c6f3ab2effb1f5d856ccb548c4c30b3f1ac7bbfb
[deliverable/binutils-gdb.git] / sim / mips / sim-main.h
1 /* MIPS Simulator definition.
2 Copyright (C) 1997 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License along
18 with this program; if not, write to the Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #ifndef SIM_MAIN_H
22 #define SIM_MAIN_H
23
24 /* This simulator doesn't cache the Current Instruction Address */
25 /* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */
26 /* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */
27
28 #define SIM_HAVE_BIENDIAN
29
30
31 /* hobble some common features for moment */
32 #define WITH_WATCHPOINTS 1
33 #define WITH_MODULO_MEMORY 1
34
35 #include "sim-basics.h"
36
37 typedef address_word sim_cia;
38
39 #if (WITH_IGEN)
40 /* Get the number of instructions. FIXME: must be a more elegant way
41 of doing this. */
42 #include "itable.h"
43 #define MAX_INSNS (nr_itable_entries)
44 #define INSN_NAME(i) itable[(i)].name
45 #endif
46
47 #include "sim-base.h"
48
49
50 /* Depreciated macros and types for manipulating 64bit values. Use
51 ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
52
53 typedef signed64 word64;
54 typedef unsigned64 uword64;
55
56 #define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
57 #define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
58 #define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
59 #define SET64HI(t) (((uword64)(t))<<32)
60 #define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
61 #define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
62
63 /* Sign-extend the given value (e) as a value (b) bits long. We cannot
64 assume the HI32bits of the operand are zero, so we must perform a
65 mask to ensure we can use the simple subtraction to sign-extend. */
66 #define SIGNEXTEND(e,b) \
67 ((unsigned_word) \
68 (((e) & ((uword64) 1 << ((b) - 1))) \
69 ? (((e) & (((uword64) 1 << (b)) - 1)) - ((uword64)1 << (b))) \
70 : ((e) & (((((uword64) 1 << ((b) - 1)) - 1) << 1) | 1))))
71
72 /* Check if a value will fit within a halfword: */
73 #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
74
75 /* windows always looses */
76 #include <signal.h>
77 #ifndef SIGBUS
78 #define SIGBUS SIGSEGV
79 #endif
80 #ifdef _WIN32
81 #define SIGTRAP 5
82 #define SIGQUIT 3
83 #endif
84
85
86
87 /* Floating-point operations: */
88
89 /* FPU registers must be one of the following types. All other values
90 are reserved (and undefined). */
91 typedef enum {
92 fmt_single = 0,
93 fmt_double = 1,
94 fmt_word = 4,
95 fmt_long = 5,
96 /* The following are well outside the normal acceptable format
97 range, and are used in the register status vector. */
98 fmt_unknown = 0x10000000,
99 fmt_uninterpreted = 0x20000000,
100 fmt_uninterpreted_32 = 0x40000000,
101 fmt_uninterpreted_64 = 0x80000000,
102 } FP_formats;
103
104 unsigned64 value_fpr PARAMS ((SIM_DESC sd, address_word cia, int fpr, FP_formats));
105 #define ValueFPR(FPR,FMT) value_fpr (sd, cia, (FPR), (FMT))
106
107 void store_fpr PARAMS ((SIM_DESC sd, address_word cia, int fpr, FP_formats fmt, unsigned64 value));
108 #define StoreFPR(FPR,FMT,VALUE) store_fpr (sd, cia, (FPR), (FMT), (VALUE))
109
110 int NaN PARAMS ((unsigned64 op, FP_formats fmt));
111 int Infinity PARAMS ((unsigned64 op, FP_formats fmt));
112 int Less PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
113 int Equal PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
114 unsigned64 AbsoluteValue PARAMS ((unsigned64 op, FP_formats fmt));
