define T8 (REGISTERS[T8IDX])
416 #define SPIDX 29
417 #define SP (REGISTERS[SPIDX])
418 #define RAIDX 31
419 #define RA (REGISTERS[RAIDX])
420
421 /* While space is allocated in the main registers arrray for some of
422 the COP0 registers, that space isn't sufficient. Unknown COP0
423 registers overflow into the array below */
424
425 #define NR_COP0_GPR 32
426 unsigned_word cop0_gpr[NR_COP0_GPR];
427 #define COP0_GPR ((CPU)->cop0_gpr)
428 #define COP0_BADVADDR (COP0_GPR[8])
429
430 /* While space is allocated for the floating point registers in the
431 main registers array, they are stored separatly. This is because
432 their size may not necessarily match the size of either the
433 general-purpose or system specific registers. */
434 #define NR_FGR (32)
435 #define FGR_BASE FP0_REGNUM
436 fp_word fgr[NR_FGR];
437 #define FGR ((CPU)->fgr)
438
439 /* Keep the current format state for each register: */
440 FP_formats fpr_state[32];
441 #define FPR_STATE ((CPU)->fpr_state)
442
443 pending_write_queue pending;
444
445 /* The MDMX accumulator (used only for MDMX ASE). */
446 MDMX_accumulator acc;
447 #define ACC ((CPU)->acc)
448
449 /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
450 read-write instructions. It is set when a linked load occurs. It
451 is tested and cleared by the conditional store. It is cleared
452 (during other CPU operations) when a store to the location would
453 no longer be atomic. In particular, it is cleared by exception
454 return instructions. */
455 int llbit;
456 #define LLBIT ((CPU)->llbit)
457
458
459 /* The HIHISTORY and LOHISTORY timestamps are used to ensure that
460 corruptions caused by using the HI or LO register too close to a
461 following operation is spotted. See mips.igen for more details. */
462
463 hilo_history hi_history;
464 #define HIHISTORY (&(CPU)->hi_history)
465 hilo_history lo_history;
466 #define LOHISTORY (&(CPU)->lo_history)
467
468
469 sim_cpu_base base;
470 };
471
472
473 /* MIPS specific simulator watch config */
474
475 void watch_options_install (SIM_DESC sd);
476
477 struct swatch {
478 sim_event *pc;
479 sim_event *clock;
480 sim_event *cycles;
481 };
482
483
484 /* FIXME: At present much of the simulator is still static */
485 struct sim_state {
486
487 struct swatch watch;
488
489 sim_cpu cpu[MAX_NR_PROCESSORS];
490 #if (WITH_SMP)
491 #define STATE_CPU(sd,n) (&(sd)->cpu[n])
492 #else
493 #define STATE_CPU(sd,n) (&(sd)->cpu[0])
494 #endif
495
496
497 sim_state_base base;
498 };
499
500
501
502 /* Status information: */
503
504 /* TODO : these should be the bitmasks for these bits within the
505 status register. At the moment the following are VR4300
506 bit-positions: */
507 #define status_KSU_mask (0x18) /* mask for KSU bits */
508 #define status_KSU_shift (3) /* shift for field */
509 #define ksu_kernel (0x0)
510 #define ksu_supervisor (0x1)
511 #define ksu_user (0x2)
512 #define ksu_unknown (0x3)
513
514 #define SR_KSU ((SR & status_KSU_mask) >> status_KSU_shift)
515
516 #define status_IE (1 << 0) /* Interrupt enable */
517 #define status_EIE (1 << 16) /* Enable Interrupt Enable */
518 #define status_EXL (1 << 1) /* Exception level */
519 #define status_RE (1 << 25) /* Reverse Endian in user mode */
520 #define status_FR (1 << 26) /* enables MIPS III additional FP registers */
521 #define status_SR (1 << 20) /* soft reset or NMI */
