Fixes problems building the V850 simulator introduced with the previous delta.
[deliverable/binutils-gdb.git] / sim / v850 / sim-main.h
1 #ifndef SIM_MAIN_H
2 #define SIM_MAIN_H
3
4 /* General config options */
5
6 #define WITH_CORE
7 #define WITH_MODULO_MEMORY 1
8 #define WITH_WATCHPOINTS 1
9
10
11 /* The v850 has 32bit words, numbered 31 (MSB) to 0 (LSB) */
12
13 #define WITH_TARGET_WORD_MSB 31
14
15 #include "config.h"
16 #include "sim-basics.h"
17 #include "sim-signal.h"
18 #include "sim-fpu.h"
19
20 typedef address_word sim_cia;
21
22 #include "sim-base.h"
23
24 #include "simops.h"
25 #include "bfd.h"
26
27
28 typedef signed8 int8;
29 typedef unsigned8 uint8;
30 typedef signed16 int16;
31 typedef unsigned16 uint16;
32 typedef signed32 int32;
33 typedef unsigned32 uint32;
34 typedef unsigned32 reg_t;
35 typedef unsigned64 reg64_t;
36
37
38 /* The current state of the processor; registers, memory, etc. */
39
40 typedef struct _v850_regs {
41 reg_t regs[32]; /* general-purpose registers */
42 reg_t sregs[32]; /* system registers, including psw */
43 reg_t pc;
44 int dummy_mem; /* where invalid accesses go */
45 reg_t mpu0_sregs[28]; /* mpu0 system registers */
46 reg_t mpu1_sregs[28]; /* mpu1 system registers */
47 reg_t fpu_sregs[28]; /* fpu system registers */
48 reg_t selID_sregs[7][32]; /* system registers, selID 1 thru selID 7 */
49 reg64_t vregs[32]; /* vector registers. */
50 } v850_regs;
51
52 struct _sim_cpu
53 {
54 /* ... simulator specific members ... */
55 v850_regs reg;
56 reg_t psw_mask; /* only allow non-reserved bits to be set */
57 sim_event *pending_nmi;
58 /* ... base type ... */
59 sim_cpu_base base;
60 };
61
62 #define CIA_GET(CPU) ((CPU)->reg.pc + 0)
63 #define CIA_SET(CPU,VAL) ((CPU)->reg.pc = (VAL))
64
65 struct sim_state {
66 sim_cpu cpu[MAX_NR_PROCESSORS];
67 #if (WITH_SMP)
68 #define STATE_CPU(sd,n) (&(sd)->cpu[n])
69 #else
70 #define STATE_CPU(sd,n) (&(sd)->cpu[0])
71 #endif
72 #if 0
73 SIM_ADDR rom_size;
74 SIM_ADDR low_end;
75 SIM_ADDR high_start;
76 SIM_ADDR high_base;
77 void *mem;
78 #endif
79 sim_state_base base;
80 };
81
82 /* For compatibility, until all functions converted to passing
83 SIM_DESC as an argument */
84 extern SIM_DESC simulator;
85
86
87 #define V850_ROM_SIZE 0x8000
88 #define V850_LOW_END 0x200000
89 #define V850_HIGH_START 0xffe000
90
91
92 /* Because we are still using the old semantic table, provide compat
93 macro's that store the instruction where the old simops expects
94 it. */
95
96 extern uint32 OP[4];
97 #if 0
98 OP[0] = inst & 0x1f; /* RRRRR -> reg1 */
99 OP[1] = (inst >> 11) & 0x1f; /* rrrrr -> reg2 */
100 OP[2] = (inst >> 16) & 0xffff; /* wwwww -> reg3 OR imm16 */
101 OP[3] = inst;
102 #endif
103
104 #define SAVE_1 \
105 PC = cia; \
106 OP[0] = instruction_0 & 0x1f; \