115 unsigned64 Negate PARAMS ((unsigned64 op, FP_formats fmt));
116 unsigned64 Add PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
117 unsigned64 Sub PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
118 unsigned64 Multiply PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
119 unsigned64 Divide PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
120 unsigned64 Recip PARAMS ((unsigned64 op, FP_formats fmt));
121 unsigned64 SquareRoot PARAMS ((unsigned64 op, FP_formats fmt));
122 unsigned64 convert PARAMS ((SIM_DESC sd, address_word cia, int rm, unsigned64 op, FP_formats from, FP_formats to));
123 #define Convert(rm,op,from,to) convert(sd,cia,rm,op,from,to)
124
125 /* Macro to update FPSR condition-code field. This is complicated by
126 the fact that there is a hole in the index range of the bits within
127 the FCSR register. Also, the number of bits visible depends on the
128 MIPS ISA version being supported. */
129
130 #define SETFCC(cc,v) {\
131 int bit = ((cc == 0) ? 23 : (24 + (cc)));\
132 FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
133 }
134 #define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1 : 0)
135
136 /* This should be the COC1 value at the start of the preceding
137 instruction: */
138 #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
139
140 #if 1
141 #define SizeFGR() (WITH_TARGET_WORD_BITSIZE)
142 #else
143 /* They depend on the CPU being simulated */
144 #define SizeFGR() ((WITH_TARGET_WORD_BITSIZE == 64 && ((SR & status_FR) == 1)) ? 64 : 32)
145 #endif
146
147 /* Standard FCRS bits: */
148 #define IR (0) /* Inexact Result */
149 #define UF (1) /* UnderFlow */
150 #define OF (2) /* OverFlow */
151 #define DZ (3) /* Division by Zero */
152 #define IO (4) /* Invalid Operation */
153 #define UO (5) /* Unimplemented Operation */
154
155 /* Get masks for individual flags: */
156 #if 1 /* SAFE version */
157 #define FP_FLAGS(b) (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
158 #define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
159 #define FP_CAUSE(b) (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
160 #else
161 #define FP_FLAGS(b) (1 << ((b) + 2))
162 #define FP_ENABLE(b) (1 << ((b) + 7))
163 #define FP_CAUSE(b) (1 << ((b) + 12))
164 #endif
165
166 #define FP_FS (1 << 24) /* MIPS III onwards : Flush to Zero */
167
168 #define FP_MASK_RM (0x3)
169 #define FP_SH_RM (0)
170 #define FP_RM_NEAREST (0) /* Round to nearest (Round) */
171 #define FP_RM_TOZERO (1) /* Round to zero (Trunc) */
172 #define FP_RM_TOPINF (2) /* Round to Plus infinity (Ceil) */
173 #define FP_RM_TOMINF (3) /* Round to Minus infinity (Floor) */
174 #define GETRM() (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)
175
176
177
178 /* Integer ALU operations: */
179
180 #include "sim-alu.h"
181
182 #define ALU32_END(ANS) \
183 if (ALU32_HAD_OVERFLOW) \
184 SignalExceptionIntegerOverflow (); \
185 (ANS) = ALU32_OVERFLOW_RESULT
186
187
188 #define ALU64_END(ANS) \
189 if (ALU64_HAD_OVERFLOW) \
190 SignalExceptionIntegerOverflow (); \
191 (ANS) = ALU64_OVERFLOW_RESULT;
192
193 /* start-sanitize-r5900 */
194
195 #define BYTES_IN_MMI_REGS (sizeof(signed_word) + sizeof(signed_word))
196 #define HALFWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/2)
197 #define WORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/4)
198 #define DOUBLEWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/8)
199
200 #define BYTES_IN_MIPS_REGS (sizeof(signed_word))
201 #define HALFWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/2)