522 #define status_BEV (1 << 22) /* Location of general exception vectors */
523 #define status_TS (1 << 21) /* TLB shutdown has occurred */
524 #define status_ERL (1 << 2) /* Error level */
525 #define status_IM7 (1 << 15) /* Timer Interrupt Mask */
526 #define status_RP (1 << 27) /* Reduced Power mode */
527
528 /* Specializations for TX39 family */
529 #define status_IEc (1 << 0) /* Interrupt enable (current) */
530 #define status_KUc (1 << 1) /* Kernel/User mode */
531 #define status_IEp (1 << 2) /* Interrupt enable (previous) */
532 #define status_KUp (1 << 3) /* Kernel/User mode */
533 #define status_IEo (1 << 4) /* Interrupt enable (old) */
534 #define status_KUo (1 << 5) /* Kernel/User mode */
535 #define status_IM_mask (0xff) /* Interrupt mask */
536 #define status_IM_shift (8)
537 #define status_NMI (1 << 20) /* NMI */
538 #define status_NMI (1 << 20) /* NMI */
539
540 /* Status bits used by MIPS32/MIPS64. */
541 #define status_UX (1 << 5) /* 64-bit user addrs */
542 #define status_SX (1 << 6) /* 64-bit supervisor addrs */
543 #define status_KX (1 << 7) /* 64-bit kernel addrs */
544 #define status_TS (1 << 21) /* TLB shutdown has occurred */
545 #define status_PX (1 << 23) /* Enable 64 bit operations */
546 #define status_MX (1 << 24) /* Enable MDMX resources */
547 #define status_CU0 (1 << 28) /* Coprocessor 0 usable */
548 #define status_CU1 (1 << 29) /* Coprocessor 1 usable */
549 #define status_CU2 (1 << 30) /* Coprocessor 2 usable */
550 #define status_CU3 (1 << 31) /* Coprocessor 3 usable */
551 /* Bits reserved for implementations: */
552 #define status_SBX (1 << 16) /* Enable SiByte SB-1 extensions. */
553
554 #define cause_BD ((unsigned)1 << 31) /* L1 Exception in branch delay slot */
555 #define cause_BD2 (1 << 30) /* L2 Exception in branch delay slot */
556 #define cause_CE_mask 0x30000000 /* Coprocessor exception */
557 #define cause_CE_shift 28
558 #define cause_EXC2_mask 0x00070000
559 #define cause_EXC2_shift 16
560 #define cause_IP7 (1 << 15) /* Interrupt pending */
561 #define cause_SIOP (1 << 12) /* SIO pending */
562 #define cause_IP3 (1 << 11) /* Int 0 pending */
563 #define cause_IP2 (1 << 10) /* Int 1 pending */
564
565 #define cause_EXC_mask (0x1c) /* Exception code */
566 #define cause_EXC_shift (2)
567
568 #define cause_SW0 (1 << 8) /* Software interrupt 0 */
569 #define cause_SW1 (1 << 9) /* Software interrupt 1 */
570 #define cause_IP_mask (0x3f) /* Interrupt pending field */
571 #define cause_IP_shift (10)
572
573 #define cause_set_EXC(x) CAUSE = (CAUSE & ~cause_EXC_mask) | ((x << cause_EXC_shift) & cause_EXC_mask)
574 #define cause_set_EXC2(x) CAUSE = (CAUSE & ~cause_EXC2_mask) | ((x << cause_EXC2_shift) & cause_EXC2_mask)
575
576
577 /* NOTE: We keep the following status flags as bit values (1 for true,
578 0 for false). This allows them to be used in binary boolean
579 operations without worrying about what exactly the non-zero true
580 value is. */
581
582 /* UserMode */
583 #ifdef SUBTARGET_R3900
584 #define UserMode ((SR & status_KUc) ? 1 : 0)
585 #else
586 #define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
587 #endif /* SUBTARGET_R3900 */
588
589 /* BigEndianMem */
590 /* Hardware configuration. Affects endianness of LoadMemory and
591 StoreMemory and the endianness of Kernel and Supervisor mode
