Regenerate configure in sim
[deliverable/binutils-gdb.git] / sim / ppc / std-config.h
1 /* This file is part of the program psim.
2
3 Copyright 1994, 1995, 2002 Andrew Cagney <cagney@highland.com.au>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
17
18 */
19
20
21 #ifndef _PSIM_CONFIG_H_
22 #define _PSIM_CONFIG_H_
23
24
25 /* endianness of the host/target:
26
27 If the build process is aware (at compile time) of the endianness
28 of the host/target it is able to eliminate slower generic endian
29 handling code.
30
31 Possible values are 0 (unknown), LITTLE_ENDIAN, BIG_ENDIAN */
32
33 #ifndef WITH_HOST_BYTE_ORDER
34 #define WITH_HOST_BYTE_ORDER 0 /*unknown*/
35 #endif
36
37 #ifndef WITH_TARGET_BYTE_ORDER
38 #define WITH_TARGET_BYTE_ORDER 0 /*unknown*/
39 #endif
40
41 extern int current_host_byte_order;
42 #define CURRENT_HOST_BYTE_ORDER (WITH_HOST_BYTE_ORDER \
43 ? WITH_HOST_BYTE_ORDER \
44 : current_host_byte_order)
45 extern int current_target_byte_order;
46 #define CURRENT_TARGET_BYTE_ORDER (WITH_TARGET_BYTE_ORDER \
47 ? WITH_TARGET_BYTE_ORDER \
48 : current_target_byte_order)
49
50
51 /* PowerPC XOR endian.
52
53 In addition to the above, the simulator can support the PowerPC's
54 horrible XOR endian mode. This feature makes it possible to
55 control the endian mode of a processor using the MSR. */
56
57 #ifndef WITH_XOR_ENDIAN
58 #define WITH_XOR_ENDIAN 8
59 #endif
60
61
62 /* Intel host BSWAP support:
63
64 Whether to use bswap on the 486 and pentiums rather than the 386
65 sequence that uses xchgb/rorl/xchgb */
66 #ifndef WITH_BSWAP
67 #define WITH_BSWAP 0
68 #endif
69
70
71 /* SMP support:
72
73 Sets a limit on the number of processors that can be simulated. If
74 WITH_SMP is set to zero (0), the simulator is restricted to
75 suporting only on processor (and as a consequence leaves the SMP
76 code out of the build process).
77
78 The actual number of processors is taken from the device
79 /options/smp@<nr-cpu> */
80
81 #ifndef WITH_SMP
82 #define WITH_SMP 5
83 #endif
84 #if WITH_SMP
85 #define MAX_NR_PROCESSORS WITH_SMP
86 #else
87 #define MAX_NR_PROCESSORS 1
88 #endif
89
90
91 /* Word size of host/target:
92
93 Set these according to your host and target requirements. At this
94 point in time, I've only compiled (not run) for a 64bit and never
95 built for a 64bit host. This will always remain a compile time
96 option */
97
98 #ifndef WITH_TARGET_WORD_BITSIZE
99 #define WITH_TARGET_WORD_BITSIZE 32 /* compiled only */
100 #endif
101
102 #ifndef WITH_HOST_WORD_BITSIZE
103 #define WITH_HOST_WORD_BITSIZE 32 /* 64bit ready? */
104 #endif
105
106
107 /* Program environment:
108
109 Three environments are available - UEA (user), VEA (virtual) and
110 OEA (perating). The former two are environment that users would
111 expect to see (VEA includes things like coherency and the time
112 base) while OEA is what an operating system expects to see. By
113 setting these to specific values, the build process is able to
114 eliminate non relevent environment code
115
116 CURRENT_ENVIRONMENT specifies which of vea or oea is required for
117 the current runtime. */
118
119 #define USER_ENVIRONMENT 1
120 #define VIRTUAL_ENVIRONMENT 2
121 #define OPERATING_ENVIRONMENT 3
122
123 #ifndef WITH_ENVIRONMENT
124 #define WITH_ENVIRONMENT 0
125 #endif
126
127 extern int current_environment;
128 #define CURRENT_ENVIRONMENT (WITH_ENVIRONMENT \
129 ? WITH_ENVIRONMENT \
130 : current_environment)
131
132
133 /* Optional VEA/OEA code:
134
135 The below, required for the OEA model may also be included in the
136 VEA model however, as far as I can tell only make things
137 slower... */
138
139
140 /* Events. Devices modeling real H/W need to be able to efficiently
141 schedule things to do at known times in the future. The event
142 queue implements this. Unfortunatly this adds the need to check
143 for any events once each full instruction cycle. */
144
145 #define WITH_EVENTS (WITH_ENVIRONMENT != USER_ENVIRONMENT)
146
147
148 /* Time base:
149
150 The PowerPC architecture includes the addition of both a time base
151 register and a decrement timer. Like events adds to the overhead
152 of of some instruction cycles. */
153
154 #ifndef WITH_TIME_BASE
155 #define WITH_TIME_BASE (WITH_ENVIRONMENT != USER_ENVIRONMENT)
156 #endif
157
158
159 /* Callback/Default Memory.