202 #define WORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/4)
203 #define DOUBLEWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/8)
204
205 /* SUB_REG_FETCH - return as lvalue some sub-part of a "register"
206 T - type of the sub part
207 TC - # of T's in the mips part of the "register"
208 I - index (from 0) of desired sub part
209 A - low part of "register"
210 A1 - high part of register
211 */
212 #define SUB_REG_FETCH(T,TC,A,A1,I) \
213 (*(((I) < (TC) ? (T*)(A) : (T*)(A1)) \
214 + (CURRENT_HOST_BYTE_ORDER == BIG_ENDIAN \
215 ? ((TC) - 1 - (I) % (TC)) \
216 : ((I) % (TC)) \
217 ) \
218 ) \
219 )
220
221 /*
222 GPR_<type>(R,I) - return, as lvalue, the I'th <type> of general register R
223 where <type> has two letters:
224 1 is S=signed or U=unsigned
225 2 is B=byte H=halfword W=word D=doubleword
226 */
227
228 #define SUB_REG_SB(A,A1,I) SUB_REG_FETCH(signed8, BYTES_IN_MIPS_REGS, A, A1, I)
229 #define SUB_REG_SH(A,A1,I) SUB_REG_FETCH(signed16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
230 #define SUB_REG_SW(A,A1,I) SUB_REG_FETCH(signed32, WORDS_IN_MIPS_REGS, A, A1, I)
231 #define SUB_REG_SD(A,A1,I) SUB_REG_FETCH(signed64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
232
233 #define SUB_REG_UB(A,A1,I) SUB_REG_FETCH(unsigned8, BYTES_IN_MIPS_REGS, A, A1, I)
234 #define SUB_REG_UH(A,A1,I) SUB_REG_FETCH(unsigned16, HALFWORDS_IN_MIPS_REGS, A, A1, I)
235 #define SUB_REG_UW(A,A1,I) SUB_REG_FETCH(unsigned32, WORDS_IN_MIPS_REGS, A, A1, I)
236 #define SUB_REG_UD(A,A1,I) SUB_REG_FETCH(unsigned64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
237
238 #define GPR_SB(R,I) SUB_REG_SB(&REGISTERS[R], &REGISTERS1[R], I)
239 #define GPR_SH(R,I) SUB_REG_SH(&REGISTERS[R], &REGISTERS1[R], I)
240 #define GPR_SW(R,I) SUB_REG_SW(&REGISTERS[R], &REGISTERS1[R], I)
241 #define GPR_SD(R,I) SUB_REG_SD(&REGISTERS[R], &REGISTERS1[R], I)
242
243 #define GPR_UB(R,I) SUB_REG_UB(&REGISTERS[R], &REGISTERS1[R], I)
244 #define GPR_UH(R,I) SUB_REG_UH(&REGISTERS[R], &REGISTERS1[R], I)
245 #define GPR_UW(R,I) SUB_REG_UW(&REGISTERS[R], &REGISTERS1[R], I)
246 #define GPR_UD(R,I) SUB_REG_UD(&REGISTERS[R], &REGISTERS1[R], I)
247
248
249 #define RS_SB(I) SUB_REG_SB(&rs_reg, &rs_reg1, I)
250 #define RS_SH(I) SUB_REG_SH(&rs_reg, &rs_reg1, I)
251 #define RS_SW(I) SUB_REG_SW(&rs_reg, &rs_reg1, I)
252 #define RS_SD(I) SUB_REG_SD(&rs_reg, &rs_reg1, I)
253
254 #define RS_UB(I) SUB_REG_UB(&rs_reg, &rs_reg1, I)
255 #define RS_UH(I) SUB_REG_UH(&rs_reg, &rs_reg1, I)
256 #define RS_UW(I) SUB_REG_UW(&rs_reg, &rs_reg1, I)
257 #define RS_UD(I) SUB_REG_UD(&rs_reg, &rs_reg1, I)
258
259 #define RT_SB(I) SUB_REG_SB(&rt_reg, &rt_reg1, I)
260 #define RT_SH(I) SUB_REG_SH(&rt_reg, &rt_reg1, I)
261 #define RT_SW(I) SUB_REG_SW(&rt_reg, &rt_reg1, I)
262 #define RT_SD(I) SUB_REG_SD(&rt_reg, &rt_reg1, I)
263
264 #define RT_UB(I) SUB_REG_UB(&rt_reg, &rt_reg1, I)
265 #define RT_UH(I) SUB_REG_UH(&rt_reg, &rt_reg1, I)
266 #define RT_UW(I) SUB_REG_UW(&rt_reg, &rt_reg1, I)
267 #define RT_UD(I) SUB_REG_UD(&rt_reg, &rt_reg1, I)
268
269
270
271 #define LO_SB(I) SUB_REG_SB(&LO, &LO1, I)
272 #define LO_SH(I) SUB_REG_SH(&LO, &LO1, I)
273 #define LO_SW(I) SUB_REG_SW(&LO, &LO1, I)
274 #define LO_SD(I) SUB_REG_SD(&LO, &LO1, I)
275
276 #define LO_UB(I) SUB_REG_UB(&LO, &LO1, I)
277 #define LO_UH(I) SUB_REG_UH(&LO, &LO1, I)
278 #define LO_UW(I) SUB_REG_UW(&LO, &LO1, I)
279 #define LO_UD(I) SUB_REG_UD(&LO, &LO1, I)
280
281 #define HI_SB(I) SUB_REG_SB(&HI, &HI1, I)
282 #define HI_SH(I) SUB_REG_SH(&HI, &HI1, I)
283 #define HI_SW(I) SUB_REG_SW(&HI, &HI1, I)