107 OP[1] = (instruction_0 >> 11) & 0x1f; \
108 OP[2] = 0; \
109 OP[3] = instruction_0
110
111 #define COMPAT_1(CALL) \
112 SAVE_1; \
113 PC += (CALL); \
114 nia = PC
115
116 #define SAVE_2 \
117 PC = cia; \
118 OP[0] = instruction_0 & 0x1f; \
119 OP[1] = (instruction_0 >> 11) & 0x1f; \
120 OP[2] = instruction_1; \
121 OP[3] = (instruction_1 << 16) | instruction_0
122
123 #define COMPAT_2(CALL) \
124 SAVE_2; \
125 PC += (CALL); \
126 nia = PC
127
128
129 /* new */
130 #define GR ((CPU)->reg.regs)
131 #define SR ((CPU)->reg.sregs)
132 #define VR ((CPU)->reg.vregs)
133 #define MPU0_SR ((STATE_CPU (sd, 0))->reg.mpu0_sregs)
134 #define MPU1_SR ((STATE_CPU (sd, 0))->reg.mpu1_sregs)
135 #define FPU_SR ((STATE_CPU (sd, 0))->reg.fpu_sregs)
136
137 /* old */
138 #define State (STATE_CPU (simulator, 0)->reg)
139 #define PC (State.pc)
140 #define SP_REGNO 3
141 #define SP (State.regs[SP_REGNO])
142 #define EP (State.regs[30])
143
144 #define EIPC (State.sregs[0])
145 #define EIPSW (State.sregs[1])
146 #define FEPC (State.sregs[2])
147 #define FEPSW (State.sregs[3])
148 #define ECR (State.sregs[4])
149 #define PSW (State.sregs[5])
150 #define PSW_REGNO 5
151 #define EIIC (State.sregs[13])
152 #define FEIC (State.sregs[14])
153 #define DBIC (SR[15])
154 #define CTPC (SR[16])
155 #define CTPSW (SR[17])
156 #define DBPC (State.sregs[18])
157 #define DBPSW (State.sregs[19])
158 #define CTBP (State.sregs[20])
159 #define DIR (SR[21])
160 #define EIWR (SR[28])
161 #define FEWR (SR[29])
162 #define DBWR (SR[30])
163 #define BSEL (SR[31])
164
165 #define PSW_US BIT32 (8)
166 #define PSW_NP 0x80
167 #define PSW_EP 0x40
168 #define PSW_ID 0x20
169 #define PSW_SAT 0x10
170 #define PSW_CY 0x8
171 #define PSW_OV 0x4
172 #define PSW_S 0x2
173 #define PSW_Z 0x1
174
175 #define PSW_NPV (1<<18)
176 #define PSW_DMP (1<<17)
177 #define PSW_IMP (1<<16)
178
179 #define ECR_EICC 0x0000ffff
180 #define ECR_FECC 0xffff0000
181
182 /* FPU */
183
184 #define FPSR (FPU_SR[6])
185 #define FPSR_REGNO 6
186 #define FPEPC (FPU_SR[7])
187 #define FPST (FPU_SR[8])
188 #define FPST_REGNO 8
189 #define FPCC (FPU_SR[9])
190 #define FPCFG (FPU_SR[10])
191 #define FPCFG_REGNO 10
192
193 #define FPSR_DEM 0x00200000
194 #define FPSR_SEM 0x00100000
195 #define FPSR_RM 0x000c0000
196 #define FPSR_RN 0x00000000
197 #define FPSR_FS 0x00020000
198 #define FPSR_PR 0x00010000
199
200 #define FPSR_XC 0x0000fc00
201 #define FPSR_XCE 0x00008000
202 #define FPSR_XCV 0x00004000
203 #define FPSR_XCZ 0x00002000
204 #define FPSR_XCO 0x00001000
205 #define FPSR_XCU 0x00000800
206 #define FPSR_XCI 0x00000400
207
208 #define FPSR_XE 0x000003e0
209 #define FPSR_XEV 0x00000200
210 #define FPSR_XEZ 0x00000100
211 #define FPSR_XEO 0x00000080
212 #define FPSR_XEU 0x00000040
213 #define FPSR_XEI 0x00000020
214
215 #define FPSR_XP 0x0000001f
