sim: unify SIM_CPU definition
[deliverable/binutils-gdb.git] / sim / v850 / sim-main.h
1 #ifndef SIM_MAIN_H
2 #define SIM_MAIN_H
3
4 /* General config options */
5
6 #define WITH_CORE
7 #define WITH_MODULO_MEMORY 1
8 #define WITH_WATCHPOINTS 1
9
10
11 /* The v850 has 32bit words, numbered 31 (MSB) to 0 (LSB) */
12
13 #define WITH_TARGET_WORD_MSB 31
14
15 #include "config.h"
16 #include "sim-basics.h"
17 #include "sim-signal.h"
18 #include "sim-fpu.h"
19 #include "sim-base.h"
20
21 #include "simops.h"
22 #include "bfd.h"
23
24
25 typedef signed8 int8;
26 typedef unsigned8 uint8;
27 typedef signed16 int16;
28 typedef unsigned16 uint16;
29 typedef signed32 int32;
30 typedef unsigned32 uint32;
31 typedef unsigned32 reg_t;
32 typedef unsigned64 reg64_t;
33
34
35 /* The current state of the processor; registers, memory, etc. */
36
37 typedef struct _v850_regs {
38 reg_t regs[32]; /* general-purpose registers */
39 reg_t sregs[32]; /* system registers, including psw */
40 reg_t pc;
41 int dummy_mem; /* where invalid accesses go */
42 reg_t mpu0_sregs[28]; /* mpu0 system registers */
43 reg_t mpu1_sregs[28]; /* mpu1 system registers */
44 reg_t fpu_sregs[28]; /* fpu system registers */
45 reg_t selID_sregs[7][32]; /* system registers, selID 1 thru selID 7 */
46 reg64_t vregs[32]; /* vector registers. */
47 } v850_regs;
48
49 struct _sim_cpu
50 {
51 /* ... simulator specific members ... */
52 v850_regs reg;
53 reg_t psw_mask; /* only allow non-reserved bits to be set */
54 sim_event *pending_nmi;
55 /* ... base type ... */
56 sim_cpu_base base;
57 };
58
59 struct sim_state {
60 sim_cpu *cpu[MAX_NR_PROCESSORS];
61 #if 0
62 SIM_ADDR rom_size;
63 SIM_ADDR low_end;
64 SIM_ADDR high_start;
65 SIM_ADDR high_base;
66 void *mem;
67 #endif
68 sim_state_base base;
69 };
70
71 /* For compatibility, until all functions converted to passing
72 SIM_DESC as an argument */
73 extern SIM_DESC simulator;
74
75
76 #define V850_ROM_SIZE 0x8000
77 #define V850_LOW_END 0x200000
78 #define V850_HIGH_START 0xffe000
79
80
81 /* Because we are still using the old semantic table, provide compat
82 macro's that store the instruction where the old simops expects
83 it. */
84
85 extern uint32 OP[4];
86 #if 0
87 OP[0] = inst & 0x1f; /* RRRRR -> reg1 */
88 OP[1] = (inst >> 11) & 0x1f; /* rrrrr -> reg2 */
89 OP[2] = (inst >> 16) & 0xffff; /* wwwww -> reg3 OR imm16 */
90 OP[3] = inst;
91 #endif
92
93 #define SAVE_1 \
94 PC = cia; \
95 OP[0] = instruction_0 & 0x1f; \
96 OP[1] = (instruction_0 >> 11) & 0x1f; \
97 OP[2] = 0; \
98 OP[3] = instruction_0
99
100 #define COMPAT_1(CALL) \
101 SAVE_1; \
102 PC += (CALL); \
103 nia = PC
104
105 #define SAVE_2 \
106 PC = cia; \
107 OP[0] = instruction_0 & 0x1f; \
108 OP[1] = (instruction_0 >> 11) & 0x1f; \