284 #define HI_SD(I) SUB_REG_SD(&HI, &HI1, I)
285
286 #define HI_UB(I) SUB_REG_UB(&HI, &HI1, I)
287 #define HI_UH(I) SUB_REG_UH(&HI, &HI1, I)
288 #define HI_UW(I) SUB_REG_UW(&HI, &HI1, I)
289 #define HI_UD(I) SUB_REG_UD(&HI, &HI1, I)
290
291 /* end-sanitize-r5900 */
292
293
294
295
296 struct _sim_cpu {
297
298
299 /* The following are internal simulator state variables: */
300 #define CPU_CIA(CPU) (PC)
301 address_word dspc; /* delay-slot PC */
302 #define DSPC ((STATE_CPU (sd,0))->dspc)
303
304 /* Issue a delay slot instruction immediatly by re-calling
305 idecode_issue */
306 #define DELAY_SLOT(TARGET) \
307 do { \
308 address_word target = (TARGET); \
309 instruction_word delay_insn; \
310 sim_events_slip (sd, 1); \
311 CIA = CIA + 4; \
312 STATE |= simDELAYSLOT; \
313 delay_insn = IMEM (CIA); \
314 idecode_issue (sd, delay_insn, (CIA)); \
315 STATE &= ~simDELAYSLOT; \
316 NIA = target; \
317 } while (0)
318 #define NULLIFY_NEXT_INSTRUCTION() \
319 do { \
320 sim_events_slip (sd, 1); \
321 dotrace (sd, tracefh, 2, NIA, 4, "load instruction"); \
322 NIA = CIA + 8; \
323 } while (0)
324
325
326
327 /* State of the simulator */
328 unsigned int state;
329 unsigned int dsstate;
330 #define STATE ((STATE_CPU (sd,0))->state)
331 #define DSSTATE ((STATE_CPU (sd,0))->dsstate)
332
333 /* Flags in the "state" variable: */
334 #define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
335 #define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
336 #define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
337 #define simPCOC0 (1 << 17) /* COC[1] from current */
338 #define simPCOC1 (1 << 18) /* COC[1] from previous */
339 #define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
340 #define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
341 #define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
342 #define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
343
344 #define ENGINE_ISSUE_PREFIX_HOOK() \
345 { \
346 /* Set previous flag, depending on current: */ \
347 if (STATE & simPCOC0) \
348 STATE |= simPCOC1; \
349 else \
350 STATE &= ~simPCOC1; \
351 /* and update the current value: */ \
352 if (GETFCC(0)) \
353 STATE |= simPCOC0; \
354 else \
355 STATE &= ~simPCOC0; \
356 }
357
358
359 /* This is nasty, since we have to rely on matching the register
360 numbers used by GDB. Unfortunately, depending on the MIPS target
361 GDB uses different register numbers. We cannot just include the
362 relevant "gdb/tm.h" link, since GDB may not be configured before
363 the sim world, and also the GDB header file requires too much other
364 state. */
365
366 #ifndef TM_MIPS_H
367 #define LAST_EMBED_REGNUM (89)
368 #define NUM_REGS (LAST_EMBED_REGNUM + 1)
369 /* start-sanitize-r5900 */
370 #undef NUM_REGS
371 #define NUM_REGS (128)
372 /* end-sanitize-r5900 */
373 #endif
374
375 /* To keep this default simulator simple, and fast, we use a direct
376 vector of registers. The internal simulator engine then uses
377 manifests to access the correct slot. */
378
379 unsigned_word registers[LAST_EMBED_REGNUM + 1];
380 int register_widths[NUM_REGS];
381 #define REGISTERS ((STATE_CPU (sd,0))->registers)
382
383 #define GPR (&REGISTERS[0])
384 #define FGRIDX (38)
385 #define FGR (&REGISTERS[FGRIDX])
386 #define LO (REGISTERS[33])
387 #define HI (REGISTERS[34])
388 #define PC (REGISTERS[37])
389 #define CAUSE (REGISTERS[36])
390 #define SRIDX (32)
391 #define SR (REGISTERS[SRIDX]) /* CPU status register */
392 #define FCR0IDX (71)
393 #define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