592 execution. The value is 0 for little-endian; 1 for big-endian. */
593 #define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
594 /*(state & simBE) ? 1 : 0)*/
595
596 /* ReverseEndian */
597 /* This mode is selected if in User mode with the RE bit being set in
598 SR (Status Register). It reverses the endianness of load and store
599 instructions. */
600 #define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
601
602 /* BigEndianCPU */
603 /* The endianness for load and store instructions (0=little;1=big). In
604 User mode this endianness may be switched by setting the state_RE
605 bit in the SR register. Thus, BigEndianCPU may be computed as
606 (BigEndianMem EOR ReverseEndian). */
607 #define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
608
609
610
611 /* Exceptions: */
612
613 /* NOTE: These numbers depend on the processor architecture being
614 simulated: */
615 enum ExceptionCause {
616 Interrupt = 0,
617 TLBModification = 1,
618 TLBLoad = 2,
619 TLBStore = 3,
620 AddressLoad = 4,
621 AddressStore = 5,
622 InstructionFetch = 6,
623 DataReference = 7,
624 SystemCall = 8,
625 BreakPoint = 9,
626 ReservedInstruction = 10,
627 CoProcessorUnusable = 11,
628 IntegerOverflow = 12, /* Arithmetic overflow (IDT monitor raises SIGFPE) */
629 Trap = 13,
630 FPE = 15,
631 DebugBreakPoint = 16, /* Impl. dep. in MIPS32/MIPS64. */
632 MDMX = 22,
633 Watch = 23,
634 MCheck = 24,
635 CacheErr = 30,
636 NMIReset = 31, /* Reserved in MIPS32/MIPS64. */
637
638
639 /* The following exception code is actually private to the simulator
640 world. It is *NOT* a processor feature, and is used to signal
641 run-time errors in the simulator. */
642 SimulatorFault = 0xFFFFFFFF
643 };
644
645 #define TLB_REFILL (0)
646 #define TLB_INVALID (1)
647
648
649 /* The following break instructions are reserved for use by the
650 simulator. The first is used to halt the simulation. The second
651 is used by gdb for break-points. NOTE: Care must be taken, since
652 this value may be used in later revisions of the MIPS ISA. */
653 #define HALT_INSTRUCTION_MASK (0x03FFFFC0)
654
655 #define HALT_INSTRUCTION (0x03ff000d)
656 #define HALT_INSTRUCTION2 (0x0000ffcd)
657
658
659 #define BREAKPOINT_INSTRUCTION (0x0005000d)
660 #define BREAKPOINT_INSTRUCTION2 (0x0000014d)
661
662
663
664 void interrupt_event (SIM_DESC sd, void *data);
665
666 void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
667 #define SignalException(exc,instruction) signal_exception (SD, CPU, cia, (exc), (instruction))
668 #define SignalExceptionInterrupt(level) signal_exception (SD, CPU, cia, Interrupt, level)
669 #define SignalExceptionInstructionFetch() signal_exception (SD, CPU, cia, InstructionFetch)
670 #define SignalExceptionAddressStore() signal_exception (SD, CPU, cia, AddressStore)
671 #define SignalExceptionAddressLoad() signal_exception (SD, CPU, cia, AddressLoad)
672 #define SignalExceptionDataReference() signal_exception (SD, CPU, cia, DataReference)
673 #define SignalExceptionSimulatorFault(buf) signal_exception (SD, CPU, cia, SimulatorFault, buf)
674 #define SignalExceptionFPE() signal_exception (SD, CPU, cia, FPE)
675 #define SignalExceptionIntegerOverflow() signal_exception (SD, CPU, cia, IntegerOverflow)
676 #define SignalExceptionCoProcessorUnusable(cop) signal_exception (SD, CPU, cia, CoProcessorUnusable)