109 OP[2] = instruction_1; \
110 OP[3] = (instruction_1 << 16) | instruction_0
111
112 #define COMPAT_2(CALL) \
113 SAVE_2; \
114 PC += (CALL); \
115 nia = PC
116
117
118 /* new */
119 #define GR ((CPU)->reg.regs)
120 #define SR ((CPU)->reg.sregs)
121 #define VR ((CPU)->reg.vregs)
122 #define MPU0_SR ((STATE_CPU (sd, 0))->reg.mpu0_sregs)
123 #define MPU1_SR ((STATE_CPU (sd, 0))->reg.mpu1_sregs)
124 #define FPU_SR ((STATE_CPU (sd, 0))->reg.fpu_sregs)
125
126 /* old */
127 #define State (STATE_CPU (simulator, 0)->reg)
128 #define PC (State.pc)
129 #define SP_REGNO 3
130 #define SP (State.regs[SP_REGNO])
131 #define EP (State.regs[30])
132
133 #define EIPC (State.sregs[0])
134 #define EIPSW (State.sregs[1])
135 #define FEPC (State.sregs[2])
136 #define FEPSW (State.sregs[3])
137 #define ECR (State.sregs[4])
138 #define PSW (State.sregs[5])
139 #define PSW_REGNO 5
140 #define EIIC (State.sregs[13])
141 #define FEIC (State.sregs[14])
142 #define DBIC (SR[15])
143 #define CTPC (SR[16])
144 #define CTPSW (SR[17])
145 #define DBPC (State.sregs[18])
146 #define DBPSW (State.sregs[19])
147 #define CTBP (State.sregs[20])
148 #define DIR (SR[21])
149 #define EIWR (SR[28])
150 #define FEWR (SR[29])
151 #define DBWR (SR[30])
152 #define BSEL (SR[31])
153
154 #define PSW_US BIT32 (8)
155 #define PSW_NP 0x80
156 #define PSW_EP 0x40
157 #define PSW_ID 0x20
158 #define PSW_SAT 0x10
159 #define PSW_CY 0x8
160 #define PSW_OV 0x4
161 #define PSW_S 0x2
162 #define PSW_Z 0x1
163
164 #define PSW_NPV (1<<18)
165 #define PSW_DMP (1<<17)
166 #define PSW_IMP (1<<16)
167
168 #define ECR_EICC 0x0000ffff
169 #define ECR_FECC 0xffff0000
170
171 /* FPU */
172
173 #define FPSR (FPU_SR[6])
174 #define FPSR_REGNO 6
175 #define FPEPC (FPU_SR[7])
176 #define FPST (FPU_SR[8])
177 #define FPST_REGNO 8
178 #define FPCC (FPU_SR[9])
179 #define FPCFG (FPU_SR[10])
180 #define FPCFG_REGNO 10
181
182 #define FPSR_DEM 0x00200000
183 #define FPSR_SEM 0x00100000
184 #define FPSR_RM 0x000c0000
185 #define FPSR_RN 0x00000000
186 #define FPSR_FS 0x00020000
187 #define FPSR_PR 0x00010000
188
189 #define FPSR_XC 0x0000fc00
190 #define FPSR_XCE 0x00008000
191 #define FPSR_XCV 0x00004000
192 #define FPSR_XCZ 0x00002000
193 #define FPSR_XCO 0x00001000
194 #define FPSR_XCU 0x00000800
195 #define FPSR_XCI 0x00000400
196
197 #define FPSR_XE 0x000003e0
198 #define FPSR_XEV 0x00000200
199 #define FPSR_XEZ 0x00000100
200 #define FPSR_XEO 0x00000080
201 #define FPSR_XEU 0x00000040
202 #define FPSR_XEI 0x00000020
203
204 #define FPSR_XP 0x0000001f
205 #define FPSR_XPV 0x00000010
206 #define FPSR_XPZ 0x00000008
207 #define FPSR_XPO 0x00000004
208 #define FPSR_XPU 0x00000002
209 #define FPSR_XPI 0x00000001
210
211 #define FPST_PR 0x00008000
212 #define FPST_XCE 0x00002000