394 #define FCR31IDX (70)
395 #define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
396 #define FCSR (FCR31)
397 #define Debug (REGISTERS[86])
398 #define DEPC (REGISTERS[87])
399 #define EPC (REGISTERS[88])
400 #define COCIDX (LAST_EMBED_REGNUM + 2) /* special case : outside the normal range */
401
402 unsigned_word c0_config_reg;
403 #define C0_CONFIG ((STATE_CPU (sd,0))->c0_config_reg)
404
405 /* The following are pseudonyms for standard registers */
406 #define ZERO (REGISTERS[0])
407 #define V0 (REGISTERS[2])
408 #define A0 (REGISTERS[4])
409 #define A1 (REGISTERS[5])
410 #define A2 (REGISTERS[6])
411 #define A3 (REGISTERS[7])
412 #define SP (REGISTERS[29])
413 #define RA (REGISTERS[31])
414
415 /* Keep the current format state for each register: */
416 FP_formats fpr_state[32];
417 #define FPR_STATE ((STATE_CPU (sd, 0))->fpr_state)
418
419
420 /* Slots for delayed register updates. For the moment we just have a
421 fixed number of slots (rather than a more generic, dynamic
422 system). This keeps the simulator fast. However, we only allow
423 for the register update to be delayed for a single instruction
424 cycle. */
425 #define PSLOTS (5) /* Maximum number of instruction cycles */
426 int pending_in;
427 int pending_out;
428 int pending_total;
429 int pending_slot_count[PSLOTS];
430 int pending_slot_reg[PSLOTS];
431 unsigned_word pending_slot_value[PSLOTS];
432 #define PENDING_IN ((STATE_CPU (sd, 0))->pending_in)
433 #define PENDING_OUT ((STATE_CPU (sd, 0))->pending_out)
434 #define PENDING_TOTAL ((STATE_CPU (sd, 0))->pending_total)
435 #define PENDING_SLOT_COUNT ((STATE_CPU (sd, 0))->pending_slot_count)
436 #define PENDING_SLOT_REG ((STATE_CPU (sd, 0))->pending_slot_reg)
437 #define PENDING_SLOT_VALUE ((STATE_CPU (sd, 0))->pending_slot_value)
438
439 /* The following are not used for MIPS IV onwards: */
440 #define PENDING_FILL(r,v) {\
441 /* printf("DBG: FILL BEFORE pending_in = %d, pending_out = %d, pending_total = %d\n",PENDING_IN,PENDING_OUT,PENDING_TOTAL); */\
442 if (PENDING_SLOT_REG[PENDING_IN] != (LAST_EMBED_REGNUM + 1))\
443 sim_io_eprintf(sd,"Attempt to over-write pending value\n");\
444 PENDING_SLOT_COUNT[PENDING_IN] = 2;\
445 PENDING_SLOT_REG[PENDING_IN] = (r);\
446 PENDING_SLOT_VALUE[PENDING_IN] = (uword64)(v);\
447 /*printf("DBG: FILL reg %d value = 0x%s\n",(r),pr_addr(v));*/\
448 PENDING_TOTAL++;\
449 PENDING_IN++;\
450 if (PENDING_IN == PSLOTS)\
451 PENDING_IN = 0;\
452 /*printf("DBG: FILL AFTER pending_in = %d, pending_out = %d, pending_total = %d\n",PENDING_IN,PENDING_OUT,PENDING_TOTAL);*/\
453 }
454
455
456 /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
457 read-write instructions. It is set when a linked load occurs. It
458 is tested and cleared by the conditional store. It is cleared
459 (during other CPU operations) when a store to the location would
460 no longer be atomic. In particular, it is cleared by exception
461 return instructions. */
462 int llbit;
463 #define LLBIT ((STATE_CPU (sd, 0))->llbit)
464
465
466 /* The HIACCESS and LOACCESS counts are used to ensure that
467 corruptions caused by using the HI or LO register to close to a
468 following operation are spotted. */
469
470 int hiaccess;
471 int loaccess;
472 #define HIACCESS ((STATE_CPU (sd, 0))->hiaccess)
473 #define LOACCESS ((STATE_CPU (sd, 0))->loaccess)
474 /* start-sanitize-r5900 */
475 int hi1access;
476 int lo1access;
477 #define HI1ACCESS ((STATE_CPU (sd, 0))->hi1access)
478 #define LO1ACCESS ((STATE_CPU (sd, 0))->lo1access)
479 /* end-sanitize-r5900 */