677 #define SignalExceptionNMIReset() signal_exception (SD, CPU, cia, NMIReset)
678 #define SignalExceptionTLBRefillStore() signal_exception (SD, CPU, cia, TLBStore, TLB_REFILL)
679 #define SignalExceptionTLBRefillLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_REFILL)
680 #define SignalExceptionTLBInvalidStore() signal_exception (SD, CPU, cia, TLBStore, TLB_INVALID)
681 #define SignalExceptionTLBInvalidLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_INVALID)
682 #define SignalExceptionTLBModification() signal_exception (SD, CPU, cia, TLBModification)
683 #define SignalExceptionMDMX() signal_exception (SD, CPU, cia, MDMX)
684 #define SignalExceptionWatch() signal_exception (SD, CPU, cia, Watch)
685 #define SignalExceptionMCheck() signal_exception (SD, CPU, cia, MCheck)
686 #define SignalExceptionCacheErr() signal_exception (SD, CPU, cia, CacheErr)
687
688 /* Co-processor accesses */
689
690 /* XXX FIXME: For now, assume that FPU (cp1) is always usable. */
691 #define COP_Usable(coproc_num) (coproc_num == 1)
692
693 void cop_lw (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword);
694 void cop_ld (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword);
695 unsigned int cop_sw (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg);
696 uword64 cop_sd (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg);
697
698 #define COP_LW(coproc_num,coproc_reg,memword) \
699 cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
700 #define COP_LD(coproc_num,coproc_reg,memword) \
701 cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
702 #define COP_SW(coproc_num,coproc_reg) \
703 cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
704 #define COP_SD(coproc_num,coproc_reg) \
705 cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
706
707
708 void decode_coproc (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int instruction);
709 #define DecodeCoproc(instruction) \
710 decode_coproc (SD, CPU, cia, (instruction))
711
712 int sim_monitor (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int arg);
713
714
715 /* FPR access. */
716 unsigned64 value_fpr (SIM_STATE, int fpr, FP_formats);
717 #define ValueFPR(FPR,FMT) value_fpr (SIM_ARGS, (FPR), (FMT))
718 void store_fpr (SIM_STATE, int fpr, FP_formats fmt, unsigned64 value);
719 #define StoreFPR(FPR,FMT,VALUE) store_fpr (SIM_ARGS, (FPR), (FMT), (VALUE))
720 unsigned64 ps_lower (SIM_STATE, unsigned64 op);
721 #define PSLower(op) ps_lower (SIM_ARGS, op)
722 unsigned64 ps_upper (SIM_STATE, unsigned64 op);
723 #define PSUpper(op) ps_upper (SIM_ARGS, op)
724 unsigned64 pack_ps (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats from);
725 #define PackPS(op1,op2) pack_ps (SIM_ARGS, op1, op2, fmt_single)
726
727
728 /* FCR access. */
729 unsigned_word value_fcr (SIM_STATE, int fcr);
730 #define ValueFCR(FCR) value_fcr (SIM_ARGS, (FCR))
731 void store_fcr (SIM_STATE, int fcr, unsigned_word value);
732 #define StoreFCR(FCR,VALUE) store_fcr (SIM_ARGS, (FCR), (VALUE))
733 void test_fcsr (SIM_STATE);
734 #define TestFCSR() test_fcsr (SIM_ARGS)
735
736
737 /* FPU operations. */
738 void fp_cmp (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt, int abs, int cond, int cc);
739 #define Compare(op1,op2,fmt,cond,cc) fp_cmp(SIM_ARGS, op1, op2, fmt, 0, cond, cc)