216 #define FPSR_XPV 0x00000010
217 #define FPSR_XPZ 0x00000008
218 #define FPSR_XPO 0x00000004
219 #define FPSR_XPU 0x00000002
220 #define FPSR_XPI 0x00000001
221
222 #define FPST_PR 0x00008000
223 #define FPST_XCE 0x00002000
224 #define FPST_XCV 0x00001000
225 #define FPST_XCZ 0x00000800
226 #define FPST_XCO 0x00000400
227 #define FPST_XCU 0x00000200
228 #define FPST_XCI 0x00000100
229
230 #define FPST_XPV 0x00000010
231 #define FPST_XPZ 0x00000008
232 #define FPST_XPO 0x00000004
233 #define FPST_XPU 0x00000002
234 #define FPST_XPI 0x00000001
235
236 #define FPCFG_RM 0x00000180
237 #define FPCFG_XEV 0x00000010
238 #define FPCFG_XEZ 0x00000008
239 #define FPCFG_XEO 0x00000004
240 #define FPCFG_XEU 0x00000002
241 #define FPCFG_XEI 0x00000001
242
243 #define GET_FPCC()\
244 ((FPSR >> 24) &0xf)
245
246 #define CLEAR_FPCC(bbb)\
247 (FPSR &= ~(1 << (bbb+24)))
248
249 #define SET_FPCC(bbb)\
250 (FPSR |= 1 << (bbb+24))
251
252 #define TEST_FPCC(bbb)\
253 ((FPSR & (1 << (bbb+24))) != 0)
254
255 #define FPSR_GET_ROUND() \
256 (((FPSR & FPSR_RM) == FPSR_RN) ? sim_fpu_round_near \
257 : ((FPSR & FPSR_RM) == 0x00040000) ? sim_fpu_round_up \
258 : ((FPSR & FPSR_RM) == 0x00080000) ? sim_fpu_round_down \
259 : sim_fpu_round_zero)
260
261
262 enum FPU_COMPARE {
263 FPU_CMP_F = 0,
264 FPU_CMP_UN,
265 FPU_CMP_EQ,
266 FPU_CMP_UEQ,
267 FPU_CMP_OLT,
268 FPU_CMP_ULT,
269 FPU_CMP_OLE,
270 FPU_CMP_ULE,
271 FPU_CMP_SF,
272 FPU_CMP_NGLE,
273 FPU_CMP_SEQ,
274 FPU_CMP_NGL,
275 FPU_CMP_LT,
276 FPU_CMP_NGE,
277 FPU_CMP_LE,
278 FPU_CMP_NGT
279 };
280
281
282 /* MPU */
283 #define MPM (MPU1_SR[0])
284 #define MPC (MPU1_SR[1])
285 #define MPC_REGNO 1
286 #define TID (MPU1_SR[2])
287 #define PPA (MPU1_SR[3])
288 #define PPM (MPU1_SR[4])
289 #define PPC (MPU1_SR[5])
290 #define DCC (MPU1_SR[6])
291 #define DCV0 (MPU1_SR[7])
292 #define DCV1 (MPU1_SR[8])
293 #define SPAL (MPU1_SR[10])
294 #define SPAU (MPU1_SR[11])
295 #define IPA0L (MPU1_SR[12])
296 #define IPA0U (MPU1_SR[13])
297 #define IPA1L (MPU1_SR[14])
298 #define IPA1U (MPU1_SR[15])
299 #define IPA2L (MPU1_SR[16])
300 #define IPA2U (MPU1_SR[17])
301 #define IPA3L (MPU1_SR[18])
302 #define IPA3U (MPU1_SR[19])
303 #define DPA0L (MPU1_SR[20])
304 #define DPA0U (MPU1_SR[21])
305 #define DPA1L (MPU1_SR[22])
306 #define DPA1U (MPU1_SR[23])
307 #define DPA2L (MPU1_SR[24])
308 #define DPA2U (MPU1_SR[25])
309 #define DPA3L (MPU1_SR[26])
310 #define DPA3U (MPU1_SR[27])
311
312 #define PPC_PPE 0x1
313 #define SPAL_SPE 0x1
314 #define SPAL_SPS 0x10
315
316 #define VIP (MPU0_SR[0])
317 #define VMECR (MPU0_SR[4])
318 #define VMTID (MPU0_SR[5])
319 #define VMADR (MPU0_SR[6])
320 #define VPECR (MPU0_SR[8])
321 #define VPTID (MPU0_SR[9])
322 #define VPADR (MPU0_SR[10])
323 #define VDECR (MPU0_SR[12])
324 #define VDTID (MPU0_SR[13])
325