480 #if 1
481 /* The 4300 and a few other processors have interlocks on hi/lo
482 register reads, and hence do not have this problem. To avoid
483 spurious warnings, we just disable this always. */
484 #define CHECKHILO(s)
485 #else
486 unsigned_word HLPC;
487 /* If either of the preceding two instructions have accessed the HI
488 or LO registers, then the values they see should be
489 undefined. However, to keep the simulator world simple, we just
490 let them use the value read and raise a warning to notify the
491 user: */
492 #define CHECKHILO(s) {\
493 if ((HIACCESS != 0) || (LOACCESS != 0)) \
494 sim_io_eprintf(sd,"%s over-writing HI and LO registers values (PC = 0x%s HLPC = 0x%s)\n",(s),pr_addr(PC),pr_addr(HLPC));\
495 }
496 /* start-sanitize-r5900 */
497 #undef CHECKHILO
498 #define CHECKHILO(s) {\
499 if ((HIACCESS != 0) || (LOACCESS != 0) || (HI1ACCESS != 0) || (LO1ACCESS != 0))\
500 sim_io_eprintf(sd,"%s over-writing HI and LO registers values (PC = 0x%s HLPC = 0x%s)\n",(s),pr_addr(PC),pr_addr(HLPC));\
501 }
502 /* end-sanitize-r5900 */
503 #endif
504
505
506 /* start-sanitize-r5900 */
507 /* The R5900 has 128 bit registers, but the hi 64 bits are only
508 touched by multimedia (MMI) instructions. The normal mips
509 instructions just use the lower 64 bits. To avoid changing the
510 older parts of the simulator to handle this weirdness, the high
511 64 bits of each register are kept in a separate array
512 (registers1). The high 64 bits of any register are by convention
513 refered by adding a '1' to the end of the normal register's name.
514 So LO still refers to the low 64 bits of the LO register, LO1
515 refers to the high 64 bits of that same register. */
516
517 signed_word registers1[LAST_EMBED_REGNUM + 1];
518 #define REGISTERS1 ((STATE_CPU (sd, 0))->registers1)
519 #define GPR1 (&REGISTERS1[0])
520 #define LO1 (REGISTERS1[32])
521 #define HI1 (REGISTERS1[33])
522 #define REGISTER_SA (124)
523
524 unsigned_word sa; /* the shift amount register */
525 #define SA ((STATE_CPU (sd, 0))->sa)
526
527 /* end-sanitize-r5900 */
528 /* start-sanitize-vr5400 */
529
530 /* end-sanitize-vr5400 */
531
532
533
534 sim_cpu_base base;
535 };
536
537
538 /* MIPS specific simulator watch config */
539
540 void watch_options_install PARAMS ((SIM_DESC sd));
541
542 struct swatch {
543 sim_event *pc;
544 sim_event *clock;
545 sim_event *cycles;
546 };
547
548
549 /* FIXME: At present much of the simulator is still static */
550 struct sim_state {
551
552 struct swatch watch;
553
554 sim_cpu cpu[1];
555 #if (WITH_SMP)
556 #define STATE_CPU(sd,n) (&(sd)->cpu[n])
557 #else
558 #define STATE_CPU(sd,n) (&(sd)->cpu[0])
559 #endif
560
561 sim_state_base base;
562 };
563
564
565
566 /* Status information: */
567
568 /* TODO : these should be the bitmasks for these bits within the
569 status register. At the moment the following are VR4300
570 bit-positions: */
571 #define status_KSU_mask (0x3) /* mask for KSU bits */
572 #define status_KSU_shift (3) /* shift for field */
573 #define ksu_kernel (0x0)
574 #define ksu_supervisor (0x1)
575 #define ksu_user (0x2)
576 #define ksu_unknown (0x3)
577
578 #define status_IE (1 << 0) /* Interrupt enable */
579 #define status_EXL (1 << 1) /* Exception level */
580 #define status_RE (1 << 25) /* Reverse Endian in user mode */
581 #define status_FR (1 << 26) /* enables MIPS III additional FP registers */
582 #define status_SR (1 << 20) /* soft reset or NMI */
583 #define status_BEV (1 << 22) /* Location of general exception vectors */