740 unsigned64 fp_abs (SIM_STATE, unsigned64 op, FP_formats fmt);
741 #define AbsoluteValue(op,fmt) fp_abs(SIM_ARGS, op, fmt)
742 unsigned64 fp_neg (SIM_STATE, unsigned64 op, FP_formats fmt);
743 #define Negate(op,fmt) fp_neg(SIM_ARGS, op, fmt)
744 unsigned64 fp_add (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
745 #define Add(op1,op2,fmt) fp_add(SIM_ARGS, op1, op2, fmt)
746 unsigned64 fp_sub (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
747 #define Sub(op1,op2,fmt) fp_sub(SIM_ARGS, op1, op2, fmt)
748 unsigned64 fp_mul (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
749 #define Multiply(op1,op2,fmt) fp_mul(SIM_ARGS, op1, op2, fmt)
750 unsigned64 fp_div (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
751 #define Divide(op1,op2,fmt) fp_div(SIM_ARGS, op1, op2, fmt)
752 unsigned64 fp_recip (SIM_STATE, unsigned64 op, FP_formats fmt);
753 #define Recip(op,fmt) fp_recip(SIM_ARGS, op, fmt)
754 unsigned64 fp_sqrt (SIM_STATE, unsigned64 op, FP_formats fmt);
755 #define SquareRoot(op,fmt) fp_sqrt(SIM_ARGS, op, fmt)
756 unsigned64 fp_rsqrt (SIM_STATE, unsigned64 op, FP_formats fmt);
757 #define RSquareRoot(op,fmt) fp_rsqrt(SIM_ARGS, op, fmt)
758 unsigned64 fp_madd (SIM_STATE, unsigned64 op1, unsigned64 op2,
759 unsigned64 op3, FP_formats fmt);
760 #define MultiplyAdd(op1,op2,op3,fmt) fp_madd(SIM_ARGS, op1, op2, op3, fmt)
761 unsigned64 fp_msub (SIM_STATE, unsigned64 op1, unsigned64 op2,
762 unsigned64 op3, FP_formats fmt);
763 #define MultiplySub(op1,op2,op3,fmt) fp_msub(SIM_ARGS, op1, op2, op3, fmt)
764 unsigned64 fp_nmadd (SIM_STATE, unsigned64 op1, unsigned64 op2,
765 unsigned64 op3, FP_formats fmt);
766 #define NegMultiplyAdd(op1,op2,op3,fmt) fp_nmadd(SIM_ARGS, op1, op2, op3, fmt)
767 unsigned64 fp_nmsub (SIM_STATE, unsigned64 op1, unsigned64 op2,
768 unsigned64 op3, FP_formats fmt);
769 #define NegMultiplySub(op1,op2,op3,fmt) fp_nmsub(SIM_ARGS, op1, op2, op3, fmt)
770 unsigned64 convert (SIM_STATE, int rm, unsigned64 op, FP_formats from, FP_formats to);
771 #define Convert(rm,op,from,to) convert (SIM_ARGS, rm, op, from, to)
772 unsigned64 convert_ps (SIM_STATE, int rm, unsigned64 op, FP_formats from,
773 FP_formats to);
774 #define ConvertPS(rm,op,from,to) convert_ps (SIM_ARGS, rm, op, from, to)
775
776
777 /* MIPS-3D ASE operations. */
778 #define CompareAbs(op1,op2,fmt,cond,cc) \
779 fp_cmp(SIM_ARGS, op1, op2, fmt, 1, cond, cc)
780 unsigned64 fp_add_r (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
781 #define AddR(op1,op2,fmt) fp_add_r(SIM_ARGS, op1, op2, fmt)
782 unsigned64 fp_mul_r (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
783 #define MultiplyR(op1,op2,fmt) fp_mul_r(SIM_ARGS, op1, op2, fmt)
784 unsigned64 fp_recip1 (SIM_STATE, unsigned64 op, FP_formats fmt);
785 #define Recip1(op,fmt) fp_recip1(SIM_ARGS, op, fmt)
786 unsigned64 fp_recip2 (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
787 #define Recip2(op1,op2,fmt) fp_recip2(SIM_ARGS, op1, op2, fmt)
788 unsigned64 fp_rsqrt1 (SIM_STATE, unsigned64 op, FP_formats fmt);
789 #define RSquareRoot1(op,fmt) fp_rsqrt1(SIM_ARGS, op, fmt)
790 unsigned64 fp_rsqrt2 (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
791 #define RSquareRoot2(op1,op2,fmt) fp_rsqrt2(SIM_ARGS, op1, op2, fmt)
792
793
794 /* MDMX access. */
795
796 typedef unsigned int MX_fmtsel; /* MDMX format select field (5 bits). */