213 #define FPST_XCV 0x00001000
214 #define FPST_XCZ 0x00000800
215 #define FPST_XCO 0x00000400
216 #define FPST_XCU 0x00000200
217 #define FPST_XCI 0x00000100
218
219 #define FPST_XPV 0x00000010
220 #define FPST_XPZ 0x00000008
221 #define FPST_XPO 0x00000004
222 #define FPST_XPU 0x00000002
223 #define FPST_XPI 0x00000001
224
225 #define FPCFG_RM 0x00000180
226 #define FPCFG_XEV 0x00000010
227 #define FPCFG_XEZ 0x00000008
228 #define FPCFG_XEO 0x00000004
229 #define FPCFG_XEU 0x00000002
230 #define FPCFG_XEI 0x00000001
231
232 #define GET_FPCC()\
233 ((FPSR >> 24) &0xf)
234
235 #define CLEAR_FPCC(bbb)\
236 (FPSR &= ~(1 << (bbb+24)))
237
238 #define SET_FPCC(bbb)\
239 (FPSR |= 1 << (bbb+24))
240
241 #define TEST_FPCC(bbb)\
242 ((FPSR & (1 << (bbb+24))) != 0)
243
244 #define FPSR_GET_ROUND() \
245 (((FPSR & FPSR_RM) == FPSR_RN) ? sim_fpu_round_near \
246 : ((FPSR & FPSR_RM) == 0x00040000) ? sim_fpu_round_up \
247 : ((FPSR & FPSR_RM) == 0x00080000) ? sim_fpu_round_down \
248 : sim_fpu_round_zero)
249
250
251 enum FPU_COMPARE {
252 FPU_CMP_F = 0,
253 FPU_CMP_UN,
254 FPU_CMP_EQ,
255 FPU_CMP_UEQ,
256 FPU_CMP_OLT,
257 FPU_CMP_ULT,
258 FPU_CMP_OLE,
259 FPU_CMP_ULE,
260 FPU_CMP_SF,
261 FPU_CMP_NGLE,
262 FPU_CMP_SEQ,
263 FPU_CMP_NGL,
264 FPU_CMP_LT,
265 FPU_CMP_NGE,
266 FPU_CMP_LE,
267 FPU_CMP_NGT
268 };
269
270
271 /* MPU */
272 #define MPM (MPU1_SR[0])
273 #define MPC (MPU1_SR[1])
274 #define MPC_REGNO 1
275 #define TID (MPU1_SR[2])
276 #define PPA (MPU1_SR[3])
277 #define PPM (MPU1_SR[4])
278 #define PPC (MPU1_SR[5])
279 #define DCC (MPU1_SR[6])
280 #define DCV0 (MPU1_SR[7])
281 #define DCV1 (MPU1_SR[8])
282 #define SPAL (MPU1_SR[10])
283 #define SPAU (MPU1_SR[11])
284 #define IPA0L (MPU1_SR[12])
285 #define IPA0U (MPU1_SR[13])
286 #define IPA1L (MPU1_SR[14])
287 #define IPA1U (MPU1_SR[15])
288 #define IPA2L (MPU1_SR[16])
289 #define IPA2U (MPU1_SR[17])
290 #define IPA3L (MPU1_SR[18])
291 #define IPA3U (MPU1_SR[19])
292 #define DPA0L (MPU1_SR[20])
293 #define DPA0U (MPU1_SR[21])
294 #define DPA1L (MPU1_SR[22])
295 #define DPA1U (MPU1_SR[23])
296 #define DPA2L (MPU1_SR[24])
297 #define DPA2U (MPU1_SR[25])
298 #define DPA3L (MPU1_SR[26])
299 #define DPA3U (MPU1_SR[27])
300
301 #define PPC_PPE 0x1
302 #define SPAL_SPE 0x1
303 #define SPAL_SPS 0x10
304
305 #define VIP (MPU0_SR[0])
306 #define VMECR (MPU0_SR[4])
307 #define VMTID (MPU0_SR[5])
308 #define VMADR (MPU0_SR[6])
309 #define VPECR (MPU0_SR[8])
310 #define VPTID (MPU0_SR[9])
311 #define VPADR (MPU0_SR[10])
312 #define VDECR (MPU0_SR[12])
313 #define VDTID (MPU0_SR[13])
314
315 #define MPM_AUE 0x2
316 #define MPM_MPE 0x1
317
318 #define VMECR_VMX 0x2
319 #define VMECR_VMR 0x4
320 #define VMECR_VMW 0x8
321 #define VMECR_VMS 0x10
322 #define VMECR_VMRMW 0x20