584 #define status_TS (1 << 21) /* TLB shutdown has occurred */
585 #define status_ERL (1 << 2) /* Error level */
586 #define status_RP (1 << 27) /* Reduced Power mode */
587
588 #define cause_BD ((unsigned)1 << 31) /* Exception in branch delay slot */
589
590 /* NOTE: We keep the following status flags as bit values (1 for true,
591 0 for false). This allows them to be used in binary boolean
592 operations without worrying about what exactly the non-zero true
593 value is. */
594
595 /* UserMode */
596 #define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
597
598 /* BigEndianMem */
599 /* Hardware configuration. Affects endianness of LoadMemory and
600 StoreMemory and the endianness of Kernel and Supervisor mode
601 execution. The value is 0 for little-endian; 1 for big-endian. */
602 #define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
603 /*(state & simBE) ? 1 : 0)*/
604
605 /* ReverseEndian */
606 /* This mode is selected if in User mode with the RE bit being set in
607 SR (Status Register). It reverses the endianness of load and store
608 instructions. */
609 #define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
610
611 /* BigEndianCPU */
612 /* The endianness for load and store instructions (0=little;1=big). In
613 User mode this endianness may be switched by setting the state_RE
614 bit in the SR register. Thus, BigEndianCPU may be computed as
615 (BigEndianMem EOR ReverseEndian). */
616 #define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
617
618
619
620 /* Exceptions: */
621
622 /* NOTE: These numbers depend on the processor architecture being
623 simulated: */
624 #define Interrupt (0)
625 #define TLBModification (1)
626 #define TLBLoad (2)
627 #define TLBStore (3)
628 #define AddressLoad (4)
629 #define AddressStore (5)
630 #define InstructionFetch (6)
631 #define DataReference (7)
632 #define SystemCall (8)
633 #define BreakPoint (9)
634 #define ReservedInstruction (10)
635 #define CoProcessorUnusable (11)
636 #define IntegerOverflow (12) /* Arithmetic overflow (IDT monitor raises SIGFPE) */
637 #define Trap (13)
638 #define FPE (15)
639 #define DebugBreakPoint (16)
640 #define Watch (23)
641
642 /* The following exception code is actually private to the simulator
643 world. It is *NOT* a processor feature, and is used to signal
644 run-time errors in the simulator. */
645 #define SimulatorFault (0xFFFFFFFF)
646
647 void signal_exception (SIM_DESC sd, address_word cia, int exception, ...);
648 #define SignalException(exc,instruction) signal_exception (sd, cia, (exc), (instruction))
649 #define SignalExceptionInterrupt() signal_exception (sd, NULL_CIA, Interrupt)
650 #define SignalExceptionInstructionFetch() signal_exception (sd, cia, InstructionFetch)
651 #define SignalExceptionAddressStore() signal_exception (sd, cia, AddressStore)
652 #define SignalExceptionAddressLoad() signal_exception (sd, cia, AddressLoad)
653 #define SignalExceptionSimulatorFault(buf) signal_exception (sd, cia, SimulatorFault, buf)
654 #define SignalExceptionFPE() signal_exception (sd, cia, FPE)
655 #define SignalExceptionIntegerOverflow() signal_exception (sd, cia, IntegerOverflow)
656 #define SignalExceptionCoProcessorUnusable() signal_exception (sd, cia, CoProcessorUnusable)
657
658
659 /* Co-processor accesses */
660
661 void cop_lw PARAMS ((SIM_DESC sd, address_word cia, int coproc_num, int coproc_reg, unsigned int memword));
662 void cop_ld PARAMS ((SIM_DESC sd, address_word cia, int coproc_num, int coproc_reg, uword64 memword));