326 #define MPM_AUE 0x2
327 #define MPM_MPE 0x1
328
329 #define VMECR_VMX 0x2
330 #define VMECR_VMR 0x4
331 #define VMECR_VMW 0x8
332 #define VMECR_VMS 0x10
333 #define VMECR_VMRMW 0x20
334 #define VMECR_VMMS 0x40
335
336 #define IPA2ADDR(IPA) ((IPA) & 0x1fffff80)
337 #define IPA_IPE 0x1
338 #define IPA_IPX 0x2
339 #define IPA_IPR 0x4
340 #define IPE0 (IPA0L & IPA_IPE)
341 #define IPE1 (IPA1L & IPA_IPE)
342 #define IPE2 (IPA2L & IPA_IPE)
343 #define IPE3 (IPA3L & IPA_IPE)
344 #define IPX0 (IPA0L & IPA_IPX)
345 #define IPX1 (IPA1L & IPA_IPX)
346 #define IPX2 (IPA2L & IPA_IPX)
347 #define IPX3 (IPA3L & IPA_IPX)
348 #define IPR0 (IPA0L & IPA_IPR)
349 #define IPR1 (IPA1L & IPA_IPR)
350 #define IPR2 (IPA2L & IPA_IPR)
351 #define IPR3 (IPA3L & IPA_IPR)
352
353 #define DPA2ADDR(DPA) ((DPA) & 0x1fffff80)
354 #define DPA_DPE 0x1
355 #define DPA_DPR 0x4
356 #define DPA_DPW 0x8
357 #define DPE0 (DPA0L & DPA_DPE)
358 #define DPE1 (DPA1L & DPA_DPE)
359 #define DPE2 (DPA2L & DPA_DPE)
360 #define DPE3 (DPA3L & DPA_DPE)
361 #define DPR0 (DPA0L & DPA_DPR)
362 #define DPR1 (DPA1L & DPA_DPR)
363 #define DPR2 (DPA2L & DPA_DPR)
364 #define DPR3 (DPA3L & DPA_DPR)
365 #define DPW0 (DPA0L & DPA_DPW)
366 #define DPW1 (DPA1L & DPA_DPW)
367 #define DPW2 (DPA2L & DPA_DPW)
368 #define DPW3 (DPA3L & DPA_DPW)
369
370 #define DCC_DCE0 0x1
371 #define DCC_DCE1 0x10000
372
373 #define PPA2ADDR(PPA) ((PPA) & 0x1fffff80)
374 #define PPC_PPC 0xfffffffe
375 #define PPC_PPE 0x1
376 #define PPC_PPM 0x0000fff8
377
378
379 #define SEXT3(x) ((((x)&0x7)^(~0x3))+0x4)
380
381 /* sign-extend a 4-bit number */
382 #define SEXT4(x) ((((x)&0xf)^(~0x7))+0x8)
383
384 /* sign-extend a 5-bit number */
385 #define SEXT5(x) ((((x)&0x1f)^(~0xf))+0x10)
386
387 /* sign-extend a 9-bit number */
388 #define SEXT9(x) ((((x)&0x1ff)^(~0xff))+0x100)
389
390 /* sign-extend a 22-bit number */
391 #define SEXT22(x) ((((x)&0x3fffff)^(~0x1fffff))+0x200000)
392
393 /* sign extend a 40 bit number */
394 #define SEXT40(x) ((((x) & UNSIGNED64 (0xffffffffff)) \
395 ^ (~UNSIGNED64 (0x7fffffffff))) \
396 + UNSIGNED64 (0x8000000000))
397
398 /* sign extend a 44 bit number */
399 #define SEXT44(x) ((((x) & UNSIGNED64 (0xfffffffffff)) \
400 ^ (~ UNSIGNED64 (0x7ffffffffff))) \
401 + UNSIGNED64 (0x80000000000))
402
403 /* sign extend a 60 bit number */
404 #define SEXT60(x) ((((x) & UNSIGNED64 (0xfffffffffffffff)) \
405 ^ (~ UNSIGNED64 (0x7ffffffffffffff))) \
406 + UNSIGNED64 (0x800000000000000))
407
408 /* No sign extension */
409 #define NOP(x) (x)
410
411 #define INC_ADDR(x,i) x = ((State.MD && x == MOD_E) ? MOD_S : (x)+(i))
412
413 #define RLW(x) load_mem (x, 4)
414
415 /* Function declarations. */
416
417 #define IMEM16(EA) \
418 sim_core_read_aligned_2 (CPU, PC, exec_map, (EA))
419
420 #define IMEM16_IMMED(EA,N) \