160
161 Core includes a builtin memory type (raw_memory) that is
162 implemented using an array. raw_memory does not require any
163 additional functions etc.
164
165 Callback memory is where the core calls a core device for the data
166 it requires.
167
168 Default memory is an extenstion of this where for addresses that do
169 not map into either a callback or core memory range a default map
170 can be used.
171
172 The OEA model uses callback memory for devices and default memory
173 for buses.
174
175 The VEA model uses callback memory to capture `page faults'.
176
177 While it may be possible to eliminate callback/default memory (and
178 hence also eliminate an additional test per memory fetch) it
179 probably is not worth the effort.
180
181 BTW, while raw_memory could have been implemented as a callback,
182 profiling has shown that there is a biger win (at least for the
183 x86) in eliminating a function call for the most common
184 (raw_memory) case. */
185
186 #define WITH_CALLBACK_MEMORY 1
187
188
189 /* Alignment:
190
191 The PowerPC may or may not handle miss aligned transfers. An
192 implementation normally handles miss aligned transfers in big
193 endian mode but generates an exception in little endian mode.
194
195 This model. Instead allows both little and big endian modes to
196 either take exceptions or handle miss aligned transfers.
197
198 If 0 is specified then for big-endian mode miss alligned accesses
199 are permitted (NONSTRICT_ALIGNMENT) while in little-endian mode the
200 processor will fault on them (STRICT_ALIGNMENT). */
201
202 #define NONSTRICT_ALIGNMENT 1
203 #define STRICT_ALIGNMENT 2
204
205 #ifndef WITH_ALIGNMENT
206 #define WITH_ALIGNMENT 0
207 #endif
208
209 extern int current_alignment;
210 #define CURRENT_ALIGNMENT (WITH_ALIGNMENT \
211 ? WITH_ALIGNMENT \
212 : current_alignment)
213
214
215 /* Floating point suport:
216
217 Still under development. */
218
219 #define SOFT_FLOATING_POINT 1
220 #define HARD_FLOATING_POINT 2
221
222 #ifndef WITH_FLOATING_POINT
223 #define WITH_FLOATING_POINT HARD_FLOATING_POINT
224 #endif
225 extern int current_floating_point;
226 #define CURRENT_FLOATING_POINT (WITH_FLOATING_POINT \
227 ? WITH_FLOATING_POINT \
228 : current_floating_point)
229
230
231 /* Debugging:
232
233 Control the inclusion of debugging code. */
234
235 /* Include the tracing code. Disabling this eliminates all tracing
236 code */
237
238 #ifndef WITH_TRACE
239 #define WITH_TRACE 1
240 #endif
241
242 /* include code that checks assertions scattered through out the
243 program */
244
245 #ifndef WITH_ASSERT
246 #define WITH_ASSERT 1
247 #endif
248
249 /* Whether to check instructions for reserved bits being set */
250
251 #ifndef WITH_RESERVED_BITS
252 #define WITH_RESERVED_BITS 1
253 #endif
254
255 /* include monitoring code */
256
257 #define MONITOR_INSTRUCTION_ISSUE 1
258 #define MONITOR_LOAD_STORE_UNIT 2
259 #ifndef WITH_MON
260 #define WITH_MON (MONITOR_LOAD_STORE_UNIT \
261 | MONITOR_INSTRUCTION_ISSUE)
262 #endif
263
264 /* Current CPU model (models are in the generated models.h include file) */
265 #ifndef WITH_MODEL
266 #define WITH_MODEL 0
267 #endif
268
269 #define CURRENT_MODEL (WITH_MODEL \
270 ? WITH_MODEL \
271 : current_model)
272
273 #ifndef WITH_DEFAULT_MODEL
274 #define WITH_DEFAULT_MODEL DEFAULT_MODEL
275 #endif
276
277 #define MODEL_ISSUE_IGNORE (-1)
278 #define MODEL_ISSUE_PROCESS 1
279
280 #ifndef WITH_MODEL_ISSUE
281 #define WITH_MODEL_ISSUE 0
282 #endif
283
284 extern int current_model_issue;
285 #define CURRENT_MODEL_ISSUE (WITH_MODEL_ISSUE \
286 ? WITH_MODEL_ISSUE \
287 : current_model_issue)
288
289 /* Whether or not input/output just uses stdio, or uses printf_filtered for
290 output, and polling input for input. */
291
292 #define DONT_USE_STDIO 2
293 #define DO_USE_STDIO 1
294
295 #ifndef WITH_STDIO