663 unsigned int cop_sw PARAMS ((SIM_DESC sd, address_word cia, int coproc_num, int coproc_reg));
664 uword64 cop_sd PARAMS ((SIM_DESC sd, address_word cia, int coproc_num, int coproc_reg));
665
666 #define COP_LW(coproc_num,coproc_reg,memword) cop_lw(sd,cia,coproc_num,coproc_reg,memword)
667 #define COP_LD(coproc_num,coproc_reg,memword) cop_ld(sd,cia,coproc_num,coproc_reg,memword)
668 #define COP_SW(coproc_num,coproc_reg) cop_sw(sd,cia,coproc_num,coproc_reg)
669 #define COP_SD(coproc_num,coproc_reg) cop_sd(sd,cia,coproc_num,coproc_reg)
670
671 void decode_coproc PARAMS ((SIM_DESC sd, address_word cia, unsigned int instruction));
672 #define DecodeCoproc(instruction) decode_coproc(sd, cia, (instruction))
673
674
675
676 /* Memory accesses */
677
678 /* The following are generic to all versions of the MIPS architecture
679 to date: */
680
681 /* Memory Access Types (for CCA): */
682 #define Uncached (0)
683 #define CachedNoncoherent (1)
684 #define CachedCoherent (2)
685 #define Cached (3)
686
687 #define isINSTRUCTION (1 == 0) /* FALSE */
688 #define isDATA (1 == 1) /* TRUE */
689 #define isLOAD (1 == 0) /* FALSE */
690 #define isSTORE (1 == 1) /* TRUE */
691 #define isREAL (1 == 0) /* FALSE */
692 #define isRAW (1 == 1) /* TRUE */
693 /* The parameter HOST (isTARGET / isHOST) is ignored */
694 #define isTARGET (1 == 0) /* FALSE */
695 /* #define isHOST (1 == 1) TRUE */
696
697 /* The "AccessLength" specifications for Loads and Stores. NOTE: This
698 is the number of bytes minus 1. */
699 #define AccessLength_BYTE (0)
700 #define AccessLength_HALFWORD (1)
701 #define AccessLength_TRIPLEBYTE (2)
702 #define AccessLength_WORD (3)
703 #define AccessLength_QUINTIBYTE (4)
704 #define AccessLength_SEXTIBYTE (5)
705 #define AccessLength_SEPTIBYTE (6)
706 #define AccessLength_DOUBLEWORD (7)
707 #define AccessLength_QUADWORD (15)
708
709 int address_translation PARAMS ((SIM_DESC sd, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw));
710 #define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
711 address_translation(sd,cia,vAddr,IorD,LorS,pAddr,CCA,raw)
712
713 void load_memory PARAMS ((SIM_DESC sd, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, int AccessLength, address_word pAddr, address_word vAddr, int IorD));
714 #define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
715 load_memory(sd,cia,memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD)
716
717 void store_memory PARAMS ((SIM_DESC sd, address_word cia, int CCA, int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr));
718 #define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
719 store_memory(sd,cia,CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr)
720
721 void cache_op PARAMS ((SIM_DESC sd, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction));
722 #define CacheOp(op,pAddr,vAddr,instruction) cache_op(sd,cia,op,pAddr,vAddr,instruction)
723
724 void sync_operation PARAMS ((SIM_DESC sd, address_word cia, int stype));
725 #define SyncOperation(stype) sync_operation (sd, cia, (stype))
726
727 void prefetch PARAMS ((SIM_DESC sd, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint));
728 #define Prefetch(CCA,pAddr,vAddr,DATA,hint) prefetch(sd,cia,CCA,pAddr,vAddr,DATA,hint)
729
730 unsigned32 ifetch32 PARAMS ((SIM_DESC sd, address_word cia, address_word vaddr));
731 #define IMEM(CIA) ifetch32 (SD, (CIA), (CIA))
732
733 void dotrace PARAMS ((SIM_DESC sd, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...));
734 FILE *tracefh;
735
736 #endif
This page took 0.058151 seconds and 3 git commands to generate.