421 sim_core_read_aligned_2 (STATE_CPU (sd, 0), \
422 PC, exec_map, (EA) + (N) * 2)
423
424 #define load_mem(ADDR,LEN) \
425 sim_core_read_unaligned_##LEN (STATE_CPU (simulator, 0), \
426 PC, read_map, (ADDR))
427
428 #define store_mem(ADDR,LEN,DATA) \
429 sim_core_write_unaligned_##LEN (STATE_CPU (simulator, 0), \
430 PC, write_map, (ADDR), (DATA))
431
432
433 /* compare cccc field against PSW */
434 int condition_met (unsigned code);
435
436
437 /* Debug/tracing calls */
438
439 enum op_types
440 {
441 OP_UNKNOWN,
442 OP_NONE,
443 OP_TRAP,
444 OP_REG,
445 OP_REG_REG,
446 OP_REG_REG_CMP,
447 OP_REG_REG_MOVE,
448 OP_IMM_REG,
449 OP_IMM_REG_CMP,
450 OP_IMM_REG_MOVE,
451 OP_COND_BR,
452 OP_LOAD16,
453 OP_STORE16,
454 OP_LOAD32,
455 OP_STORE32,
456 OP_JUMP,
457 OP_IMM_REG_REG,
458 OP_UIMM_REG_REG,
459 OP_IMM16_REG_REG,
460 OP_UIMM16_REG_REG,
461 OP_BIT,
462 OP_EX1,
463 OP_EX2,
464 OP_LDSR,
465 OP_STSR,
466 OP_BIT_CHANGE,
467 OP_REG_REG_REG,
468 OP_REG_REG3,
469 OP_IMM_REG_REG_REG,
470 OP_PUSHPOP1,
471 OP_PUSHPOP2,
472 OP_PUSHPOP3,
473 };
474
475 #ifdef DEBUG
476 void trace_input (char *name, enum op_types type, int size);
477 void trace_output (enum op_types result);
478 void trace_result (int has_result, unsigned32 result);
479
480 extern int trace_num_values;
481 extern unsigned32 trace_values[];
482 extern unsigned32 trace_pc;
483 extern const char *trace_name;
484 extern int trace_module;
485
486 #define TRACE_BRANCH0() \
487 do { \
488 if (TRACE_BRANCH_P (CPU)) { \
489 trace_module = TRACE_BRANCH_IDX; \
490 trace_pc = cia; \
491 trace_name = itable[MY_INDEX].name; \
492 trace_num_values = 0; \
493 trace_result (1, (nia)); \
494 } \
495 } while (0)
496
497 #define TRACE_BRANCH1(IN1) \
498 do { \
499 if (TRACE_BRANCH_P (CPU)) { \
500 trace_module = TRACE_BRANCH_IDX; \
501 trace_pc = cia; \
502 trace_name = itable[MY_INDEX].name; \
503 trace_values[0] = (IN1); \
504 trace_num_values = 1; \
505 trace_result (1, (nia)); \
506 } \
507 } while (0)
508
509 #define TRACE_BRANCH2(IN1, IN2) \
510 do { \
511 if (TRACE_BRANCH_P (CPU)) { \
512 trace_module = TRACE_BRANCH_IDX; \
513 trace_pc = cia; \
514 trace_name = itable[MY_INDEX].name; \
515 trace_values[0] = (IN1); \
516 trace_values[1] = (IN2); \
517 trace_num_values = 2; \
518 trace_result (1, (nia)); \
519 } \
520 } while (0)
521
522 #define TRACE_BRANCH3(IN1, IN2, IN3) \
523 do { \
524 if (TRACE_BRANCH_P (CPU)) { \
525 trace_module = TRACE_BRANCH_IDX; \
526 trace_pc = cia; \
527 trace_name = itable[MY_INDEX].name; \
528 trace_values[0] = (IN1); \
529 trace_values[1] = (IN2); \
530 trace_values[2] = (IN3); \
531 trace_num_values = 3; \
532 trace_result (1, (nia)); \
533 } \
534 } while (0)
535
536 #define TRACE_LD(ADDR,RESULT) \
537 do { \
538 if (TRACE_MEMORY_P (CPU)) { \
539 trace_module = TRACE_MEMORY_IDX; \
540 trace_pc = cia; \