296 #define WITH_STDIO 0
297 #endif
298
299 extern int current_stdio;
300 #define CURRENT_STDIO (WITH_STDIO \
301 ? WITH_STDIO \
302 : current_stdio)
303
304
305
306 /* INLINE CODE SELECTION:
307
308 GCC -O3 attempts to inline any function or procedure in scope. The
309 options below facilitate fine grained control over what is and what
310 isn't made inline. For instance it can control things down to a
311 specific modules static routines. Doing this allows the compiler
312 to both eliminate the overhead of function calls and (as a
313 consequence) also eliminate further dead code.
314
315 On a CISC (x86) I've found that I can achieve an order of magnitude
316 speed improvement (x3-x5). In the case of RISC (sparc) while the
317 performance gain isn't as great it is still significant.
318
319 Each module is controled by the macro <module>_INLINE which can
320 have the values described below
321
322 0 Do not inline any thing for the given module
323
324 The following additional values are `bit fields' and can be
325 combined.
326
327 REVEAL_MODULE:
328
329 Include the C file for the module into the file being compiled
330 but do not make the functions within the module inline.
331
332 While of no apparent benefit, this makes it possible for the
333 included module, when compiled to inline its calls to what
334 would otherwize be external functions.
335
336 INLINE_MODULE:
337
338 Make external functions within the module `inline'. Thus if
339 the module is included into a file being compiled, calls to
340 its funtions can be eliminated. 2 implies 1.
341
342 PSIM_INLINE_LOCALS:
343
344 Make internal (static) functions within the module `inline'.
345
346 The following abreviations are available:
347
348 INCLUDE_MODULE == (REVEAL_MODULE | INLINE_MODULE)
349
350 ALL_INLINE == (REVEAL_MODULE | INLINE_MODULE | PSIM_INLINE_LOCALS)
351
352 In addition to this, modules have been put into two categories.
353
354 Simple modules - eg sim-endian.h bits.h
355
356 Because these modules are small and simple and do not have
357 any complex interpendencies they are configured, if
358 <module>_INLINE is so enabled, to inline themselves in all
359 modules that include those files.
360
361 For the default build, this is a real win as all byte
362 conversion and bit manipulation functions are inlined.
363
364 Complex modules - the rest
365
366 These are all handled using the files inline.h and inline.c.
367 psim.c includes the above which in turn include any remaining
368 code.
369
370 IMPLEMENTATION:
371
372 The inline ability is enabled by prefixing every data / function
373 declaration and definition with one of the following:
374
375
376 INLINE_<module>
377
378 Prefix to any global function that is a candidate for being
379 inline.
380
381 values - `', `static', `static INLINE'
382
383
384 EXTERN_<module>
385
386 Prefix to any global data structures for the module. Global
387 functions that are not to be inlined shall also be prefixed
388 with this.
389
390 values - `', `static', `static'
391
392
393 STATIC_INLINE_<module>
394
395 Prefix to any local (static) function that is a candidate for
396 being made inline.
397
398 values - `static', `static INLINE'
399
400
401 static
402
403 Prefix all local data structures. Local functions that are not
404 to be inlined shall also be prefixed with this.
405
406 values - `static', `static'
407
408 nb: will not work for modules that are being inlined for every
409 use (white lie).
410
411
412 extern
413 #ifndef _INLINE_C_
414 #endif
415
416 Prefix to any declaration of a global object (function or
417 variable) that should not be inlined and should have only one
418 definition. The #ifndef wrapper goes around the definition
419 propper to ensure that only one copy is generated.
420
421 nb: this will not work when a module is being inlined for every
422 use.