797 #define ob_fmtsel(sel) (((sel)<<1)|0x0)
798 #define qh_fmtsel(sel) (((sel)<<2)|0x1)
799
800 #define fmt_mdmx fmt_uninterpreted
801
802 #define MX_VECT_AND (0)
803 #define MX_VECT_NOR (1)
804 #define MX_VECT_OR (2)
805 #define MX_VECT_XOR (3)
806 #define MX_VECT_SLL (4)
807 #define MX_VECT_SRL (5)
808 #define MX_VECT_ADD (6)
809 #define MX_VECT_SUB (7)
810 #define MX_VECT_MIN (8)
811 #define MX_VECT_MAX (9)
812 #define MX_VECT_MUL (10)
813 #define MX_VECT_MSGN (11)
814 #define MX_VECT_SRA (12)
815 #define MX_VECT_ABSD (13) /* SB-1 only. */
816 #define MX_VECT_AVG (14) /* SB-1 only. */
817
818 unsigned64 mdmx_cpr_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel);
819 #define MX_Add(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ADD, op1, vt, fmtsel)
820 #define MX_And(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AND, op1, vt, fmtsel)
821 #define MX_Max(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MAX, op1, vt, fmtsel)
822 #define MX_Min(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MIN, op1, vt, fmtsel)
823 #define MX_Msgn(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MSGN, op1, vt, fmtsel)
824 #define MX_Mul(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MUL, op1, vt, fmtsel)
825 #define MX_Nor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_NOR, op1, vt, fmtsel)
826 #define MX_Or(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_OR, op1, vt, fmtsel)
827 #define MX_ShiftLeftLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SLL, op1, vt, fmtsel)
828 #define MX_ShiftRightArith(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRA, op1, vt, fmtsel)
829 #define MX_ShiftRightLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRL, op1, vt, fmtsel)
830 #define MX_Sub(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SUB, op1, vt, fmtsel)
831 #define MX_Xor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_XOR, op1, vt, fmtsel)
832 #define MX_AbsDiff(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ABSD, op1, vt, fmtsel)
833 #define MX_Avg(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AVG, op1, vt, fmtsel)
834
835 #define MX_C_EQ 0x1
836 #define MX_C_LT 0x4
837
838 void mdmx_cc_op (SIM_STATE, int cond, unsigned64 op1, int vt, MX_fmtsel fmtsel);
839 #define MX_Comp(op1,cond,vt,fmtsel) mdmx_cc_op(SIM_ARGS, cond, op1, vt, fmtsel)
840
841 unsigned64 mdmx_pick_op (SIM_STATE, int tf, unsigned64 op1, int vt, MX_fmtsel fmtsel);
842 #define MX_Pick(tf,op1,vt,fmtsel) mdmx_pick_op(SIM_ARGS, tf, op1, vt, fmtsel)
843
844 #define MX_VECT_ADDA (0)
845 #define MX_VECT_ADDL (1)
846 #define MX_VECT_MULA (2)
847 #define MX_VECT_MULL (3)
848 #define MX_VECT_MULS (4)
849 #define MX_VECT_MULSL (5)
850 #define MX_VECT_SUBA (6)
851 #define MX_VECT_SUBL (7)
852 #define MX_VECT_ABSDA (8) /* SB-1 only. */
853
854 void mdmx_acc_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel);
855 #define MX_AddA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDA, op1, vt, fmtsel)
856 #define MX_AddL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDL, op1, vt, fmtsel)
857 #define MX_MulA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULA, op1, vt, fmtsel)
858 #define MX_MulL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULL, op1, vt, fmtsel)
859 #define MX_MulS(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULS, op1, vt, fmtsel)