323 #define VMECR_VMMS 0x40
324
325 #define IPA2ADDR(IPA) ((IPA) & 0x1fffff80)
326 #define IPA_IPE 0x1
327 #define IPA_IPX 0x2
328 #define IPA_IPR 0x4
329 #define IPE0 (IPA0L & IPA_IPE)
330 #define IPE1 (IPA1L & IPA_IPE)
331 #define IPE2 (IPA2L & IPA_IPE)
332 #define IPE3 (IPA3L & IPA_IPE)
333 #define IPX0 (IPA0L & IPA_IPX)
334 #define IPX1 (IPA1L & IPA_IPX)
335 #define IPX2 (IPA2L & IPA_IPX)
336 #define IPX3 (IPA3L & IPA_IPX)
337 #define IPR0 (IPA0L & IPA_IPR)
338 #define IPR1 (IPA1L & IPA_IPR)
339 #define IPR2 (IPA2L & IPA_IPR)
340 #define IPR3 (IPA3L & IPA_IPR)
341
342 #define DPA2ADDR(DPA) ((DPA) & 0x1fffff80)
343 #define DPA_DPE 0x1
344 #define DPA_DPR 0x4
345 #define DPA_DPW 0x8
346 #define DPE0 (DPA0L & DPA_DPE)
347 #define DPE1 (DPA1L & DPA_DPE)
348 #define DPE2 (DPA2L & DPA_DPE)
349 #define DPE3 (DPA3L & DPA_DPE)
350 #define DPR0 (DPA0L & DPA_DPR)
351 #define DPR1 (DPA1L & DPA_DPR)
352 #define DPR2 (DPA2L & DPA_DPR)
353 #define DPR3 (DPA3L & DPA_DPR)
354 #define DPW0 (DPA0L & DPA_DPW)
355 #define DPW1 (DPA1L & DPA_DPW)
356 #define DPW2 (DPA2L & DPA_DPW)
357 #define DPW3 (DPA3L & DPA_DPW)
358
359 #define DCC_DCE0 0x1
360 #define DCC_DCE1 0x10000
361
362 #define PPA2ADDR(PPA) ((PPA) & 0x1fffff80)
363 #define PPC_PPC 0xfffffffe
364 #define PPC_PPE 0x1
365 #define PPC_PPM 0x0000fff8
366
367
368 #define SEXT3(x) ((((x)&0x7)^(~0x3))+0x4)
369
370 /* sign-extend a 4-bit number */
371 #define SEXT4(x) ((((x)&0xf)^(~0x7))+0x8)
372
373 /* sign-extend a 5-bit number */
374 #define SEXT5(x) ((((x)&0x1f)^(~0xf))+0x10)
375
376 /* sign-extend a 9-bit number */
377 #define SEXT9(x) ((((x)&0x1ff)^(~0xff))+0x100)
378
379 /* sign-extend a 22-bit number */
380 #define SEXT22(x) ((((x)&0x3fffff)^(~0x1fffff))+0x200000)
381
382 /* sign extend a 40 bit number */
383 #define SEXT40(x) ((((x) & UNSIGNED64 (0xffffffffff)) \
384 ^ (~UNSIGNED64 (0x7fffffffff))) \
385 + UNSIGNED64 (0x8000000000))
386
387 /* sign extend a 44 bit number */
388 #define SEXT44(x) ((((x) & UNSIGNED64 (0xfffffffffff)) \
389 ^ (~ UNSIGNED64 (0x7ffffffffff))) \
390 + UNSIGNED64 (0x80000000000))
391
392 /* sign extend a 60 bit number */
393 #define SEXT60(x) ((((x) & UNSIGNED64 (0xfffffffffffffff)) \
394 ^ (~ UNSIGNED64 (0x7ffffffffffffff))) \
395 + UNSIGNED64 (0x800000000000000))
396
397 /* No sign extension */
398 #define NOP(x) (x)
399
400 #define INC_ADDR(x,i) x = ((State.MD && x == MOD_E) ? MOD_S : (x)+(i))
401
402 #define RLW(x) load_mem (x, 4)
403
404 /* Function declarations. */
405
406 #define IMEM16(EA) \
407 sim_core_read_aligned_2 (CPU, PC, exec_map, (EA))
408
409 #define IMEM16_IMMED(EA,N) \
410 sim_core_read_aligned_2 (STATE_CPU (sd, 0), \
411 PC, exec_map, (EA) + (N) * 2)
412
413 #define load_mem(ADDR,LEN) \
414 sim_core_read_unaligned_##LEN (STATE_CPU (simulator, 0), \