423
424
425 STATIC_<module>
426
427 Replaced by either `static' or `EXTERN_MODULE'.
428
429
430 REALITY CHECK:
431
432 This is not for the faint hearted. I've seen GCC get up to 500mb
433 trying to compile what this can create.
434
435 Some of the modules do not yet implement the WITH_INLINE_STATIC
436 option. Instead they use the macro STATIC_INLINE to control their
437 local function.
438
439 Because of the way that GCC parses __attribute__(), the macro's
440 need to be adjacent to the function name rather than at the start
441 of the line vis:
442
443 int STATIC_INLINE_MODULE f(void);
444 void INLINE_MODULE *g(void);
445
446 */
447
448 #define REVEAL_MODULE 1
449 #define INLINE_MODULE 2
450 #define INCLUDE_MODULE (INLINE_MODULE | REVEAL_MODULE)
451 #define PSIM_INLINE_LOCALS 4
452 #define ALL_INLINE 7
453
454 /* Your compilers inline reserved word */
455
456 #ifndef INLINE
457 #if defined(__GNUC__) && defined(__OPTIMIZE__)
458 #define INLINE __inline__
459 #else
460 #define INLINE /*inline*/
461 #endif
462 #endif
463
464
465 /* Your compilers pass parameters in registers reserved word */
466
467 #ifndef WITH_REGPARM
468 #define WITH_REGPARM 0
469 #endif
470
471 /* Your compilers use an alternative calling sequence reserved word */
472
473 #ifndef WITH_STDCALL
474 #define WITH_STDCALL 0
475 #endif
476
477 #if !defined REGPARM
478 #if defined(__GNUC__) && (defined(__i386__) || defined(__i486__) || defined(__i586__) || defined(__i686__))
479 #if (WITH_REGPARM && WITH_STDCALL)
480 #define REGPARM __attribute__((__regparm__(WITH_REGPARM),__stdcall__))
481 #else
482 #if (WITH_REGPARM && !WITH_STDCALL)
483 #define REGPARM __attribute__((__regparm__(WITH_REGPARM)))
484 #else
485 #if (!WITH_REGPARM && WITH_STDCALL)
486 #define REGPARM __attribute__((__stdcall__))
487 #endif
488 #endif
489 #endif
490 #endif
491 #endif
492
493 #if !defined REGPARM
494 #define REGPARM
495 #endif
496
497
498
499 /* Default prefix for static functions */
500
501 #ifndef STATIC_INLINE
502 #define STATIC_INLINE static INLINE
503 #endif
504
505 /* Default macro to simplify control several of key the inlines */
506
507 #ifndef DEFAULT_INLINE
508 #define DEFAULT_INLINE PSIM_INLINE_LOCALS
509 #endif
510
511 /* Code that converts between hosts and target byte order. Used on
512 every memory access (instruction and data). See sim-endian.h for
513 additional byte swapping configuration information. This module
514 can inline for all callers */
515
516 #ifndef SIM_ENDIAN_INLINE
517 #define SIM_ENDIAN_INLINE (DEFAULT_INLINE ? ALL_INLINE : 0)
518 #endif
519
520 /* Low level bit manipulation routines. This module can inline for all
521 callers */
522
523 #ifndef BITS_INLINE
524 #define BITS_INLINE (DEFAULT_INLINE ? ALL_INLINE : 0)
525 #endif
526
527 /* Code that gives access to various CPU internals such as registers.
528 Used every time an instruction is executed */
529
530 #ifndef CPU_INLINE
531 #define CPU_INLINE (DEFAULT_INLINE ? ALL_INLINE : 0)
532 #endif
533
534 /* Code that translates between an effective and real address. Used
535 by every load or store. */
536
537 #ifndef VM_INLINE
538 #define VM_INLINE DEFAULT_INLINE
539 #endif
540
541 /* Code that loads/stores data to/from the memory data structure.
542 Used by every load or store */
543
544 #ifndef CORE_INLINE
545 #define CORE_INLINE DEFAULT_INLINE
546 #endif
547
548 /* Code to check for and process any events scheduled in the future.