860 #define MX_MulSL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULSL, op1, vt, fmtsel)
861 #define MX_SubA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBA, op1, vt, fmtsel)
862 #define MX_SubL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBL, op1, vt, fmtsel)
863 #define MX_AbsDiffC(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ABSDA, op1, vt, fmtsel)
864
865 #define MX_FMT_OB (0)
866 #define MX_FMT_QH (1)
867
868 /* The following codes chosen to indicate the units of shift. */
869 #define MX_RAC_L (0)
870 #define MX_RAC_M (1)
871 #define MX_RAC_H (2)
872
873 unsigned64 mdmx_rac_op (SIM_STATE, int, int);
874 #define MX_RAC(op,fmt) mdmx_rac_op(SIM_ARGS, op, fmt)
875
876 void mdmx_wacl (SIM_STATE, int, unsigned64, unsigned64);
877 #define MX_WACL(fmt,vs,vt) mdmx_wacl(SIM_ARGS, fmt, vs, vt)
878 void mdmx_wach (SIM_STATE, int, unsigned64);
879 #define MX_WACH(fmt,vs) mdmx_wach(SIM_ARGS, fmt, vs)
880
881 #define MX_RND_AS (0)
882 #define MX_RND_AU (1)
883 #define MX_RND_ES (2)
884 #define MX_RND_EU (3)
885 #define MX_RND_ZS (4)
886 #define MX_RND_ZU (5)
887
888 unsigned64 mdmx_round_op (SIM_STATE, int, int, MX_fmtsel);
889 #define MX_RNAS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AS, vt, fmt)
890 #define MX_RNAU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AU, vt, fmt)
891 #define MX_RNES(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ES, vt, fmt)
892 #define MX_RNEU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_EU, vt, fmt)
893 #define MX_RZS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZS, vt, fmt)
894 #define MX_RZU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZU, vt, fmt)
895
896 unsigned64 mdmx_shuffle (SIM_STATE, int, unsigned64, unsigned64);
897 #define MX_SHFL(shop,op1,op2) mdmx_shuffle(SIM_ARGS, shop, op1, op2)
898
899
900
901 /* Memory accesses */
902
903 /* The following are generic to all versions of the MIPS architecture
904 to date: */
905
906 /* Memory Access Types (for CCA): */
907 #define Uncached (0)
908 #define CachedNoncoherent (1)
909 #define CachedCoherent (2)
910 #define Cached (3)
911
912 #define isINSTRUCTION (1 == 0) /* FALSE */
913 #define isDATA (1 == 1) /* TRUE */
914 #define isLOAD (1 == 0) /* FALSE */
915 #define isSTORE (1 == 1) /* TRUE */
916 #define isREAL (1 == 0) /* FALSE */
917 #define isRAW (1 == 1) /* TRUE */
918 /* The parameter HOST (isTARGET / isHOST) is ignored */
919 #define isTARGET (1 == 0) /* FALSE */
920 /* #define isHOST (1 == 1) TRUE */
921
922 /* The "AccessLength" specifications for Loads and Stores. NOTE: This
923 is the number of bytes minus 1. */
924 #define AccessLength_BYTE (0)
925 #define AccessLength_HALFWORD (1)
926 #define AccessLength_TRIPLEBYTE (2)
927 #define AccessLength_WORD (3)
928 #define AccessLength_QUINTIBYTE (4)
929 #define AccessLength_SEXTIBYTE (5)
930 #define AccessLength_SEPTIBYTE (6)
931 #define AccessLength_DOUBLEWORD (7)
932 #define AccessLength_QUADWORD (15)
933
934 #define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
935 ? AccessLength_DOUBLEWORD /*7*/ \
936 : AccessLength_WORD /*3*/)
937 #define PSIZE (WITH_TARGET_ADDRESS_BITSIZE)
938
939
940 INLINE_SIM_MAIN (int) address_translation (SIM_DESC sd, sim_cpu *, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw);
941 #define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