415 PC, read_map, (ADDR))
416
417 #define store_mem(ADDR,LEN,DATA) \
418 sim_core_write_unaligned_##LEN (STATE_CPU (simulator, 0), \
419 PC, write_map, (ADDR), (DATA))
420
421
422 /* compare cccc field against PSW */
423 int condition_met (unsigned code);
424
425
426 /* Debug/tracing calls */
427
428 enum op_types
429 {
430 OP_UNKNOWN,
431 OP_NONE,
432 OP_TRAP,
433 OP_REG,
434 OP_REG_REG,
435 OP_REG_REG_CMP,
436 OP_REG_REG_MOVE,
437 OP_IMM_REG,
438 OP_IMM_REG_CMP,
439 OP_IMM_REG_MOVE,
440 OP_COND_BR,
441 OP_LOAD16,
442 OP_STORE16,
443 OP_LOAD32,
444 OP_STORE32,
445 OP_JUMP,
446 OP_IMM_REG_REG,
447 OP_UIMM_REG_REG,
448 OP_IMM16_REG_REG,
449 OP_UIMM16_REG_REG,
450 OP_BIT,
451 OP_EX1,
452 OP_EX2,
453 OP_LDSR,
454 OP_STSR,
455 OP_BIT_CHANGE,
456 OP_REG_REG_REG,
457 OP_REG_REG3,
458 OP_IMM_REG_REG_REG,
459 OP_PUSHPOP1,
460 OP_PUSHPOP2,
461 OP_PUSHPOP3,
462 };
463
464 #ifdef DEBUG
465 void trace_input (char *name, enum op_types type, int size);
466 void trace_output (enum op_types result);
467 void trace_result (int has_result, unsigned32 result);
468
469 extern int trace_num_values;
470 extern unsigned32 trace_values[];
471 extern unsigned32 trace_pc;
472 extern const char *trace_name;
473 extern int trace_module;
474
475 #define TRACE_BRANCH0() \
476 do { \
477 if (TRACE_BRANCH_P (CPU)) { \
478 trace_module = TRACE_BRANCH_IDX; \
479 trace_pc = cia; \
480 trace_name = itable[MY_INDEX].name; \
481 trace_num_values = 0; \
482 trace_result (1, (nia)); \
483 } \
484 } while (0)
485
486 #define TRACE_BRANCH1(IN1) \
487 do { \
488 if (TRACE_BRANCH_P (CPU)) { \
489 trace_module = TRACE_BRANCH_IDX; \
490 trace_pc = cia; \
491 trace_name = itable[MY_INDEX].name; \
492 trace_values[0] = (IN1); \
493 trace_num_values = 1; \
494 trace_result (1, (nia)); \
495 } \
496 } while (0)
497
498 #define TRACE_BRANCH2(IN1, IN2) \
499 do { \
500 if (TRACE_BRANCH_P (CPU)) { \
501 trace_module = TRACE_BRANCH_IDX; \
502 trace_pc = cia; \
503 trace_name = itable[MY_INDEX].name; \
504 trace_values[0] = (IN1); \
505 trace_values[1] = (IN2); \
506 trace_num_values = 2; \
507 trace_result (1, (nia)); \
508 } \
509 } while (0)
510
511 #define TRACE_BRANCH3(IN1, IN2, IN3) \
512 do { \
513 if (TRACE_BRANCH_P (CPU)) { \
514 trace_module = TRACE_BRANCH_IDX; \
515 trace_pc = cia; \
516 trace_name = itable[MY_INDEX].name; \
517 trace_values[0] = (IN1); \
518 trace_values[1] = (IN2); \
519 trace_values[2] = (IN3); \
520 trace_num_values = 3; \
521 trace_result (1, (nia)); \
522 } \
523 } while (0)
524
525 #define TRACE_LD(ADDR,RESULT) \
526 do { \
527 if (TRACE_MEMORY_P (CPU)) { \
528 trace_module = TRACE_MEMORY_IDX; \
529 trace_pc = cia; \
530 trace_name = itable[MY_INDEX].name; \
531 trace_values[0] = (ADDR); \