541 trace_name = itable[MY_INDEX].name; \
542 trace_values[0] = (ADDR); \
543 trace_num_values = 1; \
544 trace_result (1, (RESULT)); \
545 } \
546 } while (0)
547
548 #define TRACE_LD_NAME(NAME, ADDR,RESULT) \
549 do { \
550 if (TRACE_MEMORY_P (CPU)) { \
551 trace_module = TRACE_MEMORY_IDX; \
552 trace_pc = cia; \
553 trace_name = (NAME); \
554 trace_values[0] = (ADDR); \
555 trace_num_values = 1; \
556 trace_result (1, (RESULT)); \
557 } \
558 } while (0)
559
560 #define TRACE_ST(ADDR,RESULT) \
561 do { \
562 if (TRACE_MEMORY_P (CPU)) { \
563 trace_module = TRACE_MEMORY_IDX; \
564 trace_pc = cia; \
565 trace_name = itable[MY_INDEX].name; \
566 trace_values[0] = (ADDR); \
567 trace_num_values = 1; \
568 trace_result (1, (RESULT)); \
569 } \
570 } while (0)
571
572 #define TRACE_FP_INPUT_FPU1(V0) \
573 do { \
574 if (TRACE_FPU_P (CPU)) \
575 { \
576 unsigned64 f0; \
577 sim_fpu_to64 (&f0, (V0)); \
578 trace_input_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
579 } \
580 } while (0)
581
582 #define TRACE_FP_INPUT_FPU2(V0, V1) \
583 do { \
584 if (TRACE_FPU_P (CPU)) \
585 { \
586 unsigned64 f0, f1; \
587 sim_fpu_to64 (&f0, (V0)); \
588 sim_fpu_to64 (&f1, (V1)); \
589 trace_input_fp2 (SD, CPU, TRACE_FPU_IDX, f0, f1); \
590 } \
591 } while (0)
592
593 #define TRACE_FP_INPUT_FPU3(V0, V1, V2) \
594 do { \
595 if (TRACE_FPU_P (CPU)) \
596 { \
597 unsigned64 f0, f1, f2; \
598 sim_fpu_to64 (&f0, (V0)); \
599 sim_fpu_to64 (&f1, (V1)); \
600 sim_fpu_to64 (&f2, (V2)); \
601 trace_input_fp3 (SD, CPU, TRACE_FPU_IDX, f0, f1, f2); \
602 } \
603 } while (0)
604
605 #define TRACE_FP_INPUT_BOOL1_FPU2(V0, V1, V2) \
606 do { \
607 if (TRACE_FPU_P (CPU)) \
608 { \
609 int d0 = (V0); \
610 unsigned64 f1, f2; \
611 TRACE_DATA *data = CPU_TRACE_DATA (CPU); \
612 TRACE_IDX (data) = TRACE_FPU_IDX; \
613 sim_fpu_to64 (&f1, (V1)); \
614 sim_fpu_to64 (&f2, (V2)); \
615 save_data (SD, data, trace_fmt_bool, sizeof (d0), &d0); \
616 save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f1); \
617 save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f2); \
618 } \
619 } while (0)
620
621 #define TRACE_FP_INPUT_WORD2(V0, V1) \
622 do { \
623 if (TRACE_FPU_P (CPU)) \
624 trace_input_word2 (SD, CPU, TRACE_FPU_IDX, (V0), (V1)); \
625 } while (0)
626
627 #define TRACE_FP_RESULT_FPU1(R0) \
628 do { \
629 if (TRACE_FPU_P (CPU)) \
630 { \
631 unsigned64 f0; \
632 sim_fpu_to64 (&f0, (R0)); \
633 trace_result_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
634 } \
635 } while (0)
636
637 #define TRACE_FP_RESULT_WORD1(R0) TRACE_FP_RESULT_WORD(R0)
638
639 #define TRACE_FP_RESULT_WORD2(R0, R1) \
640 do { \
641 if (TRACE_FPU_P (CPU)) \
642 trace_result_word2 (SD, CPU, TRACE_FPU_IDX, (R0), (R1)); \
643 } while (0)
644
645 #else
646 #define trace_input(NAME, IN1, IN2)