942 address_translation (SD, CPU, cia, vAddr, IorD, LorS, pAddr, CCA, raw)
943
944 INLINE_SIM_MAIN (void) load_memory (SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD);
945 #define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
946 load_memory (SD, CPU, cia, memvalp, memval1p, CCA, AccessLength, pAddr, vAddr, IorD)
947
948 INLINE_SIM_MAIN (void) store_memory (SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr);
949 #define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
950 store_memory (SD, CPU, cia, CCA, AccessLength, MemElem, MemElem1, pAddr, vAddr)
951
952 INLINE_SIM_MAIN (void) cache_op (SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction);
953 #define CacheOp(op,pAddr,vAddr,instruction) \
954 cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
955
956 INLINE_SIM_MAIN (void) sync_operation (SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype);
957 #define SyncOperation(stype) \
958 sync_operation (SD, CPU, cia, (stype))
959
960 INLINE_SIM_MAIN (void) prefetch (SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint);
961 #define Prefetch(CCA,pAddr,vAddr,DATA,hint) \
962 prefetch (SD, CPU, cia, CCA, pAddr, vAddr, DATA, hint)
963
964 void unpredictable_action (sim_cpu *cpu, address_word cia);
965 #define NotWordValue(val) not_word_value (SD_, (val))
966 #define Unpredictable() unpredictable (SD_)
967 #define UnpredictableResult() /* For now, do nothing. */
968
969 INLINE_SIM_MAIN (unsigned32) ifetch32 (SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr);
970 #define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
971 INLINE_SIM_MAIN (unsigned16) ifetch16 (SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr);
972 #define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1))
973 #define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
974
975 void dotrace (SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...);
976 extern FILE *tracefh;
977
978 extern int DSPLO_REGNUM[4];
979 extern int DSPHI_REGNUM[4];
980
981 INLINE_SIM_MAIN (void) pending_tick (SIM_DESC sd, sim_cpu *cpu, address_word cia);
982 extern SIM_CORE_SIGNAL_FN mips_core_signal;
983
984 char* pr_addr (SIM_ADDR addr);
985 char* pr_uword64 (uword64 addr);
986
987
988 #define GPR_CLEAR(N) do { GPR_SET((N),0); } while (0)
989
990 void mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word pc);
991 void mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception);
992 void mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception);
993
994 #ifdef MIPS_MACH_MULTI
995 extern int mips_mach_multi(SIM_DESC sd);
996 #define MIPS_MACH(SD) mips_mach_multi(SD)
997 #else
998 #define MIPS_MACH(SD) MIPS_MACH_DEFAULT
999 #endif
1000
1001 /* Macros for determining whether a MIPS IV or MIPS V part is subject
1002 to the hi/lo restrictions described in mips.igen. */
1003
1004 #define MIPS_MACH_HAS_MT_HILO_HAZARD(SD) \
1005 (MIPS_MACH (SD) != bfd_mach_mips5500)
1006
1007 #define MIPS_MACH_HAS_MULT_HILO_HAZARD(SD) \
1008 (MIPS_MACH (SD) != bfd_mach_mips5500)
1009
1010 #define MIPS_MACH_HAS_DIV_HILO_HAZARD(SD) \
1011 (MIPS_MACH (SD) != bfd_mach_mips5500)
1012
1013 #if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
1014 #include "sim-main.c"
1015 #endif
1016
1017 #endif
This page took 0.050229 seconds and 4 git commands to generate.