532 trace_num_values = 1; \
533 trace_result (1, (RESULT)); \
534 } \
535 } while (0)
536
537 #define TRACE_LD_NAME(NAME, ADDR,RESULT) \
538 do { \
539 if (TRACE_MEMORY_P (CPU)) { \
540 trace_module = TRACE_MEMORY_IDX; \
541 trace_pc = cia; \
542 trace_name = (NAME); \
543 trace_values[0] = (ADDR); \
544 trace_num_values = 1; \
545 trace_result (1, (RESULT)); \
546 } \
547 } while (0)
548
549 #define TRACE_ST(ADDR,RESULT) \
550 do { \
551 if (TRACE_MEMORY_P (CPU)) { \
552 trace_module = TRACE_MEMORY_IDX; \
553 trace_pc = cia; \
554 trace_name = itable[MY_INDEX].name; \
555 trace_values[0] = (ADDR); \
556 trace_num_values = 1; \
557 trace_result (1, (RESULT)); \
558 } \
559 } while (0)
560
561 #define TRACE_FP_INPUT_FPU1(V0) \
562 do { \
563 if (TRACE_FPU_P (CPU)) \
564 { \
565 unsigned64 f0; \
566 sim_fpu_to64 (&f0, (V0)); \
567 trace_input_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
568 } \
569 } while (0)
570
571 #define TRACE_FP_INPUT_FPU2(V0, V1) \
572 do { \
573 if (TRACE_FPU_P (CPU)) \
574 { \
575 unsigned64 f0, f1; \
576 sim_fpu_to64 (&f0, (V0)); \
577 sim_fpu_to64 (&f1, (V1)); \
578 trace_input_fp2 (SD, CPU, TRACE_FPU_IDX, f0, f1); \
579 } \
580 } while (0)
581
582 #define TRACE_FP_INPUT_FPU3(V0, V1, V2) \
583 do { \
584 if (TRACE_FPU_P (CPU)) \
585 { \
586 unsigned64 f0, f1, f2; \
587 sim_fpu_to64 (&f0, (V0)); \
588 sim_fpu_to64 (&f1, (V1)); \
589 sim_fpu_to64 (&f2, (V2)); \
590 trace_input_fp3 (SD, CPU, TRACE_FPU_IDX, f0, f1, f2); \
591 } \
592 } while (0)
593
594 #define TRACE_FP_INPUT_BOOL1_FPU2(V0, V1, V2) \
595 do { \
596 if (TRACE_FPU_P (CPU)) \
597 { \
598 int d0 = (V0); \
599 unsigned64 f1, f2; \
600 TRACE_DATA *data = CPU_TRACE_DATA (CPU); \
601 TRACE_IDX (data) = TRACE_FPU_IDX; \
602 sim_fpu_to64 (&f1, (V1)); \
603 sim_fpu_to64 (&f2, (V2)); \
604 save_data (SD, data, trace_fmt_bool, sizeof (d0), &d0); \
605 save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f1); \
606 save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f2); \
607 } \
608 } while (0)
609
610 #define TRACE_FP_INPUT_WORD2(V0, V1) \
611 do { \
612 if (TRACE_FPU_P (CPU)) \
613 trace_input_word2 (SD, CPU, TRACE_FPU_IDX, (V0), (V1)); \
614 } while (0)
615
616 #define TRACE_FP_RESULT_FPU1(R0) \
617 do { \
618 if (TRACE_FPU_P (CPU)) \
619 { \
620 unsigned64 f0; \
621 sim_fpu_to64 (&f0, (R0)); \
622 trace_result_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
623 } \
624 } while (0)
625
626 #define TRACE_FP_RESULT_WORD1(R0) TRACE_FP_RESULT_WORD(R0)
627
628 #define TRACE_FP_RESULT_WORD2(R0, R1) \
629 do { \
630 if (TRACE_FPU_P (CPU)) \
631 trace_result_word2 (SD, CPU, TRACE_FPU_IDX, (R0), (R1)); \
632 } while (0)
633
634 #else
635 #define trace_input(NAME, IN1, IN2)
636 #define trace_output(RESULT)