647 #define trace_output(RESULT)
648 #define trace_result(HAS_RESULT, RESULT)
649
650 #define TRACE_ALU_INPUT0()
651 #define TRACE_ALU_INPUT1(IN0)
652 #define TRACE_ALU_INPUT2(IN0, IN1)
653 #define TRACE_ALU_INPUT2(IN0, IN1)
654 #define TRACE_ALU_INPUT2(IN0, IN1 INS2)
655 #define TRACE_ALU_RESULT(RESULT)
656
657 #define TRACE_BRANCH0()
658 #define TRACE_BRANCH1(IN1)
659 #define TRACE_BRANCH2(IN1, IN2)
660 #define TRACE_BRANCH2(IN1, IN2, IN3)
661
662 #define TRACE_LD(ADDR,RESULT)
663 #define TRACE_ST(ADDR,RESULT)
664
665 #endif
666
667 #define GPR_SET(N, VAL) (State.regs[(N)] = (VAL))
668 #define GPR_CLEAR(N) (State.regs[(N)] = 0)
669
670 extern void divun ( unsigned int N,
671 unsigned long int als,
672 unsigned long int sfi,
673 unsigned32 /*unsigned long int*/ * quotient_ptr,
674 unsigned32 /*unsigned long int*/ * remainder_ptr,
675 int *overflow_ptr
676 );
677 extern void divn ( unsigned int N,
678 unsigned long int als,
679 unsigned long int sfi,
680 signed32 /*signed long int*/ * quotient_ptr,
681 signed32 /*signed long int*/ * remainder_ptr,
682 int *overflow_ptr
683 );
684 extern int type1_regs[];
685 extern int type2_regs[];
686 extern int type3_regs[];
687
688 #define SESR_OV (1 << 0)
689 #define SESR_SOV (1 << 1)
690
691 #define SESR (State.sregs[12])
692
693 #define ROUND_Q62_Q31(X) ((((X) + (1 << 30)) >> 31) & 0xffffffff)
694 #define ROUND_Q62_Q15(X) ((((X) + (1 << 30)) >> 47) & 0xffff)
695 #define ROUND_Q31_Q15(X) ((((X) + (1 << 15)) >> 15) & 0xffff)
696 #define ROUND_Q30_Q15(X) ((((X) + (1 << 14)) >> 15) & 0xffff)
697
698 #define SAT16(X) \
699 do \
700 { \
701 signed64 z = (X); \
702 if (z > 0x7fff) \
703 { \
704 SESR |= SESR_OV | SESR_SOV; \
705 z = 0x7fff; \
706 } \
707 else if (z < -0x8000) \
708 { \
709 SESR |= SESR_OV | SESR_SOV; \
710 z = - 0x8000; \
711 } \
712 (X) = z; \
713 } \
714 while (0)
715
716 #define SAT32(X) \
717 do \
718 { \
719 signed64 z = (X); \
720 if (z > 0x7fffffff) \
721 { \
722 SESR |= SESR_OV | SESR_SOV; \
723 z = 0x7fffffff; \
724 } \
725 else if (z < -0x80000000) \
726 { \
727 SESR |= SESR_OV | SESR_SOV; \
728 z = - 0x80000000; \
729 } \
730 (X) = z; \
731 } \
732 while (0)
733
734 #define ABS16(X) \
735 do \
736 { \
737 signed64 z = (X) & 0xffff; \
738 if (z == 0x8000) \
739 { \
740 SESR |= SESR_OV | SESR_SOV; \
741 z = 0x7fff; \
742 } \
743 else if (z & 0x8000) \
744 { \
745 z = (- z) & 0xffff; \
746 } \
747 (X) = z; \
748 } \
749 while (0)
750
751 #define ABS32(X) \
752 do \
753 { \
754 signed64 z = (X) & 0xffffffff; \
755 if (z == 0x80000000) \
756 { \
757 SESR |= SESR_OV | SESR_SOV; \
758 z = 0x7fffffff; \
759 } \
760 else if (z & 0x80000000) \
761 { \
762 z = (- z) & 0xffffffff; \
763 } \
764 (X) = z; \
765 } \
766 while (0)
767
768 #endif
This page took 0.055901 seconds and 5 git commands to generate.