549 Called once per instruction cycle */
550
551 #ifndef EVENTS_INLINE
552 #define EVENTS_INLINE (DEFAULT_INLINE ? ALL_INLINE : 0)
553 #endif
554
555 /* Code monotoring the processors performance. It counts events on
556 every instruction cycle */
557
558 #ifndef MON_INLINE
559 #define MON_INLINE (DEFAULT_INLINE ? ALL_INLINE : 0)
560 #endif
561
562 /* Code called on the rare occasions that an interrupt occures. */
563
564 #ifndef INTERRUPTS_INLINE
565 #define INTERRUPTS_INLINE DEFAULT_INLINE
566 #endif
567
568 /* Code called on the rare occasion that either gdb or the device tree
569 need to manipulate a register within a processor */
570
571 #ifndef REGISTERS_INLINE
572 #define REGISTERS_INLINE DEFAULT_INLINE
573 #endif
574
575 /* Code called on the rare occasion that a processor is manipulating
576 real hardware instead of RAM.
577
578 Also, most of the functions in devices.c are always called through
579 a jump table. */
580
581 #ifndef DEVICE_INLINE
582 #define DEVICE_INLINE (DEFAULT_INLINE ? PSIM_INLINE_LOCALS : 0)
583 #endif
584
585 /* Code called used while the device tree is being built.
586
587 Inlining this is of no benefit */
588
589 #ifndef TREE_INLINE
590 #define TREE_INLINE (DEFAULT_INLINE ? PSIM_INLINE_LOCALS : 0)
591 #endif
592
593 /* Code called whenever information on a Special Purpose Register is
594 required. Called by the mflr/mtlr pseudo instructions */
595
596 #ifndef SPREG_INLINE
597 #define SPREG_INLINE DEFAULT_INLINE
598 #endif
599
600 /* Functions modeling the semantics of each instruction. Two cases to
601 consider, firstly of idecode is implemented with a switch then this
602 allows the idecode function to inline each semantic function
603 (avoiding a call). The second case is when idecode is using a
604 table, even then while the semantic functions can't be inlined,
605 setting it to one still enables each semantic function to inline
606 anything they call (if that code is marked for being inlined).
607
608 WARNING: you need lots (like 200mb of swap) of swap. Setting this
609 to 1 is useful when using a table as it enables the sematic code to
610 inline all of their called functions */
611
612 #ifndef SEMANTICS_INLINE
613 #define SEMANTICS_INLINE (DEFAULT_INLINE & ~INLINE_MODULE)
614 #endif
615
616 /* When using the instruction cache, code to decode an instruction and
617 install it into the cache. Normally called when ever there is a
618 miss in the instruction cache. */
619
620 #ifndef ICACHE_INLINE
621 #define ICACHE_INLINE (DEFAULT_INLINE & ~INLINE_MODULE)
622 #endif
623
624 /* General functions called by semantics functions but part of the
625 instruction table. Although called by the semantic functions the
626 frequency of calls is low. Consequently the need to inline this
627 code is reduced. */
628
629 #ifndef SUPPORT_INLINE
630 #define SUPPORT_INLINE PSIM_INLINE_LOCALS
631 #endif
632
633 /* Model specific code used in simulating functional units. Note, it actaully
634 pays NOT to inline the PowerPC model functions (at least on the x86). This
635 is because if it is inlined, each PowerPC instruction gets a separate copy
636 of the code, which is not friendly to the cache. */
637
638 #ifndef MODEL_INLINE
639 #define MODEL_INLINE (DEFAULT_INLINE & ~INLINE_MODULE)
640 #endif
641
642 /* Code to print out what options we were compiled with. Because this
643 is called at process startup, it doesn't have to be inlined, but
644 if it isn't brought in and the model routines are inline, the model
645 routines will be pulled in twice. */
646
647 #ifndef OPTIONS_INLINE
648 #define OPTIONS_INLINE MODEL_INLINE
649 #endif
650
651 /* idecode acts as the hub of the system, everything else is imported
652 into this file */
653
654 #ifndef IDECOCE_INLINE
655 #define IDECODE_INLINE PSIM_INLINE_LOCALS
656 #endif
657
658 /* psim, isn't actually inlined */
659
660 #ifndef PSIM_INLINE
661 #define PSIM_INLINE PSIM_INLINE_LOCALS
662 #endif
663
664 /* Code to emulate os or rom compatibility. This code is called via a
665 table and hence there is little benefit in making it inline */
666
667 #ifndef OS_EMUL_INLINE
668 #define OS_EMUL_INLINE 0
669 #endif
670
671 #endif /* _PSIM_CONFIG_H */
This page took 0.043371 seconds and 4 git commands to generate.