637 #define trace_result(HAS_RESULT, RESULT)
638
639 #define TRACE_ALU_INPUT0()
640 #define TRACE_ALU_INPUT1(IN0)
641 #define TRACE_ALU_INPUT2(IN0, IN1)
642 #define TRACE_ALU_INPUT2(IN0, IN1)
643 #define TRACE_ALU_INPUT2(IN0, IN1 INS2)
644 #define TRACE_ALU_RESULT(RESULT)
645
646 #define TRACE_BRANCH0()
647 #define TRACE_BRANCH1(IN1)
648 #define TRACE_BRANCH2(IN1, IN2)
649 #define TRACE_BRANCH2(IN1, IN2, IN3)
650
651 #define TRACE_LD(ADDR,RESULT)
652 #define TRACE_ST(ADDR,RESULT)
653
654 #endif
655
656 #define GPR_SET(N, VAL) (State.regs[(N)] = (VAL))
657 #define GPR_CLEAR(N) (State.regs[(N)] = 0)
658
659 extern void divun ( unsigned int N,
660 unsigned long int als,
661 unsigned long int sfi,
662 unsigned32 /*unsigned long int*/ * quotient_ptr,
663 unsigned32 /*unsigned long int*/ * remainder_ptr,
664 int *overflow_ptr
665 );
666 extern void divn ( unsigned int N,
667 unsigned long int als,
668 unsigned long int sfi,
669 signed32 /*signed long int*/ * quotient_ptr,
670 signed32 /*signed long int*/ * remainder_ptr,
671 int *overflow_ptr
672 );
673 extern int type1_regs[];
674 extern int type2_regs[];
675 extern int type3_regs[];
676
677 #define SESR_OV (1 << 0)
678 #define SESR_SOV (1 << 1)
679
680 #define SESR (State.sregs[12])
681
682 #define ROUND_Q62_Q31(X) ((((X) + (1 << 30)) >> 31) & 0xffffffff)
683 #define ROUND_Q62_Q15(X) ((((X) + (1 << 30)) >> 47) & 0xffff)
684 #define ROUND_Q31_Q15(X) ((((X) + (1 << 15)) >> 15) & 0xffff)
685 #define ROUND_Q30_Q15(X) ((((X) + (1 << 14)) >> 15) & 0xffff)
686
687 #define SAT16(X) \
688 do \
689 { \
690 signed64 z = (X); \
691 if (z > 0x7fff) \
692 { \
693 SESR |= SESR_OV | SESR_SOV; \
694 z = 0x7fff; \
695 } \
696 else if (z < -0x8000) \
697 { \
698 SESR |= SESR_OV | SESR_SOV; \
699 z = - 0x8000; \
700 } \
701 (X) = z; \
702 } \
703 while (0)
704
705 #define SAT32(X) \
706 do \
707 { \
708 signed64 z = (X); \
709 if (z > 0x7fffffff) \
710 { \
711 SESR |= SESR_OV | SESR_SOV; \
712 z = 0x7fffffff; \
713 } \
714 else if (z < -0x80000000) \
715 { \
716 SESR |= SESR_OV | SESR_SOV; \
717 z = - 0x80000000; \
718 } \
719 (X) = z; \
720 } \
721 while (0)
722
723 #define ABS16(X) \
724 do \
725 { \
726 signed64 z = (X) & 0xffff; \
727 if (z == 0x8000) \
728 { \
729 SESR |= SESR_OV | SESR_SOV; \
730 z = 0x7fff; \
731 } \
732 else if (z & 0x8000) \
733 { \
734 z = (- z) & 0xffff; \
735 } \
736 (X) = z; \
737 } \
738 while (0)
739
740 #define ABS32(X) \
741 do \
742 { \
743 signed64 z = (X) & 0xffffffff; \
744 if (z == 0x80000000) \
745 { \
746 SESR |= SESR_OV | SESR_SOV; \
747 z = 0x7fffffff; \
748 } \
749 else if (z & 0x80000000) \
750 { \
751 z = (- z) & 0xffffffff; \
752 } \
753 (X) = z; \
754 } \
755 while (0)
756
757 #endif
This page took 0.043336 seconds and 5 git commands to generate.